

Delta High Performance Compact Drive MH300 Series User Manual

Smarter. Greener. Together.

Industrial Automation Headquarters
 Delta Electronics, Inc.

Taoyuan Technology Center
18 Xinglong Road, Taoyuan District,
Taoyuan City 33068, Taiwan (R.O.C.)
TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia

Delta Electronics (Jiangsu) Ltd.
Wujiang Plant 3
1688 Jiangxing East Road,
Wujiang Economic Development Zone
Wujiang City, Jiang Su Province, P.R.C. 215200
TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Greentech (China) Co., Ltd.
238 Min-Xia Road, Pudong District,
ShangHai, P.R.C. 201209
TEL: 86-21-58635678 / FAX: 86-21-58630003
Delta Electronics (Japan), Inc.
Tokyo Office
2-1-14 Minato-ku Shibadaimon,
Tokyo 105-0012, Japan
TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211
Delta Electronics (Korea), Inc.
1511, Byucksan Digital Valley 6-cha, Gasan-dong,
Geumcheon-gu, Seoul, Korea, 153-704
TEL: 82-2-515-5303 / FAX: 82-2-515-5302
Delta Electronics Int'I (S) Pte Ltd.
4 Kaki Bukit Ave 1, \#05-05, Singapore 417939
TEL: 65-6747-5155 / FAX: 65-6744-9228
Delta Electronics (India) Pvt. Ltd.
Plot No 43 Sector 35, HSIIDC
Gurgaon, PIN 122001, Haryana, India
TEL : 91-124-4874900 / FAX : 91-124-4874945

Americas

Delta Products Corporation (USA)
Raleigh Office
P.O. Box 12173,5101 Davis Drive,

Research Triangle Park, NC 27709, U.S.A.
TEL: 1-919-767-3800 / FAX: 1-919-767-8080
Delta Greentech (Brasil) S.A.
Sao Paulo Office
Rua Itapeva, 26-3 ${ }^{\circ}$ andar Edificio Itapeva One-Bela Vista
01332-000-São Paulo-SP-Brazil
TEL: 5511 3568-3855 / FAX: 5511 3568-3865

Europe

Delta Electronics (Netherlands) B.V.
Eindhoven Office
De Witbogt 20, 5652 AG Eindhoven, The Netherlands
TEL: +31 (0)40-8003800 / FAX: +31 (0)40-8003898

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

\square AC input power must be disconnected before any wiring to the AC motor drive is made.
\boxtimes Even if the power has been turned off, a charge may still remain in the DC-link capacitors with hazardous voltages before the POWER LED is OFF. Please do not touch the internal circuit and components.
\boxtimes There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. Please do not touch these components or the circuit boards before taking anti-static measures.
\square Never reassemble internal components or wiring.
\square Ground the AC motor drive using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed.
\square DO NOT install the AC motor drive in a place subjected to high temperature, direct sunlight and inflammables.

V Never connect the AC motor drive output terminals U/T1, V/T2 and W/T3 directly to the AC mains circuit power supply.
\square The rated voltage of the AC motor drive must be $\leq 115 \mathrm{~V}$ for 110 V models, $\leq 240 \mathrm{~V}$ for 230 V models, and $\leq 480 \mathrm{~V}$ for 460 V models.
\boxtimes Only qualified persons are allowed to install, wire and maintain the AC motor drives.
\square Even if the 3-phase AC motor is stop, a charge may still remain in the main circuit terminals of the AC motor drive with hazardous voltages.
\square If the AC motor drive is stored in no charge condition for more than 3 months, the ambient temperature should not be higher than $30^{\circ} \mathrm{C}$. Storage longer than one year is not recommended, it could result in the degradation of the electrolytic capacitors.
\boxtimes Pay attention to the following when transporting and installing this package (including wooden crate, wood stave and carton box)

1. If you need to sterilize, deform the wooden crate or carton box, please do not use steamed smoking sterilization or you will damage the VFD.
2. Please use other ways to sterilize or deform.
3. You may use high temperature to sterilize or deform. Leave the packaging materials in an environment of over $56^{\circ} \mathrm{C}$ for 30 minutes.

■ Type of electrical supply system (3WYE) to which the drive shall be connected.

NOTE

- For a detailed explanation of the product specification, the cover or the safety shields will be disassembled, as described in graphic mode. As for the product in operation, please install the top cover and wiring correctly according to the provisions. Refer to the manual operation to ensure safety.
- The figures in this instruction are only for reference, they may be slightly different from the one you have, but it will not affect your customer rights.
- The content of this manual may be revised without prior notice. Please consult our distributors or download the latest version at
http://www.deltaww.com/services/DownloadCenter2.aspx?secID=8\&pid=2\&tid=0\&CID=06\&itemID=060101\&typeID =1\&downloadID=\&title=\&dataType=\&check=0\&hl=en-US

Table of Contents

CHAPTER 1 INTRODUCTION 1-1
1-1 Nameplate Information 1-2
1-2 Model Name 1-3
1-3 Serial Number. 1-3
1-4 RFI Jumper. 1-4
CHAPTER 2 DIMENSION 2-1
Frame A 2-1
Frame B 2-2
Frame C 2-3
Frame D 2-4
Frame E 2-5
Frame F 2-6
Digital Keypad 2-7
CHAPTER 3 INSTALLATION 3-1
CHAPTER 4 WIRING 4-1
4-1 Wiring 4-3
4-2 System Wiring Diagram 4-6
CHAPTER 5 MAIN CIRCUIT TERMINALS 5-1
5-1 Main Circuit Diagram 5-4
5-2 Main Circuit Terminals 5-5
Frame A 5-6
Frame B 5-7
Frame C 5-8
Frame D 5-9
Frame E 5-10
Frame F 5-11
CHPATER 6 CONTROL TERMINALS 6-1
CHAPTER 7 OPTIONAL ACCESSORIES 7-1
7-1 All Brake Resistors and Brake Units Used in AC Motor Drives 7-2
7-2 Non-fuse Circuit Breaker. 7-5
7-3 Fuse Specification Chart 7-7
7-4 AC/DC Reactor. 7-9
7-5 Zero Phase Reactor. 7-25
7-6 EMC Filter 7-28
7-7 EMC Shield Plate 7-33
7-8 Capacitive Filter 7-36
7-9 Conduit Box 7-38
7-10 Fan Kit 7-46
7-11 Keypad Panel Mounting 7-47
7-12 DIN-Rail Mounting 7-48
7-13 Mounting Adapter Plate 7-50
CHAPTER 8 OPTION CARDS 8-1
8-1 Option Card Installation 8-2
8-2 EMM-D33A I/O Extension Card 8-8
8-3 EMM-A22A I/O Extension Card 8-9
8-4 EMM-R3AA Relay Extension Card 8-10
8-5 EMM-R2CA Relay Extension Card 8-11
8-6 CMM-MOD01 Modbus/TCP Option Card 8-12
8-7 CMM-PD01 PROFIBUS Option Card 8-15
8-8 CMM-DN01 DeviceNet Option Card. 8-17
8-9 CMM-EIP01 Modbus TCP/EtherNet IP Option Card. 8-20
8-10 EMM-BPS01 Back-up Power Supply Card 8-23
8-11 EMM-PG01L PG Card 8-24
8-12 EMM-PG01O PG Card 8-27
8-13 EMM-PG01R PG Card 8-30
8-14 CANopen Communication Cable/Digital Keypad RJ45 Extension Cable 8-33
CHAPTER 9 SPECIFICATION 9-1
9-1 115V Series 9-2
9-2 230V Series 9-3
9-3 460V Series 9-5
9-4 Environment for Operation, Storage and Transportation 9-8
9-5 Derating of Ambient Temperature and Altitude 9-9
CHAPTER 10 DIGITAL KEYPAD 10-1
CHAPTER 11 SUMMARPY OF PARAMETERS SETTINGS 11-1
CHAPTER 12 DESCRIPTION OF PARAMETER SETTINGS 12-00-1
12-1 Description of Parameter Settings 12-00-1
12-2 Adjustment \& Application 12.2-1
CHAPTER 13 WARNING CODES 13-1
CHAPTER 14 ERROR CODES 14-1
CHAPTER 15 CANOPEN OVERVIEW 15-1
CHAPTER 16 PLC FUNCTION APPLICATIONS 16-1
CHAPTER 17 SAFE TORQUE OFF FUNCTION 17-1
17-1 Basic Function Description 17-2
17-2 Safe Torque Off Terminal Function Description 17-3
17-3 Wiring Diagram 17-4
17-4 Failure Rate of the Drive Safety Function. 17-5
17-5 Reset the Parameter Settings 17-5
17-6 Timing Diagram Description. 17-6
17-7 Error Code and Troubleshooting Instructions 17-8
17-8 Test and Fault Confirmation 17-10
Application Control Board: V 1.0

Chapter 1 Introduction

1-1 Nameplate Information
1-2 Model Name
1-3 Serial Number
1-4 RFI Jumper

After receiving the AC motor drive, please check for the following:

1. Please inspect the unit after unpacking to ensure it was not damaged during shipment. Make sure that the part number printed on the package corresponds with the part number indicated on the nameplate.
2. Make sure that the mains voltage is within the range as indicated on the nameplate. Please install the AC motor drive according to this manual.
3. Before applying the power, please make sure that all devices, including mains power, motor, control board and digital keypad, are connected correctly.
4. When wiring the $A C$ motor drive, please make sure that the wiring of input terminals "R/L1, $S / L 2$, T/L3" and output terminals"U/T1, V/T2, W/T3" are correct to prevent damage to the drive.
5. When power is applied, select the language and set parameters via the digital keypad (KPMH-LC01). When executing a trial run, please begin with a low speed and then gradually increase the speed until the desired speed is reached.

1-1 Nameplate Information

1-2 Model Name

1-3 Serial Number

1-4 RFI Jumper

(1) In the drive there are Varistor / MOVs, which are connected from phase to phase and from phase to ground, to protect the drive against mains surges or voltage spikes.
Because the Varistors / MOVs from phase to ground are connected to ground via the RFI jumper, the protection will be ineffective when the RFI jumper is removed.
(2) In the models with built-in EMC filter the RFI jumper connects the filer capacitors to ground to form a return path for high frequency noise to isolate the noise from contaminating the mains power. Removing the RFI jumper strongly reduces the effect of the buiolt-in EMC filter.
(3) Although a single drive complies with the international standards for leakage current, an installation with several drives with built-in EMC filter can trigger the RCD. Removing the RFI jumper helps, but the EMC performance of each drive would is no longer guaranteed.

Frame A~F Screw Torque: 4~6 kg-cm / [3.5~5.2 lb-in.] / [0.39~0.59 Nm]
Loosen the screw and remove the RFI Jumper (as shown below). Fasten the screw again after the RFI Jumper is removed.

Frame B~F (model with built-in EMC filter)
Remove the RFI Jumper with a screwdriver (as shown below).

Isolating main power from ground:
When the power distribution system of the drive is a floating ground system (IT) or an asymmetric ground system (TN), the RFI Jumper must be removed. Removing the RFI Jumper disconnects the internal capacitors from ground to avoid damaging the internal circuits and to reduce the ground leakage current.

Important points regarding ground connection
\boxtimes To ensure the safety of personnel, proper operation, and to reduce electromagnetic radiation, the drive must be properly grounded during installation.
\square The diameter of the cables must comply with the local safety regulations.
\square The shield of shielded cables must be connected to the ground of the drive to meet safety regulations.
\square The shield of shielded power cables can only be used as the ground for equipment when the aforementioned points are met.
\boxtimes When installing more drives, do not connect the grounds of the drives in series but connect each drive to ground.

Pay particular attention to the following points:
\square Do not remove the RFI jumper while the power is on.
\boxtimes Removing the RFI jumper will also disconnect the built-in EMC filter capacitors. Compliance with the EMC specifications is no longer guaranteed.
च The RFI jumper may not be removed if the mains power is a grounded power system.
\boxtimes The RFI jumper may not be removed while conducting high voltage tests. When conducting a high voltage test to the entire facility, the mains power and the motor must be disconnected if the leakage current is too high.

Floating Ground System (IT Systems)

A floating ground system is also called an IT system, an ungrounded system, or a high impedance/resistance (greater than 30Ω) grounded system.

■ Disconnect the RFI Jumper.
\square Check whether there is excess electromagnetic radiation affecting nearby low-voltage circuits.
\square In some situations, the transformer and cable naturally provide enough suppression. If in doubt, install an extra electrostatic shielded cable on the power supply side between the main circuit and the control terminals to increase security.
\square Do not install an external EMC filter. The EMC filter is connected to ground through the filter capacitors, thus connecting power input to ground. This is very dangerous and can easily damage the drive.

Asymmetric Ground System (Corner Grounded TN Systems)

Caution: Do not remove the RFI jumper while the input terminal of the drive carries power.

In the following four situations, the RFI jumper must be removed. This is to prevent the system from grounding through the RFI and filter capacitors, damaging the drive.

Chapter 2 Dimension

Frame A

A1 : VFD1A6MH11ANSAA ; VFD1A6MH11ENSAA ; VFD1A6MH21ANSAA; VFD1A6MH21ENSAA
A2 : VFD2A5MH11ANSAA; VFD2A5MH11ENSAA; VFD2A8MH21ANSAA; VFD2A8MH21ENSAA; VFD1A6MH23ANSAA ; VFD1A6MH23ENSAA; VFD2A8MH23ANSAA; VFD2A8MH23ENSAA ; VFD1A5MH43ANSAA ; VFD1A5MH43ENSAA
A3 : VFD5A0MH23ANSAA ; VFD5A0MH23ENSAA ; VFD3A0MH43ANSAA ; VFD3A0MH43ENSAA
A4 : VFD5A0MH23ANSNA ; VFD5A0MH23ENSNA; VFD3A0MH43ANSNA; VFD3A0MH43ENSNA

Unit: mm [inch]

Frame	W	H	D	W 1	H 1	D 1	S 1
A1	$68.0[2.68]$	$128.0[5.04]$	$115.0[4.53]$	$56.0[2.20]$	$118.0[4.65]$	$3.0[0.12]$	$5.2[0.20]$
A2	$68.0[2.68]$	$128.0[5.04]$	$129.0[5.08]$	$56.0[2.20]$	$118.0[4.65]$	$3.0[0.12]$	$5.2[0.20]$
A3	$68.0[2.68]$	$128.0[5.04]$	$135.0[5.31]$	$56.0[2.20]$	$118.0[4.65]$	$3.0[0.12]$	$5.2[0.20]$
A4	$68.0[2.68]$	$128.0[5.04]$	$147.0[5.79]$	$56.0[2.20]$	$118.0[4.65]$	$3.0[0.12]$	$5.2[0.20]$

Frame B

B1 : VFD7A5MH23ANSAA ; VFD7A5MH23ENSAA ; VFD4A2MH43ANSAA; VFD4A2MH43ENSAA
B2 : VFD5A0MH21ANSAA ; VFD5A0MH21ENSAA
B3: VFD1A6MH21AFSAA ; VFD2A8MH21AFSAA ; VFD5A0MH21AFSAA ; VFD1A5MH43AFSAA ; VFD3A0MH43AFSAA ; VFD4A2MH43AFSAA

Frame	W	H	D	W 1	H 1	D 1	Unit: mm [inch]
B1	$72.0[2.83]$	$142.0[5.59]$	$143.0[5.63]$	$60.0[2.36]$	$130.0[5.63]$	$6.4[0.25]$	$5.2[0.20]$
B2	$72.0[2.83]$	$142.0[5.59]$	$147.0[5.79]$	$60.0[2.36]$	$130.0[5.63]$	$3.0[0.12]$	$5.2[0.20]$
B3	$72.0[2.83]$	$142.0[5.59]$	$159.0[6.26]$	$60.0[2.36]$	$130.0[5.63]$	$4.3[0.17]$	$5.2[0.20]$

Frame C

C1 : VFD5A0MH11ANSAA; VFD5A0MH11ENSAA; VFD7A5MH21ANSAA; VFD7A5MH21ENSAA; VFD11AMH21ANSAA ; VFD11AMH21ENSAA; VFD11AMH23ANSAA; VFD11AMH23ENSAA ; VFD17AMH23ANSAA; VFD17AMH23ENSAA; VFD5A7MH43ANSAA; VFD5A7MH43ENSAA; VFD9A0MH43ANSAA ; VFD9A0MH43ENSAA
C2 : VFD7A5MH21AFSAA ; VFD11AMH21AFSAA ; VFD5A7MH43AFSAA ; VFD9A0MH43AFSAA
Unit: mm [inch]

Frame	W	H	D	W 1	H 1	D 1	S
C 1	$87.0[3.43]$	$157.0[6.18]$	$152.0[5.98]$	$73.0[2.87]$	$144.5[5.69]$	$5.0[0.20]$	$5.5[0.22]$
C 2	$87.0[3.43]$	$157.0[6.18]$	$179.0[7.05]$	$73.0[2.87]$	$144.5[5.69]$	$5.0[0.20]$	$5.5[0.22]$

Frame D

D1: VFD25AMH23ANSAA; VFD25AMH23ENSAA; VFD13AMH43ANSAA; VFD13AMH43ENSAA ; VFD17AMH43ANSAA ; VFD17AMH43ENSAA
D2: VFD13AMH43AFSAA ; VFD17AMH43AFSAA

Mounting Hole

Frame E

E1 : VFD33AMH23ANSAA ; VFD33AMH23ENSAA ; VFD49AMH23ANSAA; VFD49AMH23ENSAA ; VFD25AMH43ANSAA; VFD25AMH43ENSAA; VFD32AMH43ANSAA; VFD32AMH43ENSAA E2 : VFD25AMH43AFSAA ; VFD32AMH43AFSAA

Frame	W	H	D	W 1	H 1	D 1	S
E 1	$130.0[5.12]$	$250.0[9.84]$	$185.0[7.83]$	$115.0[4.53]$	$236.8[9.32]$	$6.0[0.24]$	$5.5[0.22]$
E2	$130.0[5.12]$	$250.0[9.84]$	$219.0[8.62]$	$115.0[4.53]$	$236.8[9.32]$	$6.0[0.24]$	$5.5[0.22]$

Mounting Hole

Frame F

F1 : VFD65AMH23ANSAA ; VFD65AMH23ENSAA ; VFD38AMH43ANSAA ; VFD38AMH43ENSAA ; VFD45AMH43ANSAA ; VFD45AMH43ENSAA
F2: VFD38AMH43AFSAA ; VFD45AMH43AFSAA

Frame	W	H	D	W 1	H 1	D 1	S1
F1	$175.0[6.89]$	$300.0[11.81]$	$192.0[7.56]$	$154.0[6.06]$	$279.5[11.00]$	$6.5[0.26]$	$8.4[0.33]$
F2	$175.0[6.89]$	$300.0[11.81]$	$244.0[9.61]$	$154.0[6.06]$	$279.5[11.00]$	$6.5[0.26]$	$8.4[0.33]$

Mounting Hole

Digital Keypad

KPMH-LC01
Unit: mm [inch]

W	W1	W2	W3	H	H1	H2
$68.0[2.67]$	$63.8[2.51]$	$45.2[1.78]$	$8.0[0.31]$	$46.8[1.84]$	$42.0[1.65]$	$26.0[1.02]$

H3	D	D1	D2	D3	D4	S1
$7.5[0.31]$	$35.8[1.4]$	$22.7[0.89]$	$7.6[0.3]$	$2.2[0.09]$	$1.3[0.05]$	$\mathrm{M}^{*} 0.5(2 \mathrm{X})$

[This page intentionally left blank]

Chapter 3 Installation

Minimum Mounting Clearance and Installation

■ Prevent fiber particles, scraps of paper, shredded wood saw dust, metal particles, etc. from adhering to the heat sink

■ Install the AC motor drive in a metal cabinet. When installing one drive below another one, use a metal separation between the AC motor drives to prevent mutual heating and to prevent the risk of accidental fire.

- Install the AC motor drive in Pollution Degree 2 environments only: normally only nonconductive pollution occurs and temporary conductivity caused by condensation is expected.

The appearances shown in the following figures are for reference only.

Airflow direction:
-=" inflow
Single drive installation

\longleftarrow outflow \longleftrightarrow distance
Side-by-side horizontal installation

Minimum mounting clearance

Installation method	$\mathrm{A}(\mathrm{mm})$	$\mathrm{B}(\mathrm{mm})$	$\mathrm{C}(\mathrm{mm})$	Ambient temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	
				Max. (Without derating)	Max. (Derating)
Single drive installation	50	30	-	50	60
Side-by-side horizontal installation	50	30	30	50	60
Zero stack installation	50	30	0	40	50

NOTE

The minimum mounting clearances $\mathrm{A} \sim \mathrm{C}$ stated in the table above applies to AC motor drives installation. Failing to follow the minimum mounting clearances may cause the fan to malfunction and heat dissipation problems.

Frame	Air flow rate for cooling			Power Dissipation		
	Model No.	Flow Rate (Unit: cfm)	Flow Rate (Unit: $\mathrm{m}^{3} / \mathrm{hr}$)	Loss External (Heat sink, unit: W)	Internal (Unit: W)	$\begin{aligned} & \text { Total } \\ & \text { (Unit: W) } \end{aligned}$
A	VFD1A6MH11ANSAA VFD1A6MH11ENSAA	0.0	0.0	8.0	10.0	18.0
	VFD2A5MH11ANSAA VFD2A5MH11ENSAA			14.2	13.1	27.3
	VFD1A6MH21ANSAA VFD1A6MH21ENSAA			8.0	10.3	18.3
	VFD2A8MH21ANSAA VFD2A8MH21ENSAA			16.3	14.5	30.8
	VFD1A6MH23ANSAA VFD1A6MH23ENSAA			8.6	10.0	18.6
	VFD2A8MH23ANSAA VFD2A8MH23ENSAA			16.5	12.6	29.1
	VFD5AOMH23ANSAA VFD5AOMH23ENSAA	10.0	5.9	33.2	15.0	48.2
	VFD5AOMH23ANSNA VFD5A0MH23ENSNA	0	0	33.2	15.0	48.2
	VFD1A5MH43ANSAA VFD1A5MH43ENSAA	0.0	0.0	17.6	11.1	28.7
	VFD3AOMH43ANSAA VFD3AOMH43ENSAA	10.0	5.9	32.6	20.0	52.6
	VFD3AOMH43ANSNA VFD3AOMH43ENSNA	0	0	32.6	20.0	52.6
B	VFD1A6MH21AFSAA	0.0	0.0	8.0	10.3	18.3
	VFD2A8MH21AFSAA	10.0	5.9	16.3	14.5	30.8
	VFD5A0MH21ANSAA VFD5AOMH21ENSAA VFD5A0MH21AFSAA			31.1	22.5	53.6
	VFD7A5MH23ANSAA VFD7A5MH23ENSAA			50.1	24.2	74.3
	VFD1A5MH43AFSAA			17.6	11.1	28.7
	VFD3A0MH43AFSAA			32.6	20.0	52.6
	VFD4A2MH43ANSAA VFD4A2MH43ENSAA VFD4A2MH43AFSAA			45.9	21.7	67.6
C	VFD5A0MH11ANSAA VFD5A0MH11ENSAA	16.0	27.2	31.1	26.2	57.3
	VFD7A5MH21ANSAA VFD7A5MH21ENSAA VFD7A5MH21AFSAA			46.5	31.0	77.5
	VFD11AMH21ANSAA VFD11AMH21ENSAA VFD11AMH21AFSAA			70.0	35	105
	VFD11AMH23ANSAA VFD11AMH23ENSAA			76.0	30.7	106.7
	VFD17AMH23ANSAA VFD17AMH23ENSAA			108.2	40.1	148.3

Frame	Air flow rate for cooling			Power Dissipation		
	Model No.	Flow Rate (Unit: cfm)	Flow Rate (Unit: $\mathrm{m}^{3} / \mathrm{hr}$)	Loss External (Heat sink, unit: W)	Internal (Unit: W)	Total (Unit: W)
C	VFD5A7MH43ANSAA VFD5A7MH43ENSAA VFD5A7MH43AFSAA	16.0	27.2	60.6	22.8	83.4
	VFD9AOMH43ANSAA VFD9AOMH43ENSAA VFD9A0MH43AFSAA			93.1	42	135.1
D	VFD25AMH23ANSAA VFD25AMH23ENSAA	23.4	39.7	192.8	53.3	246.1
	VFD13AMH43ANSAA VFD13AMH43ENSAA VFD13AMH43AFSAA			132.8	39.5	172.3
	VFD17AMH43ANSAA VFD17AMH43ENSAA VFD17AMH43AFSAA			164.7	55.8	220.5
E	VFD33AMH23ANSAA VFD33AMH23ENSAA	53.7	91.2	244.5	79.6	324.1
	VFD49AMH23ANSAA VFD49AMH23ENSAA			374.2	86.2	460.4
	VFD25AMH43ANSAA VFD25AMH43ENSAA VFD25AMH43AFSAA			234.5	69.8	304.3
	VFD32AMH43ANSAA VFD32AMH43ENSAA VFD32AMH43AFSAA			319.8	74.3	394.1
F	VFD65AMH23ANSAA VFD65AMH23ENSAA	67.9	115.2	492.0	198.2	690.2
	VFD38AMH43ANSAA VFD38AMH43ENSAA VFD38AMH43AFSAA			423.5	181.6	605.1
	VFD45AMH43ANSAA VFD45AMH43ENSAA VFD45AMH43AFSAA			501.1	200.3	701.4

[This page intentionally left blank]

Chapter 4 Wiring

4-1 Wiring
4-2 System Wiring Diagram

After removing the front cover, please check if the power and control terminals are clearly visible. Please read following precautions to avoid wiring mistakes.

DANGER	It is crucial to cut off the AC motor drive power before doing any wiring. A charge may still remain in the DC bus capacitors with hazardous voltages even after the power has been turned off a short time. Therefore it is suggested to measure the remaining voltage with a DC voltmeter on +1/DC+ and DC- before doing any wiring. For your personnel saftery, please do not start wiring before the voltage drops to a safe level < 25 Vdc. Wiring the installation with a remaning voltage condition may cause injuries, sparks and short circuits. Only qualified personnel familiar with AC motor drives is allowed to perform
installation, wiring and commissioning. Make sure the power is turned off before	
wiring to prevent electric shocks.	
The terminals R/L1 . S/L2 , T/L3 are for mains power input. If mains power is	
wrongly connected to other terminals, it may result in damage to the equipment.	
The voltage and current should lie within the range as indicated on the nameplate	
(see Chapter 1-1).	
All units must be grounded directly to a common ground terminal to prevent	

4-1 Wiring

Chapter 4 Wiring | MH300

Figure 1

Figure 2
SINK (NPN) / SOURCE (PNP) Mode

Chapter 4 Wiring | MH300

4-2 System Wiring Diagram

Chapter 5 Main Circuit Terminals

5-1 Main Circuit Diagram

5-2 Main Circuit Terminals

च Fasten the main circuit terminal screws to prevent sparking by loose screws due to vibration.
च When needed, only use an inductive filter at the motor output terminals U/T1, V/T2, W/T3 of the AC motor drive. DO NOT use phase-compensation capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance), unless approved by Delta.
\square DO NOT connect brake resistor directly to +1/DC+ to DC-, +2/B1 to DC- to prevent damage to the drive.
\square Ensure proper insulation of main circuit wiring in accordance with the relevant safety regulations.

CAUTION

Main power terminals

$\boxtimes \quad R / L 1, S / L 2$ and T/L3 have no phase-sequence requirement; they can be connected in any sequence.
च It is recommended adding a magnetic contactor (MC) at the power input to cut off power quickly and reduce malfunctioning when the protection function of the AC motor drive is activated. Both ends of the MC should have an R-C surge absorber.
\square Please ensure voltages and currents are within specification.
\square When using a general GFCI (Ground Fault Circuit Interrupter), select a sensitivity $\geq 200 \mathrm{~mA}$ and ≥ 0.1 s operation time to avoid nuisance tripping.
\boxtimes Please use conduits or shielded cables for the power wiring and ground both ends of the conduit or shielded cables.
\square DO NOT run/stop the drive by turning the power ON/OFF. Run/stop the drive by RUN/STOP command. If you still need to run/stop the drive by turning power ON/OFF, it is strongly recommended to do so only ONCE per hour.
च To comply with UL standards, connect the drive to a 3WYE type of mains power system.

Output terminals for main circuit

$\boxtimes \quad$ Use a well-insulated motor, suitable for inverter operation.
■ When the AC drive output terminals U/T1, V/T2, and W/T3 are connected to the motor terminals U/T1, V/T2, and W/T3 respectively, the motor will rotate counterclockwise (as viewed on the shaft end of the motor) when a forward operation command is received. To permanently reverse the direction of rotation, switch over any two motor leads.

Terminals for connecting DC reactor, external brake resistor and DC circuit
\square These are the terminals for connecting the DC-reactor to improve the power factor and harmonics. At delivery they are shorted by a jumper. Please remove it before connecting the DC reactor.
च The jumper must be fastened tight when it does not connect DC reactor, use DC+/+1, +2/B1 to execute common DC bus, or connect with brake resistor, otherwise the drive might lose power or the terminals will be broken.

■ Connect a brake resistor in applications with frequent deceleration, short deceleration time, too low braking torque or requiring increased braking torque.

\square The external brake resistor should connect to the terminals [+2 / B1], [B2] of AC motor drives.
$\boxtimes \quad$ DO NOT short circuit or connect a brake resistor directly to DC+/+1 and DC-, +2/B1 to DC- otherwise the drive will be damaged.
\square DC+ and DC- are to be connected in common DC bus applications, please refer to Chapter 5-1(Main Circuit Terminal) for the wiring terminal specification and the wire gauge information.

Remove the front cover

[a] The front cover shall be removed before connecting the main circuit terminals and control circuit terminals. Removing the cover acc. to the figure below.
[0] The figure below shows Frame A model for example. Removing the cover on other frame sizes is similar.

Press the clip on both sides, and take out by rotating.

5-1 Main Circuit Diagram

It provides 1-phase / 3-phase power

Terminals	Descriptions
R/L1, S/L2	Mains input terminals 1-phase
R/L1, S/L2, T/L3	Mains input terminals 3-phase
U/T1, V/T2, W/T3	Motor output terminals for connecting 3-phase IM and PM motors.
$+1,+2$	Connections for DC reactor to improve the power factor and harmonics. The jumper needs to be removed in that case.
DC+, DC-	Connections for brake unit (VFDB series) Common DC Bus
B1, B2	Connections for brake resistor (optional)
Θ	Earth connection, please comply with local regulations.

5-2 Main Circuit Terminals

- It needs following additional terminal when wiring. The additional terminal dimension should comply with the following figure 1.
- After crimping the wire to the ring lug (must UL approved), UL and CSA approved R/C (YDPU2) heat shrink tubing rated min 600 Vac insulation shall be install over the live part. Please refer to the following figure 2.

Figure 1.

Figure 2.

Dimensions of Ring Lug

Frame	AWG	Kit P/N	$\begin{gathered} \text { A } \\ \text { (MAX) } \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \text { (MAX) } \end{gathered}$	$\begin{gathered} \mathrm{C} \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \text { (MAX) } \end{gathered}$	$\begin{gathered} \mathrm{d} 2 \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} W \\ (\text { MAX }) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ \text { (MAX) } \end{gathered}$
A	18	RNBS1-3.7	9.8	3.2	4.8	4.1	3.7	13.0	4.2	6.6	0.8
	16	RNBS2-3.7									
	14	RNBS2-3.7									
B	14	RNBS2-4	12.1	3.6	6.1	5.6	4.3	13.0	4.5	7.2	1
	12	RNBS5-4									
C	14	RNBS2-4	17.8	5.0	6.1	7.2	4.3	13.0	5.5	8.0	1.2
	12	RNBS5-4									
	10	RNBS5-4									
	8	RNBS8-4									
D	12	RNBS5-4	17.8	5.0	6.1	7.2	4.3	13.0	5.5	8.0	1.2
	10	RNBS5-4									
	8	RNBS8-4									
E	8	RNBS8-5	27.1	6.1	10.5	11.5	5.3	13.0	6.5	12.2	1.7
	6	RNB14-5									
	4	RNBS22-5									
F	6	RNBS14-6	35.0	9.0	13.3	14.0	6.2	13.0	19.5	18.0	1.8
	4	RNBS22-6									
	2	RNBS38-6									

Unit: mm

Frame A

Main circuit terminals:
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, © ${ }^{-}$,DC-, DC+/+1, +2/B1, B2, ${ }^{-()}$
Note: 1-phase model with no T/L3 terminal

Models	Max. Wire Gauge	Min. Wire Gauge	Screw	Torque $\text { (} \pm 10 \%)$
VFD1A6MH11ANSAA	$\begin{gathered} 14 \mathrm{AWG} \\ {\left[2.1 \mathrm{~mm}^{2}\right]} \end{gathered}$	16AWG	M 3.5	$\begin{gathered} 9 \mathrm{~kg}-\mathrm{cm} \\ {[7.8 \mathrm{lb}-\mathrm{in} .]} \\ {[0.88 \mathrm{Nm}]} \end{gathered}$
VFD1A6MH11ENSAA		${ }^{2}$]		
VFD2A5MH11ANSAA		14AWG		
VFD2A5MH11ENSAA		[2.1 mm^{2}]		
VFD1A6MH21ANSAA		16AWG		
VFD1A6MH21ENSAA		${ }^{2}$]		
VFD2A8MH21ANSAA		14AWG		
VFD2A8MH21ENSAA		[2.1 mm^{2}]		
VFD1A6MH23ANSAA				
VFD1A6MH23ENSAA		18AWG		
VFD2A8MH23ANSAA		[0.82 mm ${ }^{2}$]		
VFD2A8MH23ENSAA				
VFD5A0MH23ANSAA				
VFD5A0MH23ENSAA		16AWG		
VFD5A0MH23ANSNA		${ }^{2}$]		
VFD5A0MH23ENSNA				
VFD1A5MH43ANSAA		$\begin{gathered} \text { 18AWG } \\ {\left[0.82 \mathrm{~mm}^{2}\right]} \end{gathered}$		
VFD1A5MH43ENSAA				
VFD3A0MH43ANSAA				
VFD3A0MH43ENSAA				
VFD3A0MH43ANSNA				
VFD3A0MH43ENSNA				

- If you install at $\mathrm{Ta} 45^{\circ} \mathrm{C}$ above environment, please select copper wire which have voltage rating 600 V and temperature resistant $90^{\circ} \mathrm{C}$ or above.
- If you install at $\mathrm{Ta} 45^{\circ} \mathrm{C}$ environment, please select copper wire which have voltage rating 600 V and temperature resistant $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For UL installation compliant, you have to use copper wires when installation, the wire gauge is based on temperature resistant $75^{\circ} \mathrm{C}$ which is according to the requirements and recommendations from UL. Do not reduce the wire gauge when using higher temperature wire.

