OmROn

Programmable Controller CJ1

Replacement Guide From CJ1M/CJ1G to CJ2M

CJ1M-CPU $\square \square$
CJ1G-CPU4 $\square(\mathrm{H})$
CJ2M-CPU $\square \square$

Replace
Guide

About this document

This document provides the reference information for replacing CJ1M/CJ1G PLC systems with CJ2M series PLC.
This document does not include precautions and reminders; please read and understand the important precautions and reminders described on the manuals of PLCs (both of PLC used in the existing system and PLC you will use to replace the existing PLC) before attempting to start operation.

Related Manuals

Man.No.	Manual
W472	CJ2 CPU Unit Hardware USER'S MANUAL
W473	CJ2 CPU Unit Software USER'S MANUAL
W486	CJ2M Pulse I/O Module USER'S MANUAL
W393	CJ Series OPERATION MANUAL
W441	CJ series CJ1M CPU Units with Ethernet Functions OPERATION MANUAL
W395	CJ series Built-in I/O CJ1M CPU Units OPERATION MANUAL
W394	CS/CJ/NSJ PROGRAMMING MANUAL
W474	CS/CJ/NSJ Series INSTRUCTIONS REFERENCE MANUAL
W342	CS/CJ/CP/NSJ Series Communications Commands REFERENCE MANUAL
W345	CS/CJ Series Analog I/O Units AD/DA/MAD42 OPERATION MANUAL
W368	CS/CJ Series Analog I/0 Units OPERATION MANUAL
W466	CJ Series Universal Input Units OPERATION MANUAL
W396	CJ Series Temperature Control Units OPERATION MANUAL
W401	High-speed Counter Units OPERATION MANUAL
W465	EtherNet/IP Units OPERATION MANUAL
W420	CS and CJ Series Ethernet Units OPERATION MANUAL Construction of Networks
W343	CS/CJ Series Ethernet Units OPERATION MANUAL
W421	CS/CJ Series Ethernet Units OPERATION MANUAL Construction of Applications
Z174	CS/CJ Series ID SENSOR UNITS OPERATION MANUAL
W397	CJ Series Position Control Units CJ1W-NC $\square \square 3$ OPERATION MANUAL
W477	CJ Series Position Control Units CJ1W-NC $\square \square 4$ OPERATION MANUAL
W336	CS/CJ Series Serial Communications Boards Serial Communications Units OPERATION MANUAL
W426	CS/CJ Series Position Control Units CS1W-NC $\square \square 1 / \mathrm{CJ1WNC} \square \square 1$-MA OPERATION MANUAL
W435	CS/CJ series Motion Control Unit CS1W/CJ1W-MCH71OPERATION MANUAL
W467	Controller Link Support Boards for PCI Bus INSTALLATION GUIDE
W309	Controller Link Units OPERATION MANUAL
V237	SPU-Console Ver.2.1 OPERATION MANUAL
W406	CS/CJ Series Loop Control Boards/Process-control CPU Units /Loop-control CPU Units OPERATION MANUAL
W407	CS/CJ Series Loop Control Boards/Process-control CPU Units /Loop-control CPU Units FUNCTION BLOCK REFERENCE MANUAL
W463	CX-One FA Integrated Tool Package SETUP MANUAL
W446	CX-Programmer OPERATION MANUAL
W447	CX-Programmer OPERATION MANUAL: Function Blocks/Structured Text
W469	CX-Programmer OPERATION MANUAL SFC Programming
W366	CX-Simulator OPERATION MANUAL
W464	CX-Integrator OPERATION MANUAL
W433	CX-Position OPERATION MANUAL
W436	CX-Motion-NCF OPERATION MANUAL
W448	CX-Motion-MCH OPERATION MANUAL

Terms and Conditions Agreement

Read and understand this catalog.
Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranties.

(a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.
(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right.
(c) Buyer Remedy. Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty.
See http://www.omron.com/global/ or contact your Omron representative for published information.

Limitation on Liability; Etc.
OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.
Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

Suitability of Use.

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings
and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products.

Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.

Performance Data.

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

Change in Specifications.

Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

Errors and Omissions.

Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

Table of Contents

WORK FLOW 2

1. PERFORMANCE SPECIFICATIONS 3
1.1 CJ1M/CJ2M SPECIFICATIONS COMPARISON 3
1.2 CJ1G/CJ2M SPECIFICATIONS COMPARISON. 4
2. SYSTEM CONFIGURATIONS 5
2.1 CJ1M/CJ1G/CJ2M SYSTEM COMFIGURATION COMPARISON 5
3. MEMORY AREA 6
3.1 CJ1M/CJ1G/CJ2M MEMORY AREA COMPARISON 6
4. EXAMPLE OF CONVERTING LADDER PROGRAM BY CX-PROGRAMMER 8
Appendix
A-1 Instruction operations
A-2 Condition flag operations

This replacement guide describes the procedure to rebuild the system which uses the CJ1-series PLC by introducing the CJ2M-series PLC instead. The CJ2M-series has functions which can replace the functions and operation of CJ1-series PLC. Take the below work flow to replace your system. Also, refer to the reference pages for details.

Work flow

1) Preliminary Steps: Take the following steps before starting the replacement work.

