## KM50-C

Smart Power Monitor

## EN INSTRUCTION MANUAL

Thank you for purchasing this product.
This manual describes the functionct, performance, and application methods needed for optimum use of the product. This product is designed for use by qualified personnel with a knowledge of electrical systems.
Before using the product, thoroughly
Before using the product, thoroughly read and understand
this manual to ensure correct use. Keep this manual in a safe location

$$
\begin{aligned}
& \text { - Keep this manual in a safe location } \\
& \text { for reference whenever required. }
\end{aligned}
$$

## OMRON Corporation

9525589-7 A
PRECAUTIONS ON SAFETY

## Meanings of Signal Words

## CAUTION

Indicates a potentially hazardous situation which, if not avoided, will result in minor or moderate injury, or there may be property damage.

| A CAUTION |  | case the user may be required to take adequate meas |
| :---: | :---: | :---: |
| Property damage may occur due to fire. <br> Tighten the terminal screws to the specified toraues <br> Recommended terminal screw tightening torque: 0.69 to $0.88 \mathrm{~N} \cdot \mathrm{~m}$ |  | Precautions for Correct Use |
| After tightening the screw, check that the screw is not tilted. <br> Minor or moderate injury or property damage may occur due to explosion. Do not use the product in locations where explosive or flammable gasses may be present. |  | 1) Set the parameters of the product so that they are suitable for the system being measured. <br> 2) As this product is not certified as a specified measuring instrument by measurement law, it cannot be used for proof of electric energy levels. |
| Breakdown or explosion may occasionally occur. Use a power supply of the specified voltage. |  | 4) Apply a power supply voltage immediately so that the rated voltage is attained within two seconds. Product may not operate properly. |
| Breakdown or explosion may occasionally occur. <br> Isolation isn't obtained between the voltage input circuit and the CT secondary circuit. <br> When grounding the dedicated CT, wrong wiring may cause short circuit between the voltage input circuit and the CT secondary circuit. To avoid failure, be sure not to ground CT. Since this product uses the dedicated CT, even if CT isn't grounded, the normal measurement is available. |  | 5) Dispose of this product in accordance with local and national disposal regulations. <br> 6) When a waterproof structure is required, mount the waterproof packing. <br> Periodic replacement is recommended under an environment where deterioration, shrinkage or hardening may occur. <br> Waterproof packing : Y92S-29 <br> 7) Before use, remove the front protection film. <br> 8) Wire the middle row ( 11 to 15 ) at the end. <br> 9) When used near a radio, TV set or walkie-talkie, reception interference may occur. |

Electric shock may occasionally occur. Always make sure that the power is
urned OFF before connecting the Current Transformer (CT). Flectric shock may occasionally occurr.

Ilectric shock may occasionally occur. econdary circuit.
0 not touch the dedicated CT secondary side.

Doing so may occasionally result in electric shock, minor injury, fire malfunction of products.
not

## PRECAUTIONS FOR SAFE USE

## Do not store, install or use the product in the following environment. . Locations subject to vibration or strong shocks. Locations where the Uniti is unstable.

 Locations subecect to utdolor, direct sunlight, or weather.Locations subject to temperature or humidity beyond the

- ocations subiect to temperature or humidity beyond the specification
resulting in icing or condensation.
Locations subject to static electricity or noise.
- ocations subject to static electricity or noise. Locations subject to odutst (includuing iron dust).
Locations subject to submergence in water or oi
L.Lcations subuect to exposurue to saltwater.

2) Use the eroduct ty mounting it on a controi. panel with a thickness of 1 to 5 mm .
Improper panel thickness or mounting method day result in the product coming oft Improper panel thickness or mounting method may result in the eproduct coming
3) Do not raw out the inside of product. Doing somay maneraase the contact
resistance of the internal terminals resulting in loss of precision Tesise operating or performing maintenance of the product, read th 4) Before operating or performing maintenance of the product, read this
Manual thoroughl to cacuire sufficien knowedge of the roduct.
Otherwise electric shock, injury, cocident, or maffunction may occur. 5) Otherwise electric shock, injury, accident, or malfunction may occur.
 6) Use the specified power supply and wires tor the supply of control power or inp
Product failure, burms. orelectric shock may occur.
4) Do not instal the product close to heat-producing devices, a coil for instance.