Frame B

Main circuit terminals:
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, ${ }^{-}, \mathrm{DC}-, \mathrm{DC}+/+1,+2 / \mathrm{B} 1, \mathrm{~B} 2,-()$
Note: 1-phase model with no T/L3 terminal

Models	Max. Wire Gauge	Min. Wire Gauge	Screw	Torque $(+10 \%)$
VFD1A6MH21AFSAA	12 AWG [3.3 mm ${ }^{2}$]	14 AWG [2.1 mm ${ }^{2}$]	M4	$\begin{aligned} & 15 \mathrm{~kg}-\mathrm{cm} \\ & {[13.0 \mathrm{lb}-\mathrm{in}]} \\ & {[1.47 \mathrm{Nm}]} \end{aligned}$
VFD2A8MH21AFSAA				
VFD5A0MH21ANSAA				
VFD5A0MH21ENSAA				
VFD5A0MH21AFSAA				
VFD7A5MH23ANSAA				
VFD7A5MH23ENSAA				
VFD1A5MH43AFSAA				
VFD3A0MH43AFSAA				
VFD4A2MH43ANSAA				
VFD4A2MH43ENSAA				
VFD4A2MH43AFSAA				

- If you install at $\mathrm{Ta} 45^{\circ} \mathrm{C}$ above environment, please select copper wire which have voltage rating 600 V and temperature resistant $90^{\circ} \mathrm{C}$ or above.
- If you install at Ta $45^{\circ} \mathrm{C}$ environment, please select copper wire which have voltage rating 600 V and temperature resistant $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For UL installation compliant, you have to use copper wires when installation, the wire gauge is based on temperature resistant $75^{\circ} \mathrm{C}$ which is according to the requirements and recommendations from UL. Do not reduce the wire gauge when using higher temperature wire.

Frame C

Main circuit terminals:
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, ${ }^{-}$, DC-, DC+/+1, +2/B1, B2, ${ }^{-}$

Note: 1-phase model with no T/L3 terminal

Models	Max. Wire Gauge	Min. Wire Gauge	Screw	Torque $(\pm 10 \%)$
VFD5A0MH11ANSAA	$\begin{aligned} & 8 \mathrm{AWG} \\ & {\left[8.4 \mathrm{~mm}^{2}\right]} \end{aligned}$	10 AWG [5.3 mm^{2}]	M4	$\begin{gathered} 20 \mathrm{~kg}-\mathrm{cm} \\ \text { [17.4 } \mathrm{lb}-\mathrm{in} .] \\ {[1.96 \mathrm{Nm}]} \end{gathered}$
VFD5A0MH11ENSAA				
VFD7A5MH21ANSAA				
VFD7A5MH21ENSAA				
VFD7A5MH21AFSAA				
VFD11AMH21ANSAA				
VFD11AMH21ENSAA		$\left[8.4 \mathrm{~mm}^{2}\right]$		
VFD11AMH21AFSAA				
VFD11AMH23ANSAA		12 AWG		
VFD11AMH23ENSAA		$\left[3.3 \mathrm{~mm}^{2}\right]$		
VFD17AMH23ANSAA		10 AWG		
VFD17AMH23ENSAA		[$5.3 \mathrm{~mm}^{2}$]		
VFD5A7MH43ANSAA				
VFD5A7MH43ENSAA				
VFD5A7MH43AFSAA		14 AWG		
VFD9A0MH43ANSAA		[2.1 mm ${ }^{2}$]		
VFD9A0MH43ENSAA				
VFD9A0MH43AFSAA				

- If you install at Ta $45^{\circ} \mathrm{C}$ above environment, please select copper wire which have voltage rating 600 V and temperature resistant $90^{\circ} \mathrm{C}$ or above.
- If you install at $\mathrm{Ta} 45^{\circ} \mathrm{C}$ environment, please select copper wire which have voltage rating 600 V and temperature resistant $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For UL installation compliant, you have to use copper wires when installation, the wire gauge is based on temperature resistant $75^{\circ} \mathrm{C}$ which is according to the requirements and recommendations from UL. Do not reduce the wire gauge when using higher temperature wire.

Frame D

Main circuit terminals:

Models	Max. Wire Gauge	Min. Wire Gauge	Screw	$\begin{aligned} & \text { Torque } \\ & (\pm 10 \%) \end{aligned}$
VFD25AMH23ANSAA	8 AWG ${ }^{2}$]	8 AWG	M4	$\begin{gathered} 20 \mathrm{~kg}-\mathrm{cm} \\ {[17.4 \mathrm{lb}-\mathrm{in} .]} \\ {[1.96 \mathrm{Nm}]} \end{gathered}$
VFD25AMH23ENSAA		${ }^{2}$]		
VFD13AMH43ANSAA				
VFD13AMH43ENSAA		$\left[3.3 \mathrm{~mm}^{2}\right]$		
VFD13AMH43AFSAA				
VFD17AMH43ANSAA				
VFD17AMH43ENSAA		[5.3 mm^{2}]		

- If you install at Ta $45^{\circ} \mathrm{C}$ above environment, please select copper wire which have voltage rating 600 V and temperature resistant $90^{\circ} \mathrm{C}$ or above.
- If you install at Ta $45^{\circ} \mathrm{C}$ environment, please select copper wire which have voltage rating 600 V and temperature resistant $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For UL installation compliant, you have to use copper wires when installation, the wire gauge is based on temperature resistant $75^{\circ} \mathrm{C}$ which is according to the requirements and recommendations from UL. Do not reduce the wire gauge when using higher temperature wire.

Frame E

Main circuit terminals:
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, ${ }^{-}$, DC-, DC+/+1, +2/B1, B2, ${ }^{(-)}$

Models	Max. Wire Gauge	Min. Wire Gauge	Screw	Torque $(\pm 10 \%)$
VFD33AMH23ANSAA	6 AWG	6 AWG	M5	$\begin{gathered} 25 \mathrm{~kg}-\mathrm{cm} \\ \text { [21.7 } \mathrm{lb}-\mathrm{in} .] \\ {[2.45 \mathrm{Nm}]} \end{gathered}$
VFD33AMH23ENSAA	[13.3 mm ${ }^{2}$]	[13.3 mm ${ }^{2}$]		
VFD49AMH23ANSAA**	4 AWG	4 AWG		
VFD49AMH23ENSAA**	[21.2 mm]	[21.2 mm ${ }^{\text {] }}$]		
VFD25AMH43ANSAA	$\begin{gathered} 6 \text { AWG } \\ {\left[13.3 \mathrm{~mm}^{2}\right]} \end{gathered}$	$\begin{gathered} 8 \mathrm{AWG} \\ {\left[8.4 \mathrm{~mm}^{2}\right]} \end{gathered}$		
VFD25AMH43ENSAA				
VFD25AMH43AFSAA				
VFD32AMH43ANSAA				
VFD32AMH43ENSAA				
VFD32AMH43AFSAA				

- If you install at $\mathrm{Ta} 45^{\circ} \mathrm{C}$ above environment, please select copper wire which have voltage rating 600 V and temperature resistant $90^{\circ} \mathrm{C}$ or above.
- If you install at $\mathrm{Ta} 45^{\circ} \mathrm{C}$ environment, please select copper wire which have voltage rating 600 V and temperature resistant $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For UL installation compliant, you have to use copper wires when installation, the wire gauge is based on temperature resistant $75^{\circ} \mathrm{C}$ which is according to the requirements and recommendations from UL. Do not reduce the wire gauge when using higher temperature wire.
- ** These drives must be wired with ring terminal that dimensions are specified.

Frame F

Main circuit terminals:
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, ${ }^{-}$, DC-, DC+/+1, +2/B1, B2, ${ }^{-}$

Models	Max. Wire Gauge	Min. Wire Gauge	Screw	Torque $(\pm 10 \%)$
VFD65AMH23ANSAA	$\begin{gathered} 2 \mathrm{AWG} \\ {\left[33.6 \mathrm{~mm}^{2}\right]} \end{gathered}$	2 AWG	M6	$\begin{gathered} 40 \mathrm{~kg}-\mathrm{cm} \\ {[34.7 \mathrm{lb}-\mathrm{in} .]} \\ {[3.92 \mathrm{Nm}]} \end{gathered}$
VFD65AMH23ENSAA		[33.6 mm ${ }^{\text {] }}$]		
VFD38AMH43ANSAA				
VFD38AMH43ENSAA		6 AWG $\left\lceil 13.3 \mathrm{~mm}^{2}\right]$		
VFD38AMH43AFSAA				
VFD45AMH43ANSAA				
VFD45AMH43ENSAA		4 AWG $\left\lceil 21.2 \mathrm{~mm}^{2}\right]$		
VFD45AMH43AFSAA				

- If you install at $\mathrm{Ta} 45^{\circ} \mathrm{C}$ above environment, please select copper wire which have voltage rating 600 V and temperature resistant 90° C or above.
If you install at Ta $45^{\circ} \mathrm{C}$ environment, please select copper wire which have voltage rating 600 V and temperature resistant $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For UL installation compliant, you have to use copper wires when installation, the wire gauge is based on temperature resistant $75^{\circ} \mathrm{C}$ which is according to the requirements and recommendations from UL. Do not reduce the wire gauge when using higher temperature wire.
[This page intentionally left blank]

Chapter 6 Control Terminals

Analog input terminals (AVI, ACI, ACM)

\square Analog input signals are easily affected by external noise. Use shielded wiring and keep it as short as possible (<20 m) with proper grounding. If the noise is inductive, connecting the shield to terminal ACM can bring improvement.
\square Use twisted-pair for weak analog signals.
\square If the analog input signals are affected by noise from the drive, please connect a capacitor and ferrite core as indicated in the following diagram.

Contact input terminals (MI1~MI7, DCM, +24V)

\square When the photo-coupler is using internal power supply, the switch connection for Sink and Source as below: MI-DCM: Sink mode, MI-+24 V: Source mode

Transistor Output Terminal (MO1, MO2, MCM)

च Make sure to connect the digital outputs to the right polarity, see wiring diagram when connecting a relay to the digital output, connect a surge absorber across the coil and check the polarity.

Specifications of Control Terminal

Wire Gauge: 20 AWG [$0.519 \mathrm{~mm}^{2}$]

Specifications of RELAY Terminal

Wire Gauge: 24~16 AWG [0.205~1.3 mm²]; Torque: $5 \mathrm{~kg}-\mathrm{cm} /[4.3 \mathrm{lb}-\mathrm{in}] /.[0.49 \mathrm{Nm}]$

Distribution Diagram of Control Terminal

Location Map of Control Terminal

Wiring precautions:

- Delivery condition is $+24 \mathrm{~V} / \mathrm{S} 1 /$ S2 shorted by jumper (as shown in figure above), please refer to Chapter 4 Wiring for more details.
- RELAY terminal is using PCB terminal block:

1. Tighten the wiring with slotted screwdriver, which is 3.5 mm (wide) $\times 0.6 \mathrm{~mm}$ (thick)
2. The ideal length of stripped wire at the connection side is $6 \sim 7 \mathrm{~mm}$.
3. When wiring bare wires, make sure they are perfectly arranged to go through the wiring holes.

- Control terminal is using spring clamp terminal block:

1. Tighten the wiring with slotted screwdriver, which is 2.5 mm (wide) $\times 0.4 \mathrm{~mm}$ (thick)
2. The ideal length of stripped wire at the connection side is 9 mm .
3. When wiring bare wires, make sure they are perfectly arranged to go through the wiring holes.

Wiring Specifications of Control Terminal		Wire Gauge (AWG)	
	Min. Wire Gauge	Max. Wire Gauge	
Conductor cross section solid		18 AWG	
Conductor cross section stranded	20 AWG	$\left[0.82 \mathrm{~mm}^{2}\right]$	
Stranded with ferrules with plastic sleeve	$\left[0.519 \mathrm{~mm}^{2}\right]$	20 AWG	
		$\left[0.519 \mathrm{~mm}^{2}\right]$	

A	B	D $(M A X)$	W
14	8	3.5	1.4

Unit: mm
Ferrule: Type: AI 0,5-8 WH , Manufacturer: PHOENIX CONTACT

Terminals	Terminal Function	Factory Setting (NPN mode)
+24V	Digital control signal common (Source)	$+24 \mathrm{~V} \pm 10$ \% 100 mA
$\begin{gathered} \text { MI11 } \\ \underset{\text { MI7 }}{2} \end{gathered}$	Multi-function input 1~7	Refer to parameters 02-01~02-07 to program the multi-function inputs MI1~MI7. Source Mode ON : the activation current is $3.3 \mathrm{~mA} \geqq 11 \mathrm{Vdc}$ OFF: cut-off voltage $\leqq 5 \mathrm{Vdc}$ Sink Mode ON : the activation current is $3.3 \mathrm{~mA} \leqq 13 \mathrm{Vdc}$ OFF: cut-off voltage $\geqq 19 \mathrm{Vdc}$ - When Pr. 02-00=0, MI1 and MI2 can be programmed - When Pr. 02-00 $\neq 0$, the function of MI1 and MI2 is acc. to Pr02-00 setting. - When Pr02-07=0, MI7 is pulse input with max. frequency 33 kHz (See Pr. 10-00, Pr. 10-02, Pr. 10-16)
DFM	Digital frequency meter	DFM is a pulse-signal output; Duty-cycle: 50% Min. load impedance R_{L} : $1 \mathrm{k} \Omega / 100 \mathrm{pf}$ Max. current: 30 mA Max. capacitive load: 100 pF Max. voltage: $30 \mathrm{Vdc} \pm 1 \%$
DCM(1)	Digital frequency signal common (Sink)	(when $30 \mathrm{Vdc} / 30 \mathrm{~mA} / \mathrm{R}_{\mathrm{L}}=100 \mathrm{pf}$) Max. output frequency: 33 kHz Internal current limiting resistor $\mathrm{R}: \geqq 1 \mathrm{~K} \Omega$ Output load impedance R_{L}
DCM(2)	Digital frequency signal common (Sink), it can switch to SGND	Capacitive load $\leqq 100$ pf Resistive load $\geqq 1 \mathrm{k} \Omega$, resistance determine the output voltage value. DFM-DCM voltage $=$ external voltage * $\left(R_{L} /\left(R_{L}+R\right)\right)$
MO1	Multi-function Output 1 (photocoupler)	Programmable open-collector outputs, see Pr. 02-16 and Pr. 02-17.
MO2	Multi-function Output 2 (photocoupler)	
MCM	Multi-function Output Common	Max 48 Vdc 50 mA
RA	Multi-function relay output 1 (Relay N.O. a)	Programmable relay output, see Pr. 02-13. Resistive Load 3 A (N.O.) / 3 A (N.C.) 250 VAC 5 A (N.O.) / 3 A (N.C.) 30 VDC
RB	Multi-function relay output 1 (Relay N.C. b)	Inductive Load (COS 0.4) 1.2 A (N.O.)/ 1.2 A (N.C.) 250 VAC 2.0 A (N.O.)/ 1.2 A (N.C.) 30 VDC
RC	Multi-function relay common (Relay)	Various kinds of monitor signals output, e.g.: operation frequency attained • overload indication etc..

Terminals	Terminal Function	Factory Setting (NPN mode)
+10V	Potentiometer power supply	$+10.5 \pm 0.5 \mathrm{Vdc} / 20 \mathrm{~mA}$
AVI	Analog voltage input	Programmable analog input, see Pr. 03-00 Impedance: 20k Ω Range 0~Max. Output Frequency (Pr. 01-00): $0 \sim+10 \mathrm{~V} /-10 \sim+10 \mathrm{~V}$ Range switching by Pr. 03-00, Pr. 03-28
ACI	Analog current input	Programmable analog input, see Pr. 03-01 Impedance: 250 Range 0~ Max. Output Frequency (Pr. 01-00): 0~20mA / 4~20mA / 0~10V Range switching by Pr. 03-01, Pr. 03-29
AFM	Multi-function analog voltage output	Switch: the factory setting of AFM is $0 \sim 10 \mathrm{~V}$ (Voltage mode), use the switch and Pr. 03-31 to change to current mode ($0 \sim 20 \mathrm{~mA} / 4 \mathrm{~mA} \sim 20 \mathrm{~mA}$). Must follow the indication on the back side of front cover or page 6-1 of user manual when using the switch. Voltage mode Range: 0~10 V (Pr. 03-31=0) corresponding to the max. operating range of the control object Max. output current : 2 mA Max. Load : $5 \mathrm{k} \Omega$ Current mode Range : 0~20 mA (Pr. 03-31=1)/4 mA~20 mA (Pr. 03-31=2) corresponding to the max. operating range of the control object Max. load : 500Ω
ACM	Analog Signal Common	Common for analog terminals

Terminals	Terminal Function
S1,S2	lactory Setting (NPN mode) Ractory setting: S1/S2 shorted to +24 V Rated voltage: 24VDC $\pm 10 \%$; Max. voltage: $30 \mathrm{VDC} \pm 10 \%$ Activation current: $6.67 \mathrm{~mA} \pm 10 \%$ STO activation mode Input voltage level: S1-DCM>0VDC or S2-DCM < 5VDC STO response time $\leq 20 \mathrm{~ms}$ (S1/S2 operate till the AC motor drive stop outputting current) STO cut-off mode
DCM	Input voltage level: S1-DCM>11VDC and S2-DCM < 30VDC Power removal safety function acc. to EN 954-1 and IEC / EN 61508
SG+	Note: Please refer to CH17 SAFE TORQUE OFF FUNCTION for more information.
SG-	Nodbus RS-485 Notease refer to CH12 DESCRIPTION OF PARAMETER SETTINGS for more
SGND	information. (Pr. 12-09-1 to Pr. 12-09-17)

[This page intentionally left blank]

Chapter 7 Optional Accessories

7-1 All Brake Resistors and Brake Units Used in AC Motor Drives
7-2 Non-fuse Circuit Breaker
7-3 Fuse Specification Chart
7-4 AC/DC Reactor
7-5 Zero Phase Reactor
7-6 EMC Filter
7-7 EMC Shield Plate
7-8 Capacitive Filter
7-9 Conduit Box
7-10 Fan Kit
7-11 Keypad Panel Mounting
7-12 DIN-Rail Mounting
7-13 Mounting Adapter Plate

The optional accessories listed in this chapter are available upon request．Installing additional accessories to your drive would substantially improve the drive＇s performance．Please select an applicable accessory according to your need or contact the local distributor for suggestion．

7－1 All Brake Resistors and Brake Units Used in AC Motor Drives

115V 1－phase

Model	Applicable Motor		＊1125\％Braking Torque 10 \％ED						＊2 Max．Brake Torque		
	HP	KW	＊3 Braking Torque （kg－m）	Resistor value spec．for each AC motor Drive	Braking Resistor for each Brake Unit			Braking Current （A）	Min． Resistor Value（ Ω ）	Max．Total Braking Current（A）	Peak Power （kW）
					${ }^{4}$ Part No．	Amount	Usage				
VFD1A6MH11XNSXX	0.25	0.2	0.1	80W 750Ω	BR080W750	1	－	0.5	190.0	2	0.8
VFD2A5MH11XNSXX	0.5	0.4	0.3	80W 200Ω	BR080W200	1	－	1.9	95.0	4	1.5
VFD5A0MH11XNSXX	1	0.75	0.5	80W 200Ω	BR080W200	1	－	1.9	63.3	6	2.3

230V 1－phase

Model	Applicable Motor		＊125 \％Braking Torque			10 \％ED			＊2 Max．Brake Torque		
	HP	KW	＊3 Braking Torque （kg－m）	Resistor value spec．for each AC motor Drive	Braking Resistor for each Brake Unit			Braking Current （A）	Min． Resistor Value（ Ω ）	Max．Total Braking Current（A）	Peak Power （kW）
					${ }^{4}$ Part No．	Amount	Usage				
VFD1A6MH21XNSXX VFD1A6MH21AFSAA	0.25	0.2	0.1	80W 750』	BR080W750	1	－	0.5	190.0	2	0.8
VFD2A8MH21XNSXX VFD2A8MH21AFSAA	0.5	0.4	0.3	80W 200	BR080W200	1	－	1.9	95.0	4	1.5
VFD5A0MH21XNSXX VFD5A0MH21AFSAA	1	0.75	0.5	80W 200	BR080W200	1	－	1.9	63.3	6	2.3
VFD7A5MH21XNSXX VFD7A5MH21AFSAA	2	1.5	1	200W 91』	BR200W091	1	－	4.2	47.5	8	3.0
VFD11AMH21XNSXX VFD11AMH21AFSAA	3	2.2	1.5	300W 70』	BR300W070	1	－	5.4	38.0	10	3.8

230V 3－phase

Model	Applicable Motor		＊1125\％Braking Torque 10 \％ED						${ }^{2}$ Max．Brake Torque		
	HP	KW	＊3 Braking Torque （kg－m）	Resistor value spec．for each AC motor Drive	Braking Resistor for each Brake Unit			Braking Current （A）	Min． Resistor Value（ Ω ）	Max．Total Braking Current（A）	Peak Power （kW）
					${ }^{4}$ Part No．	Amount	Usage				
VFD1A6MH23XNSXX	0.25	0.2	0.1	80W 750Ω	BR080W750	1	－	0.5	190.0	2	0.8
VFD2A8MH23XNSXX	0.5	0.4	0.3	80W 200Ω	BR080W200	1	－	1.9	95.0	4	1.5
VFD5A0MH23XNSXX	1	0.75	0.5	80W 200Ω	BR080W200	1	－	1.9	63.3	6	2.3
VFD7A5MH23XNSXX	2	1.5	1	200W 91ת	BR200W091	1	－	4.2	47.5	8	3.0
VFD11AMH23XNSXX	3	2.2	1.5	300W 70Ω	BR300W070	1	－	5.4	38.0	10	3.8
VFD17AMH23XNSXX	5	3.7	2.5	400W 40Ω	BR400W040	1	－	9.5	19.0	20	7.6
VFD25AMH23XNSXX	7.5	5.5	3.7	1000W 20Ω	BR1K0W020	1	－	19	16.5	23	8.7
VFD33AMH23XNSXX	10	7.5	5.1	1000W 20Ω	BR1K0W020	1	－	19	14.6	26	9.9
VFD49AMH23XNSXX	15	11	7.4	1500W 13Ω	BR1K5W013	1	－	29	12.6	29	11.0
VFD65AMH23XNSXX	20	15	10.2	2000W 8．6ת	BR1K0W4P3	2	$\begin{gathered} 2 \text { in } \\ \text { series } \end{gathered}$	44	8.3	46	17.5

460V 3－phase

Model	Applicable Motor		＊1 125 \％Braking Torque			10 \％ED			＊2 Max．Brake Torque		
	HP	KW	$*^{3}$ Braking Torque （kg－m）	Resistor value spec．for each AC motor Drive	Braking Resistor for each Brake Unit			Braking Current （A）	Min． Resistor Value（ Ω ）	Max．Total Braking Current（A）	Peak Power （kW）
					${ }^{4}$ Part No．	Amount	Usage				
VFD1A5MH43XNSXX VFD1A5MH43AFSAA	0.5	0.4	0.3	80W 750』	BR080W750	1		1	380.0	2	1.5
VFD3A0MH43XNSXX VFD3A0MH43AFSAA	1	0.75	0.5	80W 750』	BR080W750	1		1	190.0	4	3.0
VFD4A2MH43XNSXX VFD4A2MH43AFSAA	2	1.5	1	200W 360』	BR200W360	1		2.1	126.7	6	4.6
VFD5A7MH43XNSXX VFD5A7MH43AFSAA	3	2.2	1.5	300W 250＠	BR300W250	1		3	108.6	7	5.3
VFD9A0MH43XNSXX VFD9A0MH43AFSAA	5	3.7	2.5	400W 150』	BR400W150	1		5.1	84.4	9	6.8
VFD13AMH43XNSXX VFD13AMH43AFSAA	7.5	5.5	3.7	1000W 75＠	BR1K0W075	1		10.2	50.7	15	11.4
VFD17AMH43XNSXX VFD17AMH43AFSAA	10	7.5	5.1	1000W 75＠	BR1K0W075	1		10.2	40.0	19	14.4
VFD25AMH43XNSXX VFD25AMH43AFSAA	15	11	7.4	1500W 43＠	BR1K5W043	1		17.6	33.0	23	17.5
VFD32AMH43XNSXX VFD32AMH43AFSAA	20	15	10.2	2000W 32，	BR1K0W016	2	$\begin{array}{\|c} \hline 2 \mathrm{in} \\ \text { series } \end{array}$	24	26.2	29	22.0
VFD38AMH43XNSXX VFD38AMH43AFSAA	25	18	12.2	2000W 32，	BR1K0W016	2	$\begin{gathered} 2 \mathrm{in} \\ \text { series } \end{gathered}$	24	26.2	29	22.0
VFD45AMH43XNSXX VFD45AMH43AFSAA	30	22	14.9	3000W 26，	BR1K5W013	2	$\begin{gathered} 2 \mathrm{in} \\ \text { series } \end{gathered}$	29	23.0	33	25.1

＊1 Standard braking torque is 125% ．Because of the limited resistor power，the longest operation time for 10% ED is 10 sec．（on： 10 sec ．／off： 90 sec ．）．
＊2 Please refer to the Brake Performance Curve for＂Operation Duration \＆ED（\％）＂vs．＂Braking Current＂．
＊3 Calculation for braking torque is for a 4－pole motor 1800 rpm．
＊4 Resistors of 400 W or lower should be fixed to the frame and at a surface temperature below $50^{\circ} \mathrm{C}$ ．
Resistors of 1000 W and above should be fixed on a surface with temperature below $350^{\circ} \mathrm{C}$

NOTE

1．Please select the resistance value，power and brake usage（ED \％）acc．to Delta rules．

Definition for Brake Usage ED\％

Explanation：ED（\％）is defined to allow enough time for the brake unit and brake resistor to dissipate the heat generated by braking． Recommended cycle time T0 is one minute．

For safety concern，install a thermal overload relay（O．L）between the brake unit and the brake resistor in conjunction with the magnetic contactor（MC）before to the drive for additional protection．The purpose of the thermal overload relay is to protect the brake resistor from damage due to frequent or continuous braking． Under such circumstances，just turn off the power to prevent damaging the brake resistor，brake unit and drive．

2．If the drive or other equipment is damaged due to the fact that the brake resistors and brake modules in use are not provided by Delta，warranty will be void．
3. Take the safety of the environment into consideration when installing the brake resistors. If the minimum resistance value is to be used, consult local dealers for the calculation of the power.
4. When using more than 2 brake units, equivalent resistor value of parallel brake unit can't be less than the value in the column "Minimum Equivalent Resistor Value for Each AC Drive" (the right-most column in the table). Please read the wiring information in the user manual of brake unit thoroughly prior to operation
5. Thermal Overload Relay (TOR):

To choose a thermal overload relay is based on its overload capacity whether is appropriate to MH300. The standard braking capacity of MH300 is 10% ED (Tripping time=10s). As shown in the figure below, thermal overload relay continuously operates for 10 sec. and it can stand 260% overload (Host starting). Take a 460V, 15 kW of MH300 as an example, its braking current is 24 A (refer to the table on page $7-3$), thus it can use the thermal overload relay which rated current is $10 \mathrm{~A}(10 * 260 \%=26 A>24 A)$.

7-2 Non-fuse Circuit Breaker

Comply with UL standard: Per UL 508, paragraph 45.8.4, part a.

Model	Voltage / 1-phase (3-phase)	Current Input / Output (Max.)		Breaker rating Input (A)	
		Normal duty	Heavy duty	Normal duty	Heavy duty
VFD1A6MH11ANSXX VFD1A6MH11ENSXX	115V / 1φ	6.8 A / 1.8 A	6.0 A / 1.6 A	17.68	20
VFD2A5MH11ANSXX VFD2A5MH11ENSXX		10.1 A / 2.7 A	9.4 A / 2.5 A	26.26	25
VFD5A0MH11ANSXX VFD5A0MH11ENSXX		20.6 A / 5.5 A	18.8 A / 5.0 A	53.56	50
VFD1A6MH21ANSXX VFD1A6MH21ENSXX VFD1A6MH21AFSXX	230V/19	3.8 A / 1.8 A	3.4 A / 1.6 A	9.88	15
VFD2A8MH21ANSXX VFD2A8MH21ENSXX VFD2A8MH21AFSXX		6.7 A / 3.2 A	5.9 A / 2.8 A	17.42	20
VFD5A0MH21ANSXX VFD5A0MH21ENSXX VFD5A0MH21AFSXX		10.9 A / 5.2 A	10.5 A / 5.0 A	28.34	30
VFD7A5MH21ANSXX VFD7A5MH21ENSXX VFD7A5MH21AFSXX		17.9 A / 8.5 A	15.8 A / 7.5 A	46.54	45
VFD11AMH21ANSXX VFD11AMH21ENSXX VFD11AMH21AFSXX		26.3 A / 12.5 A	23.1 A / 11.0 A	68.38	70
VFD1A6MH23ANSXX VFD1A6MH23ENSXX	230V/3¢	2.2 A / 1.8 A	1.9 A / 1.6 A	5.72	15
VFD2A8MH23ANSXX VFD2A8MH23ENSXX		3.8 A / 3.2 A	3.4 A / 2.8 A	9.88	15
VFD5A0MH23ANSXX VFD5A0MH23ENSXX		6.2 A / 5.2 A	6.0 A / 5.0 A	16.12	16
VFD5A0MH23ANSNA VFD5A0MH23ENSNA		6.2 A / 5.2 A	6.0 A / 5.0 A	16.12	16
VFD7A5MH23ANSXX VFD7A5MH23ENSXX		9.6 A / 8.0 A	9.0 A / 7.5 A	24.96	25
VFD11AMH23ANSXX VFD11AMH23ENSXX		15.0 A / 12.5 A	13.2 A / 11.0 A	39	40
VFD17AMH23ANSXX VFD17AMH23ENSXX		23.4 A / 19.5 A	20.4 A / 17.0 A	60.84	60
VFD25AMH23ANSXX VFD25AMH23ENSXX		32.4 A / 27.0 A	30.0 A / 25.0 A	64.8	63
VFD33AMH23ANSXX VFD33AMH23ENSXX		43.2 A / 36.0 A	39.6 A / 33.0 A	86.4	90
VFD49AMH23ANSXX VFD49AMH23ENSXX		61.2 A / 51.0 A	58.8 A / 49.0 A	122.4	125
VFD65AMH23ANSXX VFD65AMH23ENSXX		82.8 A / 69.0 A	78.0 A / 65.0 A	165.6	160

Model	Voltage / 1-phase (3-phase)	Current Input / Output (Max.)		Breaker rating Input (A)	
		Normal duty	Heavy duty	Normal duty	Heavy duty
VFD1A5MH43ANSXX VFD1A5MH43ENSXX VFD1A5MH43AFSXX	$460 \mathrm{~V} / 3 \varphi$	2.0 A / 1.8 A	1.7 A / 1.5 A	5.2	15
VFD3A0MH43ANSXX VFD3AOMH43ENSXX VFD3A0MH43AFSXX		3.6 A / 3.3 A	3.3 A / 3.0 A	9.36	15
VFD3AOMH43ANSNA VFD3AOMH43ENSNA		3.6 A / 3.3 A	3.3 A / 3.0 A	9.36	15
VFD4A2MH43ANSXX VFD4A2MH43ENSXX VFD4A2MH43AFSXX		5.1 A / 4.6 A	4.6 A / 4.2 A	13.26	15
VFD5A7MH43ANSXX VFD5A7MH43ENSXX VFD5A7MH43AFSXX		7.2 A / 6.5 A	6.3 A / 5.7 A	18.72	20
VFD9A0MH43ANSXX VFD9A0MH43ENSXX VFD9A0MH43AFSXX		11.6 A / 10.5 A	9.9 A / 9.0 A	30.16	30
VFD13AMH43ANSXX VFD13AMH43ENSXX VFD13AMH43AFSXX		16.0 A / 14.5 A	14.3 A / 13.0 A	32	32
VFD17AMH43ANSXX VFD17AMH43ENSXX VFD17AMH43AFSXX		21.8 A / 19.8 A	19.3 A / 17.5 A	43.6	45
VFD25AMH43ANSXX VFD25AMH43ENSXX VFD25AMH43AFSXX		30.8 A / 28.0 A	27.5 A / 25.0 A	61.6	60
VFD32AMH43ANSXX VFD32AMH43ENSXX VFD32AMH43AFSXX		39.6 A / 36.0 A	35.2 A / 32.0 A	79.2	80
VFD38AMH43ANSXX VFD38AMH43ENSXX VFD38AMH43AFSXX		45.7 A / 41.5 A	41.8 A / 38.0 A	91.4	90
VFD45AMH43ANSXX VFD45AMH43ENSXX VFD45AMH43AFSXX		53.9 A / 49.0 A	49.5 A / 45.0 A	107.8	100

7-3 Fuse Specification Chart

$\square \quad$ The fuse specifications lower than below table is allowed.
\square For installation in the United States, branch circuit protection must be provided in accordance with the National Electrical Code (NEC) and any applicable local codes.
To fulfill this requirement, use the UL classified fuses.
\square For installation in Canada, branch circuit protection must be provided in accordance with Canadian Electrical Code and any applicable provincial codes. To fulfill this requirement, use the UL classified fuses.

