## Panasonic

## Hello! GM1 EtherCAT Edition


memo

## Copyright and Trademarks

- The copyright of this manual is owned by Panasonic Industry Co., Ltd.
- Unauthorized reproduction of this manual is strictly prohibited.
- Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
- Ethemet is a registered trademark of Fuji Xerox Co., Ltd. and Xerox Corporation in the United States.
- EtherCAT is a registered trademark of and patented technology licensed by Beckhoff Automation GmbH in Germany.
- SDHC and SD logos are trademarks of SD-3C, LLC.
- Other company and product names are trademarks or registered trademarks of their respective companies.


## Safety Precautions

This section explains important rules that must be observed to prevent personal injury and property damage.

- Injuries and damages that may occur as a result of incorrect use are classified into the following levels and safety precautions are explained according to the level.

| $\triangle$ WARNING | Indicates that there is a risk of death or serious injury |
| :--- | :--- |
| $\triangle$ CAUTION | Indicates that there is a risk of minor injury or property damage |


| $\boldsymbol{\theta}$ | Indicates an action that is prohibited |
| :--- | :--- |
| $\boldsymbol{(}$ | Indicates an action that must be taken |

## $\triangle$ WARNING

(© - Take safety measures outside this product to ensure the safety of the entire system even if this product fails or an error occurs due to external factors.
Q• Do not use this product in atmospheres that contain flammable gases. Doing so may result in explosion.
Q • Do not throw this product into the fire. Doing so may cause the batteries or other electronic parts to explode.


## GM1 EtherCAT Positioning Control

## Installation Overview

- Operation pattems
- Operation images
- Setup flow


## 0 Preparation

Installing tool software

- GM Programmer
- PANATERM Lite for GM
- PANATERM


## 1 Basic Setup

1.1 Preparing and Wiring the Required Devices
1.2 Setting up Axis
1.3 Setting Station Alias (Node Address of Servo Amplifier)
1.4 Setting up Scaling
1.5 Setting up Amplifier
1.6 Setting up Home Return (PANATERM Lite for GM)

## 2 Commissioning

2.1 Executing Commissioning

## 3 Continuous Positioning Operation

3.1 Creating Servo ON Program
3.2 Creating Home Returm Program
3.3 Creating Positioning Operation Program (Absolute Value Positioning)
3.4 Creating Positioning Operation Program (Relative Value Positioning)
3.5 Performing Operations from Login through to Home Return
3.6 Performing Continuous Positioning Operation

## 4 Monitoring

4.1 Axis Parameter List
4.2 Registering in Watch
4.3 Adding Trace

## Installation Overview



Ball screw lead: 10 mm (10 mm travel per revolution for a servo motor)

## - Operation patterns

After home return is complete, Operation 2) to Operation 4) are performed continuously.

Operation 1) Home return
The object moves to its home position ( 0 mm ).

Operation 2) Absolute value positioning
The object moves from its home position to target position [1] (200 mm).

Operation 3) Relative value positioning
The object moves from target position [1] to target position [2] (500 mm).

Operation 4) Relative value positioning
The object moves from target position [2] (500 mm) to target position [3] (300 mm).

- Operation images

Operation 1) Home return
The object is moved to its home position $(0 \mathrm{~mm})$.


Operation 2) Absolute value positioning
The object is moved from its home position $(0 \mathrm{~mm})$ to target position [1] ( 200 mm ).


Operation 3) Relative value positioning The object is moved from target position [1] (200 mm) to target position [2] (500 mm).


Operation 4) Relative value positioning
The object is moved from target position [2] (500 mm) to target position [3] (300 mm).

- Setup flow


0
Preparation

1
Basic Setup

2
Commissioning

## 0 Preparation

## Installing tool software

Install GM Programmer from the following website:
GM Programmer : https://industrial.panasonic.com/ac/j/motor/motion-controller/mc/gm1/index.jsp

## INFO

When GM Programmer is installed, PANATERM Lite for GM, Gateway (CODESYS Gateway), and CodeMeter applications are installed at the same time.

- GM Programmer: This is a setup tool for the GM1 controller. Using GM Programmer makes it possible to set positioning data and various positioning parameters, and perform various monitoring operations.
- PANATERM Lite for GM1: This is a setup support tool for the MINAS series servo amplifiers manufactured by Panasonic Corporation. When GM Programmer is installed, PANATERM Lite for GM is also installed at the same time. By using this tool, parameter setup within servo amplifiers, control status monitoring, setup support, machine analysis, and other operations can be executed on a PC.

Before installing GM Programmer on a PC, log on to the PC with Administrator privileges.
If other applications are running, be sure to close all the applications before installing GM Programmer.

## Column [1]: Installing PANATERM

If a PC on which PANATERM is installed is connected to a MINAS servo amplifier with a USB cable, parameter setup, control status monitoring, setup support, machine analysis, and other operations can be performed easily. If necessary, install PANATERM from the following Panasonic website.

- PANATERM: https://www3.panasonic.biz/ac/j/d//software/index.jsp?series_cd=3514


## Column [2]: Components of each tool software product



| No. | Name | Description |
| :--- | :--- | :--- |
| $(1)$ | Title bar | The title bar displays the project file name, minimize button, maximize button, and close button. |
| $(2)$ | Menu bar | The menu bar displays the menu commands for each purpose in list format. |
| $(3)$ | Toolbar | The toolbar displays each command as an icon. |
| $(4)$ | Navigation pane | The navigation pane displays the objects (such as devices, applications, and programs) added <br> to the project in a tree structure. |
| $(5)$ | Main pane | The main pane displays a program, function settings, messages, and other data. <br> The sub-pane can be switched by selecting a desired tab. |
| $(6)$ | Status bar | The status bar displays the build status, logged-in users, and other information. |

PANATERM Lite for GM (top window)


| No. | Name | Description |
| :--- | :--- | :--- |
| $(1)$ | Select Model | This icon is used to select a model when opening a parameter file with the GM1 controller <br> unconnected. |
| $(2)$ | Connect <br> Amplifier | This icon is used to select and set the method for connecting to the GM1 controller, USB-based <br> connection with the servo amplifier (for initial amplifier settings), and other items. |
| $(3)$ | Axis | This icon is used to open the Axis view. |
| $(4)$ | Alarm | This icon is used to open the Alarm view. |
| $(5)$ | Parameters | This icon is used to open the Parameter view. |
| $(6)$ | Object | This icon is used to open the Object view. |
| $(7)$ | Monitor | This icon is used to open the Monitor view. |
| $(8)$ | Axes window | This window is used to select a servo amplifier (connected to the GM1 controller) whose data <br> is to be processed. (Data from multiple servo amplifiers cannot be processed at the same time.) |

PANATERM Lite for GM (Parameter view)
(1) (2) (3) (4) (5)

By the selecting the theme from the left above, and selecting the sub-theme from the left below, the related parameters can be displayed. To display all parameters in numerical order. plei below to refer the details of each sub-theme. Parameter value can be changed with <setting value>, and pressing <Esc> can cancel the change. It becomes effective by pressing <Enter>
(8)

| Parameter list |
| :--- |
| Class 0 (Basic) $\quad$ (7) |
| Class 1 (Gain) $\quad$ Class 2 (Damping) |
| Class 3 (Veroity/Torque/Fu.... |
| Class 4 (I/F, Monitor) |
| Class 5 (Enhanding) |
| Class 6 (Special) |
| Class 7 (Special) |
| Class 8 (Special) |
| Class 9 (linear) |



| No. | Name | Description |
| :--- | :--- | :--- |
| $(1)$ | Read button | This button is used to load parameters stored on the PC. |
| $(2)$ | Save button | This button is used to save the displayed parameters on the PC. |
| $(3)$ | Rcv button | This button is used to receive parameters from the selected servo amplifier. |
| $(4)$ | Trans button | This button is used to transmit parameters to the selected servo amplifier. |
| $(5)$ | Copy button | This button is used to copy parameters from the servo amplifier. |
| $(6)$ | EEP button | This button is used to write parameters to EEPROM from the selected servo amplifier. |
| $(7)$ | Parameter category <br> selection pane | Click this pane to change a parameter category number. |
| $(8)$ | Value column | Double-click a value to be changed and write a new value. |

## 1 Basic Setup



### 1.1 Preparing and Wiring the Required Devices

Prepare the following devices.

| No. | Name |
| :--- | :--- |
| $(1)$ | GM1 controller (EtherCAT type) |
| $(2)$ | Servo amplifier: MINAS A6B series (MADLN11BE is used in this document) |
| $(3)$ | Servo motor |
| $(4)$ | PC (on which GM Programmer and PANATERM Lite for GM are already installed) |
| $(5)$ | LAN cables: 2 |
| $(6)$ | AC power supply |
| $(7)$ | 24 VDC power supply |
| $(8)$ | USB cable (Mini-B) |

Wire each device as shown below.


