Autonics
ROTARY ENCODER（ABSOLUTE TYPE） ENP SERIES

\square Specifications								
Type			Diameter $\varnothing 60 \mathrm{~mm}$ shaft type Absolute Rotary encoder					
Model		PNP open collector output	ENP－111－006－P	ENP－111ロ－008－P	ENP－111■－012－P	ENP－111ロ－016－P	ENP－111■－024－P	ENP－11［ロ－360－P
		NPN open collector output	ENP－101［－006－N	ENP－101■－008－N	ENP－101［－012－N	ENP－101■－016－N	ENP－101■－024－N	ENP－10■■－360－N
Resolution			6 division	8 division	12 division	16 division	24 division	360 division
Output phase			TP（Timing Pulse）： 2 bit TS（Signal Pulse）： 4 bit （BCD，EP）	TP（Timing Pulse）： 2 bit TS（Signal Pulse）： 5 bit （BCD，EP）	TP（Timing Pulse）： 2 bit TS（Signal Pulse）： 6 bit （BCD，EP）	TP（Timing Pulse）： 2 bit TS（Signal Pulse）： 6 bit （BCD，EP）	TP（Timing Pulse）： 2 bit TS（Signal Pulse）： 7 bit （BCD，EP）	TS（Signal Pulse）： 10 bit
Output angle			$\begin{aligned} & \text { TP1: } 53^{\circ} \pm 30^{\prime} \\ & \text { TP2: } 15^{\prime} \pm 300^{\prime} \\ & \text { P: }: 60^{\circ} \pm 30^{\prime} \\ & \text { TS: } 56^{\circ} \pm 30^{\prime} \end{aligned}$	TP1： $39^{\circ} \pm 30^{\prime}$ P： $45^{\circ} \pm 30^{\prime}$ TS： $42^{\circ} \pm 30^{\prime}$	TP1：${ }^{\circ} \pm 30^{\prime}$ TP2： P． $30^{\circ}{ }^{\circ}+30^{\prime}$ 10 P： $30^{\circ} \pm 30^{\prime}$ TS： $26^{\circ} \pm 30$	$\begin{aligned} & \text { TP1: } 2^{\circ} \pm 30^{\prime} \\ & \text { TP2: } 11.25^{\circ} \pm 30^{\prime} \\ & \text { P: } 22.5^{\circ} \pm 30^{\prime} \\ & \text { TS: } 19.5^{\circ} \pm 30^{\prime} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { TP1: } 8^{\circ} \pm 30^{\prime} \\ \text { TP2: } \\ \text { PP: } 15^{\circ} \pm 30^{\prime} \\ \text { TS: } 11^{\prime} \pm 30^{\prime} \end{array}$	TS： $1^{1} \pm 30^{\prime}$
	$\begin{array}{\|l\|l\|l\|} \hline \text { Control } \\ \text { output } \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { PNP open } \\ \text { collector output } \end{array} \\ \hline \end{array}$	Output voltage：Min．（Power voltage－1．5）VDC＝，Load current：Max． 32 mA					
		$\begin{aligned} & \text { NPN open } \\ & \text { collector output } \end{aligned}$	Load current：Max．32mA，Residual voltage：Max．1VDC＝					
	$\begin{aligned} & \begin{array}{l} \text { Response } \\ \text { time } \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { PNP open } \\ \text { collector output } \end{array} \\ \hline \end{array}$	TON＝800ns，TOFF＝Max． 800 ns（Cable length： 1 m ， 1 sink $=32 \mathrm{~mA}$ ）					
		$\begin{aligned} & \text { NPN open } \\ & \text { collector output } \end{aligned}$	TON＝800ns，TOFF＝Max．800ns（Cable length： 1 m ， 1 sink $=32 \mathrm{~mA}$ ）					
			20kHz					
	Power supply		5VDC＝$\pm 5 \%$（Ripple P－P：Max． 5% ），12－24VDC＝$= \pm 5 \%$（Ripple P－P：Max． 5% ）					
	Current consumption		Max． 100 mA （Disconnection of the load）					
	Insulation resistance		Max．100M2（at 500VDC megger between all terminals and case）					
	Dielectric strength		$750 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ for 1 minute（between all terminals and case）					
	Connection		Axial cable type					
Mechanical spec．		Starting torque	Max． $500 \mathrm{gf} \mathrm{cm}(0.05 \mathrm{~N} \cdot \mathrm{~m})$					
		$\begin{aligned} & \text { Moment of } \\ & \text { inertia } \end{aligned}$	Max． $300 \mathrm{~g} \cdot \mathrm{~cm}^{2}\left(3 \times 10^{-5} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$					
		Shaft loading	Radial： 10 kgf ，Thrust： 2.5 kgf					
		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Mechanical } \\ \text { revolution } \end{array} \\ \hline \end{array}$	3，600rpm					
Vibration			1.5 mm amplitude at frequency of 10 to 55 Hz in each of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction for 2 hours					
Shock			Max． 756					
Environment		Ambient temp．	-10 to $70^{\circ} \mathrm{C}$ ，storage：-25 to $85^{\circ} \mathrm{C}$					
		Ambient humi．	35 to 85% RH，storage： 35	90\％RH				
Protection			IP50（IEC standard）					
Cable			ø8mm，12P，Length：1m，Double shield cable（AWG 24，Core wire diameter： 0.08 mm ，No．of core wire： 40 ，Insulator out diameter：$\varnothing 1 \mathrm{~mm}$ ）					
Accessory			Mounting bracket，Coupling					
Weigh \times^{2}			Approx．478g（Approx．400g）					
※1：Make sure that max．response revolution should be lower than or equal to max．allowable revolution when selecting the resoultion． $\text { [Max. response revolution }(\text { rpm })=\frac{\text { Max. response frequency }}{\text { Resolution }} \times 60 \mathrm{sec} . \text {] }$ $※ 2$ ：The weight includes packaging．The weight in parentehsis is for unit only． ※Environment resistance is rated at no freezing or condensation．								