Model	Voltage/ 1-phase (3-phase)	Current Input / Output (Max.)		Branch Circuit Fuses Output (A)
		Normal duty	Heavy duty	
VFD1A6MH11ANSXX	115V / 1 φ	6.8 A / 1.8 A	6.0 A / 1.6 A	7.2
VFD1A6MH11ENSXX				Class T JJS-10
VFD2A5MH11ANSXX		10.1 A / 2.7 A	9.4 A / 2.5 A	10.8
VFD2A5MH11ENSXX				Class T JJS-10
VFD5A0MH11ANSXX		20.6 A / 5.5 A	18.8 A / 5.0 A	22
VFD5A0MH11ENSXX				Class T JJS-25
VFD1A6MH21ANSXX VFD1A6MH21ENSXX VFD1A6MH21AFSXX	230V/1甲	3.8 A / 1.8 A	3.4 A / 1.6 A	7.2
				Class T JJS-10
VFD2A8MH21ANSXX VFD2A8MH21ENSXX VFD2A8MH21AFSXX		6.7 A / 3.2 A	5.9 A / 2.8 A	12.8
				Class T JJS-15
VFD5A0MH21ANSXX VFD5A0MH21ENSXX VFD5A0MH21AFSXX		10.9 A / 5.2 A	10.5 A / 5.0 A	20.8
				Class T JJS-20
VFD7A5MH21ANSXX VFD7A5MH21ENSXX VFD7A5MH21AFSXX		17.9 A / 8.5 A	15.8 A / 7.5 A	34
				Class T JJS-35
VFD11AMH21ANSXX VFD11AMH21ENSXX VFD11AMH21AFSXX		26.3 A / 12.5 A	23.1 A / 11.0 A	50
				Class T JJS-50
VFD1A6MH23ANSXX VFD1A6MH23ENSXX	230V / 3φ	2.2 A / 1.8 A	1.9 A / 1.6 A	7.2
				Class T JJS-10
VFD2A8MH23ANSXX VFD2A8MH23ENSXX		3.8 A / 3.2 A	3.4 A / 2.8 A	12.8
				Class T JJS-15
VFD5A0MH23ANSXX VFD5A0MH23ENSXX		6.2 A / 5.2 A	6.0 A / 5.0 A	20.8
				Class T JJS-20
VFD5A0MH23ANSNA VFD5A0MH23ENSNA		6.2 A / 5.2 A	6.0 A / 5.0 A	20.8
				Class T JJS-20
VFD7A5MH23ANSXX VFD7A5MH23ENSXX		9.6 A / 8.0 A	9.0 A / 7.5 A	32
				Class T JJS-35
VFD11AMH23ANSXX VFD11AMH23ENSXX		15.0 A / 12.5 A	13.2 A / 11.0 A	50
				Class T JJS-50
VFD17AMH23ANSXX VFD17AMH23ENSXX		23.4 A / 19.5 A	20.4 A / 17.0 A	78
				Class T JJS-80

7-4 ACIDC Reactor

Installing an AC reactor in the input side of AC motor drive can increase line impedance, improve power factor, reduce input current, and reduce interference generated from motor drive. Also momentary voltage surges or abnormal current spikes are reduced. For example, when the mains power capacity is higher than 500 kVA , or a switching capacitor bank is used, momentary voltage and current spikes may damage the AC motor drive's internal circuit. An AC reactor in the input side of the AC motor drive protects it by suppressing surges.

Installation

An AC input reactor is installed in series with the mains power to the three input phases R S T as shown below:

115V / 1ø Phase Normal duty

$115 \mathrm{~V} / 50 \sim 60 \mathrm{~Hz}$ MH Series Normal duty Input AC Reactor				
Model	Rated Current ND / HD $\left(\mathrm{A}_{\text {rs }}\right)$	Saturation ND / HD Current $\left(\mathrm{A}_{\text {rms }}\right)$	Input/ Output Reactor (mH)	Input Reactor Delta Part \#
VFD1A6MH11ANSAA VFD1A6MH11ENSAA	1.8	2.7	5.857	DR005D0585
VFD2A5MH11ANSAA VFD2A5MH11ENSAA	2.7	4.05	5.857	DR005D0585
VFD5A0MH11ANSAA VFD5A0MH11ENSAA	5.5	8.25	3.66	DR008D0366

115V / 1ø Phase Heavy duty

$115 \mathrm{~V} / 50 \sim 60 \mathrm{~Hz}$ MH Series Heavy duty Input AC Reactor				
Model	Rated Current ND / HD $\left(\mathrm{A}_{\text {rss }}\right)$	Saturation ND / HD Current (Arms	Input/ Output Reactor (mH)	Input Reactor Delta Part \#
VFD1A6MH11ANSAA VFD1A6MH11ENSAA	1.6	3.2	5.857	DR005D0585
VFD2A5MH11ANSAA VFD2A5MH11ENSAA	2.5	5	5.857	DR005D0585
VFD5AOMH11ANSAA VFD5A0MH11ENSAA	5	10.0	3.66	DR008D0366

230V / 1ø Phase Normal Duty

230V / 50~60Hz MH Series Normal duty Input AC Reactor						
Model	Rated Current ND / HD ($\mathrm{A}_{\mathrm{rms}}$)	$\begin{aligned} & \text { Saturation } \\ & \text { ND / HD } \\ & \text { Current (} \mathrm{A}_{\mathrm{rms}} \text {) } \end{aligned}$	Input/ Output Reactor (mH)	Input Reactor Delta Part \#	DC Reactor (mH)	DC Reactor Delta Part \#
VFD1A6MH21ANSAA VFD1A6MH21ENSAA VFD1A6MH21AFSAA	1.8	2.7	14.031	DR004D1403	14.031	DR004D1403
VFD2A8MH21ANSAA VFD2A8MH21ENSAA VFD2A8MH21AFSAA	3.2	4.8	5.857	DR005D0585	5.857	DR005D0585
VFD5A0MH21ANSAA VFD5A0MH21ENSAA VFD5A0MH21AFSAA	5.2	7.8	3.66	DR008D0366	3.66	DR008D0366
VFD7A5MH21ANSAA VFD7A5MH21ENSAA VFD7A5MH21AFSAA	8.5	12.75	2.662	DR011D0266	2.662	DR011D0266
VFD11AMH21ANSAA VFD11AMH21ENSAA VFD11AMH21AFSAA	12.5	18.75	1.722	DR017D0172	1.722	DR017D0172

230V / 1ø Phase Heavy Duty

230V / 50~60Hz MH Series Heavy duty Input AC Reactor						
Model	Rated Current ND / HD ($\mathrm{A}_{\text {rms }}$)	Saturation ND / HD Current ($\mathrm{A}_{\mathrm{rms}}$)	Input/ Output Reactor (mH)	Input Reactor Delta Part \#	DC Reactor (mH)	DC Reactor Delta Part \#
VFD1A6MH21ANSAA VFD1A6MH21ENSAA VFD1A6MH21AFSAA	1.6	3.2	14.031	DR004D1403	14.031	DR004D1403
VFD2A8MH21ANSAA VFD2A8MH21ENSAA VFD2A8MH21AFSAA	2.8	5.6	5.857	DR005D0585	5.857	DR005D0585
VFD5A0MH21ANSAA VFD5A0MH21ENSAA VFD5A0MH21AFSAA	5.0	10.0	3.66	DR008D0366	3.66	DR008D0366
VFD7A5MH21ANSAA VFD7A5MH21ENSAA VFD7A5MH21AFSAA	7.5	15.0	2.662	DR011D0266	2.662	DR011D0266
VFD11AMH21ANSAA VFD11AMH21ENSAA VFD11AMH21AFSAA	11.0	22.0	1.722	DR017D0172	1.722	DR017D0172

230V / 3ø Phase Normal Duty

$230 \mathrm{~V} / 50 \sim 60 \mathrm{~Hz}$ MH Series Normal duty Input AC Reactor							
Model	Rated Current ND / HD $\left(\mathrm{A}_{\mathrm{ms}}\right)$	Saturation ND / HD Current $\left(\mathrm{A}_{\text {rms }}\right)$	Input/ Output Reactor (mH)	Input Reactor Delta Part \#	DC Reactor (mH)	DC Reactor Delta Part \#	
VFD1A6MH23ANSAA VFD1A6MH23ENSAA	1.8	2.7	2.536	DR005A0254	5.857	DR005D0585	
VFD2A8MH23ANSAA VFD2A8MH23ENSAA	3.2	4.8	2.536	DR005A0254	5.857	DR005D0585	

230V / 50~60Hz MH Series Normal duty Input AC Reactor						
Model	Rated Current ND / HD ($\mathrm{A}_{\mathrm{rms}}$)	$\begin{aligned} & \text { Saturation } \\ & \text { ND / HD } \\ & \text { Current }\left(A_{\text {rms }}\right) \end{aligned}$	Input/ Output Reactor (mH)	Input Reactor Delta Part \#	DC Reactor (mH)	DC Reactor Delta Part \#
VFD5A0MH23ANSAA VFD5A0MH23ENSAA VFD5A0MH23ANSNA VFD5A0MH23ENSNA	5.2	7.8	2.536	DR005A0254	5.857	DR005D0585
VFD7A5MH23ANSAA VFD7A5MH23ENSAA	8.0	12.0	1.585	DR008A0159	3.66	DR008D0366
VFD11AMH23ANSAA VFD11AMH23ENSAA	12.5	18.75	0.746	DR017AP746	2.662	DR011D0266
VFD17AMH23ANSAA VFD17AMH23ENSAA	19.5	29.25	0.507	DR025AP507	1.722	DR017D0172
VFD25AMH23ANSAA VFD25AMH23ENSAA	27.0	40.5	0.32	DR033AP320	1.172	DR025D0117
VFD33AMH23ANSAA VFD33AMH23ENSAA	36.0	54.0	0.216	DR049AP215	0.851	DR033DP851
VFD49AMH23ANSAA VFD49AMH23ENSAA	51.0	76.5	0.216	DR049AP215	0.574	DR049DP574
VFD65AMH23ANSAA VFD65AMH23ENSAA	69.0	103.5	0.169	DR075AP170	0.432	DR065DP432

230V / 3ø Phase Heavy Duty

230V / 50~60Hz MH Series Heavy duty Input AC Reactor						
Model	Rated Current ND / HD ($\mathrm{A}_{\mathrm{mms}}$)	$\begin{gathered} \text { Saturation } \\ \text { ND / HD } \\ \text { Current (} \mathrm{A}_{\mathrm{rms}} \text {) } \end{gathered}$	Input/ Output Reactor (mH)	Input Reactor Delta Part \#	DC Reactor (mH)	DC Reactor Delta Part \#
VFD1A6MH23ANSAA VFD1A6MH23ENSAA	1.6	3.2	2.536	DR005A0254	5.857	DR005D0585
VFD2A8MH23ANSAA VFD2A8MH23ENSAA	2.8	5.6	2.536	DR005A0254	5.857	DR005D0585
VFD5A0MH23ANSAA VFD5A0MH23ENSAA VFD5A0MH23ANSNA VFD5A0MH23ENSNA	5.0	9.6	2.536	DR005A0254	5.857	DR005D0585
VFD7A5MH23ANSAA VFD7A5MH23ENSAA	7.5	15.0	1.585	DR008A0159	3.66	DR008D0366
VFD11AMH23ANSAA VFD11AMH23ENSAA	11.0	22.0	1.152	DR011A0115	2.662	DR011D0266
VFD17AMH23ANSAA VFD17AMH23ENSAA	17.0	34.0	0.746	DR017AP746	1.722	DR017D0172
VFD25AMH23ANSAA VFD25AMH23ENSAA	25.0	50.0	0.507	DR025AP507	1.172	DR025D0117
VFD33AMH23ANSAA VFD33AMH23ENSAA	33.0	66.0	0.32	DR033AP320	0.851	DR033DP851
VFD49AMH23ANSAA VFD49AMH23ENSAA	49.0	98.0	0.216	DR049AP215	0.574	DR049DP574
VFD65AMH23ANSAA VFD65AMH23ENSAA	65.0	130.0	0.163	DR065AP162	0.432	DR065DP432

460V / 3ø Phase Normal Duty

460V / 50~60Hz MH Series Normal duty Input AC Reactor						
Model	Rated Current ND / HD ($\mathrm{A}_{\mathrm{rms}}$)	$\begin{gathered} \text { Saturation } \\ \text { ND / HD } \\ \text { Current (} A_{r m s} \text {) } \\ \hline \end{gathered}$	Input/ Output Reactor (mH)	Input Reactor Delta Part \#	$\begin{aligned} & \text { DC Reactor } \\ & (\mathrm{mH}) \end{aligned}$	DC Reactor Delta Part \#
VFD1A5MH43ANSAA VFD1A5MH43ENSAA VFD1A5MH43AFSAA	1.8	2.7	8.102	DR003A0810	18.709	DR003D1870
VFD3A0MH43ANSAA VFD3A0MH43ENSAA VFD3A0MH43AFSAA VFD3A0MH43ANSNA VFD3A0MH43ENSNA	3.3	4.95	6.077	DR004A0607	18.709	DR003D1870
VFD4A2MH43ANSAA VFD4A2MH43ENSAA VFD4A2MH43AFSAA	4.6	6.9	4.05	DR006A0405	14.031	DR004D1403
VFD5A7MH43ANSAA VFD5A7MH43ENSAA VFD5A7MH43AFSAA	6.5	9.75	2.7	DR009A0270	9.355	DR006D0935
VFD9A0MH43ANSAA VFD9A0MH43ENSAA VFD9A0MH43AFSAA	10.5	15.75	2.315	DR010A0231	5.345	DR010D0534
VFD13AMH43ANSAA VFD13AMH43ENSAA VFD13AMH43AFSAA	14.5	21.75	1.174	DR018A0117	3.119	DR018D0311
VFD17AMH43ANSAA VFD17AMH43ENSAA VFD17AMH43AFSAA	19.8	29.7	0.881	DR024AP881	3.119	DR018D0311
VFD25AMH43ANSAA VFD25AMH43ENSAA VFD25AMH43AFSAA	28.0	42.0	0.66	DR032AP660	2.338	DR024D0233
VFD32AMH43ANSAA VFD32AMH43ENSAA VFD32AMH43AFSAA	36.0	54.0	0.639	DR038AP639	1.754	DR032D0175
VFD38AMH43ANSAA VFD38AMH43ENSAA VFD38AMH43AFSAA	41.5	62.25	0.541	DR045AP541	1.477	DR038D0147
VFD45AMH43ANSAA VFD45AMH43ENSAA VFD45AMH43AFSAA	49.0	73.5	0.405	DR060AP405	1.247	DR045D0124

460V / 3ø Phase Heavy Duty

460V / 50~60Hz MH Series Heavy duty Input AC Reactor						
Model	Rated Current ND / HD ($\mathrm{A}_{\mathrm{rms}}$)	$\begin{gathered} \text { Saturation } \\ \text { ND / HD } \\ \text { Current (} \mathrm{A}_{\mathrm{rms}} \text {) } \end{gathered}$	Input/ Output Reactor (mH)	Input Reactor Delta Part \#	$\begin{aligned} & \text { DC Reactor } \\ & (\mathrm{mH}) \end{aligned}$	DC Reactor Delta Part \#
VFD1A5MH43ANSAA VFD1A5MH43ENSAA VFD1A5MH43AFSAA	1.5	3.0	8.102	DR003A0810	18.709	DR003D1870
VFD3A0MH43ANSAA VFD3A0MH43ENSAA VFD3A0MH43AFSAA VFD3AOMH43ANSNA VFD3A0MH43ENSNA	3.0	6.0	8.102	DR003A0810	18.709	DR003D1870

$460 \mathrm{~V} / 50 \sim 60 \mathrm{~Hz} \mathrm{MH}$ Series Heavy duty Input AC Reactor						
Model	Rated Current ND / HD (Arms)	$\begin{array}{\|c\|} \hline \text { Saturation } \\ \text { ND / HD } \\ \text { Current }\left(A_{m s}\right) \\ \hline \end{array}$	Input/ Output Reactor (mH)	Input Reactor Delta Part \#	DC Reactor (mH)	DC Reactor Delta Part \#
VFD4A2MH43ANSAA VFD4A2MH43ENSAA VFD4A2MH43AFSAA	4.2	8.4	6.077	DR004A0607	14.031	DR004D1403
VFD5A7MH43ANSAA VFD5A7MH43ENSAA VFD5A7MH43AFSAA	5.7	11.4	4.05	DR006A0405	9.355	DR006D0935
VFD9A0MH43ANSAA VFD9A0MH43ENSAA VFD9A0MH43AFSAA	9.0	18.0	2.7	DR009A0270	6.236	DR009D0623
VFD13AMH43ANSAA VFD13AMH43ENSAA VFD13AMH43AFSAA	13.0	26.0	1.174	DR018A0117	4.677	DR012D0467
VFD17AMH43ANSAA VFD17AMH43ENSAA VFD17AMH43AFSAA	17.5	35.0	1.174	DR018A0117	3.119	DR018D0311
VFD25AMH43ANSAA VFD25AMH43ENSAA VFD25AMH43AFSAA	25.0	50.0	0.881	DR024AP881	2.338	DR024D0233
VFD32AMH43ANSAA VFD32AMH43ENSAA VFD32AMH43AFSAA	32.0	64.0	0.66	DR032AP660	1.754	DR032D0175
VFD38AMH43ANSAA VFD38AMH43ENSAA VFD38AMH43AFSAA	38.0	76.0	0.639	DR038AP639	1.477	DR038D0147
VFD45AMH43ANSAA VFD45AMH43ENSAA VFD45AMH43AFSAA	45.0	90.0	0.541	DR045AP541	1.247	DR045D0124

AC input reactor dimension and specification:

Tightening torque $1.0-1.2 \mathrm{Nm}$

Tightening torque $0.6-0.8 \mathrm{Nm}$

Screw Location	Torque
Terminal	$5.32 \sim 7.09 \mathrm{~kg}-\mathrm{cm} /[6.12 \sim 8.16 \mathrm{lb}-\mathrm{in}] /.[0.6 \sim 0.8 \mathrm{Nm}]$
PE bolt	$8.86 \sim 10.63 \mathrm{~kg}-\mathrm{cm} /[10.2 \sim 12.24 \mathrm{lb}-\mathrm{in}] /.[1.0 \sim 1.2 \mathrm{Nm}]$

Input AC reactor Delta part \#	A	B	C	$\mathrm{D} 1^{*} \mathrm{D} 2$	E	G 1	G 2	$\mathrm{PE} D$
DR005A0254	96	100	60	$6 * 9$	42	60	40	M 4
DR008A0159	120	120	88	$6 * 12$	60	80.5	60	M 4
DR011A0115	120	120	88	$6 * 12$	60	80.5	60	M 4
DR017AP746	120	120	93	$6 * 12$	65	80.5	60	M 4
DR025AP507	150	150	112	$6 * 12$	88	107	75	M 4
DR033AP320	150	150	112	$6 * 12$	88	107	75	M 4

Unit : mm

Screw Location	Torque
Terminal	$10.63 \sim 12.4 \mathrm{~kg}-\mathrm{cm} /[12.24 \sim 14.28 \mathrm{lb}-\mathrm{in}] /.[1.2 \sim 1.4 \mathrm{Nm}]$

Input AC reactor Delta part \#	A	B	C	D1*D2	H	G	G1	Q	M	PE D
DR049AP215	180	195	160	$6 * 12$	115	85	122	16	$1.2 \sim 1.4$	M4
DR065AP163	180	205	160	$6 * 12$	115	85	122	35	$2.5 \sim 3.0$	M4

Input AC reactor Delta part \#	A	A1	B	B1	B2	C	C1	D1*D2	E	G1	H	M * T	PE
DR075AP170	240	220	205	42	165	151	95	$7 * 13$	152	176	85	$20^{*} 3$	M8

Tightening torque $1.0-1.2 \mathrm{Nm}$
Tightening torque $0.6-0.8 \mathrm{Nm}$

Screw Location	Torque
Terminal	$5.32 \sim 7.09 \mathrm{~kg}-\mathrm{cm} /[6.12 \sim 8.16 \mathrm{lb}-\mathrm{in}] /.[0.6 \sim 0.8 \mathrm{Nm}]$
PE bolt	$8.86 \sim 10.63 \mathrm{~kg}-\mathrm{cm} /[10.2 \sim 12.24 \mathrm{lb}-\mathrm{in}] /.[1.0 \sim 1.2 \mathrm{Nm}]$

Input AC reactor Delta part \#	A	B	C	D1*D2	E	G1	G2	PE D
DR003A0810	96	100	60	$6 * 9$	42	60	40	M4
DR004A0607	120	120	88	$6 * 12$	60	80.5	60	M4
DR006A0405	120	120	88	$6 * 12$	60	805	60	M4
DR009A0270	150	150	88	$6 * 12$	74	107	75	M4
DR010A0231	150	150	112	$6 * 12$	88	107	75	M4
DR012A0202	150	150	112	$6 * 12$	88	107	75	M4
DR018A0117	150	155	112	$6 * 12$	88	107	75	M4
DR024AP881	150	155	112	$6 * 12$	88	107	75	M4
DR032AP660	180	175	138	$6 * 12$	114	122	85	M6

Terminals $Q \mathrm{~mm}^{2}$
Tightening torque M Nm

Screw Location	Torque
Terminal	$10.63 \sim 12.4 \mathrm{~kg}-\mathrm{cm} /[12.24 \sim 14.28 \mathrm{lb}-\mathrm{in}] /.[1.2 \sim 1.4 \mathrm{Nm}]$

Input AC reactor Delta part \#	A	B	C	D1*D2	H	G	G1	Q	M	PE D
DR038AP639	180	195	160	$6 * 12$	115	85	122	16	$1.2 \sim 1.4$	M4
DR045AP541	235	235	145	$7 * 13$	85	$/$	176	16	$1.2 \sim 1.4$	M6

Input AC reactor Delta part \#	A	A1	B	B1	B2	C	C1	D1*D2	E	G 1	H	M *	PE
DR060AP405	240	225	210	44	170	163	100	$7^{*} 13$	152	176	97	$20^{*} 3$	M 8

A DC reactor can also, improve power factor, reduce input current, and reduce interference generated from motor drive. A DC reactor stabilizes the DC-bus voltage. Compared to an AC input reactor, the advantages are smaller size, lower price and lower voltage drop (lower power dissipation)

Installation

DC reactor is installed between terminals +1 and +2 . The jumper, which is shown as below, needs to be removed before installation.

Note: 115 V models are no DC choke.

It provides 1-phase / 3-phase power

Wiring of DC reactor

DC reactor dimension and specification:
The length of screw should keep away from the hole.

DC reactor Delta Part \#	Rated Current $($ (Arms $)$	Saturation current $($ Arms $)$	DC reactor (mH)	A $(\mathrm{~mm})$	B (mm)	C $(\mathrm{~mm})$	D (mm)	E (mm)	Dimension (mm)
DR005D0585	5	8.64	5.857	79	78	107	64	59	$9.5^{*} 5.5$
DR008D0366	8	12.78	3.660	79	82	107	63.5	63.5	$9.5^{*} 5.5$
DR011D0266	11	18	2.662	99	96	128	80	72.5	$9^{*} 6$
DR017D0172	17	28.8	1.722	99	102	128	80	80	$9^{*} 6$
DR025D0117	25	43.2	1.172	117	107	154	95	86	$12^{*} 8$
DR033DP851	33	55.8	0.851	117	113	154	95	92	$12^{*} 8$
DR049DP574	49	84.6	0.574	136	123	170	111	100	$12^{*} 8$
DR065DP432	65	111.6	0.432	136	133	170	111	110	$12^{*} 8$
DR075DP391	75	127.8	0.391	153	150	191	125	127	$12^{*} 8$
DR090DP325	90	154.8	0.325	153	154	191	125	131	$12^{*} 8$

DC reactor Delta Part \#	Rated Current $($ Arms $)$	Saturation current $($ Arms $)$	DC reactor (mH)	A $(\mathrm{~mm})$	B (mm)	C $(\mathrm{~mm})$	D (mm)	E $(\mathrm{~mm})$	Dimension (mm)
DR003D1870	3	5.22	18.709	79	82	107	63.5	64	$9.5^{*} 5.5$
DR004D1403	4	6.84	14.031	79	87	107	63.5	68.5	$9.5^{*} 5.5$
DR006D0935	6	10.26	9.355	99	92	128	80	68.5	$9^{*} 6$
DR009D0623	9	14.58	6.236	99	104	128	80	81.5	$9^{*} 6$
DR010D0534	10.5	17.1	5.345	99	108	128	80	85	$9 * 6$

DC reactor Delta Part \#	Rated Current $($ Arms $)$	Saturation current $($ Arms $)$	DC reactor (mH)	A $(\mathrm{~mm})$	B (mm)	C $(\mathrm{~mm})$	D (mm)	E (mm)	Dimension (mm)
DR012D0467	12	19.8	4.677	99	119	128	80	96	$9^{*} 6$
DR018D0311	18	30.6	3.119	117	127	142	95	106	$12^{*} 8$
DR024D0233	24	41.4	2.338	117	134	143	95	113	$12^{*} 8$
DR032D0175	32	54	1.754	136	131	170	111	108	$12^{*} 8$
DR038D0147	38	64.8	1.477	153	143	186	125	120	$12^{*} 8$
DR045D0124	45	77.4	1.247	153	149	186	125	126	$12^{*} 8$

Length of Motor Cable

1. Leakage current to affect the motor and counter measurement

Due to larger parasitic capacitances in longer motor cables, the leakage current increases.
This can activate the over-current protection and incorrect display of current. In worst case the drive can be damaged.
If more than one motor is connected to the AC motor drive, the total motor cable length is the sum of the cable length from AC motor drive to each motor.
For 460 V series $A C$ motor drives, when an overload relay is installed between the drive and the motor to protect motor from overheating, the connecting cable must be shorter than 50m.
However, the overload relay could still malfunction. To prevent this, install an AC output reactor (optional) to the drive and/or lower the carrier frequency setting (Pr. 00-17).
2. Surge voltage to affect the motor and counter measurement

When a motor is driven by a PWM signal from an AC motor drive, the motor terminals can easily experience surge voltages (dv/dt) due to the IGBT switching and the cable capacitance. When the motor cable is very long (especially for the 460 V series), surge voltages (dv/dt) may reduce motor insulation quality. To prevent this situation, please follow the rules below:
a. Use a motor with enhanced insulation
b. Connect an output reactor (optional) to the output terminals of the AC motor drive
c. Reduce the motor cable length to the values below

The suggested motor shielded cable length in the following table complies with IEC 60034-17, which is suitable for motors with a rated voltage $\leq 500 \mathrm{Vac}$ and with an insulation level of $\geq 1.35 \mathrm{kV}_{p-p}$

115V 1-phase Model	Rated current (ND) (Arms)	Without AC reactor (meter)		Non-shielded cable (meter)	Shielded Cable (meter)
		50	75	75	Non-shielded cable (meter)
VFD2A5MH11ANSAA VFD2A5MH11ENSAA	2.7	50	75	75	115
VFD5A0MH11ANSAA VFD5A0MH11ENSAA	5.5	50	75	75	115

230V 1-phase Model	Rated current (ND) (Arms)	Without AC reactor		With AC reactor	
		Shielded Cable (meter)	Non-shielded cable (meter)	Shielded Cable (meter)	Non-shielded cable (meter)
VFD1A6MH21ANSAA VFD1A6MH21ENSAA VFD1A6MH21AFSAA	1.8	50	75	75	115
$\begin{aligned} & \text { VFD2A8MH21ANSAA } \\ & \text { VFD2A8MH21ENSAA } \\ & \text { VFD2A8MH21AFSAA } \end{aligned}$	3.2	50	75	75	115
$\begin{aligned} & \text { VFD5A0MH21ANSAA } \\ & \text { VFD5A0MH21ENSAA } \\ & \text { VFD5A0MH21AFSAA } \end{aligned}$	5.2	50	75	75	115
$\begin{aligned} & \text { VFD7A5MH21ANSAA } \\ & \text { VFD7A5MH21ENSAA } \\ & \text { VFD7A5MH21AFSAA } \end{aligned}$	8.5	50	75	75	115
VFD11AMH21ANSAA VFD11AMH21ENSAA VFD11AMH21AFSAA	12.5	50	75	75	115

230V 3-phase Model	Rated current (ND) (Arms)	Without AC reactor (meter)		Non-shielded cable (meter)	Shielded Cable (meter)
		50	75	75	Non-shielded cable (meter)
VFD2A8MH23ANSAA VFD2A8MH23ENSAA	3.2	50	75	75	115
VFD5A0MH23ANSAA VFD5A0MH23ENSAA VFD5A0MH23ANSNA VFD5A0MH23ENSNA	5.2	50	75	75	115
VFD7A5MH23ANSAA VFD7A5MH23ENSAA	8.0	50	75	75	115
VFD11AMH23ANSAA VFD11AMH23ENSAA	12.5	50	75	75	115
VFD17AMH23ANSAA VFD17AMH23ENSAA	19.5	50	75	75	115
VFD25AMH23ANSAA VFD25AMH23ENSAA	27.0	50	75	75	115
VFD33AMH23ANSAA VFD33AMH23ENSAA	36.0	100	150	150	225
VFD49AMH23ANSAA VFD49AMH23ENSAA	51.0	100	150	150	225
VFD65AMH23ANSAA VFD65AMH23ENSAA	69.0	100	150	150	225

460V 3-phase Model	Rated current (ND) (Arms)	Without AC reactor		With AC reactor	
		Shielded Cable (meter)	Non-shielded cable (meter)	Shielded Cable (meter)	Non-shielded cable (meter)
VFD1A5MH43ANSAA VFD1A5MH43ENSAA VFD1A5MH43AFSAA	1.8	35	50	50	90
VFD3A0MH43ANSAA VFD3A0MH43ENSAA VFD3A0MH43AFSAA VFD3A0MH43ANSNA VFD3A0MH43ENSNA	3.3	35	50	50	90
VFD4A2MH43ANSAA VFD4A2MH43ENSAA VFD4A2MH43AFSAA	4.6	35	50	50	90
VFD5A7MH43ANSAA VFD5A7MH43ENSAA VFD5A7MH43AFSAA	6.5	50	75	75	115
VFD9A0MH43ANSAA VFD9A0MH43ENSAA VFD9A0MH43AFSAA	10.5	50	75	75	115
VFD13AMH43ANSAA VFD13AMH43ENSAA VFD13AMH43AFSAA	14.5	50	75	75	115
VFD17AMH43ANSAA VFD17AMH43ENSAA VFD17AMH43AFSAA	19.8	100	150	150	225
VFD25AMH43ANSAA VFD25AMH43ENSAA VFD25AMH43AFSAA	28.0	100	150	150	225
VFD32AMH43ANSAA VFD32AMH43ENSAA VFD32AMH43AFSAA	36.0	100	150	150	225
VFD38AMH43ANSAA VFD38AMH43ENSAA VFD38AMH43AFSAA	41.5	100	150	150	225
VFD45AMH43ANSAA VFD45AMH43ENSAA VFD45AMH43AFSAA	49.0	100	150	150	225

7-5 Zero Phase Reactors

Interferences can also be suppressed by installing a zero phase reactor at the mains input or the motor output of the drive, depending on where the interference is. Delta provides two types of zero phase reactors to solve interference problems.
A. Casing with mechanical fixed part

This solution is for mains input/motor output side and can endure higher loading and be used at higher frequencies. Higher impedance can be achieved by increasing the number of turns.

Unit: mm									
Model	A	B	C	D	E	F	G(Ø)	To use $\mathrm{w} /$	
RF008X00A	99	73	36.5	29	56.5	86	5.5	Motor cable	

B. Casing without mechanical fixed part.

This solution has higher performance: high initial magnetic permeability, high saturation induction density, low iron loss and perfect temperature characteristic. If it does not need to be fixed mechanically, this solution is suggested

Unit: mm

Model	A	B	C
T60006L2040W453	22.5	43.1	18.5
T60006L2050W565	36.3	53.5	23.4

Installation

During installation, please pass the cable through at least one zero-phase reactor.
Use a suitable cable type (insulation class and wire section) so that the cable passes easily through the zero-phase reactor. Do not pass the grounding cable through zero-phase reactor; only pass the motor wire through.

With longer motor cables the zero-phase reactor can effectively reduce interference at the motor output. Install the zero-phase reactor as close to the output of the drive as possible. Figure A is the installation diagram of a single turn zero-phase reactor. If the diameter allows several turns, the installation of a multi-turn zero-phase reactor is as shown in Figure B. The more turns, the better the noise suppression effect.

Figure A: Single turn wiring diagram of a shieling wire with a zero-phase reactor

Figure B: Multi-Turn Zero Phase Reactor

Installation notices

Install the zero-phase reactor at the output terminal of the frequency converter (U.V.W.). After the zero-phase reactor is installed, the electromagnetic radiation and load stress emitted by the wiring of the frequency converter is reduced. The number of zero-phase reactor required for the drive depends on the length of wiring and the voltage of the drive.

The normal operating temperature of the zero-phase reactor should be lower than $85^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$. However, when the zero-phase reactor is saturated, its temperature may exceed $85^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$. Please increase the number of zero-phase reactors to avoid saturation. The following are reasons that might cause saturation of the zero-phase reactors. For example: The wiring of the drive is too long; the drive has several sets of load; the wiring is in parallel; the drive uses high capacitance wiring. If the temperature of the zero-phase reactor exceeds $85^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$ during the operation of the drive, the number of the zero-phase reactor should be increased.

Recommended max. wiring gauge when installing zero phase reactor

Model \# of Zero Phase Reactor	Max, Wire Gauge or LUG width	Max. Wire Gauge AWG (1Cx3)		Max. Wire Gauge AWG (1Cx4)	
		$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$
RF008X00A	13 mm	3 AWG	1 AWG	3 AWG	1 AWG
T600006L2040W453	11 mm	9 AWG	4 AWG	6 AWG	6 AWG
T600006L2050W565	16 mm	1 AWG	$2 / 0$ AWG	1 AWG	$1 / 0$ AWG

Zero Phase Reactor for Signal Cable

To solve interference problems between signal cables and electric devices, install a zero phase reactor on signal cable. Install it on the signal cable which is the source of the interference to suppress the noise for a better signal. The model names and dimensions are in the table below.

