$A_{\text {antra }}$

IABU Headquarters
Delta Electronics, Inc.
aooyuan Technology Center
No. 18, Xinglong Rd., Taoyuan Ci
TEL: 886-3-362-6301/FAX: 886-3-371-6301

Asia

Delta Electronics (Jiangsu) Ltd
Wujiang Plant 3
1688 Jiangxing East Road,
Wujiang Economic Development Zone
Wuijang City Jiang Su Pron
Wujiang City, Jiang Su Province
People's Republic of China (Post code: 215200)
Delta Greentech (China) Co.,
238 Min-Xia Road, Pudong District
ShangHai, P.R.C.
Post code: 201209
TEL: 86-21-58635678/FAX: 86-21-58630003
Delta Electronics (Japan), Inc
Tokyo Office
2-1-14 Minato-ku Shibadaimo
Tokyo 105-0012, Japan
TEL: 81-3-5733-1111/
Delta Electronics (Korea), Inc
1511, Byucksan Digital Valley 6-cha, Gasan-dong Geumcheon-gu, Seoul, Korea, 153-704
TEL: 82-2-515-5303/FAX: 82-2-515-5302
Delta Electronics Int'I (S) Pte Ltd 4 Kaki Bukit Ave 1, \#05-05, Singapore 417939
4 Kaki Bukit Ave 1, \#05-05, Singapore 417
TEL: $65-6747-5155 /$ FAX: $65-6744-9228$
Delta Electronics (India) Pvt. Ltd.
Plot No 43 Sector 35, HSIIDC
Gurgaon, PIN 122001, Haryana, India
Americas
Delta Products Corporation (USA)
Raleigh Office
PO Box 11173,5101 Davis Drive,
P.O. Box 12173,5101 Davis Drive,

TEL: 1-919-767-3800/FAX: 1-919-767-8080
Delta Greentech (Brasil) S.A
Sao Paulo Office
Rua Itapeva, $26-3^{\circ}$ andar Edificio Itapeva One-Bela Vista
TEL: +55 11 3568-3855/ FAX: +5

Europe

Deltronics (The Netherlands) B.V.
Eindhoven Office
TEL: 31-40-2592850 / FAX: 31-40-259285

We reserve the right to change the information in this catalogue without prior notice,

Features

Many Sizes Available:

- From $48 \times 24 \mathrm{~mm}$ to $96 \times 96 \mathrm{~mm}$, all panel sizes comply with international standards.

Quality Assurance:

- All temperature controllers adopt an
isolated switching power supply
- $100 \sim 240 \mathrm{VAC}$ input power supply,
applicable in all countries of the world.
- CE, UL and C-Tick certified

Supports Various Sensors:

- Built-in various sensor input modes: Thermocouple platinum RTD or linear voltage/current.

$$
\begin{aligned}
& \text { Thermocouple Platinum RTD } \\
& \underset{(T C)}{\text { Thermocouple }} \underset{(R T D)}{\text { Platinum RTD }} \underset{(\mathrm{mA})}{\text { Linear current }} \underset{(V)}{\text { Linear voltaa }}
\end{aligned}
$$

Various Output Modes.

- Relay, voltage pulse, linear voltage, and current
No O/ONc

Stable Control:

- Built-in PID control function, with accurate auto-tuning (AT).
- PID parameters are automatically calculated, which enhances the stability of the system and accuracy of control

$$
P V \underbrace{\text { Before AT) }} \overbrace{}^{\text {PV }}
$$

Current Transformer (CT)

- CT can enable the off-line alarm and can detect if the current
- CT can enable

Programmable Control

- Max. 8 patterns available, with 8 steps in each pattern No master controller is required for planning many kinds of temperature control curves.

Communication:

- RS-485 communication interface, supporting Modbus

Safety:

- The key-locking function and communication protection avoid malfunction.

Dual Output Control:

- Able to execute heating and cooling
controls at the same time, allowing the system to reach the set temperature quickly.