The PC communicates with the GM1 controller using GM Programmer and LAN ports.
The IP address (default) of LAN port 1 is set as below.
An IP address on the same network that is different from the IP address of LAN port 1 must be set for the PC.
Interface: LAN port 1
IP address:
Subnet mask:
Default gateway:

| 192.168 .1 .5 |
| :--- |
| 255.255 .255 .0 |
| 192.168 .1 .1 |

Interface: PC
IP address:
Subnet mask:
Default gateway:

| 192.168 .1 .10 |
| :--- |
| 255.255 .255 .0 |
| 192.168 .1 .1 |

## Column [3]: Communication using USB ports

USB ports can be set as a communication interface between the GM1 controller and tool software such as GM Programmer or PANATERA Lite for GM, as below.
(1) Select Add USB Port from the Online menu.
(2) The Add USB Port dialog box will be displayed.
(3) Click OK to display a dialog box that restarts the gateway.
(4) Click OK to display the Select Device dialog box.
(5) Select a GM1 controller that you want to connect and click OK.
(6) When a connection is established, USB ports are added as a communication interface between the PC and GM1 controller.
(1)

(5)


* The IP address of the GM1 controller can be checked and set in the main pane displayed by selecting PLC Parameters in the Device tab.



### 1.2 Setting up Axis

This section explains how to set (register) an axis to be used.

Step 1
Start GM Programmer. Select New Project from the File menu, assign any name, and then click OK.
Device: AGM1CSEC16 (Panasonic Corporation)
Version: Any applicable version
Program in: Ladder Logic Diagram (LD)
Select the above values and click OK.


Step 2
Right-click EtherCAT_Master_SoftMotion in the navigation pane and then select Add Device.


## Step 3

The Add Device pop-up window will be displayed. Select the connected model and click Add Device.
(Model "MADLN11BF" is used in this document.)
*Even if you click Add Device, the pop-up window will not close.
After clicking Add Device, click Cancel.


MADLN11BF and SM_Drive_ETC_Panasonic_MINAS_A6B will be added to the navigation pane.


### 1.3 Setting Station Alias (Node Address of Servo Amplifier)

This section explains how to use the rotary switches on the front panel of the servo amplifier.

Step 1
Set the left and right rotary switches to 0 and 1 , respectively, as shown below.


Step 2
Connect the servo amplifier and the PC with a USB cable (Mini-B).
To establish a communication between the GM1 controller and the servo amplifier, set up relevant parameters in PANATERM Lite for GM with the USB cable connected.

## Step 3

Open PANATERM Lite for GM.
Select AMP default setting and click OK.

| Connect |
| :--- |
| Connect to the GM series controller with USB |
| Communicate with the driver via the GM series controller. |
| Connect to the GM series controller with LAN |
| Communicate with the driver via the GM series controller. |
| No communication |
| Execute the command such as parameter filling with PC |
| without communicating with the driver. |
| This setting is required when using the driver for the first |
| time. |
| Connect with the driver and USB, and make the necessary |
| settings for communication with GM series. |
| Cancel |
| OK |

Step 4
The Model confirmation dialog box will be displayed. Check the contents of the dialog box and then click OK.


## Step 5

The Parameter change dialog box will be displayed. Change the respective values of No. 40 and No. 41 in Class 07 to " 0 ".


## Step 6

Turn OFF and then ON the servo amplifier.
The servo amplifier will be restarted and the new settings will take effect.

## Step 7

Double-click the servo amplifier ("MADLT11BF" in this document) in the navigation pane and open the General tab.
Select the Enable expert settings check box and then select the Configured station alias (ADD 0x0012) option and enter "1".


## INFO

Enter an address that is determined by adding the value set to No. 40 of Class 07 (high order) and the value selected with the rotary switch (low order).
In Step 1, rotary switches COM and LINL are set to 0 and 1, respectively, and in Step 5, No. 40 and No. 41 of Class 07 are set to 0 . Therefore, the address should be set to 1 .

The settings will be downloaded to the GM1 controller later. Therefore, if the address is not set correctly, the servo amplifier section will be grayed out as shown below.


A㺂6 SM_Drive_ETC_Panasonic_MINAS_A6B

## Column [4]: Setting station aliases without changing the rotary switch settings

| Class | No. | Attribute | Parameter name | Setting range | Unit | Function |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 40 | R | Station alias setting (high order) | 0 to 255 | - | Sets the high-order 8 bits of station alias |  |
| 7 | 41 | R | Station alias selection | 0 to 2 | - | Specifies a station alias setting method |  |
|  |  |  |  |  |  | Set value | Function |
|  |  |  |  |  |  | 0 | Sets a station alias using the value selected with the rotary switch on the front panel and the value set to No. 40 of Class 07 |
|  |  |  |  |  |  | 1 | Sets a station alias using the value set in the SII area (0004h) |
|  |  |  |  |  |  | 2 | Used by the manufacturer (Cannot be set) |

An address is set in two bytes and No. 40 of Class 07 is the high-order byte, so if No. 40 is set to 1 , the address will become 256. This is added to the number selected with the rotary switch.

Examples: $\quad$ No. 40 of Class $07=0$, Rotary switch $=3: 3$
No. 40 of Class $07=1$, Rotary switch $=3: 259$

* If the high-order byte set with No. 40 of Class 07 and the rotary switch are both set to " 0 ", the settings will be invalidated and control is performed according to the normal connection sequence (reference to SII).


### 1.4 Setting up Scaling

## Step 1

Double-click the servo amplifier ("SM_Drive_ETC_Panasonic_MINAS_A6B" in this document) in the navigation pane and open the General tab. As this document assumes a ball screw, select Finite.


## Column [5]: Explanation of Modulo/Finite

Modulo/Finite: The axis type can be specified.
Modulo: The motor rotates infinitely without limiting the travel range (belt drive, rotary shaft, etc.).
Finite: $\quad$ The set value for the commanded position is a finite value (if the movable range of the object such as a ball screw is predetermined).
Soft limits: When the axis type is set to Finite, settings can be specified in the Software limits section.

When Modulo is selected, the commanded position value keeps looping between 0 and the modulo value.
The maximum settable modulo value is $255 x$ "units in application".
"units in application" is set in the Scaling/Mapping tab.


## Step 2

Open the Scaling/Mapping tab window.
Select the Linear option, and enter 16\#800000 for increments and 10 for units in application.
(This is because, in this example, the ball screw lead is 10 mm ( 10 mm travel per revolution for a servo motor))


## Column [6]: How to specify settings for the Rotary option in the Scaling/Mapping tab

Rotary: When the axis type is set to Modulo, the ratio in the conversion from the drive increment to the application unit is set. Linear: When the axis type is set to Finite, the ratio in the conversion from the drive increment to the application unit is set.