Model	A	B	C
T60004L2016W620	10.7	17.8	8.0
T60004L2025W622	17.5	27.3	12.3

Unit: mm

7-6 EMC Filter

Frame	Model \#	Input Current (A)	Filter model \#	Recommended model of zero-phase reactor		Conducted emission max. motor cable length				Radiatedemissionmax. motorcable lengthC2100 m		
						$\begin{gathered} \mathrm{C} 1 \\ 30 \mathrm{~m} \end{gathered}$			$\begin{gathered} \mathrm{C} 2 \\ 100 \mathrm{~m} \end{gathered}$			
						Position to place zero phase reactor						
				DELTA	VAC	*1	*2	*3	N/A	*1	*2	*3
A	VFD1A6MH11ANSAA	6.8	EMF11AM21A	RF008X00A	T60006L2040W453				NA			
A	VFD2A5MH11ANSAA	10.1	EMF11AM21A	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
A	VFD1A6MH21ANSAA	5.8	EMF11AM21A	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
A	VFD2A8MH21ANSAA	8.3	EMF11AM21A	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
A	VFD1A6MH23ANSAA	2.2	EMF10AM23A	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
A	VFD2A8MH23ANSAA	3.8	EMF10AM23A	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
A	VFD5A0MH23ANSAA	6.2	EMF10AM23A	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
A	VFD1A5MH43ANSAA	2.5	EMF6A0M43A	RF008X00A	T60006L2040W453			\checkmark	NA			\checkmark
A	VFD3A0MH43ANSAA	4.6	EMF6A0M43A	RF008X00A	T60006L2040W453			\checkmark	NA			\checkmark
B	VFD1A6MH21AFSAA	5.8	-	RF008X00A	T60006L2040W453				NA			
B	VFD2A8MH21AFSAA	8.3	-	RF008X00A	T60006L2040W453				NA			
B	VFD5A0MH21ANSAA	11.7	EMF11AM21A	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
B	VFD5A0MH21AFSAA	11.7	-	RF008X00A	T60006L2040W453				NA			
B	VFD7A5MH23ANSAA	9.6	EMF10AM23A	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
B	VFD1A5MH43AFSAA	2.5	-	RF008X00A	T60006L2040W453				NA			
B	VFD3A0MH43AFSAA	4.6	-	RF008X00A	T60006L2040W453				NA			
B	VFD4A2MH43ANSAA	6.4	EMF6A0M43A	RF008X00A	T60006L2040W453			\checkmark	NA			\checkmark
B	VFD4A2MH43AFSAA	6.4	-	RF008X00A	T60006L2040W453				NA			
B	VFD1A6MH21AFSAA	5.8	-	RF008X00A	T60006L2040W453				NA			
C	VFD5A0MH11ANSAA	20.6	EMF27AM21B	RF008X00A	T60006L2040W453				NA			
C	VFD7A5MH21ANSAA	18.5	EMF27AM21B	RF008X00A	T60006L2040W453			\checkmark	NA			\checkmark
C	VFD7A5MH21AFSAA	18.5	-	RF008X00A	T60006L2040W453				NA			
C	VFD11AMH21ANSAA	27.5	EMF27AM21B	RF008X00A	T60006L2040W453			\checkmark	NA			\checkmark
C	VFD11AMH21AFSAA	27.5	-	RF008X00A	T60006L2040W453				NA			
C	VFD11AMH23ANSAA	15	EMF24AM23B	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
C	VFD17AMH23ANSAA	23.4	EMF24AM23B	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
C	VFD5A7MH43ANSAA	7.2	EMF12AM43B	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
C	VFD5A7MH43AFSAA	7.2	-	RF008X00A	T60006L2040W453				NA			
C	VFD9A0MH43ANSAA	11.6	EMF12AM43B	RF008X00A	T60006L2040W453		\checkmark	\checkmark	NA		\checkmark	\checkmark
C	VFD9A0MH43AFSAA	11.6	-	RF008X00A	T60006L2040W453				NA			
D	VFD25AMH23ANSAA	32.4	EMF33AM23B	RF008X00A	T60006L2050W565	\checkmark	\checkmark		NA	\checkmark	\checkmark	
D	VFD13AMH43ANSAA	16.0	EMF23AM43B	RF008X00A	T60006L2050W565	\checkmark	\checkmark	\checkmark	NA	\checkmark	\checkmark	\checkmark
D	VFD13AMH43AFSAA	16.0	-	RF008X00A	T60006L2050W565				NA			
D	VFD17AMH43ANSAA	21.8	EMF23AM43B	RF008X00A	T60006L2050W565	\checkmark	\checkmark	\checkmark	NA	\checkmark	\checkmark	\checkmark
D	VFD17AMH43AFSAA	21.8	-	RF008X00A	T60006L2050W565				NA			
E	VFD33AMH23ANSAA	43.2	B84143D0075R127	RF008X00A	T60006L2050W565		\checkmark	\checkmark	NA		\checkmark	\checkmark
E	VFD49AMH23ANSAA	61.2	B84143D0075R127	RF008X00A	T60006L2050W565		\checkmark	\checkmark	NA		\checkmark	\checkmark
E	VFD25AMH43ANSAA	30.8	B84143D0050R127	RF008X00A	T60006L2050W565		\checkmark	\checkmark	NA		\checkmark	\checkmark
E	VFD25AMH43AFSAA	30.8	-	RF008X00A	T60006L2050W565				NA			
E	VFD32AMH43ANSAA	39.6	B84143D0050R127	RF008X00A	T60006L2050W565		\checkmark	\checkmark	NA		\checkmark	\checkmark
E	VFD32AMH43AFSAA	39.6	-	RF008X00A	T60006L2050W565				NA			
F	VFD65AMH23ANSAA	82.8	B84143D0090R127	RF008X00A	T60006L2050W565		\checkmark	\checkmark	NA		\checkmark	\checkmark
F	VFD38AMH43ANSAA	45.7	B84143D0075R127	RF008X00A	T60006L2050W565		\checkmark	\checkmark	NA		\checkmark	\checkmark

Chapter 7 Optional Accessories | MH300

Frame	Model \#	Input Current (A)	Filter model \#	Recommended model of zero-phase reactor		Conducted emission max. motor cable length				Radiated emission max. motor cable length		
						$\begin{gathered} \hline \mathrm{C} 1 \\ 30 \mathrm{~m} \end{gathered}$			$\begin{gathered} C 2 \\ 100 \mathrm{~m} \end{gathered}$	$\begin{gathered} \mathrm{C} 2 \\ 100 \mathrm{~m} \end{gathered}$		
						Position to place zero phase reactor						
				DELTA	VAC	*1	*2	*3	N/A	*1	*2	*3
F	VFD38AMH43AFSAA	45.7	-	RF008X00A	T60006L2050W565				NA			
F	VFD45AMH43ANSAA	53.9	B84143D0075R127	RF008X00A	T60006L2050W565		\checkmark	\checkmark	NA		\checkmark	\checkmark
F	VFD45AMH43AFSAA	53.9	-	RF008X00A	T60006L2050W565				NA			

Filter Dimension
EMF11AM21A
EMF10AM23A

EMF6A0M43A

Screw	Torque
M5 ${ }^{*} 2$	$16 \sim 20 \mathrm{~kg}-\mathrm{cm} /[13.9 \sim 17.3 \mathrm{lb}-\mathrm{in}] /.[1.56 \sim 1.96 \mathrm{Nm}]$
$\mathrm{M}^{*}{ }^{*} 2$	$14 \sim 16 \mathrm{~kg}-\mathrm{cm} /[12.2 \sim 13.8 \mathrm{lb}-\mathrm{in}] /.[1.38 \sim 1.56 \mathrm{Nm}]$

EMF27AM21B; EMF24AM23B
EMF33AM23B; EMF12AM43B
EMF23AM43B

Screw	Torque
M 5 * 4	$16 \sim 20 \mathrm{~kg}-\mathrm{cm} /[13.9 \sim 17.3 \mathrm{lb}-\mathrm{in}] /.[1.56 \sim 1.96 \mathrm{Nm}]$

TDK B84143D0050R127 (50A)

Terminals $25 \mathrm{~mm}^{2}$
Tightening torque $4 \ldots 4.5 \mathrm{Nm}$

SSB2364-F-E

TDK B84143D0075R127 (75A), TDK B84143D0090R127 (90A)

7-7 EMC Shield Plate

EMC Shield Plate (for use with use shielded cable)
Frame EMC Shield Plate model

Installation

(Frame A model as an example)

1. As on the right, fix the iron plate on the AC motor drive.

Torque value:

Frame	Screw	Torque
A	M3.5	$6 \sim 8 \mathrm{~kg}-\mathrm{cm} /[5.2 \sim 6.9 \mathrm{lb}-\mathrm{in}] /.[0.59 \sim 0.78 \mathrm{Nm}]$
B	M4	$6 \sim 8 \mathrm{~kg}-\mathrm{cm} /[5.2 \sim 6.9 \mathrm{lb}-\mathrm{in}] /.[0.59 \sim 0.78 \mathrm{Nm}]$
C	M4	$6 \sim 8 \mathrm{~kg}-\mathrm{cm} /[5.2 \sim 6.9 \mathrm{lb}-\mathrm{in}] /.[0.59 \sim 0.78 \mathrm{Nm}]$
D	M3	$4 \sim 6 \mathrm{~kg}-\mathrm{cm} /[3.5 \sim 5.2 \mathrm{lb}-\mathrm{in}] /.[0.39 \sim 0.59 \mathrm{Nm}]$
E	M3	$4 \sim 6 \mathrm{~kg}-\mathrm{cm} /[3.5 \sim 5.2 \mathrm{lb}-\mathrm{in}] /.[0.39 \sim 0.59 \mathrm{Nm}]$
F	M4	$6 \sim 8 \mathrm{~kg}-\mathrm{cm} /[5.2 \sim 6.9 \mathrm{lb}-\mathrm{in}] /.[0.59 \sim 0.78 \mathrm{Nm}]$

2. After selecting suitable R-clip according to the wire gauge used, fix the R-clip on shield plate.

Screw	Torque
M 4	$6 \sim 8 \mathrm{~kg}-\mathrm{cm} /[5.2 \sim 6.9 \mathrm{lb}-\mathrm{in}] /.[0.59 \sim 0.78 \mathrm{Nm}]$

Dimensions of EMC Shield Plate

Model	Dimensions of Shield Plate mm [inch.]	
	a	b
MKM-EPA	69.3 [2.73]	$80.0[3.15]$
MKM-EPB	67.7 [2.67]	79.7 [3.14]
MKM-EPC	$78.0[3.07]$	$91.0[3.58]$
MKM-EPD	$103.4[4.07]$	$97.0[3.82]$
MKM-EPE	$124.3[4.89]$	$77.4[3.05]$
MKM-EPF	$168.0[6.61]$	$80.0[3.15]$

Recommended wire mounting method

Frame	Model of EMC Shield Plate	Reference figure
A	MKM-EPA	
B	MKM-EPB	
C	MKM-EPC	
D	MKM-EPD	
E	MKM-EPE	
F	MKM-EPF	

7-8 Capacitive Filter

Installation diagram:

The capacitive filter (CXY101-43A) is a simple filter which can support basic filtering and noise interference reduction.

Capacitive filter and drive wiring figure :

Specification:

Model	Capacitance	Temperature range
$\mathrm{CXY} 101-43 \mathrm{~A}$	$\mathrm{Cx}: 1 \mu \mathrm{~F} \pm 20 \%$ $\mathrm{Cy}: 0.1 \mu \mathrm{~F} \pm 20 \%$	$-40 \sim+85^{\circ} \mathrm{C}$

Dimension :
CXY101-43A
Unit : mm [inch]

7-9 Conduit Box

Conduit box are in compliance with protection level NEMA 1 / UL Type 1
Frame A (A1 , A2 , A3 - A4)
Model of conduit box: MKM-CBA

Unit: mm [inch.]

Frame B

Model of conduit box: MKM-CBB

Unit: mm [inch.]

Frame C

Model of conduit box: MKM-CBC

Unit: mm [inch.]

Frame D

Model of conduit box: MKM-CBD

Unit: mm [inch.]

Frame E

Model of conduit box: MKM-CBE

Unit: mm [inch.]

Frame F
Model of conduit box: MKM-CBF

Unit: mm [inch.]

Installation:

Recommended screw torque:
M3: $4-6 \mathrm{~kg}-\mathrm{cm} /[3.5-5.2 \mathrm{lb}-\mathrm{in}] /.[0.39-0.59 \mathrm{Nm}]$
M3.5: 4-6 kg-cm / [3.5-5.2 lb-in.] / [0.39-0.59 Nm]
M4: 6-8 kg-cm / [5.2-6.9 lb-in.] / [0.59-0.78 Nm]
Frame A

1)		2)	
3)		4)	
5)			

7-10 Fan Kit

Frame	Fan Model	Fan Kit	
A	MKM-FKMA		
B	MKM-FKMB		
C	MKM-FKMC		
D	MKM-FKMD		
E	MKM-FKME		
F	MKM-FKMF		

Fan Removal

7-11 Keypad Panel Mounting

KPMH-LC01

Method 1: Direct installation on a plate (unit: mm [inch])

Method 2: Mounting through a plate (unit: mm [inch])
Thickness $=1.2$ [0.05] or 2.0 [0.08]

※ The extension cable models and cable length specifications are in the following table :

Models	Extension Cable Length (Unit : mm [inch])
CBC-K3FT	$900[35.43]$
CBC-K5FT	$1500[59.05]$
CBC-K7FT	$2100[82.68]$
CBC-K10FT	$3000[118.11]$
CBC-K16FT	$4900[192.91]$

7-12 DIN-Rail Mounting

MKM-DRB (applicable for Frame A and Frame B)

Screw	Torque
M *2PCS	$8 \sim 10 \mathrm{~kg}-\mathrm{cm}$
	$[6.9 \sim 8.7 \mathrm{lb}-\mathrm{in}]$.
	$[0.7 \sim 098 \mathrm{Nm}]$

MKM-DRC (applicable for Frame C)

Screw	Torque
M5*4PCS	$[8.7 \sim 12 \mathrm{~kg}-\mathrm{cm}$
	$[0.98 \sim 1.4 \mathrm{lb}-\mathrm{in}]$.

unit: mm[inch]

	Screw	Torque
MKM-DRB	M4*P0.7*2PCS	$\begin{gathered} 8 \sim 10 \mathrm{~kg}-\mathrm{cm} \\ {[6.9 \sim 8.7 \mathrm{lb}-\mathrm{in} .]} \\ {[0.78 \sim 0.98 \mathrm{Nm}]} \end{gathered}$
MKM-DRC	M5*P0.8*4PCS	$\begin{gathered} 10 \sim 12 \mathrm{~kg}-\mathrm{cm} \\ {[8.7 \sim 10.4 \mathrm{lb}-\mathrm{in} .]} \\ {[0.98 \sim 1.18 \mathrm{Nm}]} \end{gathered}$

MKM-DRB: for frame A. B
MKM-DRC: for frame C

7-13 Mounting Adapter Plate

This mounting adapter accessory is to change the wiring way of MS300/MH300 series to provide flexible installation. It changes the wiring from mains input/motor output at the bottom to mains input from the top and motor output from the bottom. When you change drive from VFD-E / VFD-EL series to MS300 / MH300 series, you can use original wiring method, the correspondence table is showing as below.

Models	Series	MS/MH300	VFD-E
VFD-EL			
MKM-MAPB	Frame A~B	Frame A	Frame A
MKM-MAPC	Frame C	Frame B	Frame B

MKM-MAPB:
Applicable for Frame A and B

Unit: mm [inch]

Screw	Torque
M4	$14 \sim 16 \mathrm{~kg}-\mathrm{cm} /[12.2 \sim 13.9 \mathrm{lb}-\mathrm{in}] /.[1.37 \sim 1.56 \mathrm{Nm}]$
M5	$16 \sim 20 \mathrm{~kg}-\mathrm{cm} /[13.9 \sim 17.4 \mathrm{lb}-\mathrm{in}] /.[1.56 \sim 1.96 \mathrm{Nm}]$

MKM-MAPC:
Applicable for frame C

Installation

Unit: mm [inch]

Screw	Torque
M4	$14 \sim 16 \mathrm{~kg}-\mathrm{cm} /[12.2 \sim 13.9 \mathrm{lb}-\mathrm{in}] /.[1.37 \sim 1.56 \mathrm{Nm}]$
M5	$16 \sim 20 \mathrm{~kg}-\mathrm{cm} /[13.9 \sim 17.4 \mathrm{lb}-\mathrm{in}] /.[1.56 \sim 1.96 \mathrm{Nm}]$

Chapter 8 Option Cards

8-1 Option Card Installation
8-2 EMM-D33A I/O Extension Card
8-3 EMM-A22A I/O Extension Card
8-4 EMM-R3AA Relay Extension Card
8-5 EMM-R2CA Relay Extension Card
8-6 CMM-MOD01 Modbus/TCP Option Card
8-7 CMM-PD01 PROFIBUS Option Card
8-8 CMM-DN01 DeviceNet Option Card
8-9 CMM-EIP01 Modbus TCP/EtherNet IP Option Card
8-10 EMM-BPS01 Back-up Power Supply Card
8-11 EMM-PG01L PG Card
8-12 EMM-PG01O PG Card
8-13 EMM-PG01R PG Card
8-14 CANopen Communication Cable/
Digital Keypad RJ45 Extension Cable

Chapter 8 Option Cards | MH300

The option cards mentioned in this chapter are optional items. Please select applicable option cards for your motor drive or contact local distributor for suggestion. The option cards can improve the efficiency of the motor drive significantly.

To prevent the motor drive from damage during installation, remove the digital keypad and the cover before wiring.

8-1 Option Card Installation

8-1-1 Installation (1)

1. Switch off the power supply.
2. Open the front cover of the drive.
3. As shown in Fig. 8-1, aim the two clips at the communication card fixed fitting.

Press the fixed fitting to clip the slot.

Fig. 8-1
4. As shown in Fig. 8-2, aim the three holes at the positioning pin.

Press the pin to clip the holes with the communication card.

Fig. 2
5. Wiring after the communication card fixed fitting is clipped with the holes (see NOTE). Fasten the screw if the communication card maintains front mounting. Torque: $4 \sim 6 \mathrm{~kg}-\mathrm{cm} /$ [3.5~5.2 lb-in.]/ [0.39~0.59 Nm] , do not close the front cover at this time. (shown in Fig. 8-3) If close the front cover, please refer to the subsequent steps.

Fig. 8-3
6. After the wiring is completed, loosen the communication card of the front mounting, and reverse-mounted, aim the three holes at the positioning pin, press the pin to clip the holes with the communication card. (shown in Fig. 8-4)

Fig. 8-4
7. Fasten the screw after the communication card fixed fitting is clipped with the holes. (shown in Fig. 8-5)

Fig. 8-5
8. Installation is completed. (shown in Fig. 8-6) The upper cover can be installed.

Fig. 8-6

8-1-2 Installation (2)

This method is only for MH300 series to install a second option card. (see

國 №TE)

Frame A~D
(1)
(2)
(3)
(4)

(5)

(8)

Frame E~F (Only for IO / RELAY/ PG extension card.)

(1)

(2)

NOTE

- The communication cards listed below must connect to ground when wiring. The ground terminal is enclosed with communication card as shown in Fig. 8-7.

1. CMM-MOD01
2. CMM-PD01
3. CMM-DN01
4. CMM-EIP01
5. EMM-PG01L
6. EMM-PG01O
B.

A.

Fig. 8-7
7. EMM-PG01R

- Installation of the ground terminal:

B side of the ground terminal connects to the ground terminal block on communication card as No. 6 of CMM-MOD01 shown in Fig. 8-8, and see each section in Chapter 8 for ground terminal blocks of other option cards; A side of the ground terminal connects to the PE on the drive as red circles shown in Fig. 8-9 ~ 8-11.

Fig. 8-8

Frame A~C

Torque ($\pm 10 \%$)
Frame A: $9 \mathrm{~kg}-\mathrm{cm}[7.8 \mathrm{lb}-\mathrm{in}].[0.88 \mathrm{Nm}]$
Frame B: $15 \mathrm{~kg}-\mathrm{cm}$ [13.0 lb-in.] [1.47 Nm]
Frame C: $20 \mathrm{~kg}-\mathrm{cm}$ [17.4 lb-in.] [1.96 Nm]

Fig. 8-10

Torque ($\pm 10 \%$)
Frame D: $20 \mathrm{~kg}-\mathrm{cm}$ [17.4 lb-in.] [1.96 Nm]
Frame E: $25 \mathrm{~kg}-\mathrm{cm}$ [21.7 lb-in.] [2.45 Nm]

Frame F

Fig. 8-11
Torque ($\pm 10 \%$)
Frame F: $7 \mathrm{~kg}-\mathrm{cm}$ [6.1 lb-in.] [0.69 Nm]

8-2 EMM-D33A I/O Extension Card

Product Profile

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Terminal block
5. Ground terminal block

Wire: 24~20 AWG
Torque: $2 \mathrm{~kg}-\mathrm{cm} /[1.7 \mathrm{lb}-\mathrm{in}$.$] / [0.2 Nm]$

	Terminals	Descriptions
Digital I/O Extension Card	24V , DCM	Output power: $+24 \mathrm{VDC} \pm 5 \% 200 \mathrm{~mA}, 5 \mathrm{~W}$
	MI10~ MI12	Refer to Pr. 02-26~ Pr. 02-28 to program the multi-function. Choose SINK (NPN) / SOURCE (PNP) from SWW1. Internal power is supplied by terminal $24 \mathrm{~V}:+24 \mathrm{Vdc} \pm 5 \% 200 \mathrm{~mA}, 5 \mathrm{~W}$. If external power is +24 VDC , the max. voltage is 30 VDC and the min. voltage is 19 VDC . ON: the activation current is 6.5 mA . OFF: leakage current tolerance is $10 \mu \mathrm{~A}$.
	MO10~MO12	Refer to Pr. 02-36~ Pr. 02-38 to program the multi-function The motor drive releases various monitor signals, such as drive in operation, frequency attained and overload indication, via transistor (open collector). MO output signal: each MO terminal needs a pull-up resistor, the max.
	MCM	Common for multi-function output terminals MO10~MO12 (photocoupler)
	PE	Earthing terminal, to decrease noise, this terminal should be grounded properly.

8-3 EMM-A22A I/O Extension Card

- Product Profile

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Terminal block
5. Ground terminal block

Wire: 24~20 AWG
Torque: $2 \mathrm{~kg}-\mathrm{cm} /[1.7 \mathrm{lb}-\mathrm{in}] /.[0.2 \mathrm{Nm}]$

Analog I/O Extension Card	Terminals	Descriptions
	ACM	Common output signal and input signal terminals
	Al10, Al11	Refer to Pr. 14-00~ Pr. 14-01 to program the multi-function Two AI ports: switch between J9, J19 for AVI or ACI AVI: input $0 \sim 10.00 \mathrm{~V} \pm 0.05 \mathrm{~V}$ ACI: input $0 \sim 20.00 \mathrm{~mA} \pm 0.05 \mathrm{~mA}$
	AO10~AO11	Refer to Pr. 14-12 ~Pr. 14-13 to program the multi-function Two AO ports: switch between J2, J22 for AVO or ACO AVO: output $0 \sim 10.00 \mathrm{~V} \pm 0.05 \mathrm{~V}$ ACO: output $0 \sim 20.00 \mathrm{~mA} \pm 0.05 \mathrm{~mA}$
	PE	Earth terminal, to decrease noise, this terminal should be grounded

8-4 EMM-R3AA Relay Extension Card

- Product Profile

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Terminal block

Wire: 24~16 AWG
Torque: $5 \mathrm{~kg}-\mathrm{cm} /[4.3 \mathrm{lb}-\mathrm{in}] /.[0.49 \mathrm{Nm}$]

	Terminals	Descriptions
Relay Extension Card	$\begin{aligned} & \text { RA10~RA12 } \\ & \text { RC10~RC12 } \end{aligned}$	Refer to Pr. 02-36~ Pr. 02-38 to program the multi-function Resistive load: $6 \text { A (N.O.) / } 250 \text { VAC }$ Function: To output each monitor signal, such as drive is in operation, frequency attained or overload indication.

8-5 EMM-R2CA Relay Extension Card

- Product Profile

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Terminal block

	Terminals	Descriptions
Relay Extension Card	RA10~RA11 RB10~RB11 RC10~RC11	Refer to Pr. 02-36~ Pr. 02-37 to program the multi-function Resistive load: $5 \text { A (N.O.) / } 240 \text { VAC }$ Function: To output each monitor signal, such as drive is in operation, frequency attained or overload indication.

Chapter 8 Option Cards
 MH300

8-6 CMM-MOD01 Modbus/TCP Option Card

- Features

1. Supports Modbus TCP protocol
2. MDI / MDI-X auto-detect
3. Baud rate:10 / 100 Mbps
4. E-mail alarm
5. IP Filter simple firewall function

- Product Profile

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Communication port
5. Indicator
6. Ground terminal block

Wire: 24~20 AWG
Torque: $2 \mathrm{~kg}-\mathrm{cm} /[1.7 \mathrm{lb}-\mathrm{in}$.$] / [0.2 Nm]$

Network Interface

Interface	RJ-45 with Auto MDI / MDIX
Number of ports	1 Port
Transmission method	IEEE 802.3, IEEE 802.3u
Transmission cable	Category 5e shielding 100 M
Transmission speed	$10 / 100$ Mbps Auto-Detect
Network protocol	ICMP, IP, TCP, UDP, DHCP, SMTP, MODBUS TCP, Delta Configuration

Electrical Specification

Power supply voltage	5 VDC (supplied by AC motor drive)
Insulation voltage	500 VDC
Power consumption	0.8 W
Weight	25 g

Environment

	ESD (IEC 61800-5-1, IEC 6100-4-2)
EFT (IEC 61800-5-1, IEC 6100-4-4)	
Noise immunity	Surge Test (IEC 61800-5-1, IEC 6100-4-5)
	Conducted Susceptibility Test (IEC 61800-5-1, IEC 6100-4-6)

■ Communication Parameters for VFD-MH300 Connected to Ethernet

When VFD-MH300 links to EtherNet, please set up the communication parameters based on the table below. The EtherNet master will be able to read/write frequency command word and operation command word to VFD-MH300 after the communication parameters are set.

Parameter	Function	Current Set Value	Definition of Parameter Values
$00-20$	Setting for source of frequency command	8	The frequency command is controlled by communication card
$00-21$	Setting for source of operation command	5	The operation command is controlled by communication card
$09-30$	Decoding method for communication	0	Decoding method for Delta AC motor drive
$09-75$	IP setting	0	Static IP(0) / Dynamic distribution IP(1)
$09-76$	IP address -1	192	IP address 192.168.1.5
$09-77$	IP address -2	168	IP address 192.168.1.5
$09-78$	IP address -3	1	IP address 192.168.1.5
$09-79$	IP address -4	5	IP address 192.168.1.5
$09-80$	Netmask -1	255	Netmask 255.255.255.0
$09-81$	Netmask -2	255	Netmask 255.255.255.0
$09-82$	Netmask -3	255	Netmask 255.255.255.0
$09-83$	Netmask -4	0	Netmask 255.255.255.0
$09-84$	Default gateway -1	192	Default gateway 192.168.1.1
$09-85$	Default gateway -2	168	Default gateway 192.168.1.1
$09-86$	Default gateway -3	1	Default gateway 192.168.1.1
$09-87$	Default gateway -4	1	Default gateway 192.168.1.1

- Basic Registers

BR\#	R/W	Content	Set Value
\#0	R	Model name	Set up by the system. The model code of CMM-MOD01=H'0203
\#1	R	Firmware version	Displaying the current firmware version in hex, e.g. 0100h indicates firmware version V1.00
\#2	R	Release date of the version	Displaying the data in decimal form. 10,000s digit and 1,000s digit are for "month"; 100s digit and 10s digit are for "day". For 1 digit: 0 = morning; 1 = afternoon
\#11	R/W	MODBUS Timeout	Pre-defined setting: 500 (ms)
$\# 13$	R/W	Keep Alive Time	Pre-defined setting: $30(\mathrm{~s})$

- LED Indicator \& Troubleshooting

LED Indicators

LED	Status		Indication	Processing Methods
POWER	Green	On	Power supply in normal status	No action is required
	Green	Off	No power supply	Check the power supply
	On	Network connection in normal status	No action is required	
		Flashes	Network in operation	No action is required
		Off	Network not connected	Check if the network cable is connected

Troubleshooting

Abnormality	Cause	Processing Methods
POWER LED off	AC motor drive not powered	Check if AC motor drive is powered, and if the power supply is normal.
	CMM-MOD01 not connected to AC motor drive	Make sure CMM-MOD01C is connected to AC motor drive.
	Poor contact to RJ-45 connector	Make sure the network cable is correctly connected to network.
No module found	CMM-MOD01 not connected to port.	
petwork RJ-45 connector is connected to Ethernet peand CMM-MOD01 in different networks and blocked by network firewall.	Search by IP or set up relevant settings via the AC motor drive keypad.	
Fail to open CMM-MOD01 setup page	CMM-MOD01 not connected to network	Make sure CMM-MOD01 is connected to the network.
	Incorrect communication setting in DCISoft	Make sure the communication setting in DCISoft is set to Ethernet.
PC and CMM-MOD01 in different networks and blocked by network firewall.	Conduct the setup via the AC motor drive keypad.	
Able to open CMM-MOD01 setup page but fail to utilize webpage monitoring	Incorrect network setting in CMM-MOD01	Check if the network setting for CMM-MOD01 is correct. For the Intranet setting in your company, please consult your IT staff. For the Internet setting at home, please refer to the network setting instruction provided by your ISP.
Fail to send e-mail	Incorrect network setting in CMM-MOD01	Check if the network setting for CMM-MOD01 is correct.

8-7 CMM-PD01 PROFIBUS Option Card

- Features

1. Supports PZD control data exchange.
2. Supports PKW polling AC motor drive parameters.
3. Supports user diagnosis function.
4. Auto-detects baud rates; supports Max. 12 Mbps.

- Product File

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Communication port
5. Indicator
6. Ground terminal block

Wire: 24~20 AWG
Torque: $2 \mathrm{~kg}-\mathrm{cm} /[1.7 \mathrm{lb}-\mathrm{in}$.$] / [0.2 Nm]$

PROFIBUS DP Connector

Interface	DB9 connector
Transmission	High-speed RS-485
Transmission cable	Shielded twisted pair cable
Electrical isolation	500 VDC

Communication

Message type	Cyclic data exchange
Module name	CMM-PD01
GSD document	DELA08DB.GSD
Product ID	08DB (HEX)
Serial transmission speed supported (auto-detection)	$9.6 \mathrm{kbps} ; 19.2 \mathrm{kbps} ; 93.75 \mathrm{kbps} ; 187.5 \mathrm{kbps} ; 125 \mathrm{kbps} ; 250 \mathrm{kbps} ; 500 \mathrm{kbps} ;$ $\mathrm{M} ; 3 \mathrm{Mbps} ; 6 \mathrm{Mbps} ; 12 \mathrm{Mbps}$ (bit per second)

Electrical Specification

Power supply	5 VDC (supplied by AC motor drive)
Insulation voltage	500 VDC
Power consumption	1 W
Weight	28 g

Environment

	ESD (IEC 61800-5-1, IEC 6100-4-2)			
Noise immunity	EFT (IEC 61800-5-1, IEC 6100-4-4)			
Surge Test (IEC 61800-5-1, IEC 6100-4-5)				
	Conducted Susceptibility Test (IEC 61800-5-1, IEC 6100-4-6)	$	$	Operation: $-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ (temperature), 90\% (humidity)
:---:	:---			
Storage: $-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ (temperature), 95\% (humidity)				

- Installation

PROFIBUS DP Connector pin assignment

PIN	PIN name	Definition
1	-	Not defined
2	-	Not defined
3	Rxd / Txd-P	Sending / receiving data P(B)
4	-	Not defined
5	DGND	Data reference ground
6	VP	Power voltage - positive
7	-	Not defined
8	Rxd / Txd-N	Sending / receiving data N(A)
9	-	Not defined

- LED Indicator \& Troubleshooting

There are 2 LED indicators on CMM-PD01: POWER LED and NET LED. POWER LED displays the status of the working power. NET LED displays the connection status of the communication.

POWER LED

LED status	Indication	Processing Methods
Green light on	Power supply in normal status.	No action is required
Off	No power	Check if the connection between CMM-PD01 and AC motor drive is normal.

NET LED

LED status	Indication	Processing Methods
Green light on	Normal status	No action is required
Red light on	CMM-PD01 is not connected to PROFIBUS DP bus.	Connect CMM-PD01 to PROFIBUS DP bus.
Red light flashes	Invalid PROFIBUS communication address	Set the PROFIBUS address of CMM-PD01 between $1 \sim 125$ (decimal)
Orange light flashes	CMM-PD01 fails to communicate with AC motor drive.	Switch off the power and check whether CMM-PD01 is installed correctly and connected normally to the AC motor drive.

8-8 CMM-DN01 DeviceNet Option Card

- Functions

1. Based on the high-speed communication interface of Delta's HSSP protocol, the AC motor drive can be controlled in real-time.
2. Supports Group 2 only connection and polling I/O data exchange.
3. For I/O mapping, supports max. 32 words input and 32 words output.
4. Supports EDS file configuration in DeviceNet configuration software.
5. Supports all Baud rates on DeviceNet bus: 125 kbps, $250 \mathrm{kbps}, 500$ kbps and extendable Baud rate mode.
6. Node address and Baud rate can be set up in the AC motor drive.
7. Power supplied from AC motor drive.