Products

Next Generation Temperature Controller

The Delta temperature controller DT3 series is designed with upgraded hardware, and higher specifications as it fulfills market requirements with smart operation, fast response, easy modularization, user-friendly and user-defined function keys. With the Self-Tuning and FUZZY temperature control functions, controllers can be installed in open space and confined space applications and are capable of presenting a smooth temperature control curve. In addition, the innovative modularization design enables customers to replace the module with new functions to attain the ultimate in extension flexibility.

Remote Control

Sets DT3 temperature via analog output of host controller

Various Control

Modes

- Self Tuning
- FUZZY
- Auto Tuning
- ON/OFF
- Manual

Extension Ability Modular design of functional devices enables application flexibility

Large 3-color LCD Display
The 1st 3-color LCD temperature controller in Taiwan.

Heater Disconnection Detection
Measurable up to 100A

Retransmission Output

User-defined Function Keys

- Control modes selection
- Remote/Local Mode
- Start/Stop Mode
- Auto-tuning

F1 F2

Point-to-Point Control

 (Proportional Output mA/V) Sets the Present Value by point-to-point control.

Built-in Long-life Relay

 SSR- Saves on cost
- Suitable for frequent output applications

Dual Output Control

- Preset temperature is rapidly attained using two sets of outputs for heating and cooling control.
- This function is used to automatically calculate two sets of PID parameters, one for heating and one sets of PID
for cooling.

Specifications

Input power supply	AC 80 to $260 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, \mathrm{DC} 24 \mathrm{~V} \pm 10 \%$
Display method	LCD. Present temperature: red, Set temperature: green
Input sensors	Thermocouple: $\mathrm{K}, \mathrm{J}, \mathrm{T}, \mathrm{E}, \mathrm{N}, \mathrm{R}, \mathrm{S}, \mathrm{B}, \mathrm{L}, \mathrm{U}, \mathrm{TXK}$
	Platinum RTD: Pt100, JPt100
	Analog input: 0 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 0$ to $20 \mathrm{~mA}, 4$ to $20 \mathrm{~mA}, 0$ to 50 mV
Control modes	PID, PID programmable, Fuzzy, Self-tuning, manual, ON/OFF
Display accuracy	0 or 1 digit to the right of the decimal point
Sampling rate	Analog input: 0.1 s, Thermocouple or platinum RTD: 0.1 s
Ambient temperature	$0 \sim+50^{\circ} \mathrm{C}$
Ambient humidity	35 to 80% RH (non-condensing)

Alarm Outputs

Dt3 offers 3 alarmoutputs, andeachalarmoutputhas 12 alarmmodestochoosefromintheinitialsettingmode. Whenthetargettemperatureexceedsorfallsbelowthesetpoint, the alarmoutputwillbeenabled :

SV	Alarm mode	Alarm output operation
0	No alarm	
1	Alarm output will be enabled when the temperature reaches upper or lower limit: The alarm will be enabled when the PV exceeds SV + AL-H or falls below SV - AL-L.	
2	Alarm output will be enabled when the temperature reaches the upper limit: The alarm will be enabled when the PV exceeds SV + AL-H.	
3	Alarm output will be enabled when the temperature reaches the lower limit: The alarm will be enabled when the PV falls below SV - AL-L.	$\begin{aligned} & \hline \text { ON } \\ & \text { OFF } \begin{array}{l} \text { SV-(AL-LL) } \\ \text { Av } \end{array} \end{aligned}$
4	Alarm output will be enabled when the temperature reaches the absolute value of the upper or lower limit: The alarm will be enabled when the PV exceeds AL-H or falls below AL-L.	
5	Alarm output will be enabled when the temperature reaches the absolute value of the upper limit: The alarm will be enabled when the PV exceeds AL-H.	
6	Alarm output will be enabled when the temperature reaches the absolute value of the lower limit: The alarm will be enabled when the PV falls below AL-L.	${ }_{\text {OFF }}^{\text {ON }} \frac{\square}{\text { AL-L }}$
7	Upper limit hysteresis alarm: The alarm will be enabled when the PV exceeds SV + AL-H. The alarm will be disabled when the PV falls below SV + AL-L.	
8	Lower limit hysteresis alarm: The alarm will be enabled when the PV falls bel ow SV - AL-H. The alarm will be disabled when the PV exceeds SV - AL-L.	
9	Offline alarm: The alarm will be enabled when the input sensor is not correct or offline.	
10	Timing alarm	
11	$\mathrm{Ct1}$ alarm: The alarm will be enabled when the CT1 value falls below AL-L or exceeds AL-H.	
12	Ct 2 alarm: The alarm will be enabled when the CT2 value falls below AL-L or exceeds AL-H.	AL-L AL-H