## 8) Make sure to wire properly yfter confirming the terminal number 9) Do not connect anything with terminals that are not used.

 0) Wire the product anysting w with terminals that are not used When installing the product, allow as much space as possible from the equipmentsthat generate powerful high frequency noises, such as high-frequency welders, thiat generate eowerful high frequency noisses, such as high-requency welders
high-frequency sewing machines or motors, or devices that generate surges. 2) Separate the product wiring from high-voltage or high-current power lines to prevent
inductive noise, and do not place the product wiring parallel to or in the same ducts or conduits as power lines.
Use separate ductsts seperarate conduits, or shielded cables.
13) Do not touch the product or current-carrying parts of the Current Transformer (CT)
terminals while power is being supplied. terminals while power is being supplied.
This Product cannot be used to measure
15) Allow for properer ventilation.

Do not block the e raea around the product, or the ventilation holes on the product.
16) Be sure to touch grounded metal as a measure against electrostatic prior to touching
D) Be sure to touch grounded metal as a measure against electrostatic prior to touching
of the product
of the product.
It may be a cause forminal block of the product.
D) Do not use the product when the front sheet is torn or broken

Water may enter into the product.
9) Instal and clearly mark a switch 0
in IEC60947-1 Always use varistors to between the line of power supply and the line of voltage in When this product installed under overvoltage category II.
11) Use our dedicated CTs and dedicated CT Tabee.

Dedicated CT: KM20-CTF-5A
Dedicated CT cable : KM20-CTF-CB3 (3m)
22) This is a class A product. In residential areas it may cause radio interference, in whic
case the user may be equired to take adequate measures to reduce interference.

| Rate power supply voltage |  | 100 to $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ Common terminals of a power supply and a measurement voltage input (terminal number 6 and 7 ). |
| :---: | :---: | :---: |
| Allowable power supply voltage range |  | $85 \%$ to $110 \%$ of rated supply voltage |
| Frequency fluctuation range |  | 45 to 65 Hz |
| Power consumption |  | 7 VA max. |
| Applicable circuit type |  | 1 -phase 2-wire, 1-phase 3-wire, 3-phas |
| Rated input | Rated input voltage | 100 to 240 VAC [1-phase 2 -wire]: Line voltage 100/200 VAC [1-phase 3 -wire]: Phase voltage 100 to 240 VAC [3-phase 3 -wire]: Line voltage |
|  | Rated input current | Dedicated Current Transformer $(5,50,100,200,400$, or 600 A$)$ |
|  | Rated frequency | $50 / 60 \mathrm{~Hz}$ |
|  | Rated input power | 2 kW at 5 ACT 20 kW at 50 ACT <br> 40 kW at 100 ACT 80 kW at 200 ACT <br> 160 kW at 400 ACT 240 kW at 600 ACT |
|  | Allowable input voltage | 110\% of rated input voltage (Continuous) |
|  | Allowable input current | 120\% of rated input current (Continuous) |
|  | Rated input load | Voltage input: 0.5 VA max. (except power supply) Current input: 0.5 VA max. (each input) |
| Date/Time |  | 2010 to 2099 with leap year adjustment Accuracy: $\pm 1.5$ minutes/month (at $23^{\circ} \mathrm{C}$ ) |
| Backup retention period |  | 7 days (during power OFF) (at $23^{\circ} \mathrm{C}$ ) |
| Ambient operating temperature |  | -10 to $55^{\circ} \mathrm{C}$ (with no icing or condensation) |
| Conservation temperature |  | -25 to $65^{\circ} \mathrm{C}$ (with no icing or condensation) |
| Ambient operating humidity |  | Relative humidity $25 \%$ to $85 \%$ |
| Conservation humidity |  | Relative humidity $25 \%$ to $85 \%$ |
| Altitude |  | $2,000 \mathrm{mmax}$. |
| Installation environment |  | Overvoltage category, Measurement category: II, Degree of contamination: 2 |