- Product Profile

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Communication Port
5. Indicator
6. Ground terminal block

- Specifications

Wire: 24~20 AWG
Torque: $2 \mathrm{~kg}-\mathrm{cm} /[1.7 \mathrm{lb}-\mathrm{in}] /.[0.2 \mathrm{Nm}]$

DeviceNet Connector

Interface	5-PIN open pluggable connector. PIN interval: 5.08 mm
Transmission method	CAN
Transmission cable	Shielded twisted pair cable (with 2 power cables)
Transmission speed	$125 \mathrm{kbps}, 250 \mathrm{kbps}, 500 \mathrm{kbps}$ and extendable baud rate mode
Network protocol	DeviceNet protocol

AC Motor Drive Connection Port

Interface	50 PIN communication terminal
Transmission method	SPI communication
Terminal function	1. Communication module communicates with AC motor drive via this port. 2. AC motor drive provides power supply to communication module via this port.
Communication protocol	Delta HSSP protocol

Electrical Specification

Power supply voltage	5 VDC (supplied by AC motor drive)
Insulation voltage	500 VDC
Communication wire power consumption	0.85 W
Power consumption	1 W
Weight	23 g

Environment

	ESD (IEC 61800-5-1, IEC 6100-4-2)
Noise immunity	EFT (IEC 61800-5-1, IEC 6100-4-4)
	Surge Test (IEC 61800-5-1, IEC 6100-4-5)
Conducted Susceptibility Test (IEC 61800-5-1, IEC 6100-4-6)	

DeviceNet Connector

PIN	Signal	Color	Definition
1	V+	Red	24 VDC
2	H	White	Signal+
3	S	-	Earth
4	L	Blue	Signal-
5	V-	Black	OV

LED Indicator \& Troubleshooting

There are 3 LED indicators on CMM-DN01. POWER LED displays the status of power supply. MH LED and NS LED are dual-color LEDs, displaying the connection status and error messages of the communication module.

POWER LED

LED status	Indication	Processing Methods
On	Power supply in abnormal status	Check the power supply of CMM-DN01
Off	Power supply in normal status	No action is required

NS LED

LED status	Indication	Processing Methods		
Off	$\begin{array}{l}\text { No power supply or CMM-DN01 has } \\ \text { not completed MAC ID test yet. }\end{array}$	$\begin{array}{l}\text { 1. Check the power of CMM-DNO1 and see if the } \\ \text { connection is normal. } \\ \text { 2. Make sure there are at least one or more nodes } \\ \text { on the bus. } \\ \text { 3. Check if the Baud rate of CMM-DN01 is the } \\ \text { same as that of the other nodes. }\end{array}$		
$\begin{array}{c}\text { Green light } \\ \text { flashes }\end{array}$	$\begin{array}{l}\text { CMM-DN01 is on-line but has not } \\ \text { established connection to the } \\ \text { master. }\end{array}$	$\begin{array}{l}\text { 1. Configure CMM-DN01 to the scan list of the } \\ \text { master. } \\ \text { 2. Re-download the configured data to the master. }\end{array}$		
Green light on	$\begin{array}{l}\text { CMM-DN01 is on-line and is } \\ \text { normally connected to the master. }\end{array}$	No action is required		
Red light	$\begin{array}{l}\text { CMM-DN01 is on-line, but I/O } \\ \text { flashes } \\ \text { connection is timed-out. }\end{array}$	$\begin{array}{l}\text { 1. Check if the network connection is normal. } \\ \text { 2. Check if the master operates normally. }\end{array}$		
Red light on	$\begin{array}{l}\text { 1. The communication is down. } \\ \text { 2. MAC ID test failure. } \\ \text { 3. No network power supply. } \\ \text { 4. CMM-DN01 is off-line. }\end{array}$	$\begin{array}{l}\text { 1. Make sure all MAC IDs on the network are not } \\ \text { repeated. } \\ \text { 2. Check if the network installation is normal. } \\ \text { 3. Check if the Baud rate of CMM-DN01 is } \\ \text { consistent with that of the other nodes. }\end{array}$		
4. Check if the node address of CMM-DN01 is				
illegal.			$\}$ 5. Check if the network power supply is normal.	
:---				

MS LED

LED status	Indication	Processing Methods
Off	No power supply or being off-line	Check the power supply of CMM-DN01 and see if the connection is normal.
Green light flashes	Waiting for I/O data	Switch the master PLC to RUN status
Green light on	I/O data are normal	No action is required
Red light flashes	Mapping error	1. Reconfigure CMM-DN01 2. Re-power the AC motor drive
Red light on	Hardware error	1. See the error code on the drive's keypad. 2. Send back to the factory for repair if necessary.
Orange light flashes	CMM-DN01 is establishing connection with AC motor drive	If the flashing lasts for a long time, check if CMM-DN01 and the AC motor drive are correctly installed and normally connected to each other.

8-9 CMM-EIP01 Modbus TCP/EtherNet IP Option Card

- Features

1. Supports MODBUS TCP and Ethernet / IP protocol
2. MDI / MDI-X auto-detect
3. Baud rate: $10 / 100 \mathrm{Mbps}$ auto-detect
4. E-mail alarm
5. AC motor drive keypad / Ethernet configuration
6. Virtual serial port

- Product Profile

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Communication port
5. Indicator

- Specifications

Network Interface

Wire: 24~20 AWG
Torque: $2 \mathrm{~kg}-\mathrm{cm} /[1.7 \mathrm{lb}-\mathrm{in}] /.[0.2 \mathrm{Nm}]$

Interface	RJ-45 with Auto MDI / MDIX
Number of ports	1 Port
Transmission method	IEEE 802.3, IEEE 802.3u
Transmission cable	Category 5e shielding 100 M
Transmission speed	$10 / 100$ Mbps Auto-Detect
Network protocol	ICMP, IP, TCP, UDP, DHCP, HTTP, SMTP, MODBUS OVER TCP / IP, EtherNet / IP, Delta Configuration

Electrical Specification

Weight	25 g
Insulation voltage	500 VDC
Power consumption	0.8 W
Power supply voltage	5 VDC

Environment

Noise immunity	ESD (IEC 61800-5-1, IEC 61000-4-2) EFT (IEC 61800-5-1, IEC 61000-4-4) Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6)
	Operation: $-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ (temperature), 90\% (humidity) Storage: $-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ (temperature), 95\% (humidity)
	International standard: IEC 61800-5-1, IEC 60068-2-6 / IEC 61800-5-1, IEC 60068-2-27

- Installation

Connecting CMM-EIP01 to Network

1. Switch off the power supply.
2. Open the front cover of the drive.
3. Connect CAT-5e network cable to RJ-45 port on CMM-EIP01 (shown in Figure 2)

Figure 2
RJ-45 PIN Definition

PIN	Signal	Definition
1	Tx+	Data transmit positive
2	Tx-	Data transmit negative
3	$R x+$	Data receive positive
4	--	N/C

PIN	Signal	Definition
5	--	N/C
6	Rx-	Data receive negative
7	--	N/C
8	--	N/C
andandant		
$8-1$		

■ Communication Parameters for VFD-MH300 Connected to EtherNet

When VFD-MH300 links to EtherNet, please set up the communication parameters based on the table below. The EtherNet master will be able to read/write the frequency command word and operation command word of VFD-MH300 after the communication parameters are set.

Parameter	Function	Current Set Value	Definition of Parameter Values
$00-20$	Frequency command source	8	The frequency command is controlled by communication card.
$00-21$	Operation command source	5	The operation command is controlled by communication card.
$09-30$	Decoding method for communication	0	The decoding method for Delta AC motor drive
$09-75$	IP setting	0	Static IP(0) / Dynamic distribution IP(1)
$09-76$	IP address -1	192	IP address 192.168.1.5
$09-77$	IP address -2	168	IP address 192.168.1.5
$09-78$	IP address -3	1	IP address 192.168.1.5
$09-79$	IP address -4	5	IP address 192.168.1.5
$09-80$	Netmask -1	255	Netmask 255.255.255.0
$09-81$	Netmask -2	255	Netmask 255.255.255.0
$09-82$	Netmask -3	255	Netmask 255.255.255.0
$09-83$	Netmask -4	0	Netmask 255.255.255.0
$09-84$	Default gateway -1	192	Default gateway 192.168.1.1
$09-85$	Default gateway -2	168	Default gateway 192.168.1.1
$09-86$	Default gateway -3	1	Default gateway 192.168.1.1
$09-87$	Default gateway -4	1	Default gateway 192.168.1.1

- LED Indicator \& Troubleshooting

There are 2 LED indicators on CMM-EIP01: POWER LED and LINK LED. POWER LED displays the status of the working power, and LINK LED displays the connection status of the communication.

LED Indicators

LED	Status		Indication	Processing Methods
POWER	Green	On	Power supply in normal status	No action is required
		Off	No power supply	Check the power supply.
	Green	On	Network connection in normal status	No action is required
		Flashes	Network in operation	No action is required
		Off	Network not connected	Check if the network cable is connected.

Troubleshooting

Abnormality	Cause	Processing Methods
POWER LED off	AC motor drive not powered	Check if AC motor drive is powered, and if the power supply is normal.
	CMM-EIP01 not connected to the AC motor drive	Make sure CMM-EIP01 is connected to the AC motor drive.
LINK LED off	CMM-EIP01 not connected to network	Make sure the network cable is correctly connected to network.
	Poor contact to RJ-45 connector	Make sure RJ-45 connector is connected to the Ethernet port
No communication card found	CMM-EIP01 not connected to the network	Make sure CMM-EIP01 is connected to the network.
	PC and CMM-EIP01 in different networks and blocked by network firewall	Search by IP or set up relevant settings via the AC motor drive keypad.
Fail to open CMC-EIP01 setup page	CMM-EIP01 not connected to the network	Make sure CMM-EIP01 is connected to the network.
	Incorrect communication setting in DCISoft	Make sure the communication setting in DCISoft is set to Ethernet.
	PC and CMM-EIP01 in different networks and blocked by network firewall	Conduct the setup via the AC motor drive keypad.
Able to open CMC-EIP01 setup page but fail to utilize webpage monitoring	Incorrect network setting in CMM-EIP01	Check if the network setting for CMM-EIP01 is correct. For the Intranet setting in your company, please consult your IT staff. For the Internet setting at home, please refer to the network setting instruction provided by your supplier (ISP).
Fail to send e-mail	Incorrect network setting in CMM-EIP01	Check if the network setting for CMM-EIP01 is correct.
	Incorrect mail server setting	Please confirm the IP address for the SMTP-Server.

8-10 EMM-BPS01 Back-up Power Supply Option Card

- Features

1. External 24 V DC input via this card
2. To keep the control board alive for parameter read/write, status monitoring and communication.

- Product Profile

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. +24 V terminal block

Wire: 24~20 AWG
Torque: $5 \mathrm{~kg}-\mathrm{cm} /[4.3 \mathrm{lb}-\mathrm{in}] /.[0.49 \mathrm{Nm}]$

- Specifications

When the drive is only powered by EMC-BPS01, communication stays normal, including support all communication cards and the following functions:

- Parameters can be read and written
- Display with keypad
- Keypad buttons (except the RUN button)
- Analog input can operate
- Multifunction inputs (FWD, RV, MI 1~MI 8) need external power supply to operate

The following functions are not supported:

- Relay output
- PLC functions

8-11 EMM-PG01L PG Card

Product Profile

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Terminal block
5. Ground terminal block

Wire: 24~20 AWG
Torque: $2 \mathrm{~kg}-\mathrm{cm} /$ [$1.7 \mathrm{lb}-\mathrm{in}.] /[0.2 \mathrm{Nm}]$

- Terminal descriptions

Used with Pr. 10-00~ 10-02, Pr. 10-16~ 10-18

Terminals		Descriptions
PG1	VP	Output voltage of power: use SSW320 to switch $+5 \mathrm{~V} /+12 \mathrm{~V} \pm 5 \%$ Max. output current: 200 mA
	DCM	Common for power and signal
	$\begin{gathered} \mathrm{A} 1, \overline{\mathrm{~A} 1}, \mathrm{~B} 1, \overline{\mathrm{~B} 1}, \\ \mathrm{Z1}, \overline{\mathrm{Z} 1} \end{gathered}$	Encoder input signal (Line Driver or Open Collector) Open Collector input voltage $+5 \sim+24 \mathrm{~V}$ (Note 1) Support 1-phase and 2-phase input Max. input signal: 300 kHz
PG2	A2, $\bar{A} 2, B 2, \overline{B 2}$	Pulse input signal (Line Driver or Open Collector) Open Collector input voltage $+5 \sim+24 V$ (Note 1) Support 1-phase and 2-phase input Max. input signal: 300 kHz
PG OUT	$\begin{gathered} \mathrm{AO}, \overline{\mathrm{AO}}, \mathrm{BO}, \\ \overline{\mathrm{BO}}, \mathrm{ZO}, \overline{\mathrm{ZO}}, \mathrm{SG} \end{gathered}$	PG feedback signal output, support frequency elimination: 1~255 times. Max. output voltage of the Line driver: 5 Vdc Max. output current: 50 mA Max. output frequency: 300 kHz SG is GND terminal on the PG card which is also the GND of position machine or PLC to make the output signal to be the common pivot point.
Ground	PE	Earthing terminal, to decrease noise, this terminal should be grounded

Note 1: Open Collector application: input current 5~15 mA to each set and each set needs one pull-up resistor. If input voltage of open collector is 24 V , the power of encoder needs to be connected externally. Refer to diagram 2 of PG1.

5 V	Recommended pull-up resistor: above $100 \sim 220 \Omega, 1 / 2 \mathrm{~W}$
12 V	Recommended pull-up resistor: above $510 \Omega \sim 1.35 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$
24 V	Recommended pull-up resistor: above $1.8 \mathrm{k} \sim 3.3 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$

PG1 card wiring diagram (the image 1 and 2 below are wiring diagrams of Open Collector encoder)
(1)

(2)

Open Collector
Encoder

PG2 Wiring Diagram

EMM-PG01L Wiring Diagram

\square Use a shielded cable to prevent interference.
Do not run control wires parallel to any high voltage AC power line (200 Vac and above).
\square Recommended wire size $30 \sim 16$ AWG ($0.0509 \sim 1.31 \mathrm{~mm}^{2}$).
■ Cable length: Less than 100 m

8-12 EMM-PG01O PG Card

- Product Profile

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Terminal block
5. Ground terminal block

-2
-1
-2
-3
Wire: 24~20 AWG
Torque: $2 \mathrm{~kg}-\mathrm{cm} /$ [$1.7 \mathrm{lb}-\mathrm{in}.] /$ [0.2 Nm]

- Terminal descriptions

Used with Pr. 10-00 ~ Pr. 10-02, Pr. 10-16~ Pr. 10-18

Terminals		Descriptions
PG1	VP	Output voltage of power: $+5 \mathrm{~V} /+12 \mathrm{~V} \pm 5 \%$ (use SSW 320 to switch $+5 \mathrm{~V} /+12 \mathrm{~V}$) Max. output current: 200 mA
	DCM	Common for power and signal
	$\mathrm{A} 1, \overline{\mathrm{~A} 1}$, $\mathrm{B} 1, \overline{\mathrm{~B} 1}$, Z1, $\overline{\mathrm{Z} 1}$	Encoder Input signal (Line Driver or Open Collector) Open Collector Input Voltage: $+5 \mathrm{~V} \sim+24 \mathrm{~V}$ (Note 1) Support 1-phase and 2-phase input. EMM-PG01O Max. input frequency: 300 kHz
PG2	$\begin{aligned} & \mathrm{A} 2, \overline{\mathrm{~A} 2}, \\ & \mathrm{~B} 2, \overline{\mathrm{~B} 2} \end{aligned}$	Pulse Input Signal (Line Driver or Open Collector) Open Collector Input Voltage: $+5 \sim+24 \mathrm{~V}$ (Note 1) EMM-PG01O Max. input frequency: 300 kHz
PG OUT	V+, V+	Needs external power source for PG OUT circuit. Input voltage of power: $+7 \mathrm{~V} \sim+24 \mathrm{~V}$
	V-	Input voltage for the negative side
	$\begin{gathered} \overline{\mathrm{AO}}, \overline{\mathrm{BO}}, \\ \overline{\mathrm{ZO}} \end{gathered}$	PG feedback signal output: Support frequency elimination: 1~255 times. Open collector's output signal: Add a pull-up resistor on each PG out external power [three pull-up resistor are included in the package ($1.8 \mathrm{~kW} / 1 \mathrm{~W}$)] (Note 1) EMM-PG010 Max. input frequency: 300 kHz

Note 1: Open Collector application, input current $5 \sim 15 \mathrm{~mA}$ to each set and each set needs one pull-up resistor. If input voltage of open collector is 24 V , the power of encoder needs to be connected externally. Refer diagram 2 of PG1.

5 V	Recommended pull-up resistor: above100~220 $\Omega, 1 / 2 \mathrm{~W}$
12 V	Recommended pull-up resistor : above $510 \Omega \sim 1.35 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$
24 V	Recommended pull-up resistor : above1.8 $\mathrm{k} \sim 3.3 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$

PG1 card wiring diagram
(1)

(2)

(3)

PG2 Wiring Diagram

EMM-PG01O Wiring Diagram

$\square \quad$ Use a shielded cable to prevent interference.
Do not run control wires parallel to any high voltage AC power line (200 Vac and above).
\downarrow Recommended wire size $30 \sim 16$ AWG ($0.0509 \sim 1.31 \mathrm{~mm}^{2}$).
$\square \quad$ Cable length: Less than 30 m

8-13 EMM-PG01R PG Card

Product Profile

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Terminal block
5. Ground terminal block

- Terminal Descriptions

Used with Pr. 10-00~Pr. 10-02, Pr. 10-30 Resolver Pole Pair
(When using PG01R, set 10-00 = 3 and set Pr. 10-01 = 1024.)

Terminals		Descriptions
PG1	R1-R2	Resolver Output Power 7 Vrms, 10 kHz
	$\begin{aligned} & \mathrm{s} 1, \overline{\mathrm{~s} 3}, \\ & \mathrm{~s} 2, \overline{\mathrm{~s} 4} \end{aligned}$	Resolver Input Signal (S2, $\overline{\mathrm{S} 4}=\mathrm{Sin} ; \mathrm{S} 1, \overline{\mathrm{~S} 3}=\mathrm{Cos})$ $3.5 \pm 0.175 \mathrm{Vrms}, 10 \mathrm{kHz}$
PG2	$\begin{aligned} & \mathrm{A} 2, \overline{\mathrm{~A} 2}, \\ & \mathrm{~B} 2, \overline{\mathrm{~B} 2} \end{aligned}$	Pulse Input signal (Line Driver or Open Collector) Open Collector Input Voltage: $+5 \sim+24 \mathrm{~V}$ (Note1) Support 1-phase and 2-phase input. Max. output frequency: 300 kHz
PG OUT	$\begin{gathered} \mathrm{AO}, \overline{\mathrm{AO}}, \\ \mathrm{BO}, \overline{\mathrm{BO}}, \\ \mathrm{ZO}, \overline{\mathrm{ZO}}, \\ \mathrm{SG} \end{gathered}$	PG Card output signal: Support frequency elimination: 1~255 times Max. output voltage of Line driver: 5 VDC Max. output current: 50 mA Max. output frequency: $300 \mathrm{kP} / \mathrm{sec}$ SG is GND terminal on the PG card which is also the GND of position machine or PLC to make the output signal to be the common pivot point

Note 1: Open Collector application: Input current 5~15 mA to each set and each set needs one pull-up resistor.

5 V	Recommended pull-up resistor above: $100 \sim 220 \Omega, 1 / 2 \mathrm{~W}$
12 V	Recommended pull-up resistor above: $510 \Omega \sim 1.35 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$
24 V	Recommended pull-up resistor above: $1.8 \mathrm{k} \sim 3.3 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$

■ DOS (Degradation of Signal) :
If the amplitude of the sine wave input of the S1-/S3/ and S2-/S4 is lower than or higher than the encoder IC's specification, a red light will be on. The possible reasons which cause this problem are the following.

1. The turns ratio of the resolver encoder is not $1: 0.5$ which makes the sine wave input of the S1-/S3/S2-/S4 not equal to $3.5 \pm 0.175 \mathrm{Vrms}$.
2. While motor is running, motor creates common mode noise which makes accumulated voltage to be more than 3.5 ± 0.175 Vrms.

1 LOT (Loss of Tracking):
Compare the angle of S1-/S3 and S2-/S4 sine wave input to the R1-R2 cosine wave. If their difference is more than 5 degree, a red light will be on. Here are the possible reasons why that happen:

1. The output frequency of the PG card is incorrect.
2. The specification of Resolver's encoder is not 10 KHz
3. The motor creates common mode noise while it is running. That causes a big difference, while the motor is rotating, between main winding's cosine wave angle and the sine wave angle of second and third windings.

EMM-PG01R Wiring Diagram

■ Use a shielded cable to prevent interference.
Do not run control wires parallel to any high voltage AC power line (200 Vac and above).
$\square \quad$ Recommended wire size 30 ~ 16 AWG ($0.0509 \sim 1.31 \mathrm{~mm}^{2}$)

- Cable length: Less than 30 m

8-14 CANopen Communication Cable/Digital Keypad RJ45 Extension Cable

Title	Part No.	L	
		mm	inch
1	UC-CMC005-01A	300	11.8
2	UC-CMC010-01A	500	19.6
3	UC-CMC015-01A	1000	39
4	UC-CMC020-01A	2000	59
5	UC-CMC030-01A	3000	78.7
6	UC-CMC050-01A	5000	118.1
7	UC-CMC100-01A	10000	196.8
8	UC-CMC200-01A	20000	393.7
9			787.4

- CANopen Dimension

Model: TAP-CN03

NOTE

For more information on CANopen, please refer to CANopen user manual or download related manuals on Delta website: http://www.delta.com.tw/industrialautomation/.

Chapter 8 Option Cards | MH300
[This page intentionally left blank]

Chapter 9 Specification

9-1 115V Series

9-2 230V Series
9-3 460V Series

9-4 Environment for Operation, Storage and Transportation

9-5 Derating of Ambient Temperature and Altitude

9-1 115V Series

115V, 1-phase

Frame			A				C	
Model VFD___-_-___SAA			1A6MH11 \square		2A5MH11 \square		5AOMH11 \square	
			AN	EN	AN	EN	AN	EN
Applicable Motor Output (kW)			0.2		0.4		0.75	
Applicable Motor Output (HP)			1/4		1/2		1	
	Heavy duty	Rated Output Capacity (KVA)	0.6		1.0		1.9	
		Rated Output Current (A)	1.6		2.5		5.0	
		Carrier Frequency (kHz)	2~15 (Factory setting: 4)					
	Normal Duty	Rated Output Capacity (KVA)	0.7		1.0		2.1	
		Rated Output Current (A)	1.8		2.7		5.5	
		Carrier Frequency (kHz)			15 (Fa	y settin		
듣	Rated Input Current (A)	Heavy Duty	6.0		9.4		18.8	
		Normal Duty	6.8		10.1		20.6	
	Rated Voltage / Frequency		1-phase AC 100V~120V (-15\% ~ +10\%), $50 / 60 \mathrm{~Hz}$					
	Operating Voltage Range		85~132 Vac					
	Frequency Tolerance		$47 \sim 63 \mathrm{~Hz}$					
Weight (kg)			0.71		0.76		1.24	
		Cooling Method	Natural cooling				Fan cooling	
		EMC Filter	Optional					
Ingress Protection Rating			IP20	IP40*	IP20	IP40*	IP20	IP40*

\square NOTE

■ IP40*: The IP rating of wiring area (main circuit terminals and control terminals, frame $A / B / C / D / E / F$) and the vent near capacitor (frame C/D/E/F) is IP20.

- The value of the carrier frequency is a factory setting. To increase the carrier frequency, the current needs to be decreased. See derating curve diagram of Pr. 06-55 for more information.
- When a load is a shock or impact load, use a higher level model.

9-2 230V Series

230V, 1-phase

Frame			A				B			
Model VFD_-_-_-_-_SAA			1A6MH21 \square		2A8MH21		1A6MH21AF	2A8MH21AF	5A0MH21	
			AN	EN	AN	EN			AN	EN
Applicable Motor Output (kW)			0.2		0.4		0.2	0.4		
Applicable Motor Output (HP)			1/4		1/2		1/4	1/2		
	Heavy Duty	Rated Output Capacity (KVA)	0.6		1.1		0.6	1.1		
		Rated Output Current (A)	1.6		2.8		1.6	2.8		
		Carrier Frequency (kHz)	2~15 (Factory setting: 4)							
	Normal Duty	Rated Output Capacity (KVA)	0.7		1.2		0.7	1.2		
		Rated Output Current (A)	1.8		3.2		1.8	3.2		
		Carrier Frequency (kHz)	2~15 (Factory setting: 4)							
	Rated Input	Heavy Duty	5.1		7.3		5.1	7.3		
$\underset{\tilde{\sigma}}{\stackrel{c}{0}}$	Current (A)	Normal Duty	5.8		8.3		5.8	8.3		
$\stackrel{\stackrel{\circ}{7}}{\leftrightarrows}$	Rated Voltage / Frequency		1-phase AC 200V 240 V (-15\% ~ +10\%), $50 / 60 \mathrm{~Hz}$							
$\stackrel{\rightharpoonup}{\underline{O}}$	Operating Voltage Range		170~265 Vac							
	Frequency To	lerance	$47 \sim 63 \mathrm{~Hz}$							
Weight (kg)			0.71		0.76		1.34	1.34		
Cooling Method			Natural cooling					Fan cooling		
EMC Filter			Optional				Built-in		Optional	
Ingress Protection Rating			IP20	IP40	IP20	IP40	IP20	IP20	IP20	IP40

Frame			B	C					
Model VFD_________SAA			5A0MH21AF	7A5MH21			11AMH21		
			AN	EN	AF	AN EN	AF		
Applicable Motor Output (kW)				0.75	1.5			2.2	
Applicable Motor Output (HP)			1	2			3		
	Heavy Duty	Rated Output Capacity (KVA)	1.9	2.9			4.2		
		Rated Output Current (A)	5.0	7.5			11		
		Carrier Frequency (kHz)	2~15 (Factory setting: 4)						
	Normal Duty	Rated Output Capacity (KVA)	2.0	3.2			4.8		
		Rated Output Current (A)	5.2	8.5			12.5		
		Carrier Frequency (kHz)	2~15 (Factory setting: 4)						
	Rated Input Current (A)	Heavy Duty	11.2	16.5			24.2		
		Normal Duty	11.7	18.5			27.5		
	Rated Voltage / Frequency		1-phase AC 200V~240V (-15\% ~ +10\%), $50 / 60 \mathrm{~Hz}$						
	Operating Voltage Range		170~265 Vac						
	Frequency Tolerance		47~63 Hz						
Weight (kg)			1.34	1.24		1.84	1.24	1.84	
Cooling Method			Fan cooling						
EMC Filter			Built-in	Optional		Built-in	Optional	Built-in	
Ingress Protection Rating			IP20	IP40*		IP20	IP40*	IP20	

NOTE

- IP40*: The IP rating of wiring area (main circuit terminals and control terminals, frame A/B/C/D/E/F) and the vent near capacitor (frame C/D/E/F) is IP20.
- The value of the carrier frequency is a factory setting. To increase the carrier frequency, the current needs to be decreased. See derating curve diagram of Pr. 06-55 for more information.
- When a load is a shock or impact load, use a higher level model.

230V, 3-phase

Frame				A													B	
Model VFD__-_-_-_-_- ${ }^{\text {A }}$				1A6MH23			2A8MH23			5A0MH23							7A5MH23	
				ANSA		ENSA		NSA	ENSA	ANSN	ENSN				ENS		ANSA	ENSA
Applicable Motor Output (kW)				0.2			0.4			0.75			0.75				1.5	
Applicable Motor Output (HP)				0.25			0.5			1			1				2	
		Rated Output Capacity (KVA)		0.6			1.9			1.9			1.9				2.9	
		Rated Output Current (A)		1.6			5.0			5.0			5.0				7.5	
		Carrier Frequency (kHz)		2~15 (Factory setting: 4)														
		Rated Output Capacity (KVA)		0.7			1.2			2.0			2.0				3.0	
		Rated	tput Current (A)	1.8			3.2			5.2			5.2				8.0	
		Carrier Frequency (kHz)		2~15 (Factory setting: 4)														
	Rated Input Current (A)		Heavy Duty	1.9			3.4			6.0			6.0				9.0	
			Normal Duty	2.2			3.8			6.2			6.2				9.6	
	Rated Voltage / Frequency			3-phase, AC 200V 240 V (-15\% ~ +10\%), $50 / 60 \mathrm{~Hz}$														
	Operating Voltage Range			170~265 Vac														
	Frequency Tolerance			47~63 Hz														
Weight (kg)				0.76			0.76			0.81			0.77				1.05	
Cooling Method				Natural cooling									Fan cooling					
EMC Filter				Optional														
Ingress Protection Rating				IP20	IP40*		IP20		IP40*	IP20	IP40*		IP20		IP40*		IP20	IP40*
Frame				C					D		E						F	
Model VFD_________SAA				11AMH23		17AMH23			25AMH23		33AMH23		49AMH23				65AMH23	
				AN	EN	AN	N4	EN	AN	EN	AN		N	AN		EN	AN	EN
Applicable Motor Output (kW)				2.2		3.7			5.5		7.5			11			15	
Applicable Motor Output (HP)				3		5			7.5		10			15			20	
		Rated Output Capacity (KVA)		4.2		6.5			9.5		12.6			18.7			24.8	
		Rated Output Current (A)		11.0		17.0			25.0		33.0			49.0			65.0	
		Carrier Frequency (kHz)		2~15 (Factory setting: 4)														
		Rated	tput Capacity (KVA)	4.8		7.4			10.3		13.7			19.4			26.3	
		Rated Output Current (A)		12.5		19.5			27.0		36.0			51.0			69.0	
		Carrier Frequency (kHz)		2~15 (Factory setting: 4)														
	Rated Input Current (A)		Heavy Duty	13.2		20.4			30.0		39.6			58.8			78.0	
.			Normal Duty	15.0		23.4			32.4		43.2			61.2			82.8	
$\stackrel{\square}{5}$	Rated Voltage / Frequency			3-phase, AC 200V~240V (-15 \% ~ +10 \%), 50/60 Hz														
	Operating Voltage Range			170~265 Vac														
	Frequency Tolerance			$47 \sim 63 \mathrm{~Hz}$														
			ht (kg)	1.2			1.24		2.0	07	3.9	97			3.97			. 30
		Coolin	Method							Fan c	ooling							
			Filter							Opti	ional							
		gress Pr	ection Rating	IP20	P40*	* IP2		IP40*	IP20	IP40*	IP20	IP4	40*	IP2		IP40*	* IP20	IP40*

\Rightarrow NOTE

- IP40*: The IP rating of wiring area (main circuit terminals and control terminals, frame A/B/C/D/E/F) and the vent near capacitor (frame

C/D/E/F) is IP20.

- The value of the carrier frequency is a factory setting. To increase the carrier frequency, the current needs to be decreased. See derating
curve diagram of Pr. 06-55 for more information.
- When a load is a shock or impact load, use a higher level model.

9-3 460V Series

460V, 3-phase

Frame			A						B		
Model VFD_-_-------_A			1A5MH43		3AOMH43				1A5MH43AFSA		3A0MH43AFSA
			ANSA	ENSA	ANSN	ENSN	ANSA	ENSA			
Applicable Motor Output (kW)			0.4		0.75			. 75		0.4	0.75
Applicable Motor Output (HP)			0.5		1		1			0.5	1
$\begin{aligned} & \text { 읻 } \\ & \text { 두 } \\ & \widetilde{7} \\ & \text { 른 } \\ & 0 \end{aligned}$	Heavy Duty	Rated Output Capacity (KVA)	1.1		2.3		2.3			1.1	2.3
		Rated Output Current (A)	1.5		3.0		3.0			1.5	3.0
		Carrier Frequency (kHz)	2~15 (Factory setting: 4)								
	Normal Duty	Rated Output Capacity (KVA)	1.4		2.5		2.5			1.4	2.5
		Rated Output Current (A)	1.8		3.3		3.3			1.8	3.3
		Carrier Frequency (kHz)	2~15 (Factory setting: 4)								
	Rated Input	Heavy Duty	2.1		4.2		4.2			2.1	4.2
	Current (A)	Normal Duty	2.5		4.6		4.6			2.5	4.6
	Rated Voltage / Frequency		3-phase AC 380V 480 V (-15 \% ~ +10 \%), $50 / 60 \mathrm{~Hz}$								
	Operating Voltage Range		323-528 Vac								
	Frequency Tolerance		47~63 Hz								
Weight (kg)			0.76		0.81		0.77			1.34	1.34
Cooling Method			Natural cooling				Fan cooling				
EMC Filter			Optional						Built-in		
Ingress Protection Rating			IP20	IP40*	IP20	IP40*	IP20	IP40*	IP20		

Frame			B		C				D			
Model VFD__-_-_-__SAA			4A2MH43		5A7MH43		9A0MH43		13AMH43		17AMH43	
			AN EN		AN EN		AN EN	AF	AN EN	N AF	AN EN	AF
Applicable Motor Output (kW)			1.5		2.2		3.7		5.5		7.5	
Applicable Motor Output (HP)			2		3		5		7.5		10	
	Heavy Duty	Rated Output Capacity (KVA)	3.2		4.2		6.9		9.9		13.3	
		Rated Output Current (A)	4.2		5.5		9.0		13.0		17.5	
		Carrier Frequency (kHz)	2~15 (Factory setting: 4)									
	Normal Duty	Rated Output Capacity (KVA)	3.5		5.0		8.0		11.1		15.1	
		Rated Output Current (A)	4.6		6.5		10.5		14.5		19.8	
		Carrier Frequency (kHz)	2~15 (Factory setting: 4)									
	Rated Input	Heavy Duty	5.8		6.1		9.9		14.3		19.3	
	Current (A)	Normal Duty	6.4		7.2		11.6		16.0		21.8	
	Rated Voltage/ Frequency		3-phase, AC 380V 480 V (-15 \% ~ +10 \%), 50/60 Hz									
	Operating Voltage Range		323~528 Vac									
	Frequency	Tolerance	$47 \sim 63 \mathrm{~Hz}$									
Weight (kg)			1.05	1.34	1.24	1.84	1.24	1.84	2.07	2.93	2.07	2.93
Cooling Method			Fan cooling									
EMC Filter			Optional	$\begin{array}{\|c\|} \hline \text { Built } \\ \text {-in } \end{array}$	Optional	$\begin{array}{\|c\|} \hline \text { Built-i } \\ \mathrm{n} \end{array}$	Optional	$\begin{array}{\|c\|} \hline \text { Built- } \\ \text { in } \end{array}$	Optional	$\begin{array}{\|c\|} \hline \text { Built- } \\ \text { in } \end{array}$	Optional	Built-in
Ingress Protection Rating			IP20 IP40		IP20	IP40	IP20	IP40	IP20	IP40	IP20	IP40

Frame				E						F				
Model VFD________ SAA				25AMH43			32AMH43			38AMH43			45AMH43	
				AN	EN	AF		N EN	AF	AN	EN	AF	AN EN	AF
Applicable Motor Output (kW)				11			15			18.5			22	
Applicable Motor Output (HP)				15			20			25			30	
	Heavy Duty	Rat	d Output Capacity (KVA)	19.1			24.4			29			34.3	
			Output Current (A)	25.0			32.0			38.0			45.0	
			ier Frequency (kHz)	2~15 (Factory setting: 4)										
	Normal Duty		d Output Capacity (KVA)	21.3			27.4			31.6			37.3	
			d Output Current (A)	28.0			36.0			41.5			49.0	
		Car	ier Frequency (kHz)	2~15 (Factory setting: 4)										
	Rated Input Current (A)		Heavy Duty	27.5			35.2			41.8			49.5	
			Normal Duty	30.8			39.6			45.7			53.9	
	Rated Voltage/ Frequency			3-phase AC 380V~480V (-15\% ~ +10 \%), 50/60 Hz										
	Operating Voltage Range			323-528 Vac										
	Frequency Tolerance			47~63 Hz										
Weight (kg)				3.97		5.19	3.97		5.19	6.30		8.56	6.30	8.56
Cooling Method				Fan cooling										
EMC Filter				Optional		Built-in	Optional		Built-in	Optional		Built-in	Optional	Built-in
Ingress Protection Rating				IP20	IP40*	IP20		IP40*	IP20		IP40*	IP20	IP40*	IP20

NOTE

- IP40*: The IP rating of wiring area (main circuit terminals and control terminals, frame A/B/C/D/E/F) and the vent near capacitor (frame C/D/E/F) is IP20.
- The value of the carrier frequency is a factory setting. To increase the carrier frequency, the current needs to be decreased. See derating curve diagram of Pr. 06-55 for more information.
- When a load is a shock or impact load, use a higher level model.