Increments < = > motor turns:
Motor turns < = > gear output turns:

Gear output turns < = > units in application:

Specifies the position increment per revolution for a motor
Specifies settings for the use of a speed reducer. When the reduction ratio is $2 / 3$, Motor turns: 3 gear output turns: 2
Specifies the gear output turns per 360 in application


## Step 3

Write the settings to the GM1 controller．
Double－click the Device object in the navigation pane and open the Communication Settings tab．

| デバイス（D） | $\cdots \mathrm{H}$ | 雨 Device x |
| :---: | :---: | :---: |
|  |  | 通信設定 |
|  |  |  |
| －自りフログラム構成 <br> Application |  | 日付／時刻設定 |
| GVL <br> 角佰ライ゙ラリマネージャ |  | アブリケーション |
| \＃1．MC＿PRG（PRG） |  | ログ |
| －タスク構成 |  |  |
| －1．Motion |  | ユーザとグループ |

Step 4
Click Scan Network，select a controller to be connected，and click OK．



When a connection is completed, the lamps light up in green ().
If the display appears as shown in the figure below, it is OK.


Step 5
Select Build from the Build menu to execute build.

| File Edit View Project | Build | Online | Debug | Tools |
| :---: | :---: | :---: | :---: | :---: |
|  | Build |  | F11 |  |
|  | Rebuild |  |  |  |
| Devices | Generate code |  |  |  |
| (1) Hello GM1 |  | ean all |  |  |

If the processing is normal, "Compile complete - 0 errors, 0 warnings" will be displayed as shown below.


## INFO

When a created program or settings are subject to a build process, objects in the application are compiled.
If codes are generated after the build process is executed, an application to be downloaded to the GM1 controller will be generated.

The syntax of all objects is verified when the build process is executed for the first time.
The syntax of only differences is verified when the build process is executed a second time and thereafter. No application code will be generated.

## Step 6

Right-click the Application object and select Login to execute a download.


## INFO

The Device and Application objects are displayed in the green background, indicating that they are in an online (connected) state.
6. mark appears on the left side of the Device object, indicating that the device is connected to the real machine.
"Stop" appears on the right side of the Application object, indicating that the application is not running.
5 mark also appears on the right side of each device that is operating normally.
$\Delta$ mark appears on the right side of each device that is not connected.


INFO
You can also log in from the toolbar.


## Step 7

Right-click the Application [stop] object and select Start.
When the application enters a running state, RUN appears in the status area on the bottom of the GM Programmer window.


## INFO

At the time of login (connection), there are two states: stopped and run.
"Stopped" indicates that the program is not running, and "Run" indicates that the program is running.

### 1.5 Setting up Amplifier

Step 1
Select PANATERM Lite for GM from the Tools menu to start PANATERM Lite for GM.

## Step 2

On the toolbar, click the Open the Parameter view icon. Select Read-out from the driver and click OK.


Step 3
Click Class 4 and then click PinAssign with the page opened.


## Step 4

Change the pin assignment of 07(SI2) and 08(SI3) to "Invalid", as below.

| Pin Assign |  |  |  |
| :---: | :---: | :---: | :---: |
| Input |  |  |  |
| Pin-No. | Position/Full-closed control | Velocity control | Torque control |
| 05(SI1) | SI-MON5_ConnectA | SI-MON5_ConnectA | SI-MON5_ConnectA |
| 07(SI2) | POT_ConnectB | POT_ConnectB | POT_ConnectB |
| 08(SI3) | NOT_ConnectB | NOT_ConnectB | NOT_ConnectB |
| 09(SI4) | HOME_ConnectA | HOME_ConnectA | HOME_ConnectA |
| 10(SI5) | EXT1_ConnectA | EXT1_ConnectA | EXT1_ConnectA |
| 11(SI6) | EXT2_ConnectA | EXT2_ConnectA | EXT2_ConnectA |
| 12(SI7) | SI-MON3_ConnectA | SI-MON3_ConnectA | SI-MON3_ConnectA |
| 13(SI8) | SI-MON4_ConnectA | SI-MON4_ConnectA | SI-MON4_ConnectA |


| Output |
| :--- |
| Pin-No. Position/Full-closed control  <br> $01 / 02$ (SO1) BRK-OFF Velocity control <br> $25 / 26($ SO2 $)$ EX-OUT1 BRK-OFF <br> $03 / 04($ SO3 $)$ ALM EX-OUT1 |



Double-click 07(SI2) and 08(SI3) separately in the Pin-No. column.
Select Invalid and click OK.


## INFO

If limits are set to "B-Connect", a limit error will occur because the behavior differs from the device configuration in this document.

Step 5
After all settings are complete, click OK to write the settings to the servo amplifier.

| Pin Assign |  |  |  | $\times$ |
| :---: | :---: | :---: | :---: | :---: |
| Input |  |  |  |  |
| Pin-No. | Position/Full-closed control | Velocity control | Torque control |  |
| 05(SI1) | SI-MON5_ConnectA | SI-MON5_ConnectA | SI-MON5_ConnectA |  |
| 07(SI2) | Invalid | Invalid | Invalid |  |
| 08(SI3) | Invalid | Invalid | Invalid |  |
| 09(SI4) | HOME_ConnectA | HOME_ConnectA | HOME_ConnectA |  |
| 10(SI5) | EXT1_ConnectA | EXT1_ConnectA | EXT1_ConnectA |  |
| 11(SI6) | EXT2_ConnectA | EXT2_ConnectA | EXT2_ConnectA |  |
| 12(SI7) | SI-MON3_ConnectA | SI-MON3_ConnectA | SI-MON3_ConnectA |  |
| 13(SI8) | SI-MON4_ConnectA | SI-MON4_ConnectA | SI-MON4_ConnectA |  |
| Output |  |  |  |  |
| Pin-No. | Position/Full-closed control | Velocity control | Torque control |  |
| 01/02(SO1) | BRK-OFF | BRK-OFF | BRK-OFF |  |
| 25/26(SO2) | EX-OUT1 | EX-OUT1 | EX-OUT1 |  |
| 03/04(SO3) | ALM | ALM | ALM |  |
|  |  |  |  |  |
|  |  |  | OK | Cancel |

## Column [7]: List of servo amplifier factory settings

For servo amplifier factory settings, only POT (positive direction over-travel inhibit input) and NOT (negative direction overtravel inhibit input) are factory-set to "B-Connect".
For B-Connect, if the servo amplifier is used with nothing connected to POT and NOT, it will enter a limit detection state, resulting in a limit error.
Therefore, use the servo amplifier with a limit sensor connected to POT and NOT or, if no limit sensor is used, use the servo amplifier with the settings changed to "A-Connect" and "Invalid".

|  |  |  | Factory settings |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pin <br> name | Pin <br> No. | Corresponding <br> parameter |  | Position/ <br> Full-closed control | Velocity control |  | Torque control |  |
|  |  |  | Signal <br> name | Logic | Signal <br> name | Logic | Signal <br> name | Logic |
| SI1 | 5 | Pr4.00 | SI-MON5 | A-Connect | SI-MON5 | A-Connect | SI-MON5 | A-Connect |
| SI2 | 7 | Pr4.01 | POT | B-Connect | POT | B-Connect | POT | B-Connect |
| SI3 | 8 | Pr4.02 | NOT | B-Connect | NOT | B-Connect | NOT | B-Connect |
| SI4 | 9 | Pr4.03 | HOME | A-Connect | HOME | A-Connect | HOME | A-Connect |
| SI5 | 10 | Pr4.04 | EXT1 | A-Connect | EXT1 | A-Connect | EXT1 | A-Connect |
| SI6 | 11 | Pr4.05 | EXT2 | A-Connect | EXT2 | A-Connect | EXT2 | A-Connect |
| SI7 | 12 | Pr4.06 | SI-MON3 | A-Connect | SI-MON3 | A-Connect | SI-MON3 | A-Connect |
| SI8 | 13 | Pr4.07 | SI-MON4 | A-Connect | SI-MON4 | A-Connect | SI-MON4 | A-Connect |

### 1.6 Setting up Home Return (PANATERM Lite for GM)

To execute home return operation, you must set up objects related to home return on the servo amplifier beforehand. This section explains the setup method using PANATERM Lite for GM.