Some CJ1 Units can be used with CJ2M. However, some Units can not be used with CJ2M. Read the reference pages (recommended models and precautions) and select the models.

Prepare the units, programming software, and connecting cable.
 Load the program, I/O Memory and other settings from the CJ1 using the programming software and connecting cable.

Convert the data read from CJ1 for CJ2M.
Most of the data can be automatically converted; however, some instructions and some Unit data can not be converted. Refer to the reference pages and modify the data and program separately.

Continue to actual replacement work
2. Selecting the model
3. Reading data from CJ1
4. Converting and changing the program for CJ2M
2) Actual replacement work: Take the steps below to replace the CJ1 to CJ2M.

1. Performance specifications

1.1 CJ1M/CJ2M specifications comparison

The table below lists the major difference in specifications of the CJ1M series and CJ2M series.

Item		CJ1M-CPU**	CJ2M-CPU**	
Number of I/O points		CPU*1: 160 points CPU*2: 320 points CPU*3: 640 points	2,560 points	
Program capacity		$\begin{aligned} & \text { CPU*1: } 5 \mathrm{k} \text { step } \\ & C P U * 2: ~ 10 k ~ s t e p ~ \\ & C P U * 3: ~ 20 k ~ s t e p ~ \end{aligned}$	CPU*1: 5k step CPU*2: 10k step CPU*3: 20k step CPU*4: 30k step CPU*5: 60k step	
Data memory		32k words	32k words	
		EM CPU*1 to *3: 1 bank (32k) CPU*4 to *5: 4 banks ($32 \mathrm{k} \times 4$)		
Built-in I/O			CJ2*: In:10 points/Out:6 points	Built-in CPU funciton will be available by mounting CJ2M-MD211/CJ2M-MD212. Up to two units can be mounted. In:10 points/Out:6 points (when one unit is used) In:20 points/Out:12 points (when two units are used) Attention: It is possible to use the unit with the CPU Unit of unit version 2.0 or later.
Length of instructions		1-7 steps/one instruction	1-30 steps/one instruction	
Execution time instruction of	LD instruction	0.10us	0.04us	
	MOV instruction	0.30us	0.12us	
Overhead processing time		CPU *1: 0.7 ms $\mathrm{CPU} 2 / * 3: 0.5 \mathrm{~ms}$	$\begin{aligned} & \text { CPU3*: 270us } \\ & \text { CPU1*: 160us } \end{aligned}$	
Maximum Number ofConnectable Units		CPU*1/CPU*2: 10 units CPU*3: 20 units	40 units	
Maximum Number of Expansion Racks		CPU*1/CPU*2: No expansion CPU*3: 1	3	
Clock function		Equipped as a standard function	Equipped as a standard function	
Dimensions (CPU Unit)		$\begin{aligned} & \text { CPU*1: 90(H)×31(W) } \times 65(\mathrm{D}) \\ & \text { CPU*2: } 90(\mathrm{H}) \times 49(\mathrm{~W}) \times 65(\mathrm{D}) \end{aligned}$	CPU*1: 90(H) x 31(W) x 75(D) CPU*3: 90(H) x 62(W) x 75(D)	
Programming software		CX-P	CX-P	
Programmin g device connection	Programming device for personal computer	< Peripheral port connection > Connection with PC requires cables: CS1W-CN*** or CS1W-CN118 + XW2Z-***-** < RS232C port connection > Connection with PC requires cables: XW2Z-***S-CV or XW2Z-***S (-V).	< Peripheral (USB) port > A direct connection can be made between the USB port of the personal computer and the PLC using the commercially-available USB cable < Serial (RS232C) port connection > Use the serial cable (XW2Z-200S-CV/500S-CV) to connect the PC and serial port on the CPU Unit. (The CPU3* does not have the RS232C port on it. Mount the RS232C option board (CP1W-CIF01) and connect the cable with the unit)	
	Programming Console	Available C200H-PRO27 CQM1-PRO01	Not supported	

1.2 CJ1G/CJ2M specifications comparison

The table below lists the major difference in specifications of the CJ1G and CJ2M series.

Item	CJ1 G-CPU4*H/CPU4*	CJ2M-CPU**
Number of I/O points	CPU42H/43H: 960 points CPU44/45/44H/45H: 1280 points	2,560 points
Program capacity	CPU42H: 10k step CPU43H: 20k step CPU44/44H: 30k step CPU45/45H: 60 k step	CPU*1: 5k step CPU*2: 10k step CPU*3: 20k step CPU*4: 30k step CPU*5: 60k step
		32k words
Data memory		32k words

2. System Configurations

2.1 CJ1M/CJ1G/CJ2M system comfiguration comparison

Same Power Supply Unit, Special I/O Units, and Basic I/O Unit can be used for CJ1M/CJ1G Series and CJ2M Series.
-Built-in I/O

CJ1M	CJ1G	CJ2M
Built-in I/O function	Built-in I/O function not supported	Built-in CPU funciton will be available by adding the CJ2M-MD21//CJ2M-MD212 Up to two units can be mounted. Itt is possible to use the unit with the CPU Unit of unit version 2.0 or later
In:10 points/Out:6 points Supported by CPU2* only	-	In:10 points/Out:6 points (when one unit is used) In:20 points/Out:12 points (when two units are used)

3. Memory area

3.1 CJ1M/CJ1G/CJ2M memory area comparison

This section explains the difference of the memory area of the CJ1M series, CJ1G series and CJ2M series, using an example of CJ1M-CPU2*, CJ1G-CPU4*H/4* and CJ2M-CPU**.