| $\begin{aligned} & \text { Accuracy } \\ & (* 1) \end{aligned}$ | Voltage | $\pm 1.0 \%$ of $\mathrm{FS} \pm 1$ digit (ambient temperature of $23^{\circ} \mathrm{C}$, rated input, rated frequency) <br> However, voltage between VIr of 3-phase 3 -wire and voltage between Vrs of 1 -phase 3 -wire are $\pm 2.0 \%$ of $\mathrm{FS} \pm 1$ digit under the same condition |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Current | $\pm 1.0 \%$ of $F S \pm 1$ digit (ambient temperature of $23^{\circ} \mathrm{C}$, rated input, rated frequency) <br> However, Is current of 3 -phase 3 -wire and In current of 1-phase 3 -wire are $\pm 2.0 \%$ of $\mathrm{FS} \pm 1$ digit under the same condition. |  |  |
|  | Active power Reactive power |  |  |  |
|  | quency | $\pm 0.3 \mathrm{~Hz} \pm 1$ digit (ambient temperature of $23^{\circ} \mathrm{C}$, rated input,rated frequency) |  |  |
|  | Power factor | $\pm 5.0 \%$ of $\mathrm{FS} \pm 1$ digit (ambient temperature of $23^{\circ} \mathrm{C}$, rated input, <br> rated frequency, $\cos \theta=0.5$ to 1.0 to 0.5 ) <br> Power factor formula: Power factor $=$ active powerlapparent power Apparent power $=\sqrt{\left({ }^{(a c t i v e ~}\right.}$.ower $)^{+}+(\text {reactive power })^{2}$ <br> ive power) ${ }^{2}$ |  |  |
|  | Tempareture | $\pm 5^{\circ} \mathrm{C}$ two hours or later after the power turns ON (However, only after correction according to the surrounding environment) |  |  |
| $\begin{array}{\|l\|l\|} \hline \text { Low-cut current } \\ \text { setting value } \end{array}$ |  | $0.1 \%$ to $19.9 \%$ of rated input with $0.1 \%$ increments |  |  |
| Sampling period |  | $100 \mathrm{~ms} \mathrm{(at} 50 \mathrm{~Hz})$, $83.3 \mathrm{~ms}(\mathrm{at} 60 \mathrm{~Hz})$ |  |  |
| Temperature effect (*1) |  | $\pm 1.0 \%$ of $\mathrm{FS} \pm 1$ digit (power ratio at an ambient temperature of $23^{\circ} \mathrm{C}$, rated input, rated frequency, power factor of 1 within the range of operating temperature) |  |  |
| Frequency effect ( ${ }^{\text {+1) }}$ |  | $\pm 1.0 \%$ of $\mathrm{FS} \pm 1$ digit (power ratio at an ambient temperature of $23^{\circ} \mathrm{C}$ rated input, power factor of 1 within $\pm 5 \mathrm{~Hz}$ of the rated frequency) |  |  |
| $\begin{aligned} & \text { Harmonic wave effect } \\ & (* 1) \end{aligned}$ |  | $\pm 0.5 \%$ of $\mathrm{FS} \pm 1$ digit (an error when superimposing harmonic wave of 2nd, 3rd, 5th, 7th, 9th, 11th and 13th orders with the wave at ambient temperature of $23^{\circ} \mathrm{C}$ ) |  |  |
| Insulation resistance |  | 1) Between current \& voltage input and RS-485 \& OUT1 <br> \& event input \& / $/ \mathrm{O}$ common: $20 \mathrm{M} \Omega \min$ (at 500 VDC ) <br> 2) Between electric circuit and front case: $20 \mathrm{M} \Omega$ min (at 500 VDC ) |  |  |