RS-485 Communication

DT3supportsbaudrate2,400to38,400bps,ModbusASCII/RTUprotocol,functioncode03Handreadsmaximum8words fromtheregister

Address	Content	Definition
1000 H	Present value (PV)	Measuring unit: 0.1 scale. The following values read mean error occurs. 8002H: Temperature not yet acquired 8003H: Not connected to sensor 8004H: Incorrect sensor
1001H	Set value (SV)	Measuring unit: 0.1 scale.
1002H	Upper limit of temp. range	Cannot exceed the default value
1003H	Lower limit of temp. range	Cannot fall below the default value
1005 H	Control mode	0: PID, 1: ON/OFF, 2: Manual, 3: PID programmable
1006H	Heating/cooling control	0 : Heating, 1: Cooling, 2: Heating/cooling, 3: Cooling/heating
1007H	$1^{\text {st }}$ heating/cooling control cycle	$0 \sim 99 \mathrm{sec} .000 .5 \mathrm{sec}$.
1008H	$2^{\text {nd }}$ heating/cooling control cycle	0~99 sec. 0: 0.5 sec .
1009H	Proportional band (PB)	$0.1 \sim 999.9$
100AH	Ti value	0~9999
100BH	Td value	0~9999
1012H	Read/write Output 1 volume	Unit: 0.1\%, only valid in manual control mode
1013H	Read/write Output 2 volume	Unit: 0.1\%, only valid in manual control mode
1016H	Regulated temp. value	--99.9 ~ +99.9, Unit: 0.1
102AH	Read/write LED status	b0: ALM3 , b1 : ALM2 , b2 : ${ }^{\circ} \mathrm{F}, \mathrm{b} 3:{ }^{\circ} \mathrm{C}, \mathrm{b} 4:$ ALM1 , b5 : OUT2 b6: OUT1 b7: AT
102BH	Read/write key status	b0: Set, b1: Select, b2: Up, b3: Down, 0: Press it
102CH	Panel lockup status	0: Normal, 1: Fully locked, 11: SV adjustable
102DH	CT value	Unit: 0.1A
1815H	Programmable control Run or Stop	0: Run (default), 1: Stop
1816H	Programmable control Run or Pause	$0:$ Run (default), 1: Pause