- CI/O area

CJ1M-CPU2*

CJ1G-CPU4*H/4*
0000

CJ2M-CPU**

- Area other than CIO Area

4. Example of converting ladder program by CX-Programmer

This section explains the method of converting the ladder program using CX-Programmer Ver.9.1. Here, convert the ladder program of CJ1M/CJ1G for CJ2M-CPU** as an example.
-Changing model from CJ1M/CJ1G to CJ2M.
As shown on the below figure, select NewPLC1[CJ1M] and right-click or double click it to change the PLC model. Please set the CPU model to the Device Type.
The error report might be displayed if there are instructions which cannot be converted.
Please correct and modify the program using support software function or manually, and execute program check. If errors are detected by the program check, please correct them referring to the error report.

-Checking program

Check whether there is problem in the ladder program which was converted from the CJ1M/CJ1G series for CJ2M series.

- Program check

There are 2 types of program check; automatic check on the CX-Programmer and check conducted by users. CX-Programmer checks the program when "Change model" is executed and the ledder program is converted.

- Automatic program check on the CX-Programmer

Timing of program check	Description
When PLC model is changed.	Program check for each PLC model Check for all instructions and all operands.

You can see the check result on the "Compile (Program check)" tab of the Output Window.
The left bus-bar on the ladder section window turns red if there is an error in the rung.

- Program check conducted by users

This section describes the procedure of program check, an example of checking result, and explanation of error levels.
<Program check for one program (task)>

1. Select the ladder section window or nimonic window to check.
2. Select "Program" - "Compile (Program check)".

The results of program check will be displayed on the Output Window. Refer to "Results of program check" on the next page for details.

- Checking the entire program

Select "PLC" - "Compile All PLC Programs".
You can see the program check results on the Output Window.
Refer to "Results of program check" for details.
<Results of program check>
You can see the check result on the "Compile (Program check)" tab of the Output Window. There are three error levels; errors are divided and shown for each level.

When there is no error.

```
O- PLC: NEwPLC1'[PLCModel 'COM1H CPU11' to 'CJ2M CPU11']....
Conversion issues...
[PLC/Program Name: Programs/NewProgram1]
[Ladder Section Name: Section1]
[Ladder Section Name: END]
NewPLC1 - 0 errors,0 warnings.
```


When there are errors.

Compiling...
[PLC/Program Name: NewPLC1/NewProgram1]
[Ladder Section Name: Section1]
ERROR Element at rung $0(0,0)$ is not connected at its output.
ERROR Element at rung $0(0,1)$ is not connected at its output.
ERROR: Missing operand at rung 1 (1,0).
ERROR: Missing operand at rung 1 (0,0).
[Ladder Section Name: END]
NewProgram1-4 errors, 0 warnings.
The programs have been checked with the program check option set to Unit Ver.1.0.

Double-click an error on the Output Window to jump to the correposnding cell.
Numeric data in (,) shows the position of a cell with an error.
If you right-click on the Output Window, below menus are shown.

Menu	Functions
[Clear]	Clears the content of Output Window. Same as selecting "Edit" - "Clear Compile Window".
[Next Reference]	Jump to the error cell next to the error now selected. Same as selecting "Edit" - "Next Reference".
[Allow Docking]	Output Window is shown on the main window of the CX-Programmer. If unckeck the check box, Output Window will be shown on the separate window.
[Hide]	Close the output window. Same as selecting "View" - "Window" - "Output".
[Float In Main Window]	Output window will be changed to other window (ex. Ladder section window).

Conversion: **= Support software converts the instruction. $/ *=$ Support software converts the instruction, but it is necessary to manually modify it. $/-=$ There is no corresponding instruction.	Blank cells: Support software converts the instructions, though there are some difference in CQM1H/CJ1M/CJ1G and CJ2M.