\square Dimensions

DDo not load overweight on the shaft．
Do no pot put strong impact when insert a coupling into shaft．
Dat Failure to follow this instruction may resulutin in rodocutrt damage．
※Fix the unit or a counling by a wrench under 0.15 N －m of toraue \times Fix the unit or a coupling by a wrench under 0.15 N ．m of torque．
※When you instal this sis itit if eccentricicty and deflection angle are large，
it may shorten the life cycle of this unit
$\boxed{\square}$ Output Waveform（6 division）

－Output Waveform（16 division）

\square Output Waveform（24 division）

Gray TP

Brown \quad BCD（ 2° ） L L

\qquad
\qquad
 －TP1＝8 ${ }^{\circ} \pm 30^{\prime}$, TP2 $23^{\circ} \pm 30^{\prime} \quad \bullet P>T S\left(11^{\circ}\right)>$ TP1 $\quad \bullet P=15^{\circ}+30^{\prime}$
Abo waveform
The ouput waveform of negative logic is opposite to above waveform．）

\square Output Waveform（360 division）

Wire color \quad Resolution		6 division	8 division	12 division	16 division	24 division	360 division
$\begin{aligned} & \text { Power } \\ & \text { wire } \end{aligned}$	White ${ }^{* 1}$	＋V					
	Black ${ }^{\text {＊1 }}$	GND（0V）					
	Shield wire	F．G．					
$\begin{aligned} & \text { Output } \\ & \text { wiro } \end{aligned}$wire	Black	TP1 ${ }^{\text {＊2 }}$					2^{0}
	Brown	2^{0}	2^{0}	2^{0}	2^{0}	2^{0}	2^{1}
	Red	2^{1}	2^{1}	2^{1}	2^{1}	2^{1}	2^{2}
	Orange	2^{2}	2^{2}	$2{ }^{2}$	$2{ }^{2}$	2^{2}	2^{3}
	Yellow	N．C	2^{3}	2^{3}	2^{3}	2^{3}	$2^{0} \times 10$
	Green	N．C	N．C	$2^{0} \times 10$	$2^{0} \times 10$	$2^{\circ} \times 10$	$2^{1} \times 10$
	Blue	$\mathrm{N} \cdot \mathrm{C}$	N．C	N．C	N．C	$2^{1} \times 10$	$2^{2} \times 10$
	Purple	N．C					$2^{3} \times 10$
	Gray	TP2 ${ }^{\text {＊2 }}$					$2^{\circ} \times 100$
	White	EP（Parity）＊					$2^{1 \times 100}$

－ 2 ：TP1／TP
resolution model has long output signal period，this signal for enable is easy to determine signal recognization point about output．

Parity signal．It outputs odd parity．
※Unused wire must be insulated．
※ Encoder case and shi
$\times \mathrm{N} \cdot \mathrm{C}$ ： Not Connected．
※Output cable must not be shor－－circuited，because Drive IC is used in output circuit

Control Output Diagram

Outpu	PNP open colloector output		NPN open collector output	
Model	ENP－11［］－D－P		ENP－10］I－D－N	
Item	Encoder circuit	Load connection	Encoder circuit	Load connec
Output circuit				

\square Cautions during Use

e unexpected accidents
． $5 \mathrm{VDC}, 12-24 \mathrm{VDC}$ power supply should be insulated and limited voltage／current or 3．For using the unit with the equipment which generates noise（switching regulator inverter，servo motor，etc．），ground the shield wire to the F．G．terminal． ．Ground the shield wire to the F．G．terminal
When using switching mode power supply，frame ground（F．G．）terminal of power Wire as short as possible
keep away from high voltage lines or power lines， 7．Check the wire type and response frequency when extending wire because of distortion of waveform or residual voltage increment etc by line resistance or capacity ．This unit may be used in the following environments．

（1）Indoors（in the enviro

（2Altitude max．2，000
（2）Installation category

－Main Products

－Photoelectric Sensors \square Temperature Controllers

－Door Sensors
－Area Sensors
－Proximity Sensors
－Rotary Encoders
－Connector／Sockets
－Connector／Sockets
Control SwitchesLLamps／Buzzze
I／O Terminal Blocks \＆Cables
－Graphic／Logic Panels

Laser Marking System（Fibe
Laser Welding／Cutting System
DRW171378AA