General Specifications

	Control Method	V/F , SVC , FOC, V/F+PG , FOC+PG, TQC+PG
	Applied Motor	IM (Induction Motor), PM motor control (IPM and SPM)
	Max. Output Frequency	0.00~599.00Hz
	Starting Torque [Note 1]	$150 \% / 3 \mathrm{~Hz}$ (V/f, SVC, V/F+PG control for IM, Heavy duty) $200 \% / 0.5 \mathrm{~Hz}$ (FOC control for IM, Heavy duty) $200 \% / 0 \mathrm{~Hz}$ (FOC+PG control for IM, Heavy duty) $100 \% /(1 / 20$ of motor rated frequency) (SVC control for PM, Heavy duty) $150 \% / 0 \mathrm{~Hz}$ (FOC control for PM, Heavy duty) $200 \% / 0 \mathrm{~Hz}$ (Closed loop vector control w/ PG for PM, Heavy duty)
Control	Speed Control Range [Note 1]	$1: 50$ (V/f, SVC, V/F+PG control for IM, Heavy duty) $1: 100$ (FOC control for IM, Heavy duty) $1: 1000$ (FOC+PG control for IM, Heavy duty) $1: 20$ (SVC control for PM, Heavy duty) $1: 100$ (FOC control for PM, Heavy duty) $1: 1000$ (Closed loop vector control w/ PG for PM, Heavy duty)
	Overload Capability	Normal duty: 120 \% 60s, 150 \% 3s Heavy duty: 150 \% 60s, 200 \% 3s
	Frequency Setting Signal	$\begin{aligned} & 0 \sim+10 \mathrm{~V} /+10 \mathrm{~V} \sim-10 \mathrm{~V} \\ & 4 \sim 20 \mathrm{~mA} / 0 \sim+10 \mathrm{~V} \\ & 1 \text { channel pulse input (} 33 \mathrm{kHz} \text {), } 2 \text { channel pulse output }(33 \mathrm{kHz}) \end{aligned}$
	Main Function	Multiple motor switches (max. 8 independent motor parameter settings), Fast startup, Deceleration Energy Back (DEB) function, Wobble frequency function, Fast deceleration function, Master and Auxiliary frequency source selectable, Momentary power loss ride thru, Speed search, Over-torque detection, Torque limit, 16-step speed (max.), Accel/decel time switch, S-curve accel/decel, 3-wire sequence, JOG frequency, Upper/lower limits for frequency reference, DC injection braking at start and stop, PID control, Built-in PLC (5 K steps), Positioning function, MODBUS and CANopen is integrated as standard
	Application Macro	Built-in application parameter groups (selected by industry) and user-defined application parameter groups.
Protection	Motor Protection	Over-current, Over-voltage, Over-temperature, Phase loss, Over-load
Characteristics	Stall Prevention	Stall prevention during acceleration, deceleration and running (independent settings)
	Communication cards	DeviceNet , Ethernet/IP , Profibus DP , Modbus TCP , CANopen
	PG cards	```EMM-PG01L (ABZ, Line driver) EMM-PG01O (ABZ , Open Collector) EMM-PG01R (Resolver)```
Accessory	I/O expansion cards	```EMM-D33A (Digital Card - 3in 3out) EMM-A22A (Analog Card - 2in 2out) EMM-R2CA (Relay Card) EMM-R3AA (Relay Card)```
	External DC power supply	EMM-BPS01 (DC 24 V power supply card)
Certifi	ications	UL, CE, C-Tick, TÜV (SIL 2), RoHS, REACH

[Note 1] Control accuracy may vary depending on the environment, application conditions, different motors or encoder. For details, please contact our company or your local distributor.

9-4 Environment for Operation, Storage and Transportation

DO NOT expose the AC motor drive in the bad environment, such as dust, direct sunlight, corrosive/ inflammable gasses, humidity, liquid and vibration environment. The salt in the air must be less than $0.01 \mathrm{mg} / \mathrm{cm}^{2}$ every year.					
Environment	Installation location	IEC60364-1/ IEC60664-1 Pollution degree 2, Indoor use only			
	Surrounding Temperature	Operation	IP20 / UL Open Type	$-20 \sim 50^{\circ} \mathrm{C}$ $-20 \sim 60^{\circ} \mathrm{C} \quad$ (Derating required)	
			IP40 / NEMA 1 / UL Type 1	$\begin{aligned} & -20 \sim 40^{\circ} \mathrm{C} \\ & -20 \sim 55^{\circ} \mathrm{C} \quad \text { (Derating required) } \end{aligned}$	
			Installed side by side		
		Storage	$-40 \sim 85^{\circ} \mathrm{C}$		
		Transportation	$-20 \sim 70^{\circ} \mathrm{C}$		
		Non-condensatio	, non-frozen		
	Rated Humidity	Operation	Max. 90 \%		
		Storage / Transportation	Max. 95 \%		
		No condense water			
	Air Pressure	Operation	$86 \sim 106 \mathrm{kPa}$		
		Storage / Transportation	$70 \sim 106 \mathrm{kPa}$		
	Pollution Level	IEC 60721-3-3			
		Operation	Class 3C2; Class 3S2		
		Storage	Class 2C2; Class 2S2		
		Transportation	Class 1C2; Class 1S2		
		Concentrate prohibited			
	Altitude	Operable at altitude below 1000 m (derating if operated over 1,000 m)			
Package Drop	Storage	ISTA procedure 1A (according to weight) IEC 60068-2-31			
	Transportation				
Vibration	Operating	1.0 mm , peak to peak value range from $2 \sim 13.2 \mathrm{~Hz} ; 0.7 \mathrm{G} \sim 1.0 \mathrm{G}$ range from $13.2 \sim 55 \mathrm{~Hz} ; 1.0$ G range from $55 \sim 512 \mathrm{~Hz}$; Comply with IEC 60068-2-6			
	Non-operating	2.5 G Peak $5 \mathrm{~Hz}-2 \mathrm{kHz}$ 0.015" Displacement Max.			
Impact	Operating	15 G, 11 ms Comply with IEC / EN 60068-2-27			
	Non-operating	30G			

9-5 Derating of Ambient Temperature and Altitude

- Derating of Ambient Temperature

At rated current the ambient temperature is $-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$.
Over $50^{\circ} \mathrm{C}$ the rated current has to be decreased $2.5 \% /{ }^{\circ} \mathrm{C}$ up to $60^{\circ} \mathrm{C}$.

At rated current the ambient temperature is $-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$.
Over $40^{\circ} \mathrm{C}$ the rated current has to be decreased $2.5 \% /{ }^{\circ} \mathrm{C}$ up to $60^{\circ} \mathrm{C}$.

- Derating of Altitude

For IP20 / UL Open Type

Current derating at ambient temperature									
Ambient temperature							$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
Operating altitude above sea level (m)	$0-1000$	$1001-1500$	100%				95%		
	$1501-2000$	100%	95%	90%					

For IP40 / NEMA1 / UL Type 1

Current derating at ambient temperature									
Ambient temperature							$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
Operating altitude above sea level (m)	$0-1000$	$1001-1500$	100%						
	$1501-2000$	100%	95%	95%					

Operating Conditions	Ambient Temperature Limits
IP20 /	
UL Open Type	When the AC motor drive is operating at the rated current, the ambient temperature has to be between $-20^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$. When the temperature is over $50^{\circ} \mathrm{C}$, for every increase by $1^{\circ} \mathrm{C}$, decrease 2.5% of the rated current. The maximum allowable temperature is $60^{\circ} \mathrm{C}$.
For IP40 /	When the AC motor drive is operating at the rated current, the ambient temperature has to be between $-20^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$. When the temperature is NEMA1 / UL Type 1 $40^{\circ} \mathrm{C}$, for every increase by $1^{\circ} \mathrm{C}$, decrease 2.5% of the rated current. The maximum allowable temperature is $60^{\circ} \mathrm{C}$.
High Altitude	If the AC motor drive is installed at altitude $0 \sim 1000 \mathrm{~m}$, follow normal operation restriction. If it is installed at altitude $1000 \sim 2000 \mathrm{~m}$, decrease 1% of rated current or lower $0.5^{\circ} \mathrm{C}$ of temperature for every 100 m increase in altitude. Maximum altitude for Corner Grounded is 2000 m. Contact Delta for more information if you need to use this motor drive at an altitude of 2000 m or higher.

[This page intentionally left blank]

Chapter 10 Digital Keypad

Appearance of KPMH-LC01 keyboard panel

Descriptions of Keypad Functions

Displayed items	Descriptions

Displayed items	Descriptions
$\underset{\substack{\text { RUN } \\ \text { REV }}}{\text { REN }}$	Display the data has been accepted and automatically stored in the internal memory
	Display the data set is not accepted or the value exceeded

Keypad operation process

A. Main Page Selection

ENTER

Note 1: Press in page selection mode $\sqrt{5}$ to enter parameters setting Note 2: When Pr. 13-00 $=0$, APP page will then appear

Setting parameters

NOTE : In the parameter setting mode, you can press
to return the selecting mode.
To shift data

START

FGDDT \Rightarrow Fand \Rightarrow GIDT

- 图

Setting direction (When operation source is digital keypad)

Setting PLC Mode

B. F Page (Frequency command setting page)

General Mode 1 (maximum operating frequency $01-00$ is double digits, e.g. Pr. $01-00=60.00 \mathrm{~Hz}$)

General Mode 2 (maximum operating frequency 01-00 is three digits, e.g. Pr. 01-00=599.0 Hz)

C. Application Selection Page

Application selection page will display APP, but it will not show the APP page when Pr.13-00=0
The description of Pr. 13-00 setting is as follow:
Pr. 13-00=0
Application selection will be inactivated and will not show on display

Pr. 13-00=1 is user define application, keypad will display USER

Pr. 13-00=2 is Compressor application, keypad will display CoPr

HF	$\Rightarrow \square^{-1}$	\Rightarrow Industrial application will display by sequence \Rightarrow parameters setting
US MODE	T ${ }^{\text {T }}$	- 图 + 莌

Chapter 10 Digital Keypad \| MH300

Pr. 13-00=3 is Fan application, keypad will display FAN

Pr. 13-00=4 is Pump application, keypad will display PUMP

LS MODE
图 +

DS

Pr. 13-00=5 is Conveyor application, keypad will display CnYr

Pr. 13-00=6 is Machine tool application, keypad will display CNC

Pr. $13-00=7$ is Packing application, keypad will display PACK

Pr. 13-00=8 is Textile application, keypad will display tILE

Pr. $13-00=9$ is PCB Machine application, keypad will display PCB

When Pr. 13-00 is not 0 , the corresponded parameters will show in the APP page in according to the setting of Pr. 13-00. Then in each selected application, user can view the parameters by pressing digital dial button. (If Pr. 13-00=1, user does not set any parameters in Pr. 13-01~13-50, then the user can not enter sub-layer of USER page.) The parameters setting in APP is the same as in other parameters groups: rotate and press digital to select and set the parameters value

Please follow the setting process below to set the user define application selection (Pr. 13-00=1)

1. The application selection can be activated by setting Pr. 13-00.
2. After setting Pr. 13-00=1, then users can give the definition of 13-01~50 by their requirement.
3. The default setting of Pr. 13-01~50 is P 0.00. Press digital dial to set the corresponded parameters to Pr. 13-01~50 by sequence.
4. The way setting corresponded parameters to Pr. 13-01~50 is the same as in other parameters groups: rotate and press digital to select and set the parameters value
Note 1: Read-only parameters cannot be set
Note 2: Pr. 13-01, 02...... 50 need to be set by sequence, or it will show Err
5. If the set corresponded parameters need to be change, user needs to go back to Pr. 13-01~50 to modify.
6. After setting, if user wants to remove the set parameters, then the last parameter needs to be removed (set as 0.00) first, or it will show Err
For example, if there are 5 user defined parameters (Pr. 13-01, 13-02...13-05), then to remove the Pr. 13-02, Pr. 13-05, 04, 03 need to be removed by sequence
7. When finishing setting, press MODE back to APP page and press digital dial again, the Keypad will display USER, after pressing digital dial again, the set corresponded parameters will appear

Please follow the setting process below to set specific application selection (Pr. 13-00=2~8)

Chapter 10 Digital Keypad | MH300

D. Parameter setting

D-1. Unsigned parameter
(parameter setting range $\geqq 0$) (E.g.: Pr. 01-00)

1. Do not use left shift key: rotate the digital dial to select and adjust the parameters
2. Use left shift key: Press After pressing left shift key, the last digit will start to blink. Press left shift key to the adjusted digit, and increase the value by rotating the digital dial right. The value will go back to 0 after 9 . Decrease the value by rotating the digital dial left. The value will go to 9 after 0 .
E.g.: Default setting of Pr. 01-00 is 60.00 , press left shift key will be like the chart below:

The upper setting limit of Pr. 01-00 is 599.00 . If the value more than 599.00 is set, the Err will occur after pressing digital dial, and then keypad will show the upper limit (599.00) for a second to remind user the unreasonable setting. Then the set value will still remain in the original set value which will not be changed. The cursor will return to the last digit.

D-2. Signed parameter setting status 1

(Parameter setting range has no or one decimal place, e.g.: 03-03)

1. Do not use left shift key: rotate the digital dial to select and adjust the parameters
2. Use left shift key: Press After pressing left shift key, the last digit will start to blink. Press left shift key to the adjusted digit, and increase the value by rotating the digital dial right. The value will go back to 0 after 9 . Decrease the value by rotating the digital dial left, and the value will go to 9 after 0 .
3. Press left shift button, the blinking digit will shift left one digit. When shifting to the first digit and pressing digital dial, the digit " 0 " will change to "minus"
E.g.: Default setting of Pr. $03-03$ is 0.0 , if the value would like to be adjusted to -100 , then use left shift key to shift the blinking cursor to hundred digit. Rotate the digital dial right to 1 , and then left shift to the first digit. Rotate digital dial from ' 0 ' to ' - ' to finish setting

The upper setting limit of Pr.03-03 is 100.0 and lower limit is -100.0. If the value more than 100.0 or less than -100.0 is set, the Err will occur after pressing digital dial, and then keypad will show the upper limit (100.0) or lower limit (-100.0) for a second to remind user the unreasonable setting. Then the set value will still remain in the original set value which will not be changed. The cursor will return to the last digit.

D-3. Signed parameter setting status 2
(Parameter setting range has two decimal places, e.g.: 03-74)
Do not use left shift key: rotate the digital dial to select and adjust the parameters Use left shift key: Press After pressing left shift key, the last digit will start to blink. Press left shift key to the adjusted digit, and increase the value by rotating the digital dial right. The value will go back to 0 after 9 . Decrease the value by rotating the digital dial left, and the value will go to 9 after 0 .

Press left shift button, the blinking digit will shift left one digit. When shifting to the first digit and pressing digital dial, the digit " 0 " will change to "minus"

Note: When parameter value can be set to two decimal places, and set value has hundred digits, then the left key cannot shift the blinking cursor
E.g.: How to set 03-74 from -100 to 100

The upper setting limit of Pr . 03-74 is 100.00 and lower limit is -100.00 . If the value more than 100.0 or less than -100.0 is set, the Err will occur after pressing digital dial, and then keypad will show the upper limit (100.0) or lower limit (-100.0) (only one decimal) for a second to remind user the unreasonable setting. Then the set value will still remain in the original set value which will not be changed. The cursor will return to the last digit

Reference Table for the 16-segment LED Display of the Digital Keypad

[This page intentionally left blank]

Chapter 11 Summary of Parameter Settings

This chapter provides summary of parameter settings for user to gather the parameter setting ranges, factory settings and set parameters. The parameters can be set, changed and reset by the digital keypad.

NOTE

N : the parameter can be set during operation

00 Drive Parameters

Pr.	Explanation	Settings	Factory Setting
00-00	Identity code of the AC motor drive	102: 110 V, 1 Phase, 0.25 HP 103: $110 \mathrm{~V}, 1$ Phase, 0.5 HP 104: 110 V, 1 Phase, 1 HP 302: $230 \mathrm{~V}, 1$ Phase, 0.25 HP 303: 230 V, 1 Phase, 0.5 HP 304: $230 \mathrm{~V}, 1$ Phase, 1 HP 305: $230 \mathrm{~V}, 1$ Phase, 2 HP 306: 230 V, 1 Phase, 3 HP 202: $230 \mathrm{~V}, 3$ Phase, 0.25 HP 203: 230 V, 3 Phase, 0.5 HP 204: 230 V, 3 Phase, 1 HP 205: 230 V, 3 Phase, 2 HP 206: 230 V, 3 Phase, 3 HP 207: 230 V, 3 Phase, 5 HP 208: 230 V, 3 Phase, 7.5 HP 209: $230 \mathrm{~V}, 3$ Phase, 10 HP 210: 230 V , 3 Phase, 15 HP 211: $230 \mathrm{~V}, 3$ Phase, 20 HP 403: 460 V, 3 Phase, 0.5 HP 404: 460 V, 3 Phase, 1 HP 405: 460 V, 3 Phase, 2 HP 406: $460 \mathrm{~V}, 3$ Phase, 3 HP 407: $460 \mathrm{~V}, 3$ Phase, 5 HP 408: 460 V, 3 Phase, 7.5 HP 409: 460 V, 3 Phase, 10 HP 410: 460 V, 3 Phase, 15 HP 411: 460 V, 3 Phase, 20 HP 412: 460 V, 3 Phase, 25 HP 413: 460 V, 3 Phase, 30 HP	Read only
00-01	Display AC motor drive rated current	Display by models	Read only

Pr.	Explanation	Settings	Factory Setting
00-02	Parameter reset	0 : No function 1: Parameter write protect 5: Reset KWH display to 0 6: Reset PLC 7: Reset CANopen index (Slave) 8: Keypad doesn't respond 9: All parameters are reset to factory settings (base frequency is 50 Hz) 10: All parameters are reset to factory settings (base frequency is 60 Hz) 11: All parameters are reset to factory settings (base frequency is 50 Hz) (saving the setting value of user defined parameter 13-01~13-50) 12: All parameters are reset to factory settings (base frequency is 60 Hz) (saving the setting value of user defined parameter 13-01~13-50)	0
00-03	Start-up display selection	0 : F (frequency command) 1: H (output frequency) 2: U (multi-function display, see Pr. 00-04) 3: A (output current)	0
00-04	Content of multi-function display (user defined)	0: Display output current (A) (Unit: Amps) 1: Display counter value (c) (Unit: CNT) 2: Display actual output frequency (H.) (Unit: Hz) 3: Display DC-BUS voltage (v) (Unit: Vdc) 4: Display output voltage (E) (Unit: Vac) 5: Display output power angle (n) (Unit: deg) 6: Display output power in kW (P) (Unit: kW) 7: Display actual motor speed rpm (Unit: rpm) 8: Display estimate output torque \%, motor's rated torque is 100 \% (t$)$ (Unit: \%) 9: Display PG feedback (G) (refer to Pr. 10-00 and Pr. 10-01) (Unit: PLS) 10: Display PID feedback (b) (Unit: \%) 11: Display signal value of AVI analog input terminal (1.) (Unit: \%) 12: Display signal value of ACI analog input terminal (2.) (Unit: \%) 14: Display the temperature of IGBT (i.) (Unit: ${ }^{\circ} \mathrm{C}$) 16: The status of digital input (ON / OFF) (i)	3

Pr.	Explanation	Settings	Factory Setting
		17: Display digital output status ON / OFF (o) 18: Display the multi-stage speed that is executing (S) 18: Display the multi-stage speed that is executing (S) 19: The corresponding CPU pin status of digital input (d) 20: The corresponding CPU pin status of digital output (0.) 21: Actual motor position (PG1 of PG card). (P.) 22: Pulse input frequency (S.) 23: Pulse input position (q.) 24: Position command tracing error (E.) 25: Overload counting (0.00~100.00 \%) (o.) (Unit: \%) 26: GFF Ground Fault (G.) (Unit: \%) 27: DC Bus voltage ripple (r.) (Unit: \%) 28: Display PLC register D1043 data (C) 29: Display synchronous motor pole section (for PM + PG control) 30: Display output of user defined (U) 31: H page $\times 00-05$ display user gain (K) 32: Number of actual motor revolution during operation (PG card plug in and Z phase signal input) (Z.) 33: Motor actual position during operation (when PG card is connected) (q) 35: Control Mode display: 0 = Speed control mode (SPD) 1 = torque control mode (TQR) (t.) 36: Present operating carrier frequency of drive $(\mathrm{Hz})(\mathrm{J}$. 38: Display drive status (6.) 39: Display estimated output torque, positive and negative, using Nt-m as unit (t 0.0: positive torque; -0.0: negative torque (C.) 40: Torque command (L.) (Unit: \%) 41: KWH display (J) (Unit: kWh) 42: PID target value (h.) (Unit: \%) 43: PID offset (o.) (Unit: \%) 44: PID output frequency (b.) (Unit: Hz) 46: Display auxiliary frequency value (U.) (Unit: Hz) 47: Display master frequency value (A) (Unit: Hz) 48: Display frequency value after addition and subtraction of auxiliary and master frequency (L.) (Unit: Hz) 51: Display the position of multi-point positioning (P.)	

Pr.	Explanation	Settings	Factory Setting
		53: Display the present reel diameter under the tension control in mm (d) 54: Display the present line speed under the tension control in $\mathrm{m} / \mathrm{min}(\mathrm{L})$ 55: Display the present tension setting under the tension control in $\mathrm{N}(\mathrm{T})$ 56: Display the signal value of analog expansion card input terminal Al10 (4.) (Unit: \%) 57: Display the signal value of analog expansion card input terminal Al11 (5.) (Unit: \%)	
00-05	Coefficient gain in actual output frequency	0~160.00	1.00
00-06	Software version	Read only	\#.\#
00-07	Parameter protection password input	$\begin{aligned} & 0 \sim 65535 \\ & 0 \sim 3 \text { (the times of password attempts) } \end{aligned}$	0
00-08	Parameter protection password setting	$0 \sim 65535$ 0: No password protection / password is entered correctly (Pr. 00-07) 1: Password has been set	0
00-10	Control mode	0 : Speed mode 1: Point-to-Point position control 2: Torque mode 3: Home mode	0
00-11	Control of speed mode	0: VF (IM V/F control) 1: VFPG (IM V/F control + Encoder) 2: SVC (Pr. 05-33 set as IM or PM) 3: FOCPG (IM FOC vector control + Encoder) 4: FOCPG (PM FOC vector control + Encoder) 5: FOC Sensorless (IM field oriented sensorless vector control) 7: Advanced PM sensorless	0
00-12	Point to point position mode	0: Incremental Type 1: Absolute Type	0
00-13	Control of torque mode	0: TQCPG (IM Torque control + Encoder) 1: TQCPG (PM Torque control + Encoder) 2: TQC Sensorless (IM Sensorless torque control)	0
00-16	Load selection	0 : Normal load 1: Heavy load	1
00-17	Carrier frequency	Normal load: 2~15 KHz Heavy load: 2~15 KHz	4 4

Pr.	Explanation	Settings	Factory Setting
		004xh: M/S 005xh: kW 006xh: HP 007xh: ppm 008xh: l/m 009xh: kg/s 00Axh: kg/m 00Bxh: kg/h 00Cxh: lb/s 00Dxh: lb/m 00Exh: lb/h 00Fxh: ft/s 010xh: ft/m 011xh: M 012xh: ft 013xh: degC 014xh: degF 015xh: mbar 016xh: bar 017xh: Pa 018xh: kPa 019xh: mWG 01Axh: inWG 01Bxh: ftWG 01Cxh: Psi 01Dxh: Atm 01Exh: L/s 01Fxh: L/m 020xh: L/h 021xh: m3/s 022xh: m3/h 023xh: GPM 024xh: CFM	
00-26	Max. user defined value	0 : Disable 0~65535 (when Pr. 00-25 set to no decimal place) $0.0 \sim 6553.5$ (when Pr. 00-25 set to 1 decimal place) $0.0 \sim 655.35$ (when Pr. 00-25 set to 2 decimal place) $0.0 \sim 65.535$ (when Pr. 00-25 set to 3 decimal place)	0
00-27	User defined value	Read only	Read only

Pr.	Explanation	Settings			Factory Setting
00-36	Selection of master and auxiliary frequency command	0 : Master + auxiliary frequency 1: Master - auxiliary frequency 2: Auxiliary - master frequency			0
00-40	Homing mode	$\begin{array}{c\|c} \hline \text { Home } \\ \hline \text { limit } \\ \hline \end{array}$	Y pulse setting setting		0
00-41	Homing by frequency 1	$0.00 \sim 599.00 \mathrm{~Hz}$			8.00
00-42	Homing by frequency 2	$0.00 \sim 599.00 \mathrm{~Hz}$			2.00
00-48	Display filter time (Current)	$0.001 \sim 65.535 \mathrm{sec}$.			0.100
00-49	Display filter time (Keypad)	0.001~65.535 sec.			0.100
00-50	Software version (Date)	Read only			\#\#\#\#\#

01 Basic Parameters

Chapter 11 Summary of Parameter Settings
 MH300

	Pr.	Explanation	Settings	Factory Setting
,	01-44	Auto acceleration / deceleration setting	0 : Linear accel. / decel. 1: Auto accel., linear decel. 2: Linear accel., auto decel. 3: Auto accel. / decel. 4: Linear, stall prevention by auto accel. / decel. (limited by Pr. 01-12 to 01-21)	0
	01-45	Time unit for acceleration / deceleration and S curve	0 : Unit 0.01 sec . 1: Unit 0.1 sec .	0
	01-46	Time for CANopen quick stop	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00 \sim 600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.0 \sim 6000.0 \mathrm{sec} . \end{aligned}$	1.00
	01-49	Deceleration method	0 : Normal decel. 1: Overfluxing decel. 2: Traction energy control	0
	01-52	Max. operation frequency of motor 2	$0.00 \sim 599.00 \mathrm{~Hz}$	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$
	01-53	Max. operation frequency of motor 3	$0.00 \sim 599.00 \mathrm{~Hz}$	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$
	01-54	Output frequency of motor 3	$0.00 \sim 599.00 \mathrm{~Hz}$	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$
	01-55	Output voltage of motor 3	110V / 230V series: $0.0 \mathrm{~V} \sim 255.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 510.0 \mathrm{~V}$	$\begin{aligned} & 220.0 \\ & 440.0 \end{aligned}$
	01-56	Mid-point frequency 1 of motor 3	$0.00 \sim 599.00 \mathrm{~Hz}$	3.00
	01-57	Mid-point voltage 1 of motor 3	$\begin{aligned} & 110 \mathrm{~V} / 230 \mathrm{~V} \text { series: } 0.0 \mathrm{~V} \sim 240.0 \mathrm{~V} \\ & 460 \mathrm{~V} \text { series: } 0.0 \mathrm{~V} \sim 480.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 11.0 \\ & 22.0 \end{aligned}$
	01-58	Mid-point frequency 2 of motor 3	$0.00 \sim 599.00 \mathrm{~Hz}$	0.50
	01-59	Mid-point voltage 2 of motor 3	$110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$
	01-60	Min. output frequency of motor 3	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
	01-61	Min. output voltage of motor 3	$110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$
	01-62	Max. operation frequency of motor 4	0.00~599.00 Hz	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$
	01-63	Output frequency of motor 4	0.00~599.00 Hz	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$
	01-64	Output voltage of motor 4	$\begin{aligned} & 110 \mathrm{~V} / 230 \mathrm{~V} \text { series: } 0.0 \mathrm{~V} \sim 255.0 \mathrm{~V} \\ & 460 \mathrm{~V} \text { series: } 0.0 \mathrm{~V} \sim 510.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 220.0 \\ & 440.0 \end{aligned}$
	01-65	Mid-point frequency 1 of motor 4	$0.00 \sim 599.00 \mathrm{~Hz}$	3.00
,	01-66	Mid-point voltage 1 of motor 4	$110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$	$\begin{aligned} & 11.0 \\ & 22.0 \end{aligned}$
	01-67	Mid-point frequency 2 of motor 4	$0.00 \sim 599.00 \mathrm{~Hz}$	0.50

Chapter 11 Summary of Parameter Settings | MH300

	Pr.	Explanation	Settings	Factory Setting
N	01-68	Mid-point voltage 2 of motor 4	110 V / 230 V series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$
	01-69	Min. output frequency of motor 4	0.00~599.00 Hz	0.00
N	01-70	Min. output voltage of motor 4	$110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$

02 Digital Input / Output Parameters

Pr.	Explanation	Settings	Factory Setting
02-00	2-wire / 3-wire operation control	0 : No function 1: 2-wire mode 1, power on for operation control (M1: FWD / STOP, M2: REV / STOP) 2: 2-wire mode 2, power on for operation control (M1: RUN / STOP, M2: REV / FWD) 3: 3-wire, power on for operation control (M1: RUN, M2: REV / FWD, M3: STOP) 4: 2-wire mode 1 , fast start up (M1: FWD / STOP, M2: REV / STOP) 5: 2-wire mode 2 , fast start up (M1: RUN / STOP, M2: REV / FWD) 6: 3-wire , fast start up (M1: RUN, M2: REV / FWD, M3: STOP) IMPORTANT 1. In fast start up function, terminal output will keep in ready status, drive will response to the command immediately. 2. When using fast start up function, the output terminal will have higher voltage potentially.	1
02-01	Multi-function input command 1 (MI1)	0 : No function 1: Multi-stage speed command 1 / multi-stage position command 1 2: Multi-stage speed command 2 / multi-stage position command 2 3: Multi-stage speed command 3 / multi-stage position command 3 4: Multi-stage speed command 4 / multi-stage position command 4 5: Reset 6: JOG command (By KPC-CC01 or external control) 7: Acceleration / deceleration speed inhibit 8: The $1^{\text {st }}, 2^{\text {nd }}$ acceleration / deceleration time selection 9: The $3^{\text {rd }}, 4^{\text {th }}$ acceleration / deceleration time selection 10: EF Input (Pr. 07-20)	0
02-02	Multi-function input command 2 (MI2)		0
02-03	Multi-function input command 3 (MI3)		1
02-04	Multi-function input command 4 (M14)		2
02-05	Multi-function input command 5 (MI5)		3
02-06	Multi-function input command 6 (MI6)		4
02-07	Multi-function input command 7 (MI7)		0
02-26	Input terminal of I/O extension card (MI10)		0
02-27	Input terminal of I/O extension card (M111)		0

Pr.	Explanation	Settings	Factory Setting
02-28	Input terminal of I/O extension card (MI12)	11: B.B. input from external (Base Block) 12: Output stop	0
		13: Cancel the setting of optimal accel. / decel. time 15: Operation speed command from AVI 16: Operation speed command from ACl 18: Emergency stop (Pr. 07-20) 19: Digital up command 20: Digital down command 21: PID function disabled 22: Clear counter 23: Input the counter value (MI6) 24: FWD JOG command 25: REV JOG command 26: TQC / FOC model selection 27: ASR1 / ASR2 selection 28: Emergency stop (EF1) 29: Signal confirmation for Y-connection 30: Signal confirmation for Δ-connection 31: High torque bias (Pr. 11-30) 32: Middle torque bias (Pr. 11-31) 33: Low torque bias (Pr. 11-32) 34: Switch between multi-stage position and multi-speed control 35: Enable single point position control 36: Enable multi-stage position learning function (valid at stop) 37: Full position control pulse command input enable 38: Disable EEPROM write function 39: Torque command direction 40: Force coast to stop 41: HAND switch 42: AUTO switch 43: Enable resolution selection (Pr. 02-48) 44: Reversed direction homing (NL) 45: Forward direction homing (PL) 46: Homing (ORG) 47: Homing function enabled 48: Mechanical gear ratio switch	