Instructions	CQM1H	$\begin{gathered} \left\lvert\, \begin{array}{c} \text { CJ1M/CJ1 } \\ G \end{array}\right. \\ \hline \end{gathered}$	Conversion	Difference between CQM1H and CJ1M/CJ1G/CJ2M (CQM1H->CJ1M/CJ1G/CJ2M)					Remarks				
				Nemonic	FUN No.	Number of operand	BCD $=>\mathrm{BIN}$	Settings					
DOUBLE BCD-TO-DOUBLE BINARY	BINL	BINL	${ }^{*}$										
BINARY TO BCD	BCD	BCD	*										
DOUBLE BINARY-TO-DOUBLE BCD	BCDL	BCDL	${ }^{*}$										
2 S COMPLEMENT	NEG	NEG	${ }^{*}$		Expansion $\rightarrow 160$	3 (None) $\rightarrow 2$							
DOUBLE 2 'S COMPLEMENT	NEGL	NEGL	${ }^{*}$		Expansion $\rightarrow 161$	3 (None) >2							
4-TO-16 DECODER	MLPX	MLPX	${ }^{*}$										
16-TO-4 ENCODER	DMPX	DMPX	${ }^{*}$										
ASCII CONVERT	ASC	ASC	${ }^{*}$										
ASCII-TO-HEXADECIMAL	HEX	HEX	*		Expansion \rightarrow 162								
LINE	LİNE	LINE	*		Expansion ->63		Bit number set in words: $B C D \rightarrow B I N$						
LİEE TO COLUMN	COLM	COLM	*		Expansion ->64		Bit number set in words: BCD -> BIN						
Logic instructions													
LOGICALAND	ANDW	ANDW	${ }^{*}$										
LOGICAL OR	ORW	ORW	**										
EXCLUSIVE OR	XORW	XORW	${ }^{*}$										
EXCLUSIVE NOR	XNRW	XNRW	${ }^{\text {** }}$										
COMPLEMENT	com	com	*										
Special math instructions													
ARITHMETIC PROCESS	$\frac{\mathrm{APR}}{\mathrm{BCNT}}$	APR	${ }^{*}$		Expansion ->69								
		BCNT	*				Number of words set in words: BCD -> BIN						
		BCNTC [Ver.3.0 or later]	**		67->621								
Floating point math instructions													
FLOATING TO 16-BIT	FIX	FIX	${ }^{*}$		Expansion $\rightarrow 450$	3 (None) $\rightarrow 2$							
FLOATING TO 32-BIT	FIXL	FIXL	**		Expansion >451	3 (None) >2							
16-BIT TO FLOATING	FLT	FLT	${ }^{*}$		Expansion $\rightarrow 452$	3 (None) >2							
32-Bit TO FLOATING	FLTL	FLTL	**		Expansion $\rightarrow 453$	3 (None) $\rightarrow 2$							
FLOATING-POINT ADD	+F	+F	*		Expansion $\rightarrow 454$								
FLOATING-POINT SUBTRACT	-	-F	${ }^{*}$		Expansion >455								
FLOATING-POINT MULTIPLY	*	*	${ }^{*}$		Expansion $\rightarrow 456$								
FLOATING-POINT DIVIDE	If	IF	*		Expansion $\rightarrow 457$								
DEGREES TO RADIANS	RAD	RAD	${ }^{*}$		Expansion >458	3 (None) >2							
RADIANS TO DEGREES	DEG	DEG	${ }^{*}$		Expansion $\rightarrow 459$	3 (None) >2							
SINE	SIN	SİN	**		Expansion $\rightarrow 460$	3 (None) $\rightarrow 2$							
COSINE	cos	cos	${ }^{*}$		Expansion $\rightarrow 461$	3 (None) >2							
TANGENT	TAN	TAN	${ }^{*}$		Expansion $\rightarrow 462$	3 (None) >2							
ARC SINE	ASIN	ASIN	*		Expansion $\rightarrow 463$	3 (None) $\rightarrow 2$							
ARC COSINE	ACOS	ACOS	${ }^{*}$		Expansion $\rightarrow 464$	3 (None) >2							
ARC TANGENT	ATAN	ATAN	${ }^{*}$		Expansion $\rightarrow 465$	3 (None) >2							
SQUARE ROOT	SORT	SORT	$\stackrel{*}{* *}$		Expansion $\rightarrow 466$	3 (None) >2							
EXPONENT	ExP	EXP	**		Expansion $\rightarrow 467$	3 (None) >2							
LOGARITHM	LOG	LOG	*		Expansion $\rightarrow 468$	3 (None) >2							
Table data processing instructions									Operand1: 1 word -> 2 words Comparison data, result word: C+1 ->				