Parameters Operation

RegulationMode$\stackrel{\text { Press SET forlessthan3sec. }}{\rightleftarrows}$ $\begin{gathered}\text { Operation } \\ \text { Mode }\end{gathered} \xrightarrow[\text { Press. SET }]{\text { Press SET forlessthan 3sec. }}$ Initial Setting		
Regulation Mode	Operation Mode	Initial Setting Mode
REA Auto-tuning (Set in PID control and RUN mode)	I234 Use【 $\triangle \mathbf{V}$ to set up target temperature	LIPE Set up input type
Press $<4 \nabla$	Press $<4 \nabla$	Press $<4 \nabla$
5t Self-tuning switch (set when in PID control and the TUNE parameter = ST)	R-5 Control loop RUN or STOP	LFIUN Set up temperature unit (not displayed when in analog input)
PR-dn Select the nth ($n=0 \sim 5$) PID. When $n=6$, PID is autoselected.	PLRM set up start pattern (when in PID programmable control and P5EP	$E P-H$ Set up upper temperature limit
Pdof Set up PID control offset	5tEP Set up start step (when in programmable control)	LP-L Set up upper temperature limit
FZ-R Set up Fuzzy gain value	$\begin{aligned} & 5 P \text { Set up the position of } \\ & \text { decimal point } \end{aligned}$	[T-R] Select control modes
FZdb Set up Fuzzy Deadband	LoLK Lock the keys	[LR5 Select SV control modes
oi-5 Adjust Output 1 hysteresis (when in ON/OFF control)	GLIH Set up upper limit of	WLSD Set up waiting temperature (when in programmable control)
-2 - 5 Adjust Output 2 hysteresis (when in ON/OFF control)	PL II set up lower limit of Alarm 1	$\boldsymbol{W}-\epsilon \boldsymbol{M}$ Set up waiting time (when in programmable control)
ai-H a i-C Control cycle for Output 1 (except in ON/OFF control)	표래 Set up upper limit of	5LOP Set up start slope (when in programmable control)
- $\mathrm{C}-\mathrm{H}$ - $\mathrm{OL}-[$ Control cycle for Output 2 (except in ON/OFF control)	PLL $2 L$ set up lower limit of Alarm 3	PRENII Select pattern to be edited
CoEF Ratio of Output 1 against Output 2 when in dual output control (set when in PID and dual output control)	RISH Set up upper limit of	EUNAE Select AT or ST
dERd Set up deadband(when in dual output)	PLIZ Set up lower limit of	5-HC Select heating, cooling or dual output heating and cooling
PV-F Set up input filter factor	RIHP Record highest temperature of Alarm 1	GLR1 GLAD RLP3 $\begin{gathered}\text { Set up Alarm } 1 \\ \text { mode }\end{gathered}$
PV-R Set up input filter range	RILP Record lowest temperature of Alarm 1	RL lo RLEa RLFol $\begin{gathered}\text { Set up Alarm } 1 \\ \text { options }\end{gathered}$
PVOF Adjust input compensation	REHP Record highest temperature of Alarm 2	FIL Id RLEd RL3d $\begin{gathered}\text { Set up Alarm } 1 \\ \text { delay }\end{gathered}$
PV6R Adjust input gain	RELP Record lowest temperature of Alarm 2	ot-M Set up reverse alarm output
5V5L Set up rising slope (when CRTS = SLOP)	R3HP Record highest temperature of Alarm 3	RMEP Set up Remote type
R IMR $_{\text {Adjust upper limit }}$ compensation for analog Output 1^{*}	RELP Record lowest temperature of Alarm 3	EXEL Select auxiliary function

Regulation Mode	Operation Mode	Initial Setting Mode
R IML Adjust lower limit compensation for analog Output 1^{*}	oUt / Display and adjust Output 1 volume	Co5HEnable/disable communication write-in
REMR Adjust upper limit compensation for analog Output 2*	oUt'? Display and adjust Output 2 volume	[-5L Select ASCII or RTU format
RETML Adjust lower limit compensation for analog Output 2*	- IMR Set up percentage of upper limit for Output 1	
REMR Adjust upper limit compensation for Retransmission*	- IM $_{1}^{-}$Set up percentage of lower limit for Output 1	$6 P 5$ Set up baudrate
RLM Majust lower limit compensation for Retransmission*	- [MP Set up percentage of upper limit for Output 2	LEN Set up data length
RM-F Adjust Remote gain	nPM, ${ }^{-1}$ Set up percentage of lower limit for Output 2	5FnP Set up stop bit
RM-F Adjust Remote compensation	$[L$ I Display current measured at CT1	PRLS Set up parity bit
EVI I Set up EVENT1 function	$[$ [2] Display current measured at CT2	
EVLZ 7 Set up EVENT3 function Press to return to auto-tuning	Press \ll to return to set up target temperature	Press \ll to return to set up input type
*1 scale $=1 \mu \mathrm{~A}$; 1 scale $=1 \mathrm{mV}$ PID mode: Any of the 6 PID groups can be selected. When $n=6$, the program will automatically select the PID group that is the closest to the target temperature.		
Prdn Select the nth PID ($\mathrm{n}=0 \sim 5$)	5 V (Set up the 0th PID	5V5 Set up the 5th PID
	temperature value Press $\ll \nabla$	temperature value Press $\ll \nabla$
	PD Set up the 0th proportional band value	\qquad band value
	271 Set up the Oth Ti value	55 Set up the $5^{\text {th }}$ Ti value
	$d \square$ Set up the 0th Td value	d5 Set up the $5^{\text {th }}$ Td value
	EOFD Set up the 0th PID integral deviation	CoF5 Set up the 5 th PID integral deviation
	Press $\ll \begin{gathered}\text { to return to PID } \\ \text { deviation }\end{gathered}$	Press $\ll \begin{aligned} & \text { to return to PID } \\ & \text { deviation }\end{aligned}$
PERN Select the pattern number to be edited Select number \square Press $\ll \nabla$ to select OFF	$5 P \square D$ Edit temperature for Step 0 Press $\ll \nabla$	P540 Select actual number of steps when the program is executing
Exit pattern and step editing and switch to 5-HC to continue the setup process.	EMIDI Edit time for Step 0	[Y[0] Set up additional cycles ($0 \sim 99$) for the pattern execution
	Set up Step 0 ~ 15 in order	LLYM Set up link pattern. OFF refers to the program end.
	SP 15 Edit temperature for Step 15 LM 15 Edit time for Step 15 Press to set up actual step numbers	refers to the program end. Press \square to return to select the pattern number to be edited