The following table shows amplifier objects related to home return (addresses within Object editor).

| Index | Sub-Index | Name | Data <br> size | Lead data value <br> (Default) | Description |
| :--- | :--- | :--- | :---: | ---: | :--- |

## Step 1

On the toolbar, click the Open the Object view icon. Select Read-out from the driver and click OK.

ㅁ. PANATERM


## Step 2

Change the value of 6098h (Homing method) in the Main Index column, as below.
Select 6000h and double-click the Value column corresponding to Homing method in the 6098h row.
Change 00h to 05h (method: 5).


3
Click Trans and then EEP.


## INFO

When the Method is set to 5 , the direction of initial movement changes according to the status of the Home Switch at the time of startup. The home position detection position is the first index pulse detection position on the negative or positive side after the status of the Home Switch changes. (See the figure below.) If a home position is unallocated, Homing error = 1 will occur.


Step 4
A "Check" pop-up window will be displayed. Click OK to write the changes to EEPROM.


## Step 5

Turn OFF and then ON the servo amplifier. The servo amplifier will be restarted and the new settings will take effect.

## Step 6

Check that the ERROR LED on the GM1 controller is blinking because the servo amplifier was turned OFF. (The communication was disrupted when the servo amplifier was turned OFF.)
The icons of the registered servo amplifiers in the navigation pane also indicate that the communication was disrupted.


## Step 7

Select Reset Cold from the Online menu to reset the error．

| Online | ne Debug Tools | Window |
| :---: | :---: | :---: |
| Q3 Ad | Add USB Port |  |
| O8 L | Login | Alt＋F8 |
| $0^{*}$ | Logout | Ctrl＋F8 |
|  | Download |  |
|  | Online Change |  |
|  | Status | Alt + F5 |
|  | System Data History |  |
|  | Reset Warm |  |
|  | Reset Cold |  |
|  | Reset Origin |  |
|  | Simulation |  |

The icon status will change as below．

```
-3) EtherCAT_Master_SoftMotion
--6 MADLT11BF
\Delta希8 SM_Drive_ETC_Panasonic_MINAS_A6B
```

Step 8
Right－click the Application object．Select Start to change the status from＂Stop＂to＂Start＂．

| Devices | － $4 \times$ |  |
| :---: | :---: | :---: |
| －䡌 Hello GM1 | －$\uparrow$ | $\wedge$ |
| － 00 Device［connected］（AGM1CSEC 16） |  |  |
| $-$$\square$ $1!$ Proaram Confiauration $\qquad$ |  |  |
|  |  |  |
| $\text { ifil) Library Manager } \square \text { Start }$ |  |  |
| $\begin{gathered} \text { \#1] MC_PRG (PRG) } \\ -\quad \text { Task Configuratio } \end{gathered}$ | Online Change |  |
|  | Delete application from device |  |
|  | Unforce All Values of＇Device．Application＇ |  |

The icon status will change as below．

```
-3 EtherCAT_Master_SoftMotion
    -0.0.0 MADLT11BF
    }
```


## Step 9

Temporarily log out．
To log out，right－click the Application object and select Logout．
＊After logout，the operation mode at the time of logout is taken over when you log in again．


## INFO

Alternatively, you can log out by selecting Logout from the Online menu.


You can also log out using the toolbar.


Step 10
Return to PANATERM Lite for GM and click Rcv to check whether the changes have been written to EEPROM normally.


Check that the value of $\mathbf{6 0 9 8}$ (Homing method) in the Main Index column has been changed to "05h".


## Column [8]: Writing and reading objects using programs

Objects (such as home return methods) can be written and read by using function blocks (FB) from programs. For details on FB, refer to the GM1 Series Reference Manual (Instruction Edition).

- ETC_CO_SdoWrite (write slave parameters)

This is a function block (FB) that writes EtherCAT slave parameters.


An example of variable setting is shown below.

* EtherCAT address = uiDevice


| Type | Parameter name | Set value (example) | Description |
| :---: | :---: | :---: | :---: |
| Input | Execute | xWrite | Starts execution at the rising edge |
|  | xAbort | FALSE | Cancels execution |
|  | usiCom | usiCom | Number of ETC Master (fixed at 1 when there is only one master) |
|  | uiDevice | uiDevice | Station number of ETC Slave (EtherCAT address) |
|  | usiChannel | Delete "???" | Variable reserved for future expansion |
|  | wIndex | wIndexWrite | Main address of slave unit to be accessed |
|  | bySubindex | byIndexWrite | Sub-address of slave unit to be accessed |
|  | udiTimeOut | uTmOut | Timeout period |
|  | pBuffer | Adr (dwWriteData) | Address of variable to write from |
|  | szSize | sdoWriteSize | Size of data to be written |
|  | eMode | Delete "???" |  |
| Output | Done <br> Busy <br> Error <br> ErrorlD <br> udiSdoAbort <br> szDataWritten | Delete "???" <br> Delete "???" | TRUE: Completes execution and shifts to Standstill state <br> TRUE: FB operation in progress <br> TRUE: An error has occurred <br> An error ID is output <br> Displays additional information when an error occurs during FB execution <br> Size of written data |

- ETC_CO_SdoWrite (read slave parameters)

This is a function block (FB) that reads EtherCAT slave parameters.


| Type | Parameter name | Set value (example) | Description |
| :---: | :---: | :---: | :---: |
| Input | Execute | xRead | Starts execution at the rising edge |
|  | xAbort | xReadAbort | Cancels execution |
|  | usiCom | usiCom | Number of ETC Master (fixed at 1 when there is only one master) |
|  | uiDevice | uiDevice | Station number of ETC Slave (EtherCAT address) |
|  | usiChannel | Delete "???" | Variable reserved for future expansion |
|  | wIndex | wIndexRead | Main address of slave unit to be accessed |
|  | bySubindex | bySublndex | Sub-address of slave unit to be accessed |
|  | udiTimeOut | udiTimeOut | Timeout period |
|  | pBuffer | Adr (dwReadData) | Address of variable to store data |
|  | szSize | sdoReadSize | Size of data to be read |
| Output | Done <br> Busy <br> Error <br> ErrorID <br> udiSdoAbort <br> szDataRead | Delete "???" <br> Delete "???" | TRUE: Completes execution and shifts to Standstill state <br> TRUE: FB operation in progress <br> TRUE: An error has occurred <br> An error ID is output <br> Displays additional information when an error occurs during <br> FB execution <br> Size of read data |

## 2 Commissioning

## 2．1 Executing Commissioning

Let＇s operate the motor in commissioning mode．
In commissioning，Servo ON and inching operations can be performed without using a program．

## Step 1

Double－click SM＿Drive＿ETC＿Panasonic＿MINAS＿A6B in the navigation pane and select Commissioning．


Step 2
Select Online Config Mode from the Project menu．

| Project | Build Online | Debug |
| :---: | :---: | :---: |
| Add Device．．． |  |  |
| Scan For Devices．．． |  |  |
| Edit Object |  |  |
| 40 Online Config Mode．．． |  |  |
|  | Active Application |  |
| i | ect Information．．． |  |
|  | ect Settings．．． |  |
|  | ect Environment．．． |  |
|  | ect Localization |  |

## INFO

In online configuration mode，projects for commissioning are downloaded to the GM1 controller． For this reason，programs that have been downloaded to the GM1 controller to date will be erased．
A confirmation message will be displayed．Click Yes．
GM Programmer


Application configuration mode！All applications on PLC will be erased！Do you want to continue？

If "connected" is displayed in the navigation pane, commissioning can be executed.
Devices

Step 3
Click the Power icon to set the status to Servo ON.