Pr.	Explanation	Settings	Factory

Pr.	Explanation	Settings	Factory Setting
02-38	Output terminal of extension card (MO12) or (RY12)	6: Zero speed, include STOP (Frequency command) 7: Over torque 1 (Pr. 06-06~06-08) 8: Over torque 2 (Pr. 06-09~06-11) 9: Drive is ready 10: Low voltage warning (LV) (Pr. 06-00) 11: Malfunction indication 13: Overheat warning (Pr. 06-15) 14: Software brake signal indication (Pr. 07-00) 15: PID feedback error 16: Slip error (oSL) 17: Count value attained, does not return to 0 (Pr. 02-20) 18: Count value attained, returns to 0 (Pr. 02-19) 19: Base Block 20: Warning output 21: Over voltage warning 22: Over-current stall prevention warning 23: Over-voltage stall prevention warning 24: Operation mode indication 25: Forward command 26: Reverse command 29: Output when frequency \geq Pr. 02-34 30: Output when frequency < Pr. 02-34 31: Y-connection for the motor coil 32: Δ-connection for the motor coil 33: Zero speed (actual output frequency) 34: Zero speed include stop (actual output frequency) 35: Error output selection 1 (Pr. 06-23) 36: Error output selection 2 (Pr. 06-24) 37: Error output selection 3 (Pr. 06-25) 38: Error output selection 4 (Pr. 06-26) 39: Position attained (Pr. 10-19) 40: Speed attained (including Stop) 41: Multi-position attained 42: Crane function 43: Actual motor speed slower than Pr. 02-47 44: Low current output (use with Pr. 06-71~06-73) 45: UVW Output Electromagnetic valve Switch	0

	Pr.	Explanation	Settings	Factory Setting
			46: Master dEb warning output 49: Homing action complete output 50: As output control for CANopen 51: As output control for RS-485 52: As output control for communication card 66: SO logic A 67: Analog input level reached 68: SO logic B 69: Max. reel diameter attained 70: Empty reel diameter attained 71: Broken belt detection- 72: Tension PID feedback error 73: Over torque 3 74: Over torque 4	
N	02-18	Multi-function output direction	0000h~FFFFh (0: N.O.; 1: N.C.)	0000
N	02-19	Terminal counting value attained (returns to 0)	0~65500	0
N	02-20	Preliminary counting value attained (not return to 0)	0~65500	0
N	02-21	Digital output gain (DFM)	1~55	1
N	02-22	Desired frequency attained 1	$0.00 \sim 599.00 \mathrm{~Hz}$	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$
N	02-23	The width of the desired frequency attained 1	$0.00 \sim 599.00 \mathrm{~Hz}$	2.00
N	02-24	Desired frequency attained 2	$0.00 \sim 599.00 \mathrm{~Hz}$	$\begin{aligned} & 60.00 / \\ & 50.00 \end{aligned}$
N	02-25	The width of the desired frequency attained 2	$0.00 \sim 599.00 \mathrm{~Hz}$	2.00
N	02-34	Output frequency setting for multi-function output terminal	$0.00 \sim 599.00 \mathrm{~Hz}$ (Motor speed when using PG Card)	0.00
N	02-35	External operation control selection after reset and activate	0 : Disable 1: Drive runs if run command exists after reset	0
N	02-47	Zero-speed Level of Motor	0~65535 rpm	0
N	02-48	Max. frequency of resolution switch	$0.01 \sim 599.00 \mathrm{~Hz}$ (Use with MI set as 43)	60.00
N	02-49	Switch the delay time of Max. output frequency	$0.000 \sim 65.000 \mathrm{sec}$.	0
	02-50	Status of multi-function input terminal	Monitor the status of multi-function input terminals	Read only

Chapter 11 Summary of Parameter Settings | MH300

		Explanation	Settings	Factory Setting
	02-51	Status of multi-function output terminal	Monitor the status of multi-function output terminals	Read only
	02-52	Display external multi-function input terminals used by PLC	Monitor the status of PLC input terminals	Read only
	02-53	Display external multi-function output terminals used by PLC	Monitor the status of PLC output terminals	Read only
	02-54	Display the frequency command executed by external terminal	Read only	Read only
	02-58	Multi-function output terminal: function 42: brake frequency checking point	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
	02-70	IO card types	1: EMC-BPSO1 (Backup power supply) 10: EMM-D33A 11: EMM-A22A 12: EMM-R2CA 13: EMM-R3AA	Read only
	02-81	EF active when terminal count value attained	0 : Terminal count value attained, no EF display 1: Terminal count value attained, EF active	0
	02-82	Initial frequency command (F) mode after stop	0: By Current Freq. Command 1: By Zero Freq. Command 2: Refer to Pr. 02-83 to set up	0
	02-83	Initial frequency command (F) setting after stop	$0.00 \sim 599.0 \mathrm{~Hz}$	60.00

03 Analog Input / Output Parameters

	Pr.	Explanation	Settings	Factory Setting
N	03-00	Analog input selection (AVI)	0 : No function 1: Frequency command 2: Torque command (torque limit in speed mode) 3: Torque compensation command 4: PID target value 5: PID feedback signal 6: PTC thermistor input value 7: Positive torque limit 8: Negative torque limit 9: Regenerative torque limit 10: Positive / negative torque limit 11: PT100 thermistor input value 12: Auxiliary frequency input 13: PID compensation value 14: Tension PID feedback signal 15: Line speed 16: Reel diameter 17: Tension PID target value 18: Tension setting value 19: Zero-speed tension 20: Tension taper	1
N	03-01	Analog input selection (ACI)		0
N	03-03	Analog input bias (AVI)	-100.0~100.0\%	0
N	03-04	Analog input bias (ACI)	-100.0~100.0\%	0
N	03-07	Positive / negative bias mode (AVI)	0 : No bias 1: Lower than or equal to bias 2: Greater than or equal to bias 3: The absolute value of the bias voltage while serving as the center 4: Serve bias as the center	0
N	03-08	Positive / negative bias mode (ACI)		
N	03-10	Analog frequency command for reverse run	0 : Negative frequency input is not allowed. Forward and reverse run is controlled by digital keypad or external terminal. 1: Negative frequency input is allowed. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.	0
N	03-11	Analog input gain (AVI)	$-500.0 \sim 500.0$ \%	100.0
N	03-12	Analog input gain (ACI)	-500.0~500.0\%	100.0

	Pr.	Explanation	Settings	Factory Setting
N	03-29	ACI terminal input selection	$\begin{aligned} & 0: 4 \sim 20 \mathrm{~mA} \\ & 1: 0 \sim 10 \mathrm{~V} \\ & 2: 0 \sim 20 \mathrm{~mA} \end{aligned}$	0
N	03-30	Status of PLC analog output terminal	Monitor the status of PLC analog output terminals	Read only
N	03-31	AFM output selection	0: 0~10 V output 1: 0~20 mA output 2: 4~20 mA output	0
N	03-32	AFM DC output setting level	0.00~100.00\%	0.00
N	03-35	AFM filter output time	$0.00 \sim 20.00 \mathrm{sec}$.	0.01
N	03-39	VR input selection	0: Disable 1: Frequency command	1
N	03-44	Multi-function MO output by source of Al level	$\begin{aligned} & \text { 0: AVI } \\ & \text { 1: ACI } \end{aligned}$ 3: Extension card input terminal Al10 4: Extension card input terminal Al11	0
N	03-45	Al upper level 1	-100 \% 100.00 \%	50
N	03-46	Al lower level 2	-100 \% 100.00 \%	10
N	03-50	Analog input curve selection	0: Regular Curve 1:3 point curve of AVI (\& Al10) 2: 3 point curve of ACI (\& Al11) 3: 3 point curve of AVI \& ACI (\& AI10 \& Al11) (Al10, Al11 is valid when extension card is installed)	0
N	03-57	ACl lowest point	$\begin{aligned} & 03-29=1,0.00 \sim 10.00 \mathrm{~V} \\ & 03-29 \neq 1,0.00 \sim 20.00 \mathrm{~mA} \end{aligned}$	4.00
N	03-58	ACI proportional lowest point	0.00~100.00 \%	0.00
N	03-59	ACI mid-point	$\begin{aligned} & 03-29=1,0.00 \sim 10.00 \mathrm{~V} \\ & 03-29 \neq 1,0.00 \sim 20.00 \mathrm{~mA} \end{aligned}$	12.00
N	03-60	ACI proportional mid-point	0.00~100.00 \%	50.00
N	03-61	ACl highest point	$\begin{aligned} & 03-29=1,0.00 \sim 10.00 \mathrm{~V} \\ & 03-29 \neq 1,0.00 \sim 20.00 \mathrm{~mA} \end{aligned}$	20.00
N	03-62	ACI proportional highest point	0.00~100.00 \%	100.00
N	03-63	AVI voltage lowest point	0.00~10.00 V	0.00
N	03-64	AVI voltage proportional lowest point	-100.00~100.00 \%	0.00

	Pr.	Explanation	Settings	Factory Setting
N	03-65	AVI voltage mid-point	$0.00 \sim 10.00 \mathrm{~V}$	5.00
N	03-66	AVI voltage proportional mid-point	-100.00~100.00\%	50.00
N	03-67	AVI voltage highest point	$0.00 \sim 10.00 \mathrm{~V}$	10.00
N	03-68	AVI voltage proportional highest point	-100.00~100.00 \%	100.00
N	03-69	Negative AVI voltage lowest point	$0.00 \sim-10.00 \mathrm{~V}$ (valid when Pr. $03-28$ set as $-10 \mathrm{~V} \sim+10 \mathrm{~V}$)	0.00
N	03-70	Negative AVI voltage proportional lowest point	-100.00~100.00 \% (valid when Pr. $03-28$ set as $-10 \mathrm{~V} \sim+10 \mathrm{~V}$)	0.00
N	03-71	Negative AVI voltage mid-point	$0.00 \sim-10.00 \mathrm{~V}$ (valid when Pr. 03-28 set as -10 V ~ +10 V)	-5.00
N	03-72	Negative AVI voltage proportional mid-point	-100.00~100.00 \% (valid when Pr. 03-28 set as $-10 \mathrm{~V} \sim+10 \mathrm{~V}$)	-50.00
N	03-73	Negative AVI voltage highest point	$0.00 \sim-10.00 \mathrm{~V}$ (valid when Pr. 03-28 set as $-10 \mathrm{~V} \sim+10 \mathrm{~V}$)	-10.00
N	03-74	Negative AVI voltage proportional highest point	$-100.00 \sim 100.00 \%$ (valid when Pr. 03-28 set as $-10 \mathrm{~V} \sim+10 \mathrm{~V}$)	-100.00

04 Multi-stage Speed Parameters

	Pr.	Explanation	Settings	Factory Setting
N	04-00	$1^{\text {st }}$ stage speed frequency	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
N	04-01	$2^{\text {nd }}$ stage speed frequency	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
N	04-02	$3{ }^{\text {rd }}$ stage speed frequency	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
N	04-03	$4^{\text {th }}$ stage speed frequency	0.00~599.00 Hz	0.00
N	04-04	$5^{\text {th }}$ stage speed frequency	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
N	04-05	$6^{\text {th }}$ stage speed frequency	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
N	04-06	$7{ }^{\text {th }}$ stage speed frequency	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
N	04-07	$8^{\text {th }}$ stage speed frequency	0.00~599.00 Hz	0.00
N	04-08	$9^{\text {th }}$ stage speed frequency	0.00~599.00 Hz	0.00
N	04-09	$10^{\text {th }}$ stage speed frequency	0.00~599.00 Hz	0.00
N	04-10	$11^{\text {th }}$ stage speed frequency	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
N	04-11	$12^{\text {th }}$ stage speed frequency	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
N	04-12	$13^{\text {th }}$ stage speed frequency	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
N	04-13	$14^{\text {th }}$ stage speed frequency	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
N	04-14	$15^{\text {th }}$ stage speed frequency	0.00~599.00 Hz	0.00
N	04-15	Position command 1 (rotation)	-30000~30000	0
N	04-16	Position command 1 (pulse)	-32767~32767	0
N	04-17	Position command 2 (rotation)	-30000~30000	0
N	04-18	Position command 2 (pulse)	-32767~32767	0
N	04-19	Position command 3 (rotation)	-30000~30000	0
N	04-20	Position command 3 (pulse)	-32767~32767	0
N	04-21	Position command 4 (rotation)	-30000~30000	0
N	04-22	Position command 4 (pulse)	-32767~32767	0
N	04-23	Position command 5 (rotation)	-30000~30000	0
N	04-24	Position command 5 (pulse)	-32767~32767	0
N	04-25	Position command 6 (rotation)	-30000~30000	0
N	04-26	Position command 6 (pulse)	-32767~32767	0
N	04-27	Position command 7 (rotation)	-30000~30000	0
N	04-28	Position command 7 (pulse)	-32767~32767	0
N	04-29	Position command 8 (rotation)	-30000~30000	0
N	04-30	Position command 8 (pulse)	-32767~32767	0
N	04-31	Position command 9 (rotation)	-30000~30000	0
N	04-32	Position command 9 (pulse)	-32767~32767	0
N	04-33	Position command 10 (rotation)	-30000~30000	0
N	04-34	Position command 10 (pulse)	-32767~32767	0
N	04-35	Position command 11 (rotation)	-30000~30000	0
N	04-36	Position command 11 (pulse)	-32767~32767	0
N	04-37	Position command 12 (rotation)	-30000~30000	0

Chapter 11 Summary of Parameter Settings | MH300

	Pr.	Explanation	Settings	Factory Setting
N	04-38	Position command 12 (pulse)	-32767~32767	0
N	04-39	Position command 13 (rotation)	-30000~30000	0
N	04-40	Position command 13 (pulse)	-32767~32767	0
N	04-41	Position command 14 (rotation)	-30000~30000	0
N	04-42	Position command 14 (pulse)	-32767~32767	0
N	04-43	Position command 15 (rotation)	-30000~30000	0
N	04-44	Position command 15 (pulse)	-32767~32767	0
N	04-50	PLC buffer 0	0~65535	0
N	04-51	PLC buffer 1	0~65535	0
N	04-52	PLC buffer 2	0~65535	0
N	04-53	PLC buffer 3	0~65535	0
N	04-54	PLC buffer 4	0~65535	0
N	04-55	PLC buffer 5	0~65535	0
N	04-56	PLC buffer 6	0~65535	0
N	04-57	PLC buffer 7	0~65535	0
N	04-58	PLC buffer 8	0~65535	0
N	04-59	PLC buffer 9	0~65535	0
N	04-60	PLC buffer 10	0~65535	0
N	04-61	PLC buffer 11	0~65535	0
N	04-62	PLC buffer 12	0~65535	0
N	04-63	PLC buffer 13	0~65535	0
N	04-64	PLC buffer 14	0~65535	0
N	04-65	PLC buffer 15	0~65535	0
N	04-66	PLC buffer 16	0~65535	0
N	04-67	PLC buffer 17	0~65535	0
N	04-68	PLC buffer 18	0~65535	0
N	04-69	PLC buffer 19	0~65535	0

05 Motor Parameters

		Explanation	Settings	Factory Setting
	05-00	Motor parameter auto tuning	0 : No function 1: Dynamic test for induction motor (IM) 2: Static test for induction motor (IM) 4: Dynamic test for PM synchronous motor magnetic pole 12: FOC Sensorless inertia estimation 13: High frequency stall test for PM synchronous motor	0
	05-01	Full-load current of induction motor 1 (A)	10~120 \% of drive's rated current	\#.\#\#
	05-02	Rated power of induction motor 1 (kW)	0~655.35 kW	\#.\#\#
	05-03	Rated speed of induction motor 1 (rpm)	$\begin{aligned} & 0 \sim 65535 \\ & 1710(60 \mathrm{~Hz} 4 \text { poles }) ; 1410(50 \mathrm{~Hz} 4 \text { poles }) \end{aligned}$	1710
	05-04	Pole number of induction motor 1	2~20	4
	05-05	No-load current of induction motor 1 (A)	$0 \sim$ Pr. 05-01 factory setting	\#.\#\#
	05-06	Stator resistance (Rs) of induction motor 1	0~65.535 Ω	\#.\#\#\#
	05-07	Rotor resistance (Rr) of induction motor 1	$0 \sim 65.535 \Omega$	\#.\#\#\#
	05-08	Magnetizing inductance (Lm) of induction motor 1	0~6553.5 mH	\#.\#
	05-09	Stator inductance (Lx) of induction motor 1	0~6553.5 mH	\#.\#
	05-13	Full-load current of induction motor 2 (A)	10~120 \% of drive's rated current	\#.\#\#
	05-14	Rated power of induction motor 2 (kW)	0~655.35 kW	\#.\#\#
	05-15	Rated speed of induction motor 2 (rpm)	$\begin{aligned} & 0 \sim 65535 \\ & 1710(60 \mathrm{~Hz} 4 \text { poles }) ; 1410(50 \mathrm{~Hz} 4 \text { poles }) \end{aligned}$	1710
	05-16	Pole number of induction motor 2	2~20	4
	05-17	No-load current of induction motor 2 (A)	$0 \sim$ Pr. 05-13 factory setting	\#.\#\#
	05-18	Stator resistance (Rs) of induction motor 2	0~65.535 Ω	\#.\#\#\#
	05-19	Rotor resistance (Rr) of induction motor 2	$0 \sim 65.535 \Omega$	\#.\#\#\#
	05-20	Magnetizing inductance (Lm) of induction motor 2	$0 \sim 6553.5 \mathrm{mH}$	\#.\#
	05-21	Stator inductance (Lx) of induction motor 2	0~6553.5 mH	\#.\#
	05-22	Multi-motors (induction) selection	1: motor 1 2: motor 2 3: motor 3 (VF or SVC control mode only) 4: motor 4 (VF or SVC control mode only)	1
	05-23	Frequency for Y-connection / Δ-connection switch of induction motor	$0.00 \sim 599.00 \mathrm{~Hz}$	60.00
	05-2	Y-connection / Δ-connection switch of induction motor	0 : Disable 1: Enable	0

Chapter 11 Summary of Parameter Settings | MH300

	Explanation	Settings	Factory Setting
	Delay time for Y-connection / Δ-connection switch of induction motor	0.000~60.000 sec.	0.200
	Accumulative Watt-second of motor in low word (W-sec)	Read only	\#.\#
	Accumulative Watt-second of motor in high word (W-sec)	Read only	\#.\#
	Accumulative Watt-hour of motor (W-Hour)	Read only	\#.\#
	Accumulative Watt-hour of motor in low word (KW-Hour)	Read only	\#.\#
	Accumulative Watt-hour of motor in high word (KW-Hour)	Read only	\#.\#
	Accumulative motor operation time (Min.)	00~1439	0
	Accumulative motor operation time (Day)	00~65535	0
	Induction motor or permanent magnet synchronous motor selection	$\begin{aligned} & \text { 0: Induction Motor } \\ & \text { 1: SPM } \\ & \text { 2: IPM } \end{aligned}$	0
	Full-load current of permanent magnet synchronous motor	0~120 \% of drive's rated current	\#.\#
	Rated power of permanent magnet synchronous motor	0.00~655.35 kW	\#.\#
	Rated speed of permanent magnet synchronous motor	0~65535 rpm	2000
	Pole number of permanent magnet synchronous motor	0~65535	10
	Stator resistance of PM synchronous motor	0.000~65.535 Ω	0.000
	Permanent magnet synchronous motor Ld	$0.00 \sim 655.35 \mathrm{mH}$	0.00
	Permanent magnet synchronous motor Lq	$0.00 \sim 655.35 \mathrm{mH}$	0.00
	PG offset angle of PM synchronous motor	0.0~360.0 ${ }^{\circ}$	0.0
	Ke parameter of PM synchronous motor	0.0~6553.5 (Unit: V / 1000 rpm)	0
	Full-load current of induction motor 3 (A)	10~120 \% of drive's rated current	\#.\#\#
	Rated power of induction motor 3 (kW)	0~655.35 kW	\#.\#\#
	Rated speed of induction motor 3 (rpm)	0~65535 1710 (60 Hz 4 poles); 1410 (50 Hz 4 poles)	1710
	Pole number of induction motor 3	2~20	4
	No-load current of induction motor 3 (A)	$0 \sim$ Pr. 05-64 factory setting	\#.\#\#
	Stator resistance (Rs) of induction motor 3	0~65.535 Ω	\#.\#\#\#
	Full-load current of induction motor 4 (A)	10~120\% of drive's rated current	\#.\#\#

06 Protection Parameters (1)

	Pr.	Explanation	Settings	Factory Setting
	06-00	Low voltage level	$110 \mathrm{~V} / 230 \mathrm{~V}: 150.0 \sim 220.0 \mathrm{Vdc}$ 460 V : 300.0~440.0 Vdc	$\begin{aligned} & 180.0 \\ & 360.0 \end{aligned}$
,	06-01	Over-voltage stall prevention	0 : Disabled $110 \mathrm{~V} / 230 \mathrm{~V}: 0.0 \sim 450.0 \mathrm{Vdc}$ $460 \mathrm{~V}: 0.0 \sim 900.0 \mathrm{Vdc}$	$\begin{aligned} & 380.0 \\ & 760.0 \end{aligned}$
	06-02	Selection for over-voltage stall prevention	0 : Traditional over-voltage stall prevention 1: Smart over-voltage prevention	0
	06-03	Over-current stall prevention during acceleration	Normal Load: 0~150\% (100 \% corresponds to the rated current of the drive) Heavy Load: 0~200 \% (100 \% corresponds to the rated current of the drive)	$\begin{aligned} & 120 \\ & 180 \end{aligned}$
,	06-04	Over-current stall prevention during operation	Normal Load: 0~150\% (100 \% corresponds to the rated current of the drive) Heavy Load: 0~200 \% (100 \% corresponds to the rated current of the drive)	$\begin{aligned} & 120 \\ & 180 \end{aligned}$
,	06-05	Accel. / Decel. time selection of stall prevention at constant speed	0: By current accel. / decal. time 1: By the $1^{\text {st }}$ accel. / decel. time 2: By the $2^{\text {nd }}$ accel. / decel. time 3: By the $3^{\text {rd }}$ accel. / decel. time 4: By the $4^{\text {th }}$ accel. / decel. time 5: By auto accel. / decel.	0
	06-06	Over-torque detection selection (motor1)	0 : No function 1: Continue operation after Over-torque detection during constant speed operation 2: Stop after Over-torque detection during constant speed operation 3: Continue operation after Over-torque detection during RUN 4: Stop after Over-torque detection during RUN	0
	06-07	Over-torque detection level (motor 1)	10~250 \% (100 \% corresponds to the rated current of the drive)	120
	06-08	Over-torque detection time (motor 1)	$0.0 \sim 60.0 \mathrm{sec}$.	0.1

Pr.	Explanation	Settings	Factory Setting
		22: Electronics thermal relay protection 1 (EoL1) 23: Electronics thermal relay protection 2 (EoL2) 24: Motor PTC overheat (oH3) 26: Over-torque 1 (ot1) 27: Over-torque 2 (ot2) 28: Low current (uC) 29: Home limit error (Lit) 31: Memory read-out error (cF2) 33: U-phase current detection error (cd1) 34: V-phase current detection error (cd2) 35: W-phase current detection error (cd3) 36: Clamp current detection error (Hd0) 37: Over-current detection error (Hd1) 40: Auto tuning error (AUE) 41: PID feedback loss (AFE) 42: PG feedback error (PGF1) 43: PG feedback loss (PGF2) 44: PG feedback stall (PGF3) 45: PG slip error (PGF4) 48: Analog current input loss (ACE) 49: External fault input (EF) 50: Emergency stop (EF1) 51: External Base Block (bb) 52: Password error (Pcod) 54: Communication error (CE1) 55: Communication error (CE2) 56: Communication error (CE3) 57: Communication error (CE4) 58: Communication Time-out (CE10) 59: PU panel time out (CP10) (for MH LCD keypad and CC01 keypad) 61: Y-connection / \triangle-connection switch error (ydc) 62: Decel. Energy Backup Error (dEb) 63: Slip error (oSL) 65: PG card error (PGF5) 72: Channel 1 (S1~DCM) safety loop error (STL1) 76: Safety torque off (STo) 77: Channel 2 (S2~DCM) safety loop error (STL2) 78: Internal loop error (STL3) 79: U phase Over current before run (Uoc)	

Pr.	Explanation	Settings	Factory Setting
		80: V phase Over current before run (Voc) 81: W phase Over current before run (Woc) 82: U phase output phase loss (OPHL) 83: V phase output phase loss (OPHL) 84: W phase output phase loss (OPHL) 87: Drive over load in low frequency (oL3) 89: Initial rotor position detection error (RoPd) 101: CANopen software disconnect1 (CGdE) 102: CANopen software disconnect2 (CHbE) 104: CANopen hardware disconnect (CbFE) 105: CANopen index setting error (CIdE) 106: CANopen station number setting error (CAdE) 107: CANopen memory error (CFrE) 111: Internal communication overtime error (ictE) 121: Internal communication error (CP20) 123: Internal communication error (CP22) 124: Internal communication error (CP30) 126: Internal communication error (CP32) 127: Software version error (CP33) 128: Over-torque 3 (ot3) 129: Over-torque 4 (ot4) 130: Over-torque 5 (ot5) 131: Over-torque 6 (ot6) 132: Over-torque 7 (ot7) 133: Over-torque 8 (ot8) 134: Electronics thermal relay 3 protection (EoL3) 135: Electronics thermal relay 4 protection (EoL4) 136: Electronics thermal relay 5 protection (EoL5) 137: Electronics thermal relay 6 protection (EoL6) 138: Electronics thermal relay 7 protection (EoL7) 139: Electronics thermal relay 8 protection (EoL8) 140: GFF detected when power on (Hd6) 141: GFF before run (BGFF) 142: Auto tuning error 1 (DC test stage) (AUE1) 143: Auto tuning error 2 (High frequency test stage) (AUE2) 144: Auto tuning error 3 (Rotary test stage) (AUE3) 146: Tension belt broken (TBB) 147: Tension PID error (TPD)	

Chapter 11 Summary of Parameter Settings
 MH300

Chapter 11 Summary of Parameter Settings | MH300

	Pr.	Explanation	Settings	Factory Setting
N	06-44	STO latch selection	0: STO Latch 1: STO No Latch	0
N	06-45	Treatment to output phase loss detection (OPHL)	0 : Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	3
N	06-46	Detection time of output phase loss	0.000~65.535 sec.	0.500
N	06-47	Current detection level of output phase loss	0.00~100.00 \%	1.00
N	06-48	DC Brake time of output phase loss	$0.000 \sim 65.535 \mathrm{sec}$.	0.000
N	06-49	LvX auto reset	0 : Disabled 1: Enabled	0
N	06-53	Treatment for the detected input phase Loss (OrP)	0 : Warn and ramp to stop 1: Warn and coast to stop	0
N	06-55	Derating protection	0 : constant rated current and limit carrier wave by load current and temperature 1: constant carrier frequency and limit load current by setting carrier wave 2: constant rated current (same as setting 0), but close current limit	0
N	06-56	PT100 voltage level 1	0.000~10.000 V	5.000
N	06-57	PT100 voltage level 2	$0.000 \sim 10.000 \mathrm{~V}$	7.000
N	06-58	PT100 level 1 frequency protect	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
N	06-59	Delay Time of Activating PT100 Level 1 Frequency Protection	0~6000 sec.	60
N	06-60	Software detection GFF current level	0.0~6553.5 \%	60.0
N	06-61	Software detection GFF filter time	$0.00 \sim 655.35 \mathrm{sec}$.	0.10
	06-63	Operation time of fault record 1 (Day)	0~65535 days	Read only
	06-64	Operation time of fault record 1 (Min.)	0~1439 min.	Read only
	06-65	Operation time of fault record 2 (Day)	0~65535 days	Read only
	06-66	Operation time of fault record 2 (Min.)	0~1439 min.	Read only
	06-67	Operation time of fault record 3 (Day)	0~65535 days	Read only
	06-68	Operation time of fault record 3 (Min.)	0~1439 min.	Read only

Chapter 11 Summary of Parameter Settings | MH300

07 Special Parameters

	Pr.	Explanation	Settings	Factory Setting
N	07-00	Software brake level	110 V / $230 \mathrm{~V}: 350.0 \sim 450.0 \mathrm{Vdc}$ $460 \mathrm{~V}: 700.0 \sim 900.0 \mathrm{Vdc}$	$\begin{aligned} & 370.0 \\ & 740.0 \end{aligned}$
N	07-01	DC brake current level	0~100\%	0
N	07-02	DC brake time at RUN	$0.0 \sim 60.0 \mathrm{sec}$.	0.0
N	07-03	DC brake time at stop	$0.0 \sim 60.0 \mathrm{sec}$.	0.0
N	07-04	DC brake frequency at stop	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
N	07-05	Voltage increasing gain	1~200\%	100
N	07-06	Restart after momentary power loss	0 : Stop operation 1: Speed tracking by the speed before the power loss 2: Speed tracking by minimum output frequency	0
N	07-07	Allowed power loss duration	$0.0 \sim 20.0 \mathrm{sec}$.	2.0
N	07-08	Base block time	$0.1 \sim 5.0 \mathrm{sec}$.	0.5
N	07-09	Current limit of speed tracking	20~200 \%	100
N	07-10	Treatment of restart after fault	0: Stop operation 1: Speed tracking by current speed 2: Speed tracking by minimum output frequency	0
N	07-11	Restart times after fault	0~10	0
N	07-12	Speed tracking during start-up	0 : Disabled 1: Speed tracking by maximum output frequency 2: Speed tracking by motor frequency at start 3: Speed tracking by minimum output frequency	0
N	07-13	dEb function selection	0 : Disabled 1: dEb with auto accel. / decal., the frequency will not return after power reply. 2: dEb with auto accel. / decal., the frequency will return after power reply.	0
N	07-15	Dwell time at accel.	$0.00 \sim 600.00 \mathrm{sec}$.	0.00
N	07-16	Dwell frequency at accel.	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00
N	07-17	Dwell time at decel.	$0.00 \sim 600.00 \mathrm{sec}$.	0.00
N	07-18	Dwell frequency at decel.	$0.00 \sim 599.00 \mathrm{~Hz}$	0.00

Chapter 11 Summary of Parameter Settings
 MH300

	Pr.	Explanation	Settings	Factory Setting
N	07-62	dEb gain	0~65535	8000
N	07-71	Torque compensation gain (motor 2)	IM: 0~10 (when Pr. 05-33 = 0) PM: 0~5000 (when Pr. 05-33 = 1 or 2)	1
N	07-72	Slip compensation gain (motor 2)	$0.00 \sim 10.00$ (Default value is 1 in SVC mode)	0.00
N	07-73	Torque compensation gain (motor 3)	IM: 0~10 (when Pr. 05-33 = 0) PM: 0~5000 (when Pr. 05-33 = 1 or 2)	1
N	07-74	Slip compensation gain (motor 3)	$0.00 \sim 10.00$ (Default value is 1 in SVC mode)	0.00
N	07-75	Torque compensation gain (motor 4)	IM: 0~10 (when Pr. 05-33 = 0) PM: 0~5000 (when Pr. 05-33 = 1 or 2)	1
N	07-76	Slip compensation gain (motor 4)	$0.00 \sim 10.00$ (Default value is 1 in SVC mode)	0.00

08 High-function PID Parameters

\left.	Pr.	Explanation	Settings	Factory
Setting				$\right]$
:---				

	Pr.	Explanation	Settings	Factory Setting
N	08-17	PID compensation	-100.0 ~ +100.0\%	0
	08-18	Setting of sleep mode function	0 : Refer to PID output command 1: Refer to PID feedback signal	0
N	08-19	Wakeup integral limit	0.0~200.0\%	50.0
	08-20	PID mode selection	0 : Serial connection 1: Parallel connection	0
	08-21	Enable PID to change operation direction	0: Operation direction can be changed 1: Operation direction can not be changed	0
N	08-22	Wakeup delay time	$0.00 \sim 600.00 \mathrm{sec}$.	0.00
N	08-23	PID control flag	bit $0=1$, PID reverse running must follow the setting of Pr. 00-23. bit $0=0$, PID reverse running refers to PID's calculated value. bit $1=1$, PID Kp gain is 2 decimal place bit $1=0$, PID Kp gain is 1 decimal place	2
N	08-26	PID output command limit (reverse limit)	0.0~100.0 \%	100.0
N	08-27	Acceleration / deceleration time of PID command	$0.00 \sim 655.35 \mathrm{sec}$.	0.00
	08-29	Selection of frequency base corresponding to 100.00 \% PID	0 : PID control output 100.00% corresponding to max. output frequency (Pr. 01-00) 1: PID control output 100.00% corresponding to the input value of auxiliary frequency	0

Chapter 11 Summary of Parameter Settings
 MH300

09 Communication Parameters

	Pr.	Explanation	Settings	Factory Setting
N	09-00	Communication address	1~254	1
N	09-01	COM1 transmission speed	4.8~115.2 Kbps	9.6
N	09-02	COM1 transmission fault treatment	0 : Warn and continue operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning and continue operation	3
N	09-03	COM1 time-out detection	0.0~100.0 sec.	0.0
N	09-04	COM1 communication protocol	1: 7N2 (ASCII) 2: 7E1 (ASCII) 3: 701 (ASCII) 4: 7E2 (ASCII) 5: 7 O 2 (ASCII) 6: 8N1 (ASCII) 7: 8N2 (ASCII) 8: 8E1 (ASCII) 9: 801 (ASCII) 10: 8E2 (ASCII) 11:802 (ASCII) 12: 8N1 (RTU) 13: 8N2 (RTU) 14: 8E1 (RTU) 15: 801 (RTU) 16: 8E2 (RTU) 17: 802 (RTU)	1
N	09-09	Delay time of communication response	0.0~200.0 ms	2.0
	09-10	Main frequency of the communication	$0.00 \sim 599.00 \mathrm{~Hz}$	60.00
N	09-11	Block transfer 1	0~65535	0
N	09-12	Block transfer 2	0~65535	0
N	09-13	Block transfer 3	0~65535	0
N	09-14	Block transfer 4	0~65535	0
N	09-15	Block transfer 5	0~65535	0
N	09-16	Block transfer 6	0~65535	0
N	09-17	Block transfer 7	0~65535	0
N	09-18	Block transfer 8	0~65535	0
N	09-19	Block transfer 9	0~65535	0
N	09-20	Block transfer 10	0~65535	0

Pr.	Explanation	Settings	Factory
Setting			

Pr.	Explanation	$\begin{array}{l}\text { Settings }\end{array}$	$\begin{array}{c}\text { Factory } \\ \text { Setting }\end{array}$
N Disable			
In this mode, baud rate can only be 125 Kbps,			
250 Kbps, 500 Kbps, 1 Mbps in standard			
DeviceNet speed			
1: Enable			
In this mode, the baud rate of DeviceNet can be			
same as CANopen (0-8).			