Products

$\square \square \square \square$
 Standard Type

DTA is designed for practical applications, offering the 3 most frequently adopted output types in the market. DTA has many user-friendly functions built-in and a handy transmission structure, ensuring fast and stable data transmission.

Optional functions: RS-485 communication interface (MODBUS ASCII/RTU, 2,400~38,400bps), CT (current transformer)

Electrical Specifications

Power supply	$100 \sim 240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
Voltage range	85~110\% rated voltage
Power consumption	5VA Max.
Display	2-line 7-segment LED display, PV: red; SV: green
Input temperature sensors	Thermocouple: K, J, T, E, N, R, S, B, U, L, TXK
	Platinum RTD: Pt100, JPt100
Display scale	0.1\% full scale
Control methods	PID, ON/OFF, Manual
Output types	Relay: 250VAC, 5A, SPDT (DTA4848: SPST)
	Voltage pulse: 14VDC, Max. output current: 40 mA
	Current: DC 4~20mA (Load resistance: < 600W)
Sampling rate	0.5 second
Communication	RS-485 digital communication, 2,400 ~ 38,400bps (optional)
Communication protocol	MODBUS protocol, ASCII/RTU format (optional)
Vibration resistance	$10 \sim 55 \mathrm{~Hz}, 10 \mathrm{~m} / \mathrm{s}^{2}$ for 10 mins in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction
Shock resistance	Max. $300 \mathrm{~m} / \mathrm{s}^{2}, 3$ times in each of 3 axes, 6 directions
Ambient temperature	$0 \sim 50^{\circ} \mathrm{C}$
Storage temperature	$-20 \sim+65^{\circ} \mathrm{C}$
Altitude	<2,000m
Ambient humidity	$35 \sim 85 \%$ RH (non-condensing)
Waterproof Degree	Ip56

Compared to the DTA, DTB has an added linear voltage output and adopts dual-loop output control able to execute heating and cooling controls at the same time in a temperature control system.

DTB series has a built-in delete RS-485 communication interface (MODBUS ASCII/RTU, 2,400 ~ 38,400bps).
he programmable PID control function allows
DTB to set up 64 sets of temperature and control time.
Optional functions:
CT (current transformer), output by alarm.
EVENT function, switching between
2 SVs by using PLC or switches.
Valve models are able the openness of valve
depending on the SV.