DATA SEARCH	SRCH	SRCH	*		Expansion \rightarrow 181		Number of words set in words: BCD -> BIN	Output selection to enable or disable the Outputs number of matches					
FIND MAXIMUM	MAX	MAX	*		Expansion $\rightarrow 182$		Number of words in range: BCD -> BIN, Settings 12 bits -> 15 bits.	Select signed or unsigned/Outputs address to IR or not.	Control data: 1word -> 2 word Output address: D+1- $>$ IRQ0				
FİND MINIMUM	Min	MiN	*		Expansion \rightarrow 183		Number of words in range: BCD -> BIN, Settings 12 bits -> 15 bits	Select signed or unsigned/Outputs address to IR or not.	Control data: 1word -> 2 word Output address: D+1-- $>$ IROO				
SUM	SÜM	SUSM	*		Expansion $\rightarrow 184$		table length: $B C D->$ BIN, Settings 12 bits - >15 bits	Set the Starting byte/Units/Data type/signed or not in	$\begin{aligned} & \text { Control data: 1word -> } \\ & 2 \text { word } \end{aligned}$				
Data control instructions	FCS	FCS	*		Expansion ->180		$\begin{aligned} & \text { table length: } \mathrm{BCD}-\mathrm{-} \\ & \text { BIN, Settings } 12 \text { bits - } \\ & >15 \text { bits } \end{aligned}$	C+1. Set the Starting byte/Units in C+1.	Control data: 1word -> 2 word				
PID CONTROL	PID	PID	*		Expansion \rightarrow 190		Set value: $\mathrm{BCD} \rightarrow \mathrm{BIN}$	Check setting items and set value.	PID parameter area: 33ch -> 39ch Acaled value: variable				
SCALING	SCL	${ }^{\text {SCL }}$	**		66->194 ${ }^{\text {Expansion }>486}$				Acaled value: variable accepted -> variable not accepted				
SIGNED BINARY TO BCD SCALING BCD TO SIGNED BINARY SCALING AVERAGE VALUE	${ }^{\text {SCLI }}$	SCL3	${ }^{\text {* }}$		Expansion $\rightarrow 487$				Average Valid Flag: None -> Processing information D15 bit				
	AVG	AVG	*		Expansion $\rightarrow 195$		Number of cycles set in words: BCD -> BIN						
Subroutines instructions													
SUBROUTINE ENTRY MACRO	$\frac{\mathrm{SBS}}{\mathrm{MCRO}}$	SBS	${ }^{*}$										
		MCRO	**										
SUBROUTIINEDEFIINE	SBN	SBN	$\stackrel{*}{*}$										
SUBROUTINE RETURN	RET	RET	**										
Interrupt control instructions	İNT								Interrupt program: interrupt subroutine -> interrupt task (Also change the number again).				
		MSKS MSKR CLI DI EI	*	INT000->MSKS INT001->CLI INT002->MSKR INT003->MSKS/INI (CJ1M built-in input only) INT100->DI INT200->EI	$\begin{aligned} & 89->690 \\ & 89->691 \\ & 89->692 \\ & 89->690 / 880 \\ & 89->693 \\ & 89->694 \end{aligned}$			Interrupt unit/CJ1M built-in interrupt input: newly configure the settings.					
INTERVAL TiMER	STIIM	MSKS MSKR	$*$ (Partly ${ }^{-1-}$ in Instruction will not be converted if timer start/stop time is specified.	STIMOOO3 to 005- >MSKS STIMOO6 to 008- >MSKR	$\begin{aligned} & 69->690 \\ & 69->692 \end{aligned}$		Set the operands in BCD ->BIN.	Newly configure the settings again.	One-shot interrupt start: None Stopping timer function: None Set the unit of 0.1 ms in PLC settings. Interrupt program: interrupt subroutine -> interrupt task (Newly set the task No.)				
Step instructions													
STEP DEFINE	STEP	STEP SNXT	$\stackrel{*}{* *}$										