| Dielectric strengthvoltage |  | 1) Between current \& voltage input and RS-485 \& OUT1 \& event input \& $/ / \mathrm{O}$ common: $2,800 \mathrm{VAC}$ for 1 min . 2) Between electric circuit and front case: 2,800 VAC for 1 min. |  |  |
| Vibration resistance |  | Single amplitude: 0.35 mm Acceleration: $50 \mathrm{~m} / \mathrm{s}^{2}$ <br> Frequency: 10 to $150 \mathrm{~Hz} \quad 8 \mathrm{~min} \times 10$ times for $\mathrm{X}, \mathrm{Y}$ and Z directions |  |  |
| Shock resistance |  | $150 \mathrm{~m} / \mathrm{s}^{2}$ for 3 times each in $X, Y$, and $Z$ directions. |  |  |
| Weight |  | Approx. 150 g (main unit only) |  |  |
| Degree of protection |  | Front face: IP66, Rear case: IP20, Terminal: IP00 |  |  |
| Memory protection |  | EEPROM (non-volatile memory) Number of rewrites: $1,000,000$ times |  |  |
| Applicable standards |  | EN61010-1 (IEC61010-1), EN61326-1 (IEC61326-1) |  |  |
| EMC (Industrial road) |  | $\begin{array}{\|l\|} \hline \text { EMI } \\ \text { EN66 } 1326-1 \\ \hline \text { EMS } \\ \text { EN6 } 6326-13 \\ \hline \end{array}$ | Radiation disturbance magnetic field intensity: CISPR11 classA Noise terminal voltage: CISPR11 classA |  |
|  |  | Electrostatic discharge immunity: EN61000-4-2 <br> Magnetic field intensity immunity: EN61000-4-3 <br> Fast transients/burst noise immunity: EN61000-4-4 <br> Surge immunity: EN61000-4-5 <br> Conducted disturbance immunity: EN61000-4-6 <br> Power-frequency magnetic field immunity: EN61000-4-8 <br> Voltage dips and short interruptions immunity: EN61000-4-11 |
| *1 Error of the dedicated CT is not included. |  |  |  |  |
| - Function and performance |  |  |  |  |
| Event input ${ }^{\text {N }}$ |  |  | umber of input |  | Event input (EV1 and EV2) |
|  |  | Ige input |  | H level: 4.75 to 30 VDC, L level: 0 to 2 VDC Input impedance: Approx. $2 \mathrm{k} \Omega$ |
|  |  | one voltage input |  | ON impedance: $1 \mathrm{k} \Omega$ max. OFF impedance: $100 \mathrm{k} \Omega$ min. Residual voltage at ON: 8 V max. ON current at $0 \Omega$ : 10 mA max. |
|  |  | nimum input tim |  | 5 ms |
| Transistor output |  | ber of output |  | Open collector $\times 1$ Integral power consumption pulse output or alarm output $\times 1$, Common terminal with event input |
|  |  | utput capacity |  | $3 \mathrm{VDC}$,30 mA Residual voltage at ON: 1.2 V max. Leakage current at OFF: 100 भA max |
| Communication |  | Communication $m$ |  | RS-485 (2-wire hall-duplex) |
|  |  | Asynchronous communication |
|  |  | it No. setting |  | CompoWay/F: 0 to 99, Modbus: 1 to |
|  |  | ud rate |  | 1.2, 2.4, 4.8, 9.6, 19.2, or 38.4 kbps |
|  |  | ansmission cod |  | CompoWaylF: AsCll, Modbus: Binary |
|  |  | ta bit length |  | 7 or |
|  |  | Sop bit length |  | 1 or 2 bit |
|  |  | rtical parity |  | Even, odd and none |
|  |  | ximum transmission | sion distance | 500 m |
|  |  | aximum connec | cting units | CompoWaylF: 31, Modbus: 99 |