Electrical Specifications

Power supply	$100 \sim 240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
Voltage range	$85 \sim 110 \%$ rated voltage
Power consumption	< 5VA
Display	2-line 7-segment LED display, 4 digits available, PV: red, SV: green
Input temperature sensors	Thermocouple: K, J, T, E, N, R, S, B, L, U, TXK
	Platinum RTD: Pt100, JPt100
	Analog input: $0 \sim 5 \mathrm{~V}, 0 \sim 10 \mathrm{~V}, 0 \sim 20 \mathrm{~mA}, 4 \sim 20 \mathrm{~mA}, 0 \sim 50 \mathrm{~mA}$
Display scale	1 digit after decimal point, or no decimal point
Control methods	PID, programmable PID, ON/OFF, Manual
Output types	Relay: SPDT (DTB4848/4824: SPST), Max. load: 250VAC, Resistive load: 5A
	Voltage pulse: 14VDC, Max. output current: 40 mA
	Current: DC 4 ~ 20mA (Load resistance: < 600Ω)
	Analog voltage: $0 \sim 10 \mathrm{~V}$
Sampling rate	Analog input: 0.15 second, Thermocouple or platinum RTD: 0.4 second
Communication	RS-485 digital communication, 2,400 $\sim 38,400 \mathrm{bps}$
Communication protocol	MODBUS protocol, ASCII/RTU format
Vibration resistance	$10 \sim 55 \mathrm{~Hz}, 10 \mathrm{~m} / \mathrm{s}^{2}$ for 10 mins in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction
Shock resistance	Max. $300 \mathrm{~m} / \mathrm{s}^{2}, 3$ times in each of 3 axes, 6 directions
Ambient temperature	$0 \sim 50^{\circ} \mathrm{C}$
Storage temperature	$-20 \sim+65^{\circ} \mathrm{C}$
Altitude	<2,000m
Ambient humidity	$35 \sim 80 \% \mathrm{RH}$ (non-condensing)
Waterproof Degree	Ip56

Products

D) $\square \square \square$
 Modular Type

DTC features a modular and wire-saving structure, and is able to monitor many temperature points by parallel and modular extension.
The user is able to set up the suitable output method according to the actual demand. The built-in password protection prevents unauthorized operation or malicious damage from staff.
DTC series has a built-in RS-485 communication interface
(MODBUS ASCII/RTU, 2,400~38,400bps). The programmable
PID control function allows DTC to set up 64 sets of temperature and control time. DTC also supports 3 levels of password protection, synchronous communication protocol and auto ID setup.

Economical Type

DTD series offers PID, programmable PID,
ON/OFF and Manual control modes and supports 1 alarm output with 8 alarm modes, which reduces cost but enhances functions.
The programmable PID control function allows DTD to set up 8 sets of temperature and control time.

Electrical Specifications

Power supply	$100 \sim 240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
Voltage range	$85 \sim 110 \%$ rated voltage
Power consumption	6VA Max.
Display	7-segment LED display, PV: red, SV: green
Input temperature sensors	Thermocouple: K, J, T, E, N, R, S, B, L, U, TXK
	Platinum RTD: Pt100, JPt100 Copper resistance: Cu50
	Current: $0 \sim 20 \mathrm{~mA}, 4 \sim 2 \mathrm{~mA}$ Voltage: $0 \sim 5 \mathrm{~V}, 0 \sim 10 \mathrm{~V}, 0 \sim 70 \mathrm{mV}$
Display scale	K2, J2, T2, Pt100-2, JPt100, Cu50: 0.1 ${ }^{\circ}$, Others: 1°
Control methods	PID, programmable PID, ON/OFF, Manual
Output types	Relay: 250VAC, 5A, SPST
	Voltage pulse: 14VDC, Max. output current: 40 mA
Sampling rate	0.4 second (analog input and sensor input)
Vibration resistance	$10 \sim 55 \mathrm{~Hz}, 10 \mathrm{~m} / \mathrm{s}^{2}$ for 10 mins in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction
Shock resistance	Max. $300 \mathrm{~m} / \mathrm{s}^{2}, 3$ times in each of 3 axes, 6 directions
Ambient temperature	$0 \sim 50^{\circ} \mathrm{C}$
Storage temperature	$-20 \sim+65^{\circ} \mathrm{C}$
Altitude	<2,000m
Ambient humidity	$35 \sim 85 \% \mathrm{RH}$ (non-condensing)
Waterproof Degree	Ip56

Products

DTR
 Multi-Channel Modular Type

DTE series is a multi-channel modular type temperature controller. DTE10T supports 8 thermocouple and DTE10P supports 6 platinum RTD inputs. DTE series is installed on DIN rail, and each channel operates independently.
DTE series offers many optional output modules
(relay, voltage pulse, current and linear current). The built-in RS-485 2-wire communication allows transmission speed of up to 115,200bps.
The programmable PID control function allows DTE to set up 64 sets of temperature and control time. Maximum 7 DTC2000 controllers are extendable to DTE, and DTE supports the same synchronous communication protocol and auto ID setup which DTC supports

D) $\square \square \sqrt{ }$
 Valve Type

DTV series is designed for electronic valve applications. It is user-friendly and easy to use.
DTV has built-in MODBUS communication
which allows handier data collection
DTV also features:
Auto/manual mode switching by a single key.