## Step 4

Click the (ㅇ) and (2) buttons to check whether the direction of inching and the rotational direction of the actual axis match the servo amplifier settings. Set the following values in the setting fields in the Inch section and perform inching operation.

| Distance | Velocity | Acceleration | Deceleration |
| :--- | :--- | :--- | :--- |
| 10 | 100 | 50 | 50 |

The motor runs one rotation and the object moves 10 mm .


## INFO

Inching: While one of the arrow buttons is held down, the object moves according to the distance, velocity, and acceleration or deceleration specified in the respective fields. Releasing the button stops the object at the specified deceleration. If the direction of inching and the rotational direction of the actual axis are different, select the Scaling/Mapping tab and select the Invert direction check box in the Scaling section. The motor will run in the opposite direction.

| H, SM_Drive_ETC_Panasonic_MINAS_A6B $\times$ |  |  |
| :--- | :--- | :--- |
| General | Motor Type | Scaling |
| Scaling/Mapping | Rotary | $16 \# 800000$ |
| Commissioning | O Linear |  |

## Step 5

Check whether home return operation is performed as specified in the "Homing method" object.
Click Start in the Homing section and check home return operation.


## Step 4

If you have checked operations in commissioning mode, cancel the commissioning mode, as below. Select Online Config Mode from the Project menu.


If "connected" disappears from the navigation pane, the commissioning mode has been canceled.
Devices

## 3 Continuous Positioning Operation

3-1
Creating
Servo ON
Program

3-2
Creating
Home
Return
Program

Creating
Positioning
Operation
Program
(Absolute Value
Positioning)

## Creating <br> Positioning <br> Operation <br> Program <br> (Relative Value <br> Positioning)

3-6
Performing
Continuous
Positioning
Operation

### 3.1 Creating Servo ON Program

Insert the MC_Power instruction to execute Servo ON.
Step 1
Double-click MC_PRG in the navigation pane. Right-click the leftmost section of the network (the red section in the figure below) and select Function Block Guidance.


## Step 2

Right-click on the new network and select Function Block Guidance.
Expand Single axis control as shown in the figure below, select MC_Power (Servo ON), and click OK.
Variables will be automatically declared for the MC_Power instruction and the Auto Declare dialog box will be displayed. Check the contents of the dialog box and then click OK.


## Column [9]: FB Guidance

The method for entering variables directly was explained on the previous page, but there is also a method for entering variables using operands.
Click Operand, enter necessary variables in the Input and Output sections, respectively, and click OK.
Then, delete unnecessary "???".
The Document tab contains a description of the selected FB, so that you can check it as necessary.


## Column [10]: Variables

Variable names are assigned as English letters.
Each variable name starts with a prefix that indicates the type and scope of the variable.
A prefix is followed by a meaningful word name. Only the first character of each word name is capitalized.
For global variables, the first character is " g ".

```
Examples) BOOL type: xServoON
    REAL type: rVelocity
    BOOL type (Global variable): g_xPowerON
    REAL type (Global variable): g_rPosition
```

Space and special characters (such as !, ", \$, \%, @, or \&) cannot be used and a numeric character cannot be used as the first character.
Underscores cannot be used consecutively.

| Data type | Prefix | Remarks |
| :--- | :---: | :--- |
| BOOL | x | "x" is used to distinguish from the identifier ("by") of BYTE data type |
|  | b |  |
| BYTE | by | Not used for arithmetic operations |
| WORD | w | Not used for arithmetic operations |
| DWORD | dw | Not used for arithmetic operations |
| LWORD | lw | Not used for arithmetic operations |
| SINT | si |  |
| USINT | usi |  |
| INT | u |  |
| UINT | di |  |
| DINT | udi |  |
| UDINT | li |  |
| LINT | uli |  |
| ULINT | r |  |
| REAL | s |  |
| LREAL | ws |  |
| STRING | tim |  |
| WSTRING | tod |  |
| TIME | dt |  |
| LTIME | date |  |
| TIME_OF_DAY | p |  |
| DATE_AND_TIME | a |  |
| DATE | e |  |
| POINTER | g |  |
| ARRAY | A prefix to identify the scope of a variable |  |
| ENUM | For global variables. Example: g_uiTest; |  |
| SCOPE | For local constants. Example: c_uiTest:INT; |  |
| VAR_GLOBAL <br> VAR CONSTANT <br> VAR_GLOBAL <br> CONSTANT | For global constants. Example: gc_uiTest:INT; |  |

## Step 3

Complete a function block as show below.


|  | Type | Parameter name | Set value | Description |
| :---: | :---: | :---: | :---: | :---: |
| (1) | I/O | Axis | SM_Drive_ETC_Panasonic_MINAS_A6B | Specifies the axis |
| $(2)$ <br> $(3)$ | Input | Enable <br> bRegulatorOn <br> bDriveStart | TRUE <br> xServoON <br> xServoON | TRUE: FB executable <br> TRUE: Servo lock FALSE: Servo lock released TRUE: Quick stop disabled |
| (4) | Output | Status bRegulatorRealState bDriveStartRealState <br> Busy <br> Error <br> ErrorlD | Delete "???" <br> Delete "???" | TRUE: Axis ready for operation <br> TRUE: FB executable <br> TRUE: Operation not stopped by quick stop <br> TRUE: FB execution incomplete <br> TRUE: Error has occurred within FB <br> An error ID is output |

## INFO

For the "Axis" parameter for I/O, specify the axis corresponding to the servo motor. Example: For SM_Drive_ETC_Panasonic_MINAS_A6B, substitute "SM_Drive_ETC_Panasonic_MINAS_A6B" for the Axis parameter of the MC_Power instruction.

## -1.1) EtherCAT_Master_SoftMotion

- -11 MADLT11BF
[16) SM_Drive_ETC_Panasonic_MINAS_A6B


### 3.2 Creating Home Return Program

Insert the MC_Home instruction to execute home return. (Operation 1)
Operation 1) The object is moved to its home position ( 0 mm ). (Home return)


* For the MINAS A6B series, the home return method is set to the default value (0), so home return will not be performed if the home return method is left unchanged.
Before performing home return operation, be sure to set up parameters for home return.
Step 1
Insert a new network. Right-click in the network and select Insert Network (Below).



## Step 2

Right-click in the new network and select Function Block Guidance. Expand Single axis control as shown in the figure below, select MC_Home (home return), and click OK.
Variables will be automatically declared for the MC_Home instruction and the Auto Declare dialog box will be displayed. Check the contents of the dialog box and then click OK.