Dimensions (unit: mm)

## 1 <br> $\underset{\substack{\text { Araator } \\ \text { (r92-30) }}}{ }$

Mount the Product such that the display can be seen properly from the front To fix the Product to the panel, use the attached adapter.
Push the adapter from the terminal side until it hits the panel, and then lighten the panel temporarily.
Tighten the fixation screw of the adapter with specified torque.
Panel dimensions
(unit: mm )


When installing the Products adjoining each other, secure enough space between the products. Reference interval: 60 mm (top/bottom/leftright directions
For any product it is the
-Wiring diagram
Load side (L)


Load side (L)


Note: 1. Do not ground the dedicated CT. Otherwise, a trouble may occur.
Note: 2. Do not use the general-purpose CT. Othervise, a trouble may ocis.

## 


integral power consumption pulse output
When using the integral power consumption pulse output, connect ti between
terminal Nos. 13 and 14 (terminals set in the output terminal function setting).


The output pulse cycle can be calculated by the following formula: Output pulse cycle [s] = 3600 [s]/Power [W]Pulse output unit $[\mathrm{Wh}]$ Ex.:
E.I.
With the 3 -phase 3 -wire system, $200 \mathrm{k}[\mathrm{W}$ ] input power and $10 \mathrm{k}[\mathrm{Wh}]$ pulse output unit, the output pulse cycle is $3600[\mathrm{~s}] / 200 \mathrm{k}[\mathrm{W}] / 10 \mathrm{k}[\mathrm{Wh}]=180[\mathrm{ss}]$. When $10 \mathrm{k}[W]$ input power continues for an hour, the accumulated power energy becomes $10 \mathrm{k}[\mathrm{Wh}$ after an hour ( 3600 sec ). With $200 \mathrm{k}[\mathrm{W}$ input
power, when the pulse output unit is set to $10 \mathrm{k}[\mathrm{Wh}]$, the output pulse is power, when the pulse output unit is set to $10 \mathrm{k}[\mathrm{W}]$ ], the output pulse is
$200 \mathrm{k}[\mathrm{W} / 10 \mathrm{k}[\mathrm{Wh}]=20$ pulses, and the cycle is $3600[\mathrm{~s} / 20$ pulses $=180[\mathrm{~s}]$. As shown in the following chart, the pulse is output (ON) every 180 [s].


When the cycle is shorter than the pulse width, or the output turns ON just after OFF, it has a 100 ms OFF time.
with PLC scan time. Set the pulse output unit to an anpronriate value.

## Alarm output

When using the alarm output, connect ti between terminal Nos. 13 and 14
terminals set in the output terminal function setting).

This function turns the alarm ON when the measured valu
When the alarm output is on, the alarm output maintains ON unless the measured value is lowerrhigher than the hysteresis range, ON for the predetermined time when the alarm judgment shifts frop the output or the ON-delay function, which enables the unit to keep the output OFF for the predetermined time when the alarm judgment shifts from OFF to ON. While the alarm is going off, the operation indicator OUT 1 lights up and shows However, when any of E -S1 - 4 errors occurrs, the error display has a prioity.
Note: 1. Threshold and hysteresis judges alarm ON/OFF. Alarm goes off bise on the alarm judgment taking into account OFF-delay and ON-delay Note: 2. When setting the upper threshold of each alarm to maximum, the upper limit alarm function will turn OFF, while setting the lower threshold to minimum, the lower limit alarm will turn OFF.
3) Event input

When using the event
erminal Nos. 5 and 14.
Event input $\left.1\right|_{0} ^{5}$

There are two ON/OFF judgment methods: total number of counts of two input values, OR judgment of two input values.
Number of input counts: Power consumption rate management function SRer can set the normal open/close for each input functio In addition, user can set the measurement start time/end time. Using the event input function, the following parameters can be measured

## Power consumption rate calculation function

Power consumption rate calculation function counts the frequency of event inpu ON and calculate the power consumption for each count.
The total number of ON times of Event input 1 and Event
Pulse input on ime mas remet fuction
Pulse input ON tim masurement function
time for a day and displays it.
User can set the input mode to either of the following two types:
Normal open
It is a logical structure that when there is an event input, the judgment is ON, and when there isn't an event input, the judgment is OFF.