Conversion: **= Support software converts the instruction. $/ *=$ Support software converts the instruction, but it is necessary to manually modify it. $/$ - $=$ There is no corresponding instruction.
Blank cells: Support software converts the instructions, though there are some difference in CQM1H/CJ1M/CJ1G and CJ2M.

Instructions	сом1н	$\begin{gathered} \text { CJ1M/CJ1 } \\ G \end{gathered}$	Conversion	Difference between CQM1H and CJ1M/CJ1G/CJ2M (CQM1H-CJ1M/CJ1G/CJ2M)					Remarks
				Nemonic	FUN No.			Settings	
IIO REFRESH	IORF	IORF	*						
7-SEGMENT DECODER	SDEC	SDEC	\cdots						
7-SEGMENT DISPLAY OUTPUT	7SEG	7SEG [Ver.2.0 or	*			3->4		Set the address of First destination word.	
digital SWITCH	DSW	DSW [Ver.2.0 or	*			3-5		Set the Number of Digits and System	
TEN KEY INPUT	TKY		-						
TEN KEY NPUT	Tr	[Ver.2.0 or later]	*						
HEXADECIMAL KEY INPUT	HKY	HKY [Ver.2.0 or later.	*			3->4		Set the first register word.	
IO COMMAND TRANSMISSION	iotc	-	\times						
Serial communications instructions									
PROTOCOL MACRO	PMCR	PMCR	*		Expansion ->260	$3>4$	Send/Receive sequence No.: BCD -> BIN Number of send/receive words: $B C D \text {-> BIN }$	Set the communicaitons port and destination unit address. Enter the send/receive sequence No in the Operand2 (C2).	Change related relay settings.
TRANSMIT	TXD	TXD	*		$48>236$		Number of bytes spedifies in words: BCD -> BIN		Peripheral port/serial communication can not be selected for port spedifier. Change related relay settings.
RECEIVE	RXD	RXD	*		47->235		Number of bytes to store specified in words: BCD -> BIN		Peripheral port/serial communication can not be selected for port spedifier. Change related relay settings.
CHANGE SERIAL PORT SETUP	STUP	STUP	*		Expansion \rightarrow >237	$3>2$		Port specification method is changed.	Settings after turning off/on power: stored -> reset change the related relay settings.
Network instructions									
NETWORK SEND	SEND	SEND	*					Set the control data again.	Control data: 4 words>5 words
NETWORK RECEIVE	RECV	RECV	*					Set the control data again.	Change related relays. Control data: 4 words > 5 words
DELIVER COMMAND	CMND	CMND	*		Expansion >4490			Set the control data again.	Change related relays. Control data: 5 words > 6 words Change related relays.
Display instructions									
MESSAGE	MSG	MSG	*			1->2		Set the message number in the Operand1.	
Clockinstructions									
HOURS TO SECONDS	SEC	SEC	${ }^{*}$		Expansion $->65$	3 (None) ->2			
SECONDS TO HOURS	HMS	HMS	*		Expansion $\rightarrow 66$	3 (None) >2			
TRACE MEMORY SAMPLE Failure diagnosis instructions	TRSM	TRSM	**						Change related relays.
FAILURE ALARM AND RESET	FAL	FAL	*			1->2		In Operand, enter FALOO: Clears the non-fatal error with the corresponding FAL number. Not FALOO: Word to send message or Error code to generate or word containing the error details	
SEVERE FAILURE ALARM	FALS	FALS	*			$1 \rightarrow 2$		In Operand2, set First message word or error code and error details	
FAILURE POINT DETECT	FPD	FPD	*				$\begin{aligned} & \text { Monitoring time- } \\ & \text { spedified in words: } \\ & \text { BCD ->BIN } \end{aligned}$	Configure the operands again if diagnositic output mode is set in Bit address and message output.	Output area: When output in codes = 2 words -> 4 words When output in character =9 words -> 10 words
Other instructions	STC	STC	*						
CLEAR CARRY	CLC	CLC	**						
High-speed counter/pulse output instructionsMODE CONTROL									
	İNi	IiNi	*		61->880		First word with new PV: BCD ->BIN	Refer to 5.1 Highspeed counter/pulse output instruction.	
High-SPEED COUNTER PV READ	PRV	PRV	*		62-881		$\begin{aligned} & \mathrm{PV} \text { output in } \mathrm{BCD}-\mathrm{-} \\ & \mathrm{BIN} \text {. } \end{aligned}$	Refer to 5.1 Highspeed counter/pulse output instruction.	Configure the reference position of status data.
COMPARISON TABLE LOAD	CTBL	$\mathrm{CTBL}^{\text {ciel }}$	*		$63>883$		Number of target values/target value/Interrupt task number: BCD -> BIN	$\begin{aligned} & \text { Refer to } 5.1 \text { High- } \\ & \text { speed counter/pulse } \\ & \text { output instruction. } \end{aligned}$	In Ring mode, enter the ring value in the PLC settings. Interrupt program: interrupt subroutine -> interrupt task (Also change the task No.).
SET PULSES	PULS	PULS	*		65->886		Number of pulses: BCD -> BIN	Refer to 5.1 Highspeed counter/pulse output instruction	
SPEED OUTPUT	SPED	SPED	*		64->885		Target frequency specified in words: $B C D \rightarrow B I N$	Refer to 5.1 Highspeed counter/pulse output instruction.	
ACCELERATION CONTROL	ACC	ACC	*		Expansion $\rightarrow 888$		Acceleration/decelerati on rate/target frequency: $B C D$->	Refer to 5.1 High speed counter/pulse output instruction.	
PULSE OUTPUT	PLS2	PLS2	*		Expansion $\rightarrow 888$	$3>4$	Acceleration/decelerati on rate/target frequency/number of output pulses: BCD -> BIN.	$\begin{aligned} & \text { itput notruction------ } \\ & \text { Refer to } 1 \text { High- } \\ & \text { speed counterpulse } \end{aligned}$ output instruction.	
PULSE WITH VARIABLE DUTY FACTOR	PWM	PWM	*		Expansion $->891$		Duty factor specified in words: BCD ->BIN	Refer to 5.1 Highspeed counter/pulse output instruction.	

Conversion: *** = same condition flag operation, ** = a part of condition flag operation differs, - = Different condition flag operation, None = no corresponding instruction Condition flags: Left of "/"= Operation of CQM1H. Right of "/"= Operation of CJ1M/CJ1G/CJ2M No "/" = Same operation in CQM1H and CJ

| |
| :---: | :---: |

Conversion: *** = same condition flag operation, ** = a part of condition flag operation differs, - = Different condition flag operation, None = no corresponding instruction Condition flags: Left of "/"= Operation of CQM1H. Right of "/"= Operation of CJ1M/CJ1G/CJ2M No "/" = Same operation in CQM1H and C