$\square$ With EN/ENO (w)


Step 3
Complete a function block as show below.


|  | Type | Parameter name | Set value | Description |
| :---: | :---: | :---: | :---: | :---: |
| (1) | I/O | Axis | SM_Drive_ETC_Panasonic_MINAS_A6B | Specifies the axis |
| (2) | Input | Execute | xHome | Starts execution at the rising edge FALSE: Stops processing |
| (3) |  | Position | Delete "???" | Absolute position upon completion of Zphase search |
| (4) | Output | Done <br> Busy <br> CommandAborted <br> Error <br> ErrorID | Delete "???" <br> Delete "???" <br> Delete "???" <br> Delete "???" <br> Delete "???" | TRUE: Completes execution and shifts to Standstill state <br> TRUE: FB operation in progress <br> TRUE: An interruption caused by another FB <br> TRUE: An error has occurred <br> An error ID is output |

## Column [11]: Difference between absolute value positioning and relative value positioning

- Absolute value positioning

This is a positioning control method in which the target position is specified as an absolute position from the home position.
<Example>
Operation 1) Moving the object to position 6,000 (command value $+6,000$ )


Operation 2) Moving the object to position 4,000 (command value $+4,000$ )


- Relative value positioning

This is a positioning control method in which the target position is specified as a movement distance from the current position.
<Example>
Operation 1) Moving the object to position 6,000 (command value $+5,000$ )


Operation 2) Moving the object to position 4,000 (command value - 2,000 )


### 3.3 Creating Positioning Operation Program (Absolute Value Positioning)

Create a program for absolute value positioning. (MC_MoveAbsolute instruction)
Operation 2) Moving the object from the home position ( 0 mm ) to target position [1] ( 200 mm ) (Absolute value positioning)


## Step 1

Insert a new network. Right-click in the network and select Insert Network (Below).

## Step 2

Right-click in the new network and select Function Block Guidance. Expand Single axis control as shown in the figure below, select MC_MoveAbsolute, and click OK.
Variables will be automatically declared for the MC_MoveAbsolute instruction and the Auto Declare dialog box will be displayed. Check the contents of the dialog box and then click OK.


Step 3
Complete a function block as show below.


|  | Type | Parameter name | Set value | Description |
| :---: | :---: | :---: | :---: | :---: |
| (1) | I/O | Axis | SM_Drive_ETC_Panasonic_MINAS_A6B | Specifies the axis |
| (2) | Input | Execute | xMoveAbs | Starts execution at the rising edge |
| (3) |  | Position | 200 | Specifies the target position (u) |
|  |  | Velocity | 50 | Specifies the maximum velocity (u/s) |
|  |  | Acceleration | 5000 | Specifies acceleration ( $\mathrm{L} / \mathrm{s}^{2}$ ) |
|  |  | Deceleration | 5000 | Specifies deceleration ( $\mathrm{u} / \mathrm{s}^{2}$ ) |
|  |  | Jerk | Delete "???" | Specifies jerk (u/s ${ }^{3}$ ) |
|  |  | Direction | Delete "???" | Specifies the direction of axis movement. <br> Direction can be specified only for the Modulo axis type. <br> For the Finite axis type, the specification is ignored. |
| (4) <br> (5) | Output | Done | xDone1 | TRUE: Movement by the specified relative distance is complete |
|  |  | Busy | Delete "???" | TRUE: FB operation in progress |
|  |  | CommandAborted | Delete "???" | TRUE: An interruption caused by another FB |
|  |  | Error | Delete "???" | TRUE: An error has occurred |
|  |  | EmrorlD | Delete "???" | An error ID is output |

## INFO

How to connect a coil to output "Done"
To insert a coil, select a connection line to "Done" and then click the relevant icon on the toolbar or right-click and select Insert Coil from the context-sensitive menu that is displayed.


## Column [11]: Assigning numerical variables

In the previous example, fixed value " 200 " is substituted for the "Position" input parameter, but you can also declare a variable and set "200" as the default value.
Declaring a variable enables you to change the value flexibly.


### 3.4 Creating Positioning Operation Program (Relative Value Positioning)

Create a program for relative value positioning. (MC_MoveRelative instruction)
Operation 3) Moving the object from target position [1] (200 mm) to target position [2] ( 500 mm ) (Relative value positioning)


## Step 1

Insert a new network. Right-click in the network and select Insert Network (Below).

## Step 2

Select MC_MoveRelative in the same way as MC_MoveAbsolute.

Step 3
Complete a function block as show below.


|  | Type | Parameter name | Set value | Description |
| :---: | :---: | :---: | :---: | :---: |
| (1) | I/O | Axis | SM_Drive_ETC_Panasonic_MINAS_A6B | Specifies the axis |
| (2) | Input | Execute | xDone1 | Starts execution at the rising edge |
| (3) |  | Distance | 300 (500-200) | Specifies the relative distance (u) |
|  |  | Velocity | 150 | Specifies the maximum velocity (u/s) |
|  |  | Acceleration | 5000 | Specifies acceleration (u/s ${ }^{2}$ ) |
|  |  | Deceleration | 5000 | Specifies deceleration (u/s ${ }^{2}$ ) |
|  |  | Jerk | Delete "???" | Specifies jerk (u/s ${ }^{3}$ ) |
| (4) | Output | Done | xDone2 | TRUE: Movement by the specified relative distance is complete |
| (5) |  | Busy | Delete "???" | TRUE: FB operation in progress |
|  |  | CommandAborted | Delete "???" | TRUE: An interruption caused by another FB |
|  |  | Error | Delete "???" | TRUE: An error has occurred |
|  |  | ErrorlD | Delete "???" | An error ID is output |

Create a second program for relative value positioning. (MC_MoveRelative instruction)

Operation 4) Moving the object from target position [2] (500 mm) to target position [3] ( 300 mm ) (Relative value positioning)


Step 1
Insert a new network. Right-click in the network and select Insert Network (Below).

## Step 2

Select MC_MoveRelative in the same way as before.

Step 3
Complete a function block as show below.


|  | Type | Parameter name | Set value | Description |
| :---: | :---: | :---: | :---: | :---: |
| (1) | I/O | Axis | SM_Drive_ETC_Panasonic_MINAS_A6B | Specifies the axis |
| (2) | Input | Execute | xDone2 | Starts execution at the rising edge |
| (3) |  | Distance | -200 | Specifies the relative distance (u) |
|  |  | Velocity | 50 | Specifies the maximum velocity (u/s) |
|  |  | Acceleration | 5000 | Specifies acceleration (u/s ${ }^{2}$ ) |
|  |  | Deceleration | 5000 | Specifies deceleration (u/s ${ }^{2}$ ) |
|  |  | Jerk | Delete "???" | Specifies jerk (u/s ${ }^{3}$ ) |
| (4) | Output | Done | Delete "???" | TRUE: Movement by the specified relative distance is complete |
|  |  | Busy | Delete "???" | TRUE: FB operation in progress |
|  |  | CommandAborted | Delete "???" | TRUE: An interruption caused by another FB |
|  |  | Error | Delete "???" | TRUE: An error has occurred |
|  |  | ErrorlD | Delete "???" | An error ID is output |

Step 4
When creation of the program is completed, execute build and check for any errors.

### 3.5 Performing Operations from Login through to Home Return

## Step 1

Right-click the Application object and select Login to execute a download and login.

## Step 2

Right-click the Application [stop] object and select Start.

## Step 3

Execute Servo ON.
To execute Servo ON, both bRegulatorOn and bDriveStart inputs in the MC_Power section must be set to TRUE. xServoON is set to FALSE by default and the inside of the contact is displayed in white, indicating that the servo is OFF. Double-click the inside of the $\mathbf{x S e r v o O N}$ contact (the portion surrounded by the red frame in the figure below).


Double-clicking the above portion displays the set value (<TRUE>) for the variable on the right side of the contact. At this stage, the value has not yet been written to perform operation.


To write input status change values such as TRUE and FALSE, in this state, press the F7 key while holding down the Ctrl key.


When $x$ ServoON is set to ON, the inside of the contact is displayed in blue, indicating that the servo is ON.
"Status", "bRegulatorRealState", and "bDriveStartRealState" outputs are also set to TRUE , indicating that the servo is ON.

## Column [12]: How to write values

After displaying <TRUE> by double-clicking the relevant portion, you can also write values by right-clicking and selecting Write All Values of 'Device.Application'.