Normal close
It is a logical structure that when there is not an event input, the judgment is $O N$, and when there is an event input, the judgment is OFF.
The time chart of normal open is as follows:


The time chart of normal close is as follows:

4) Measurement history

Histories can be checked. (See $* 1$ to $* 4$ in the separate sheet.)
heerral power consumption (past 13 monthit the present day), pulse input count, electric power consumption rate, pulse input ON time (past 8 days)
5) Low-cut function

When a current value becomes lower than the setting of the low-cut value $(0.1 \%$ to $19.9 \%$ of the rated value), the current measurement value forcibly becomes 0 .
Current (electric power) that is measured due to inductive noise in no-load state can be cut. Judgment is made in a phase where CT is connected.
*Related setting parameter: D4.CLIL
6) Simple measurement

KM50-C can roughly keep track of electric power consumption by setting arbitrar voltage, arbitrary power factor, even if impossible to input a voltage due to a
Accuracy cannot be compensated because value is fixed
Frequency cannot be measured. 50 Hz fixed.

* Related setting parameter: 08.5MP
mption can be converted to $\mathrm{CO}_{2}$ value and displayed. Refer to information sources siling to areas.
*Related setting parameter: $10.5 \bar{c}$ as

3) Power rate conversion

Set thated power consumption can be converted to the price and displayed. Related setting parameter: I
9) Pulse conversion

The pulse input count measured can be converted and displayed as a pulse equivalent. Set the conversion factor in accordance with what should be converted to pulse.
For the second display any unit set can be displayed. Related setting parameter: |2[Y|
10) Controlling electric power consumption rate

Tact electric power of the production line can be measured (kWh/P) Inputting production quantity to the Product as an event input (pulse) displays the tact electric energy according to integral power consumption during


1) Accumulate regenerated power and reactive powe

Regenerated power, leading reactive power, lagging reactive power and total reactive power can be accumulated.
Total reactive power: Sum of absolute values of leading and lagging reactive For the item to store the log every 5 min, user can select one from four options. *Related setting parameter: ©0.i. 5 L

## Automatic rotation

This function automaicicaly changes the paramerer mod.
User can set the automatic transition interv
Measurement parameter display selection
For measurement parameters, display OFF/ON can be set to each item. Related setting parameter: 5 ?.J. 5 L
Energy saving mode
This function turns off the light when key operation is not implemented
User can set the time interval to turn off the light.
Reated setting parameter 53 .
Incorrect voltage wiring detection
This function detects incorrect wiring of voltage input.
When the incorrect wiring is detected, " E -54" is displayed.
Simple temperature measurement
Simple temperature measurement is available
User can select Celsius or Fahrenhei.

## Communication connection diagram

ommunication standard is RS-48.
rotocol can be chose between Compoway/F and Modbus. Number of KM50 connectable excluding the host equipment) is 31 in CompoWaylF or 99 in Modbus. Use shielded twist pair cable of AWG 24 or larger
Mount a terminating resistor to the devices including a host device connected o both ends of the transmission line.
For the Product connected to a terminating resistor, connect a terminating Do not ground RS-485 signal wire. Otherwise, a trouble may occur.


## Dedicated CT Connection Diagram

- One dedicated Current Transformer (CT) is required for 1 -phase 2 -wire measuremen -Must use the same rating dedicated CTs for each KM50-C.
- Ratings of dedicated CT and the dedicated CT setting of KM50-C should be the same. -Be sure to check the directions of power supply side (K) and load side (L) before connecting the dedicated CT
The wrong connecting direction will result in incorrect measurement
-Open dividing/fixing hook and clamp to each phase.
After clamping, make sure a clicking sound is heard to ensure engagement.
Close the CT secondary side terminal cover.
- Do not ground the dedicated CT.
Otherwise, a trouble may occur.

Dedicated CT is polarized
Be sure to make a correct connection between k of dedicated CT and 1 S or 3 S of KM50-C, and between Øof dedicated CT and 1L or 3L of KM50-C.

- Electric shock may occasionally occur.