- "Left" key makes the parameter setting faster.

Real-time output percentage display,
for the user to check the openness of the valve.
2 alarm outputs, 17 alarm modes.
RS-485 communication interface for DTV
to monitor and collect data from other
temperature controllers on the network.

Electrical Specifications

Power supply	$100 \sim 240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$
Voltage range	$85 \sim 110 \%$ rated voltage
Power consumption	$<5 \mathrm{VA}$
Display	2-line 7-segment LED display, 4-bit or 2-bit valve openness display available PV: red, SV \& openness of valve: green
Input temperature sensors	Thermocouple: K, J, T, E, N, R, S, B, L, U, TXK
	Platinum RTD: Pt100, JPt100
	Analog input: $0 \sim 5 \mathrm{v}, 0 \sim 10 \mathrm{~V}, 0 \sim 20 \mathrm{~mA}, 4 \sim 20 \mathrm{~mA}, 0 \sim 50 \mathrm{~mA}$
Display scale	1 digit after decimal point, or no decimal point
Control methods	PID, programmable PID, ON/OFF, Manual
Output types	Relay: SPST, Max. load: 250VAC, Resistive load: 5A
Sampling rate	Analog input: 0.15 second, Thermocouple or platinum RTD: 0.4 second
Communication	RS-485 digital communication, 2,400 ~38,400bps
Communication protocol	MODBUS protocol, ASCII/RTU format
Vibration resistance	$10 \sim 55 \mathrm{~Hz}, 10 \mathrm{~m} / \mathrm{s}^{2}$ for 10 mins in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction
Shock resistance	Max. $300 \mathrm{~m} / \mathrm{s}^{2}, 3$ times in each of 3 axes, 6 directions
Ambient temperature	$0 \sim 50^{\circ} \mathrm{C}$
Storage temperature	$-20 \sim+65^{\circ} \mathrm{C}$
Altitude	<2,000m
Ambient humidity	35 ~ 80\% RH (non-condensing)
Waterproof Degree	Ip56

Ordering Information

Dて3

Series Name	DT3 ：Delta DT3 series temperature controller	
112 Panel Size（ $\mathrm{W} \times \mathrm{H}$ ）	10：4824：1／32 DIN W48 x H24 mm 20：4848：1／16 DIN W48 x H48 mm 30：7272W72 x H72mm	40：4896 ：1／8 DIN W48 x H96 mm 50：9648：1／8 DIN W96 x H48 mm 60：9696 ：1／4 DIN W96 x H96 mm
［3）Output 1	R：Relay， $250 \mathrm{VAC}, 5 \mathrm{~A}$ V ：Voltage pulse， $12 \mathrm{~V}+10$ to 20% C：DC current， 4 to 20 mA L：Linear voltage， 0 to 10 VDC S：SSR， 250 VAC， 1 A	
4 供電種類	A：AC 80 to 260 V D：DC 24 V	
（5）Output 2	R：Relay， 250 VAC，5A V：Voltage pulse， $12 \mathrm{~V}+10$ to 20% C：DC current， 4 to 20 mA L：Linear voltage， 0 to 10 VDC S：SSR， 250 VAC， 1 A	
6 Optional Function 1	0：None，1：Event input，2：RS－485 communication	
7 Optional Function 2	0：None，1：Event input，2：CT input，3：Remote setup input	
80 Optional Function 3	0：None，1：Event input，2：CT input，3：Retransmission output	