Step 4
When all parameter settings are complete, perform home return operation as below.
Double-click the startup contact of the MC_Home instruction (home return). When <TRUE> is displayed, press the Ctrl+F7 keys to execute home return operation.


The motor runs and home return operation is executed.
When the home return operation is completed, Done is set to TRUE.

### 3.6 Performing Continuous Positioning Operation

## Step 1

xMoveAbs is reset to TRUE.
After MC_MoveAbsolute_0 operation is complete, xDone1 is set to TRUE and MC_MoveRelative_0 operates.
After MC_MoveRelative_0 operation is complete, $\mathbf{x D o n e} \mathbf{2}$ is set to TRUE and MC_MoveRelative_1 operates.


Flow of sequential


## Step 2

Upon completion of operation check, stop the operation and log out.

## 4 Monitoring

## 4-1 <br> Axis Parameter List

## 4-2 <br> Registering in Watch

## 4-3 <br> Adding Trace

### 4.1 Axis Parameter List

All axis information can be monitored from the axis parameter list.

Double-click SM_DRIVE_ETC_Panasonic_MINAS_A6B: IEC Objects in the navigation pane to open SM_DRIVE_ETC_Panasonic_MINAS_A6B.
You can check the current value in the Value column. You can also write values by double-clicking in the Prepared value column corresponding to the variable of the value to be changed and then pressing the Ctr+F7 keys or right-clicking.

| General <br> Scaling/Mapping | ¢ Add... I Edit... $\times$ Delete ${ }_{\text {¢ }}^{\text {G }}$ Go to Variable |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Expression <br> - Device.Application.SM_Drive_ETC_Panasonic_MINAS_A6B | Type <br> SM3_Drive_ETC_Pana... | Value | Prepared value | Address |
| Commissioning | *AxisStructID | WORD | 65042 |  |  |
|  | * nAxisState | SMC_AXIS_STATE | power_off |  |  |
| SM_Drive_ETC_Panasonic_MINAS_ A6B: I/O Mapping | * bRegulatorOn | BOOL | FALSE |  |  |
|  | * bDriveStart | BOOL | FALSE |  |  |
| SM_Drive_ETC_Panasonic_MINAS_ <br> A6B: IEC Objects | * bCommunication | BOOL | TRUE |  |  |
| Status | * wCommunicationState | WORD | 100 |  |  |
|  | * uiDriveInterfaceError | UINT | 0 |  |  |
| Information | * bRegulatorRealState | BOOL | FALSE |  |  |
|  | * bDriveStartRealState | BOOL | FALSE |  |  |
|  | * wDriveId | WORD | 0 |  |  |
|  | * iOwner | INT | 0 |  |  |
|  | * iNoOwner | INT | 0 |  |  |
|  | * fCycleTimeSpent | LREAL | 0 |  |  |

### 4.2 Registering in Watch

By registering variables in the watch view, you can perform variable value management such as checking or changing variable values.

## Step 1

From the View menu, select Watch and then Watch 1. Watch 1 will be displayed on the bottom of the main window.


## Step 2

The variables to be monitored can be registered in Watch 1 by dragging and dropping them into the Watch 1 pane． Register fActPosition（current position）and fAimPosition（target position）by dragging and dropping them into the Watch 1 pane．
Register xServoON（servo ON），xHome（execute home return），and xMoveAbs（execute positioning operation），as below． Double－click the empty field below fAimPosition and click ．．．．
Click Device，Application，and then MC＿PRG，select xServoON， $\mathbf{x M o v e A b s}$ ，and $\mathbf{x H o m e}$ ，and click OK．

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Devices $\quad \rightarrow$ п $\times$ \& \multicolumn{6}{|l|}{H SM＿Drive＿ETC＿Panasonic＿MINAS＿A6B $\times$} <br>

\hline \multirow[t]{25}{*}{\begin{tabular}{l}
Device［connected］（AGM1CSEC16） <br>
－自线 Program＿Configuration <br>
Application［run］ <br>
Library Manager <br>
MC＿PRG（PRG） <br>
－ －Task Configuration <br>
－ 1 1．Motion
2．User
3．System <br>
© Trace
目6 SM＿Drive＿ETC＿Panasonic＿MINAS＿A6B <br>
SoftMotion General Axis Pool
Unit＿Configuration
－10．IO＿Configuration

PWM＿Configuration
－1］Counter＿Configuration <br>
5 <br>
Empty 1 <br>
F．Empty2 <br>
F．Empty 3 <br>
K．Empty 4
\end{tabular}} \& \multicolumn{2}{|l|}{General} \& \multicolumn{4}{|l|}{§ Add．．．$\triangle$ Edit．．．$\times$ Delete ${ }^{+ \text {E }}$ Go to Variable} <br>

\hline \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Scaling／Mapping}} \& Expression \& \multicolumn{2}{|l|}{Type} \& Value <br>
\hline \& \& \& \& \multicolumn{2}{|l|}{} \& 360 <br>
\hline \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Commissioning}} \& ＊eRampType \& \multicolumn{2}{|l|}{} \& trapez <br>
\hline \& \& \& ＊byControllerMode \& \multicolumn{2}{|l|}{BYTE} \& 3 <br>
\hline \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SM＿Drive＿ETC＿Panasonic＿MINAS＿ A6B：I／O Mapping}} \& ＊byRealControllerMode \& \multicolumn{2}{|l|}{BYTE} \& 3 <br>
\hline \& \& \& ＊fSetPosition \& \multicolumn{2}{|l|}{LREAL} \& 0．000472068786．．． <br>

\hline \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SM＿Drive＿ETC＿Panasonic＿MINAS＿ A6B：IEC Objects}} \& \multirow[t]{2}{*}{| ＊fActPosition |
| :--- |
| ＊fAimPosition |} \& \multicolumn{2}{|l|}{LREAL} \& 0．000472068786．．． <br>

\hline \& \& \& \& \multicolumn{2}{|l|}{LREAL} \& 0 <br>
\hline \& \multicolumn{2}{|l|}{Status} \& 4 fMarkPosition \& \multicolumn{2}{|l|}{LREAL} \& 0 <br>
\hline \& \multirow[t]{2}{*}{Information} \& \multirow[t]{2}{*}{} \& （SavePosition \& \multicolumn{2}{|l|}{LREAL} \& 0．000472068786．．． <br>
\hline \& \& \& ＊fSetVelocity \& \multicolumn{2}{|l|}{LREAL} \& 0 <br>
\hline \& \& \& ＊factvelocity \& \multicolumn{2}{|l|}{LREAL} \& 0．042915344238．．． <br>
\hline \& － \& \& ＊fMaxVelocity \& \multicolumn{2}{|l|}{LREAL} \& 0 <br>
\hline \& \& \& 4．fSWMaxVelocity \& \multicolumn{2}{|l|}{LREAL} \& 5 <br>
\hline \& \& \& ＊bConstantVelocity \& \multicolumn{2}{|l|}{BOOL} \& FALSE <br>
\hline \& \& \& ＊fMarkVelocity \& \multicolumn{2}{|l|}{LREAL} \& 0 <br>
\hline \& \& \& 4 fSaveVelocity \& \multicolumn{2}{|l|}{LREAL} \& 0 <br>
\hline \& \& \& ＊fSetAcceleration \& \multicolumn{2}{|l|}{LREAL} \& 0 <br>
\hline \& \& \& ＊fActAcceleration \& \multicolumn{2}{|l|}{LREAL} \& 0 <br>
\hline \& \& \& ＊fMaxAcceleration \& \multicolumn{2}{|l|}{LREAL} \& 0 <br>
\hline \& \& \& ＊fSWMaxAcceleration \& \multicolumn{2}{|l|}{LREAL} \& 100 <br>
\hline \& \& \& ＊bAccelerating \& \multicolumn{2}{|l|}{BOOL} \& FALSE <br>
\hline \& \& \& FMarkAcceleration \& \multicolumn{2}{|l|}{LREAL} \& 0 <br>
\hline \& \& \& ＊fSaveAcceleration \& \multicolumn{2}{|l|}{LREAL} \& 0 <br>
\hline ＜ \& \& \& y．$\ldots$－，．． \& ．．．．． \& \& ， <br>
\hline \multicolumn{7}{|l|}{Watch 1} <br>
\hline Expression \& Application \& Type \& Value \& Prepared value \& \multicolumn{2}{|l|}{Execution point} <br>
\hline ＊SM＿Drive＿ETC＿Panasonic＿MINAS＿A6B．fActPosition \& Device．Application \& LREAL \& 0．000472068786621．．． \& \multicolumn{3}{|c|}{Cyclic Monitoring} <br>
\hline ＊SM＿Drive＿ETC＿Panasonic＿MINAS＿A6B．fAimPosition \& Device．Application \& LREAL \& 0 \& \multicolumn{3}{|c|}{Cyclic Monitoring} <br>
\hline －MC＿PRG．xServoON \& Device．Application \& BOOL \& FALSE \& \multicolumn{3}{|c|}{Cyclic Monitoring} <br>
\hline －MC＿PRG．xHome \& Device．Application \& BOOL \& FALSE \& \multicolumn{3}{|c|}{Cyclic Monitoring} <br>
\hline （ MC＿PRG．xMoveAbs \& Device．Application \& BOOL \& FALSE \& \multicolumn{3}{|c|}{Cyclic Monitoring} <br>
\hline
\end{tabular}