Use coated wires with over 600 V basic insulation for the primary side cable -Do not use CT with a Bus bar.


| Item Model | $\begin{gathered} \text { KM2O- } \\ \text { CTF-5A } \end{gathered}$ | $\begin{aligned} & \text { KM20- } \\ & \text { CTF-50A } \end{aligned}$ | $\begin{aligned} & \text { KM20- } \\ & \text { CTF-100A } \end{aligned}$ | $\begin{aligned} & \text { KM20- } \\ & \text { CTF-200A } \end{aligned}$ | $\begin{aligned} & \text { KM20- } \\ & \text { CTF-400A } \end{aligned}$ | $\begin{aligned} & \text { KM20- } \\ & \text { CTF-600A } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Primary side rated current | 5A | ${ }^{50} 4$ | 100A | 200 A | 400 A | 600A |
| Secondary windings | 3,000 turns |  |  |  | 6,000 turs | 9,00 turs |
| Applicable frequency | 10 Hz to 5kHz |  |  |  |  |  |
| Insulation resistance | Between output terminal and outer case: $50 \mathrm{M} \Omega$ min (at 500 VDC$)$ |  |  |  |  |  |
| $\begin{aligned} & \text { Dielectric strength } \\ & \text { voltage } \end{aligned}$ | Between output terminal and outer case: 2,000 VAC 1 minute |  |  |  |  |  |
| Oenen protective | 7.5 V |  |  |  |  |  |
| Capable CT | 100 times |  |  |  |  |  |
| Inside diameter |  |  |  |  | ¢ 35.5 mmmx |  |
| Operation temperature | -20 to $60^{\circ} \mathrm{C} 8$ |  | 85\% max (with no icing or condensation) |  |  |  |
| Storage temperature | -30 to $65^{\circ} \mathrm{C} 8$ |  | $85 \%$ max (with no icing or condensation) |  |  |  |

## - Precautions for wiring

To avoid noise imererence, spar signa wing and powerwing
For cables, use twist pair AWG24 ( $\phi 0.205 \mathrm{~mm}^{2}$ ) - AWG14 ( $\phi 2.081 \mathrm{~mm}$ ) (Striping length: $5-6 \mathrm{~mm}$ ).
For dedicated $\mathbf{T}$.
Be sure to connect the shing, use the dedicated CT cable (KM20-CTF-CB3: 3 m ) Do not ground the dedicated CT and $R S$ s- 485 signal wire
Otherwise, a trouble may occur.
Use crimp-ype terminals for
Use wiring materials and crimp tools appropriate to crimp-type terminals.
lightened
herefore, we recommend crimping all wires together to one crimp-type terminal
For crimp-type terminals, use M3.5 shaped like the following

Do not remove the terminal block because it may cause failure or malfunction.

## Suitability for Use

Omron Companies shall not be responsible for conformity with any standards, codes regulations which apply to the combination of the Product in the Buyer's applicatior reguations which apply to the combination of the Product in the Euyer s a ppicati-
on or use of the Product. At Buyer''s request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the
suitability of the Product in combination with the end product machine system or ther application or use. Buyer shall be solely responsible for determining appropria teness of the particular Product with respect to Buyer's application, product or system Buyer shall take application responsibility in all cases.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THA THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS,
AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

## Contact Information

## MRON ELECTRONICS LLC

One Commerce Drive Schaumburg, IL 60173-5302 U.S.A hone: 1-847-843-7900 Fax: 1-847-843-7787 OMRON EUROPE B.V.
Wegalaan 67-69, 2132 JD Hoofddorp The Netherlands
Phone: 31-23-56-81-300 Fax: 31-23-56-81-388 OMRON ASIA-PACIFIC PTE. LTD.

Technopark, Singapore 119967
Phone: 65-6835-3011 Fax: 65-6835-2711 OMRON CORPORATION
3-4-10 Toranomon Minato-ku, Tokyo, 105-0001 Japan
Phone: 81-3-3436-7260 Fax: 81-3-3436-7261