Instructions	CQM1H	CJ1M/CJ1G		Condition flags ((CJ) = CQM1H does not have this settings.)										
		/CJ2M	Conversion	ER	GT(>)	GE (CJ)	EQ(=)	NE (CJ)	LT(<)	LE(CJ)	CY	UF	OF	N (CJ)
Symbol math instructions														
BINARYADD	ADB	$+$	**	-			*				*	*	*	-
DOUBLE BIARYADD	ADBL	+CL	**	* OFF			*				*	*	*	-
BCDADD	ADD	+BC	***	*			*				*			
DOUBLE BCD ADD	ADDL	$+\mathrm{BCL}$	***	*			*				*			
BINARY SUBTRACT	SBB	-	**	\cdots			*				*		*	-
DOUBLE BINARY SUBTRACT	SBBL	-CL	**	*OFF			*				$\stackrel{ }{*}$	*	*	/*
BCDSUBTRACT	SUB	-BC	***	\cdots			\star				*			
DOUBLE BCD SUBTRACT	SUBL	-BCL	***	*			*				*			
SIGNED BINARY MULTIPLY	MBS	*	**	\cdots			*							-
DOUBLESIGNED BINARYMUTTIPLY	MBSL	${ }^{\star}$	**	- ${ }^{\text {OFFF}}$			\star							I*
	MLB	$\stackrel{\square}{\square}$	**	-			*							I*
BCDMULTIPLY	MUL	*	***	-			*							
DOUBLE BCD MULTIPL	M ŪL	* ${ }^{\text {® }}$	- ***	*			*							
SIGNED BINARY DIVIDE	DBS	-	${ }_{*}^{*}$	*			-							-
DOUBLESIGNEDBINARYDIVIDE	DBSL	IL	**	$\stackrel{ }{*}$			$\stackrel{ }{*}$							-
BINARY DIVIDE	DVB	-	$\stackrel{*}{*}$	*			*							-
BCD DIVIDE	DIV	IB	***	$\stackrel{ }{*}$			$\stackrel{ }{*}$							
DOUBLE BCD DIVIDE	DİVL	İBL	***	*			*							
BCD-TO-BINARY	BIN	BIN	**	*			*							*OFF
DOUBLE BCD-TO-DOUBLE BINARY	BINL	BINL	**	*			*							- ${ }^{\circ} \mathrm{OFF}$
BINARY TOBCD	BCD	BCD	- \times *-	*			*							
DOUBLEBINARY-TO-DOUBLEBCD	BCDL	BCDL	---**	-----------			*							
2'SCOMPLEMENT	NEG	NEG	$\stackrel{\text { ** }}{ }$	-			$\stackrel{-}{*}$					*		-
DOUBLE2S COMPLEMENT	NEGL	NEGL	**	\bigcirc			*					*		-*
4-TO-16 DECODER	MLPX	MLPX	***	\star										
16-TO-4 ENCODER	DMPX	DMPX	***	*										
ASCIICONVERT	ASC	ASC	-**	*										
ASCII-TO-HEXADECIMAL	HEX	HEX	-***	$\stackrel{ }{*}$										
	LINE	LINE	- - \times -	*			$\stackrel{ }{*}$							
LİNE TO-COL̈MM	COLM	COLM	***	*			*							
Logic instructions														
LOGICALAND	ĀNDW	ANDW	${ }^{-\times}$	\cdots			*							${ }^{*}$
LOGICALOP	ORW	ORW	**	\bigcirc			*							/*
EXCLUSIVEOR	XORW	XORW	$\stackrel{*}{*}$	-			*							I*
EXCLUSIVENOR	XNRW	XNRW	**	${ }^{\circ} \mathrm{I}$ OFF			*							-*
COMPLEMENT	COM	COM	**	※/OFF			*							/*
Special math instructions														
BSOUAREROT	ROOT	ROO-	- *-	*			*							
ARITHMETICPROCESS	APR	APR	\star	*			*							$\stackrel{\text { - }}{ }$
BIT COUNTER	BCNT	BCNT	- - -	$\stackrel{ }{*}$			$\stackrel{ }{*}$							
		BCNTC [Ver.3.0 or later]	***	*			*							
Floating point math instructions														
FLOATINGTO-16-BIT	FIX	FIX	**	*			*							-
FLOATING-TO-BIT	FIXL	FIXL	**	$\stackrel{-}{*}$			*							/*
16-BITTOFLOATING	ELT	ELT	${ }_{*}^{*}$	-			*							-
З2-BITTOFLOATING	FLT	FLT-	${ }_{*}^{*}$	-			*							I*
FLOATING-POINTADD	+F	\pm	**	*			-					*	*	-*
FLOATING-POINTSUBTRACT	-F	-F	**	*			*					*	*	-
FLOATING-POINT MULTIPLY	*	*	**	*			*					*	*	-
FLOATING-PONTOLIDE	IF	IF	**	*			*					${ }^{-}$	*	-
DEGREESTORADIANS	RAD	RAD	**	$\stackrel{+}{*}$			*-					*	*	-
RADIANSTO-DEREES	DEG	DEG	**	*			*					*-	*	-*
SINE	SIN	SIN	**	*			*					OFF-	OFF-7	-
COSINE	COS	COS	**	*			\star					OFF'	OFFI	-
TANGENT	ṪAN	TAAN	**	*			*-					OFF-	--	-
ARC SINE	ĀSIN	ASIN	**	*			*					OFF-	O-FF-	-
ARC COSINE	ĀCOS	ACOS	$\stackrel{*}{*}$	*			*					OFF'	OFFI	
ARCTANGENT	ATAN	ATAN	**	$\stackrel{ }{*}$			*					OFF'	OFFI	-
SQUAREROOT	Şori	SQRT	**	*			-					OFF'	\star	
EXPONENT	EXP	EXP	------	*			*					-	*	
LOGARITHM	LOG	LOG	**	*			*					O-F-F'	*	/*
Table data processing instructions														
DATA S-AEARCH------------------------	STRC-	SRCH	- - -	$\stackrel{\square}{*}$			-							
FINDMAXIMUM	MAX	MAX	**	$\stackrel{ }{*}$			*							-
FINDMINIMU	MIN	MIN	**	*			-							-
SUM	SUM	SUM	${ }_{*}^{*}$	*			\star							-
FCS CALCOULATATE	FC̄S	FCS	***	*										
Data control instructions														
PID CONTROL	PID	PID	**	*	-*				-		*			
STALING-	S'CL	${ }^{\text {STCL }}$	-***	*			$\stackrel{ }{\star}$							
STGNED BINARY TO BCD S	S'CL	SCL	***	*			-				*			
BCD TO SIGNED BINARY SCALING	SCL3	SCL	***	*			*							/*
AVERAGE VALUE	AVG	AVG	***	*										
Subroutines instructions														
SUBROUTMETENTEY	S]B-	S-BTS	- - \times -	*										
MACRO	MCRO	MCRO	-***	$\stackrel{ }{*}$										
SUBROUTINEDEFINE	SBN	SBN	-***											
SUBROUTINE RETURN	RET	RET	***											