## Column [13]: How to move tabs

The SM_DRIVE_ETC_Panasonic_MINAS_A6B tab can be moved by dragging and dropping it.


### 4.3 Adding Trace

The trace function allows the variable value histories in the GM1 controller to be checked in GM Programmer.
Step 1
Double-click Trace in the navigation pane.

| Devices | - $4 \times$ |
| :---: | :---: |
|  | - |

## Step 2

Register variables to be traced. You can register and trace global variables and variables within function blocks.
Clicking Add Variable on the top right of the Trace window displays the Trace Configuration dialog box.
Click ... on the right side of the Variable field to display the Input Assistant dialog box.

* (?) indicates required input items. "Variable" is a required input item.



## Column [14]: Adding objects (trace)

Right-click the Application object and select Add Object and then Trace.
The Add Trace dialog box will be displayed. Enter a trace name and click Add.


## Step 3

In the Input Assistant window, select variables to be traced and click OK, as below. For the first variable to be traced, select loConfig_Globals, SM_DRIVE_ETC_Panasonic_MINAS_A6B, and then fActPosition.


Step 4
After registering the first variable, click Add Variable. Click ... on the right side of the Variable field to add fAimPosition, as below. Select loConfig_Globals, SM_DRIVE_ETC_Panasonic_MINAS_A6B, and then fAimPosition and click OK.


## Step 5

Clicking Configuration on the top right of the Trace window displays the Trace Configuration dialog box.
Open the drop-down list of Task (required input item) and select MotionTask.


Step 6
When a task is selected, Resolution becomes a required input item. Open the drop-down list of Resolution and select $\boldsymbol{\mu s}$.


## INFO

Task: When tracing a variable related to motion control, select MotionTask.
Resolution: The Motion Task interval is 1 ms . Therefore, if $\mathbf{~ m s}$ (default) is selected in the Resolution drop-down list, a caution message will be output, indicating that sampling resolution is too coarse. As a guide, sampling resolution should be half the interval.

## Step 7

After selecting resolution, click Advanced.
Change the setting of Trace editor buffer size per variable (samples) to 100000.
Trace editor buffer size per variable (samples): Data display area viewed from the horizontal axis (time) of the Trace window


When Trace editor buffer size per variable (samples) is set to 100000 , the buffer size becomes 50 times the recommended runtime buffer size.
Data equivalent to $2 \mathrm{~s} \times 50=$ approx. 100 s can be displayed in the Trace window.

* This buffer size depends on the PC specifications. Therefore, note that if too large buffer size is set, the tool behavior will become sluggish.


## INFO

| Measure in every n-th cycle | Measurement interval = Set task interval |
| :--- | :--- |
| Recommended runtime buffer size (samples) | Number of buffers required for the recommended runtime $(2 \mathrm{~s})$ <br> To collect trace data precisely, set Measure in every n -th cycle to 1 <br> (measurement at every task interval) and prepare buffers equivalent to <br> the recommended size. |
| Override runtime buffer size | Specifies the size of data to be overwritten in the number of buffers that <br> is specified above <br> Check box cleared: Leaves histories intact without overwriting data <br> Check box selected: Leaves the amount of data that is specified in the <br> override specification field on the right side |
| Trace editor buffer size per variable (samples) | Data display area viewed from the horizontal axis (time) of the Trace <br> window |

## Step 8

Set xServoON registered in Watch previously to TRUE to execute Servo ON.
Change the value in the Prepared value column to
and write the setting by pressing the $\mathrm{Ctr}+\mathrm{F} 7$ keys.

| Watch 1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Expression SM_Drive_ETC_Panasonic_MINAS_A6B.fActPosition | Application <br> Device.Application | Type <br> LREAL | Value <br> 0.0006008148193359375 | Prepared value |
| * SM_Drive_ETC_Panasonic_MINAS_A6B.fAimPosition | Device.Application | LREAL | 0 |  |
| - MC_PRG.xServoON | Device.Application | BOOL | FALSE | TRUE |
| - MC_PRG.xHome | Device.Application | BOOL | FALSE |  |
| - MC_PRG.xMoveAbs | Device.Application | BOOL | FALSE |  |

Step 9
Next, change the setting of xHome to TRUE.

## Step 10

Before checking trace operation, right-click in the Trace window. Select Download Trace.


When Download Trace is selected, waveforms are displayed.


Confiquration
Add Variable

- SM_Drive_ETC_Panasonic_MINAS_A6B.fActPosition
- SM_Drive_ETC_Panasonic_MINAS_A6B.fAimPosition


## Step 11

Write <TRUE> to xMoveAbs registered in Watch 1.
Check that fAimPosition and fActPosition registered in Watch 1 during positioning operation contain the target value and current value, respectively.


Step 12
After positioning operation is complete, right-click in the Trace window and select Stop Trace.
Blue line: fActPosition (Current position)
Green line: fAimPosition (Target position)

[1] Operation 2) The object moves from the home position to target position [1] (200 mm) (Absolute positioning)
[2] Operation 3) The object moves from target position [1] (200 mm) to target position [2] ( 500 mm ) (Relative positioning) [3] Operation 4) The object moves from target position [2] ( 500 mm ) to target position [3] (300 mm ) (Relative positioning)

## INFO

By right-clicking in the Trace window and selecting Save Trace, you can save data in XML, text, or CSV format.

| Upload Trace <br> Configuration |
| :--- | :--- |
| Load Trace... |
| Save Trace... |
| Export symbolic trace config |
| Statistics |

Selecting Trace file (.trace) saves the trace setting environment and data without making any changes.
This function is convenient when you perform operation checks on devices in remote locations, for example.

```
Trace file (*.trace)
Trace file (*.trace)
Text file (*.txt)
Trace.csv file (data only) (*.trace.csv)
```


## Memo

## Revision History

| Date of issue | Manual code | Revision details |
| :--- | :--- | :--- |
| April 2022 | AlM0006_01 | First edition |

Panasonic Industry Co., Ltd.
7-1-1 Morofuku, Daito City, Osaka, 574-0044, Japan Industrial. Panasonic. com/ac/e
© Panasonic Industry Co., Ltd 2022
April 2022