DTA

1	3	5	6

Series Name	DTA ：Delta A series temperature controller	
1234 Panel Size（ $\mathrm{W} \times \mathrm{H}$ ）	4848：1／16 DIN W48 \times H48 mm 4896：1／8 DIN W48 x H96 mm 9696：1／4 DIN W96 x H96 mm	7272：W72 x H72 mm 9648：W96 x H48 mm
5 Output	R：Relay，SPST（4848：SPST），250VAC，5A V ：Voltage pulse， $14 \mathrm{~V}+10 \% \sim-20 \%$（Max． 40 mA ） C：Current，4～20mA	
6 Communication（Optional）	$0: \mathrm{N} / \mathrm{A}$	1 ：RS－485 communication
7CT（Optional）	－：N／A	T ：With CT（only DTA7272R0）

DTB

1	2	3	5	6

Series Name	DTB ：Delta B series temperature controller	
1234 Panel Size（ $\mathrm{W} \times \mathrm{H}$ ）	4824：1／32 DIN W48 x H24 mm 4848 ： $1 / 16$ DIN W $48 \times$ H48 mm	4896：1／8 DIN W48 x H96 mm 9696：1／4 DIN W96 x H96 mm
5 Output 1	R：Relay，SPDT（4824／4848：SPST），250VAC，5A V ：Voltage pulse： $14 \mathrm{~V}+10 \% \sim-20 \%$ C：DC current： $4 \sim 20 \mathrm{~mA}$ L：Linear voltage： $0 \sim 5 \mathrm{~V}, 0 \sim 10 \mathrm{VDC}$	
6 Output 2	R：Relay，SPDT（ $4824 / 4848$ ：SPST），250VAC，5AV：Voltage pulse： $14 \mathrm{~V}+10 \% \sim-20 \%$	
7 Optional Function	$\mathrm{a}:$ Without CT，without EVENT input $\mathrm{E}:$ Without CT，with EVENT input $\mathrm{T}:$ With CT, without EVENT input $\mathrm{V}:$ Valve control	

＊DTB4824 has no optional function and no extra alarm output．Output 2 can be set to alarm output．
＊DTB4848 has only 1 optional alarm output．Output 2 can be set to the ${ }^{\text {ncid }}$ alarm output．

DてC

Series Name	DTC ：Delta C series temperature controller
（1）Controller Type	1 ：Main unit 2：Extension unit
2 Number of Auxiliary Outputs 0 ：Standard 2 outputs，no auxiliary output	
3 4 Optional Function	00 ：Standard function 01 ：With CT input
5 Output	$\begin{aligned} & \text { R: Relay, SPST, 250VAC, 3A } \\ & \text { V : Voltage pulse, } 12 \mathrm{~V}+10 \% \sim-20 \% \\ & \text { C : Current, } 4 \sim \text { ~ 20mA } \\ & \text { L : Linear voltage, } 0 \sim 10 \mathrm{~V} \end{aligned}$

DTD

1	2	3	4
5	0		

Series Name	DTD ：Delta D series temperature controller
123 3 ［ Panel Size（ $\mathrm{W} \times \mathrm{H}$ ）	4848：1／16 DIN W48 x H48 mm 4896：1／8 DIN W48 x H96 mm
5 Output	R：Relay，SPST，250VAC，5A V ：Voltage pulse， $14 \mathrm{~V}+10 \% \sim-20 \%$（Max． 40 mA ）
0 Optional Fun	0 ：N／A

D］
（1） 23

Series Name	DTE ：Delta E series temperature controller
1 Controller Type	1：Main unit 2 ：Accessory
23 Optional Function	OT ：4－channel TC（main unit，accessory） OP ：4－channel PT（main unit，accessory） OV ： 4 channels of voltage pulse output OC ： 4 channels of linear current output OR ： 4 channels of relay output OL ： 4 channels of linear voltage output OD ： 4 digital inputs \＆ 4 digital outputs CT ： 4 channels of current transformers DS ：Display \＆setup module

D？V
（12）34 5

Series Name	DTV ：Delta V series temperature controller
1234 Panel Size $(\mathrm{W} \times \mathrm{H})$	$4896: 1 / 8$ DIN W48 $\times \mathrm{H} 96 \mathrm{~mm}$ $9696: 1 / 4$ DIN W96 H 96 mm
5 Output	R：Relay，SPDT， $250 \mathrm{VAC}, 5 \mathrm{~A}$

Dimensions

9648

648

4896

DTC

9696

DTE