Appendix

Conversion: *** = same condition flag operation, ** = a part of condition flag operation differs, - = Different condition flag operation, None = no corresponding instruction Condition flags: Left of "/"= Operation of CQM1H. Right of "/"= Operation of CJ1M/CJ1G/CJ2M No "/" = Same operation in CQM1H and CJ

Instructions	CQM1H	CJ1M/CJ1G		Condition flags ((CJ) = CQM1H does not have this settings.)										
		/CJ2M	Conversion	ER	GT(>)	$\begin{gathered} \hline \text { GE } \\ \text { (CJ) } \\ \hline \end{gathered}$	EQ(=)	NE (CJ)	LT(<)	LE(CJ)	CY	UF	OF	N (CJ)
İNTERRUPT CONTROL	İNT	M̄SK̄̄ MSKR CLI DI EL	None	*										
İNTERVAL TIMER	STIM	$\begin{aligned} & \text { MSKS } \\ & \text { MSKR } \end{aligned}$	None	*										
Step instructions														
STEPDEINE	STEP	STEP	-	- ${ }^{*}$										
STEP START	SNXT	SNXT	-	-*										
Basic I/O Unit instructions														
I/OREFESH	IORF	IORF	-	-										
7-SEGMENT DECODER	SDEC	SDEC	***	\cdots										
	7SEG	$\begin{aligned} & \text { 7SEG } \\ & \text { IVer.2.0 } \\ & \text { or laterl.... } \end{aligned}$	-	* ${ }^{1}$										
	DSW	$\begin{aligned} & \text { DSW } \\ & \text { [Ver.2.0 } \\ & \text { or laterl. } \end{aligned}$	-	*/										
TEN KEY INPUT	TKY	$\begin{aligned} & \text { TKY } \\ & \text { [Ver. } 2.0 \\ & \text { or laterl. } \end{aligned}$	-	*/										
HEXADECIMAL KEY INPUT	HKY	HKY [Ver.2.0 or laterl	-	*/										
IO COMMAND TRANSMISSION	İOTC	------	None	*										
Serial communications instructions														
PROTOCOLMACRO	PMCR	PMCR	-**	$\stackrel{ }{*}$										
TRANSMIT	TXD	TXD	***	*										
RECEIVE	RXD	RXD	- - -	*										
CHANGE SERIAL- PORT SETUP	STUP	STUP	***	*										
Network instructions														
NETWORKSEND	SEND	SEND	- - - -	*-										
NETWORKRECEIVE	RECV	RECV	--x*	$\stackrel{-}{*}$										
DELIVER COMMAND	CMND	CMND	***	*										
Display instructions														
MESSAGE	MSG	MSG	***	*										
Clock instructions														
HOUS TOSEOMDS	S-C-	SEC		*			*							
SECONDS TO HOURS	HMS	HMS	***	*			*							
Debugging instructions														
ITRACE MEMORY SAMPLE	TRSM	TTRSM	«**											
Failure diagnosis instructions														
FAILUREALARM AND RESET	FAL	FAL	--	-										
SEVEREFAILUREALARM	FALS	FALS	-----	-										
FAILURE-POINT DETECT	FPD	FPD	***	*							*			
Other instructions														
SET CARRY	ST-	STC	***-								O-N			
CLEAR CARRY	CLC	CLC	***								OFF-			
High-speed counter/pulse output instructions														
	İİ-	İİ	***	*										
HIGH-SPEED COUNTER PV READ	PRV'	PRV	***	*							ON/OFF depending on instruction operation (CJ2M only)			
COMPARISONTABLELOAD	CTBL	CTBL	--**	*										
SET PUSES	PULS	PULS	- - **	*										
SPEEDOUTPUT	SPED	SPED	- - -	$\stackrel{ }{*}$										
ACCELERATION CONTROL	ACC	ACC	- \times **	$\stackrel{ }{*}$										
PULSEOUTPUT	PLS2	PLS2	- **	$\stackrel{ }{*}$										
PULSE WITH VARIABLE DUTY FACTOA	PWM	PWM	***	*										

Note: Do not use this document to operate the Unit.

OMRON Corporation Industrial Automation Company
Tokyo, JAPAN
Contact: www.ia.omron.com
Regional Headquarters
OMRON EUROPE B.V
Wegalaan 67-69, 2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388
OMRON ASIA PACIFIC PTE. LTD.
No. 438A Alexandra Road \# 05-05/08 (Lobby 2), Alexandra Technopark,
Singapore 119967
Tel: (65) 6835-3011/Fax: (65) 6835-2711

OMRON ELECTRONICS LLC
2895 Greenspoint Parkway, Suite 200
Hoffman Estates, IL 60169 U.S.A
Tel: (1) 847-843-7900/Fax: (1) 847-843-7787
OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Tower,
200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China
Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

Authorized Distributor:

© OMRON Corporation 2015 All Rights Reserved. In the interest of product improvement, specifications are subject to change without notice.