	Pr.	Explanation	Settings	Factory Setting
N	09-91	Additional setting for communication card	bit 0: Enable IP filter bit 1: Internet parameters enable (1 bit) When IP address is set up, this bit will be enabled. After updating the parameters of communication card, this bit will change to disable. bit 2: Login password enable (1 bit) When enter login password, this bit will be enabled. After updating the parameters of communication card, this bit will change to disable.	0
	09-92	Status of communication card	bit 0: Password enable When the communication card is set with password, this bit will be enabled. When the password is clear, this bit will be disabled.	0

10 Speed Feedback Control Parameters

	Explanation	Settings	Factory Setting
	Encoder type selection	0 : Disabled 1: ABZ 3: Resolver $1 \times$ PM Encoder 5: Pulse input (MI7)	0
	Encoder pulse per round	1~20000	600
	Encoder input type setting	0 : Disabled 1: A / B phase pulse input, forward run if A-phase leads B-phase by 90 degrees 2: A / B phase pulse input, forward run if B-phase leads A-phase by 90 degrees 3: Phase A is a pulse input and phase B is a direction input. (low input $=$ reverse direction, high input $=$ forward direction) 4: Phase A is a pulse input and phase B is a direction input. (low input = forward direction, high input = reverse direction) 5: Single-phase input (MI7) Note 1: When MH300 input A / B phase pulse, MI6 terminal must be connected to the A -phase pulse, MI7 terminal must input B-phase pulse. Note 2: When MH300 using unidirectional input, MI6 function is disabled, any signal connection is prohibited.	0
	Output setting for frequency division (denominator)	1~255	1
	Electrical gear at load side A1	1~65535	100
	Electrical gear at motor side B1	1~65535	100
	Electrical gear at load side A2	1~65535	100
	Electrical gear at motor side B2	1~65535	100
	Treatment for Encoder feedback fault	0 : Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	2
	Detection time of Encoder feedback fault	$0.0 \sim 10.0 \mathrm{sec}$. 0 : No function	1.0
	Encoder stall level	0~120\% (0: No function)	115
	Detection time of Encoder stall	$0.0 \sim 2.0 \mathrm{sec}$.	0.1

	Pr.	Explanation	Settings	Factory Setting
N	10-34	PM sensorless speed estimator low-pass filter gain	0.00~655.35	1.00
N	10-35	AMR (Kp)	0.00~3.00	1.00
N	10-36	AMR (Ki)	0.00~3.00	0.20
N	10-39	Frequency point when switch from I/F mode to PM sensorless mode.	$0.00 \sim 599.00 \mathrm{~Hz}$	20.00
N	10-40	Frequency point when switch from PM sensorless mode to I/F mode.	0.00~599.00 Hz	20.00
N	10-42	Initial angle detection pulse value	0.0~3.0	1.0
	10-43	PG card version	0~655.35	Read only
N	10-49	Zero voltage time while start up	00.000~60.000 sec.	00.000
N	10-51	Injection frequency	0~1200 Hz	500
N	10-52	Injection magnitude	0.0~200.0 V	$\begin{aligned} & 15.0 / \\ & 30.0 \end{aligned}$
N	10-53	Position detection method	0 : Disabled 1: Internal $1 / 4$ rated current attracting the rotor to zero degrees 2: High frequency injection 3: Pulse injection	0

11 Advanced Parameters

	Pr.	Explanation	Settings	Factory Setting
	11-00	System control	bit 0: Auto tuning for ASR and APR bit 1: Inertia estimate (only in FOCPG mode) bit 2: Zero servo bit 3: Dead Time compensation closed bit 7: Selection to save or not save the frequency bit 8: Maximum speed of point to point position control	0
N	11-01	Per unit of system inertia	1~65535 (256 = 1PU)	256
N	11-02	ASR1 / ASR2 switch frequency	$5.00 \sim 599.00 \mathrm{~Hz}$	7.00
N	11-03	ASR1 low-speed bandwidth	1~40 Hz (IM) / 1~100 Hz (PM)	10
N	11-04	ASR2 high-speed bandwidth	1~40 Hz (IM) / 1~100 Hz (PM)	10
N	11-05	Zero-speed bandwidth	1~40 Hz (IM) / 1~100 Hz (PM)	10
N	11-06	ASR1 gain	$0 \sim 40 \mathrm{~Hz}$ (IM) / 1~100 Hz (PM)	10
N	11-07	ASR1 integral time	$0.000 \sim 10.000 \mathrm{sec}$.	0.100
N	11-08	ASR2 gain	0~40 Hz (IM) / 0~100 Hz (PM)	10
N	11-09	ASR2 integral time	0.000~10.000 sec.	0.100
N	11-10	ASR zero speed gain	0~40 Hz (IM) / 0~100 Hz (PM)	10
N	11-11	ASR zero speed integral time	0.000~10.000 sec.	0.100
N	11-12	Gain for ASR speed feed forward	0~200 \%	0
N	11-13	PDFF gain	0~200 \%	30
N	11-14	Low-pass filter time of ASR output	0.000 $\sim 0.350 \mathrm{sec}$.	0.008
N	11-15	Notch filter depth	0~20 db	0
N	11-16	Notch filter frequency	0.00~200.00 Hz	0.0
N	11-17	Forward motor torque limit	0~500 \%	500
N	11-18	Forward regenerative torque limit	0~500 \%	500
N	11-19	Reverse motor torque limit	0~500 \%	500
N	11-20	Reverse regenerative torque limit	0~500 \%	500
N	11-21	Gain value of flux weakening curve for motor 1	0~200 \%	90
N	11-22	Gain value of flux weakening curve for motor 2	0~200 \%	90
N	11-23	Speed response of flux weakening area	0~150 \%	65
N	11-24	APR gain	$0.00 \sim 40.00 \mathrm{~Hz}(\mathrm{IM}) / 0 \sim 100.00 \mathrm{~Hz}$ (PM)	10.00

| Pr. | Explanation | Settings | Factory |
| :--- | :--- | :--- | :--- | :--- |
| Setting | | | |

Chapter 11 Summary of Parameter Settings | MH300

	Pr.	Explanation	Settings	Factory Setting
	11-41	PWM mode selection	0: 2-phase 2: Space vector	2
N	11-42	System control flags	0000~FFFFh	0000
N	11-43	Max. frequency of point-to-point position control	0.00~599.00 Hz	10.00
N	11-44	Accel. time of point-to point position control	0.00~655.35 sec.	1.00
N	11-45	Decel. time of point-to point position control	0.00~655.35 sec.	3.00

12 Tension Control

Pr.	Explanation	Settings	Factory Setting
12-00	Tension control selection	0: Disable 1: Tension closed-loop, speed mode 2: Line speed closed-loop, speed mode 3: Tension closed-loop, torque mode 4: Tension open-loop, torque mode	0
12-01	Wind mode	0 : Rewind 1: Unwind	0
12-02	Mechanical gear A at reel	1-65535	100
12-03	Mechanical gear B at motor	1-65535	100
12-04	Source of the tension command / line speed	0: Parameter setting (Pr. 12-05) 1: RS-485 communication setting (Pr. 12-05) 2: Analog input (Pr. 03-00~03-01 is set to d17 tension PID target value, 03-00~03-01 is set to d15 line speed)	0
12-05	PID target value of tension / line speed	0.0~100.0 \%	50.0
12-06	Source selection of tension / line speed PID feedback	0: Analog input (Pr. 03-00~03-01 is set to d14 tension PID feedback signal) 1: Pulse input (Pr. 12-19)	0
12-07	Selection of tension PID auto-tuning	0: Disable 1: Reel diameter (Pr. 12-08~12-09 corresponds to Pr. 12-23, Pr. 12-11~12-12 corresponds to Pr. 12-22) 2: Frequency (Pr. 12-08~12-09 corresponds to Pr. 01-07, Pr. 12-11~12-12 corresponds to Pr. 01-00)	0
12-08	Proportional gain 1 of tension PID P	0.0~1000.0	50.0
12-09	Integral time 1 of tension PID I	0.00~500.00 sec.	1.00
12-11	Proportional gain 2 of tension PID P	0.0~1000.0	50.0
12-12	Integral time 2 of tension PID I	0.00~500.00 sec.	1.00
12-14	PID output selection	0: Positive output 1: Negative output	0
12-15	Tension / line speed PID output limit	0~100.00\%	20.00
12-16	Source of line speed input command	0: Disable 1: Analog input (Pr. 03-00~03-01 is set to d15 line speed) 2: RS-485 communication setting (Pr. 12-20) 3: Pulse input (Pr. 12-19) 4: DFM-DCM pulse input (Pr. 02-21)	0

Chapter 11 Summary of Parameter Settings | MH300

	Explanation	Settings	Factory Setting
12-17	Max. line speed	$0.0 \sim 3000.0 \mathrm{~m} / \mathrm{min}$	1000.0
12-18	Min. line speed	$0.0 \sim 3000.0 \mathrm{~m} / \mathrm{min}$	0.0
12-19	Pulse number for each meter	$0.0 \sim 6000.0$ pulse / m	0.0
12-20	Current line speed	$0.0 \sim 3000.0 \mathrm{~m} / \mathrm{min}$	0.0
12	Source of reel diameter	0 : Calculated by line speed 1: Calculated by integrating thickness (encoder is on reel shaft) (Pr. 12-28~12-30, Pr. 10-16) 2: Calculated by integrating thickness (encoder is on motor) (Pr. 12-02~12-03, 12-29~12-30, 10-01~10-02) 3: Calculated by analog input (Pr. 03-00~03-01 is set to d16)	0
12-22	Max. reel diameter	$1.0 \sim 6000.0 \mathrm{~mm}$	6000.0
12-23	Empty reel diameter	$1.0 \sim 6000.0 \mathrm{~mm}$	1.0
12-2	Source of initial reel diameter	0 : RS-485 communication setting (Pr. 12-25) 1: Analog input (Pr. 03-00-Pr.03-01 is set to d16)	0
12-25	Initial reel diameter	$0.0 \sim 6000.0 \mathrm{~mm}$	1.0
12-26	Initial reel diameter 1	$0.0 \sim 6000.0 \mathrm{~mm}$	1.0
12-27	Initial reel diameter 2	$0.0 \sim 6000.0 \mathrm{~mm}$	1.0
12-28	Number of pulse per revolution	1~10000 ppr	1
12-29	Coil number for each layer	1~10000	1
12-3	Material thickness	$0.001 \sim 60.000 \mathrm{~mm}$	0.001
12-31	Filter time of reel diameter	$0.00 \sim 100.00 \mathrm{sec}$.	1.00
12-32	Auto compensation of reel diameter	0 : Disable 1: Enable	0
12-33	Current reel diameter	$1.0 \sim 6000.0 \mathrm{~mm}$	1.0
12-34	Smart start function	0 : Disable 1: Enable 2: In unwind mode, rewind in reverse direction	0
12-35	Switch level for smart start and PID function	0.0~100.0 \% (according to Pr. 12-05)	15.0
12-36	Frequency for smart start	$0.00 \sim 599.00 \mathrm{~Hz}$	2.00
12-37	Accel. time for smart start	$0.01 \sim 600.00 \mathrm{sec}$.	3.00
12-38	Broken belt detection	0 : Disable 1: Enable	0
12-39	Min. line speed of broken belt detection	$0.0 \sim 3000.0 \mathrm{~m} / \mathrm{min}$	0.0
12-4	Reel diameter error of broken belt detection	$1.0 \sim 6000.0 \mathrm{~mm}$	100.0

Chapter 11 Summary of Parameter Settings | MH300

13 Macro / User Define Macro

Pr.	Explanation	Settings	Factory Setting
		00: Disabled 01: User Parameter 02: Compressor 03: Fan $13-00$	Application selection
		04: Pump 05: Conveyor 06: Machine tool 07: Packing 08: Textiles	
			00
$13-50$			
$13-01$	Application parameters		
(user defined)			

14 Analog Extension Card / Protection Parameters (2)

	Pr.	Explanation	Settings	Factory Setting
N	14-12	Output terminal of extension card (AO10)	0: Output frequency (Hz) 1: Frequency command (Hz)	0
N	14-13	Output terminal of extension card (AO11)	2: Motor speed (Hz) 3: Output current (rms)	0
			4: Output voltage 5: DC Bus voltage 6: Power factor 7: Power 8: Output torque 9: AVI 10: ACI 12: Iq current command 13: Iq feedback value 14: Id current command 15: Id feedback value 16: Vq-axis voltage command 17: Vd-axis voltage command 18: Torque command 19: PG2 frequency command 20: CANopen analog output 21: RS-485 analog output 22: Communication card analog output 23: Constant voltage output	
N	14-14	Gain of analog output 1 (AO10)	0.0~500.0 \%	100.0
N	14-15	Gain of analog output 1 (AO11)	0.0~500.0 \%	100.0
N	14-16	Analog output 1 when in REV direction (AVO10)	0 : Absolute value of output voltage	0
N	14-17	Analog output 1 when in REV direction (AVO11)	2: Reverse output 5-0 V; Positive output 5-10 V	0
N	14-18	Input selection of extension card (Al10)	$\begin{aligned} & 0: 0 \sim 10 \mathrm{~V}(\mathrm{AVI} 10) \\ & 1: 0 \sim 20 \mathrm{~mA}(\text { ACl10 }) \\ & 2: 4 \sim 20 \mathrm{~mA}(\text { ACl10 }) \end{aligned}$	0
N	14-19	Input selection of extension card (Al11)	$\begin{aligned} & 0: 0 \sim 10 \mathrm{~V}(\mathrm{AVI} 11) \\ & 1: 0 \sim 20 \mathrm{~mA}(\text { ACl11 }) \\ & 2: 4 \sim 20 \mathrm{~mA}(\mathrm{ACl} 11) \end{aligned}$	0
N	14-20	AVO10 DC output setting level	0.00~100.00\%	0.00
N	14-21	AVO11 DC output setting level	0.00~100.00\%	0.00
N	14-22	AVO10 filter output time	$0.00 \sim 20.00$ sec.	0.01
N	14-23	AVO11 filter output time	$0.00 \sim 20.00 \mathrm{sec}$.	0.01

Chapter 11 Summary of Parameter Settings | MH300

Pr.	Explanation	Settings	Factory Setting
14-55	DC voltage at malfunction 3	0.0~6553.5 V	Read only
14-56	Output current at malfunction 3	0.00~655.35 Amp	Read only
14-57	IGBT temperature at malfunction 3	$-3276.7 \sim 3276.7^{\circ} \mathrm{C}$	Read only
14-58	Output frequency at malfunction 4	$0.00 \sim 599.00 \mathrm{~Hz}$	Read only
14-59	DC voltage at malfunction 4	0.0~6553.5 V	Read only
14-60	Output current at malfunction 4	0.00~655.35 Amp	Read only
14-61	IGBT temperature at malfunction 4	$-3276.7 \sim 3276.7^{\circ} \mathrm{C}$	Read only
14-62	Output frequency at malfunction 5	$0.00 \sim 599.00 \mathrm{~Hz}$	Read only
14-63	DC voltage at malfunction 5	0.0~6553.5 V	Read only
14-64	Output current at malfunction 5	0.00~655.35 Amp	Read only
14-65	IGBT temperature at malfunction 5	$-3276.7 \sim 3276.7^{\circ} \mathrm{C}$	Read only
14-66	Output frequency at malfunction 6	$0.00 \sim 599.00 \mathrm{~Hz}$	Read only
14-67	DC voltage at malfunction 6	0.0~6553.5 V	Read only
14-68	Output current at malfunction 6	0.00~655.35 Amp	Read only
14-69	IGBT temperature at malfunction 6	$-3276.7 \sim 3276.7^{\circ} \mathrm{C}$	Read only
14-70	Fault record 7	Refer to fault record Pr. 6-17~06-22	0
14-71	Fault record 8	Refer to fault record Pr. 6-17~06-22	0
14-72	Fault record 9	Refer to fault record Pr. 6-17~06-22	0
14-73	Fault record 10	Refer to fault record Pr. 6-17~06-22	0

	Pr.	Explanation	Settings	Factory Setting
N	14-74	Over-torque detection selection (motor 3)	0 : No function 1: Continue operation after over-torque detection during constant speed operation 2: Stop after Over-torque detection during constant speed operation 3: Continue operation after over-torque detection during RUN 4: Stop after over-torque detection during RUN	0
N	14-75	Over-torque detection level (motor 3)	10~250 \% (100 \% corresponds to the rated current of the drive)	120
N	14-76	Over-torque detection time (motor 3)	$0.0 \sim 60.0 \mathrm{sec}$.	0.1
N	14-77	Over-torque detection selection (motor 4)	0 : No function 1: Continue operation after Over-torque detection during constant speed operation 2: Stop after Over-torque detection during constant speed operation 3: Continue operation after Over-torque detection during RUN 4: Stop after Over-torque detection during RUN	0
N	14-78	Over-torque detection level (motor 4)	10~250 \% (100 \% corresponds to the rated current of the drive)	120
N	14-79	Over-torque detection time (motor 4)	$0.0 \sim 60.0 \mathrm{sec}$.	0.1
N	14-80	Electronic thermal relay selection 3 (motor 3)	0 : Inverter motor (with external forced cooling) 1: Standard motor (motor with fan on the shaft) 2: Disabled	2
N	14-81	Electronic thermal relay action time 3 (motor 3)	30.0~600.0 sec.	60.0
N	14-82	Electronic thermal relay selection 4 (motor 4)	0: Inverter motor (with external forced cooling) 1: Standard motor (motor with fan on the shaft) 2: Disabled	2
N	14-83	Electronic thermal relay action time 4 (motor 4)	$30.0 \sim 600.0 \mathrm{sec}$.	60.0

[This page intentionally left blank]

Chapter 12 Description of Parameter Settings

12-1 Description of parameter settings

00 Drive Parameters

The parameter can be set during operation.

98-9.7 Identity Code of the AC Motor Drive

Factory Setting: \#.\#
Settings Read Only

Factory Setting: \#.\#

Settings Read Only

1 Pr. 00-00 displays the identity code of the AC motor drive. Using the following table to check if Pr. 00-01 setting is the rated current of the AC motor drive. Pr. 00-01 corresponds to the identity code of Pr. 00-00.

The factory setting is the rated current for normal duty. Please set Pr. 00-16 to 1 to display therated current for the heavy duty.

Series	115V Series - 1-Phase			230V Series - 1-Phase				
Frame	A	B	C	A/B		B	C	
kW	0.2	0.4	0.75	0.2	0.4	0.75	1.5	2.2
HP	0.25	0.5	1	0.25	0.5	1	2	3
Identity Code	102	103	104	302	303	304	305	306
Rated Current for Heavy Duty	1.6	2.5	4.8	1.6	2.8	4.8	7.5	11
Rated Current for Normal Duty	1.8	2.7	5.5	1.8	3.2	5	8.5	12.5

230V Series - 3-Phase										
Frame	A			B	C		D	E		F
kW	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
HP	0.25	0.5	1	2	3	5	7.5	10	15	20
Identity Code	202	203	204	205	206	207	208	209	210	211
Rated Current for Heavy Duty	1.6	2.8	4.8	7.5	11	17	25	33	49	65
Rated Current for Normal Duty	1.8	3.2	5	8	12.5	19.5	27	36	51	69

460V Series - 3-Phase											
Frame	A/B		B	C		D		E		F	
kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
HP	0.5	1	2	3	5	7.5	10	15	20	25	30
Identity Code	403	404	405	406	407	408	409	410	411	412	413
Rated Current for Heavy Duty	1.5	2.7	4.2	5.5	9	13	17	25	32	38	45
Rated Current for Normal Duty	1.8	3	4.6	6.5	10.5	15.7	20.5	28	36	41.5	49

93-93 Parameter Reset

Factory Setting: 0

Settings 0: No Function

1: Parameter write protect
5: Reset KWH display to 0
6: Reset PLC
7: Reset CANopen index (Slave)
8: Keypad doesn't respond
9: All parameters are reset to factory settings (base frequency is 50 Hz)
10: All parameters are reset to factory settings (base frequency is 60 Hz)
11: All parameters are reset to factory settings (base frequency is 50 Hz) (saving the setting value of user defined parameter 13-01~13-50)
12: All parameters are reset to factory settings (base frequency is 60 Hz) (saving the setting value of user defined parameter 13-01~13-50)
When it is set to 1 : all parameters are read only except Pr. 00-02, 00-07, and 00-08. It needs to set Pr. 00-02 to 0 before changing other parameter settings.
[a] When it is set to 5 : kWh display value can be reset to 0 even when the drive is operating.
Pr. 05-26, 05-27, 05-28, 05-29, 05-30 reset to 0.
When it is set to 6: clear internal PLC program (includes the related settings of PLC internal CANopen master)
When it is set to 7: reset the related settings of CANopen slave.
When it is set to 9 or 10: all parameters are reset to factory settings. If password is set in
Pr. 00-08, input the password set in Pr. 00-07 to reset to factory settings.
When it is set to 6, 9, 10: please re-power the motor drive after setting.

78-73 Start-up Display Selection

Factory setting: 0
Settings 0: F (frequency command)
1: H (output frequency)
2: U (user define) Pr. 00-04
3: A (output current)
[a] This parameter determines the start-up display page. User defined choice display according to the setting in Pr. 00-04.

5月-74 Content of Multi-function Display (User Define)

Factory setting: 3
$\begin{array}{ll}\text { Settings } & 0 \text { : Display output current (A) (Unit: Amps) } \\ & \text { 1: Display counter value (c) (Unit: CNT) } \\ \text { 2: Display actual output frequency (H.) (Unit: Hz) } \\ & \text { 3: Display DC-BUS voltage (v) (Unit: Vdc) } \\ & \text { 4: Display output voltage of } \mathrm{U}, \mathrm{V}, \mathrm{W}(\mathrm{E})(\text { Unit: Vac) } \\ & \text { 5: Display output power angle of } \mathrm{U}, \mathrm{V}, \mathrm{W}(\mathrm{n}) \text { (Unit: deg) }\end{array}$

6: Display output power of U, V, W (P) (Unit: kW)
7: Display actual motor speed rpm (r) (Unit: rpm)
8: Display estimate output torque \%, motor's rated torque is 100% (Unit: \%)
9: Display PG feedback (G) (refer to Pr. 10-00 and Pr. 10-01) (Unit: PLS)
10: Display PID feedback (b) (Unit: \%)
11: Display signal value of AVI analog input terminal (1.) (Unit: \%)
12: Display signal value of ACl analog input terminal (2.) (Unit: \%)
14: Display the temperature of IGBT (i.) (Unit: ${ }^{\circ} \mathrm{C}$)
16: The status of digital input (ON / OFF) (i)
17: The status of digital output (ON / OFF) (o)
18: Display the multi-stage speed that is executing (S)
19: The corresponding CPU pin status of digital input (d)
20: The corresponding CPU pin status of digital output (0 .)
21: Actual motor position (PG1 of PG card). (P.)
22: Pulse input frequency (S.)
23: Pulse input position (q.)
24: Position command tracing error (E.)
25: Overload counting (0.00~100.00 \%) (o.) (Unit: \%)
26: GFF Ground Fault (G.) (Unit: \%)
27: DC Bus voltage ripple (r.) (Unit: Vdc)
28: Display PLC register D1043 data (C)
29: Display synchronous motor pole section (for PM + PG control)
30: Display output of user defined (U)
31: Pr. 00-05 display user gain (K)
32: Number of actual motor revolution during operation (PG card plug in and Z phase signal input) (Z.)
33: Motor actual position during operation (when PG card is connected) (q)
35: Control mode display:
$0=$ Speed control mode (SPD)
1 = torque control mode (TQR) (t.)
36: Present operating carrier frequency of drive (Hz) (J.)
38: Display status of drive (6.)
39: Display estimated output torque, positive and negative, using $\mathrm{Nt}-\mathrm{m}$ as unit (t 0.0: positive torque; -0.0: negative torque (C.)

40: Torque command (L.) (Unit: \%)
41: KWH display (J) (Unit: kWh)
42: PID target value (h.) (Unit: \%)
43: PID offset (o.) (Unit: \%)
44: PID output frequency (b.) (Unit: Hz)
46: Display auxiliary frequency value (U.) (Unit: Hz)
47: Display master frequency value (A) (Unit: Hz)

48: Display frequency value after addition and subtraction of auxiliary and
master frequency (L.) (Unit: Hz)
51: Display the position of multi-point positioning (P.)
53: Display the present reel diameter under the tension control in mm (d)
54: Display the present line speed under the tension control in $\mathrm{m} / \mathrm{min}(\mathrm{L})$
55: Display the present tension setting under the tension control in $N(T)$
56: Display the signal value of analog expansion card input terminal Al10 (4.) (Unit: \%)
57: Display the signal value of analog expansion card input terminal Al11 (5.) (Unit: \%)

NOTE

1. When Pr. 10-01 is set to 1000 and Pr. 10-02 is set to 1,2 , the display range for PG feedback will be from 0 to 4000.

- When Pr. 10-01 is set to 1000 and Pr. 10-02 is set to $3,4,5$, the display range for PG feedback will be from 0 to 1000 .

2. - It can display negative values when setting analog input bias (Pr. 03-03~03-10).

Example: assume that AVI input voltage is 0 V, $\operatorname{Pr} .03-03$ is 10.0% and $\operatorname{Pr} .03-07$ is 4 (Serve bias as the center).
3. Example: If MI1 and MI6 are ON, the following table shows the status of the terminals.
N.O. normally opened contact: (0: OFF, 1: ON)

Terminal	MI7	MI6	MI5	MI4	MI3	MI2	MI1
Status	0	1	0	0	0	0	1

- The value is 0000000000100001 in binary and 0021 H in HEX. When Pr. 00-04 is set to " 16 " or " 19 ", it will display " 0021 h " with LED u page is ON in the keypad.
- The setting 16 is the ON / OFF status of digital input by Pr. 02-12 setting and the setting 19 is the corresponding CPU pin ON / OFF status of digital input.
- When MI1 / MI2 default setting is two-wire/ three-wire operation control ($2-00 \neq 0$), and MI3 set as three-wire, it will not affected by Pr. 02-12.
- User can set 16 to monitor digital input status and then set 19 to check if the wire is normal.

4. Example: Assume that RY: Pr. 02-13 is set to 9 (Drive is ready). After the drive powered on, if there is no other abnormal status, the contact will be ON. The display status will be shown as follows.
N.O. normally opened contact:

Terminal	MO 2	MO 1	RY1
Status	0	0	1

- At the meanwhile, if Pr. 00-04 is set to 17 or 20 , it will display in hexadecimal " 0001 h " with LED u page is ON in the keypad.
- The setting 17 is the ON / OFF status of digital output by Pr. 02-18 setting and the setting 20 is the corresponding CPU pin ON / OFF status of digital output.
- User can set 17 to monitor the digital output status and then set 20 to check if the wire is normal.

5. - Set value 8: 100% means the motor rated torque.

Motor rated torque $=($ motor rated power $\times 60 / 2 \pi) /$ motor rated rotating speed.
6. - Set value 25: when display value reaches 100.00%, the drive will show "oL" as an overload warning.
7. - Set value 38:
bit 0 : The drive is running forward.
bit 1: The drive is running backward.
bit 2: The drive is ready.
bit 3: Errors occurred on the drive.
bit 4: The drive is running.
bit 5: Warnings occurred on the drive.

85-95Coefficient Gain in Actual Output Frequency

Factory Setting: 1.00
Settings 0~160.00
[1] This parameter is to set user defined unit coefficient gain. Set Pr. 00-04 $=31$ to display the calculation result on the screen (calculation = output frequency * Pr. 00-05).

98-96 Software Version

Factory Setting: \#.\#
Settings Read only
78-7 Parameter Protection Password Input
Factory Setting: 0
Settings 0~65535
$0 \sim 3$ (the times of password attempts)
$\boxed{\square}$ This parameter allows user to enter their password (which is set in Pr. 00-08) to unlock the parameter protection and to make changes to the parameter.
1 To avoid future inconvenience, be sure to write down the set value after setting this parameter.
11 Pr. 00-07 and Pr. 00-08 are used to prevent personnel set other parameters mistakenly.
10 When the user forget the password, clear the setting by input 9999 and press ENTER key, then input 9999 again and press ENTER within 10 seconds. After decoding, all the settings will return to factory setting.
$[\mathbb{1}$ When setting the password, all the parameters are read 0 , except Pr. 00-08.

Factory Setting: 0
Settings 0~65535
0: No password protection or password is entered correctly (Pr. 00-07)
1: Password has been set
110 This parameter is for setting the password protection. Password can be set directly at first time. The value of Pr. 00-08 will become 1 after setting, which means password protection is activated. When the password is set, if any parameter setting needs to be changed, be sure to enter correct password in Pr. 00-07, and then the password will be inactivated temporarily with Pr. 00-08 changing to 0 . At this time, parameters setting can be changed. After setting, re-power the motor drive, and the password will be activated again.

Chapter 12 Description of Parameter Settings | MH300

[1] To cancel the password protection, after entering correct password in Pr. 00-07, Pr. 00-08 also needs to be set as 0 again to inactive password protection permanently. If not, password protection will be active after motor drive re-power.
[1] The keypad copy function will work normally only when the password protection is inactivated temporarily or permanently, and the password set in Pr. 00-08 will not be copied to keypad. So when copying parameters from keypad to motor drive, the password need to be set manually again in the motor drive to active password protection.

913-19 Control Mode

Factory Setting: 0
Settings 0: Speed mode
1: Point-to-Point position control
2: Torque mode
3: Home mode
[a] This parameter determines the control mode of the AC motor drive.

78- : ! Control of Speed Mode

Factory Setting: 0

Settings	0: V/F (IM V/F control)
	1: VFPG (IM V/F control + Encoder)
2: SVC (Pr. 05-33 set as IM or PM)	
3: FOCPG (IM FOC vector control + Encoder)	
4: FOCPG (PM FOC vector control + Encoder)	
5: FOC Sensorless (IM field oriented sensorless vector control)	
7: Advanced PM sensorless	

[1] This parameter determines the control mode of the AC motor drive:
0 : IM V/F control: user can design proportion of V/F as required and control multiple motors simultaneously.
1: IM V/F control + Encoder pulse input: user can use encoder for the closed-loop speed control.

2: IM sensorless vector control: get the optimal control by the auto-tuning of motor parameters.
3: IM FOC vector control+ Encoder: besides torque increases, the speed control will be more accurate (1:1000).
4: PM FOC vector control + Encoder: besides torque increases, the speed control will be more accurate (1:1000).
5: FOC Sensorless: IM field oriented sensorless vector control
7: IPM Sensorless: interior PM field oriented sensorless vector control
Lid When Pr. 00-10 $=0$ and set Pr. 00-11 to 0 , the V/F control diagram is shown as follows:

When Pr. 00-10 $=0$ and set Pr. 00-11 to 1 , the V/F control + encoder diagram is shown as follows:

Chapter 12 Description of Parameter Settings
 MH300

When Pr. 00-10 $=0$ and set Pr. 00-11 to 2, the sensorless vector control diagram is shown as follows:

When $00-10=0$, and set Pr. 00-11 to 3 , the IM FOCPG control diagram is shown as follows:

[]] When 00-10 $=0$, and set Pr. 00-11 to 4, the PM FOCPG control diagram is shown as follows:

When $00-10=0$, and set Pr. 00-11 to 5 , FOC sensorless (IM) control diagram is shown as follows:

When 00-10 = 0 , and set Pr. 00-11 to 7 , IPM FOC sensorless control diagram is shown as follows:

78-12 Point to Point Position Mode

Factory Settings: 0
Settings: 0: Incremental Type
1: Absolute Type
(1) Pr. 00-12 $=0$ is incremental type P2P; Pr. 00-12 $=1$ is absolute type P2P

Setting = 1

Factory Setting: 0

$$
\begin{array}{ll}
\text { Settings } & 0: \text { TQCPG (IM Torque control + Encoder) } \\
& \text { 1: TQCPG (PM Torque control + Encoder) } \\
& \text { 2: TQC Sensorless (IM Sensorless torque control) }
\end{array}
$$

TQCPG (Pr. 00-13 = 0) control diagram is shown in the following:

Chapter 12 Description of Parameter Settings | MH300

TQC Sensorless (Pr. 00-13 = 2) control diagram is shown in the following:

19-16 Load Selection

Factory Setting: 1

> | Settings | $0:$ Normal load |
| :--- | :--- |
| | 1 : Heavy load |

1 Normal duty: over load rated output current 150% in 3 seconds. ($120 \%, 1$ minutes) Please refer to Pr. 00-17 for the setting of carrier. Refer to Pr. 00-01 or specification table for the rated current.
1 Heavy duty: over load rated output current 200% in 3 seconds. ($150 \%, 1$ minutes) Please refer to Pr. 00-17 for the setting of carrier wave. Refer to Pr. 00-01 or specification table for the rated current.

1 When the set value of Pr. 00-16 changes, Pr. 00-01 will follow the change, the default value and maximum of Pr. 06-03, 06-04 will change according to its change.In Normal Duty, the default setting of Pr. 06-03 and Pr. 06-04 is 160%, maximum is 180%. However, if DC voltage is higher than $700 \mathrm{Vdc}(460 \mathrm{~V}$ series) or 350 V (230 V series), then the maximum will be 145%.
In In Heavy Duty, the default setting of Pr. 06-03 and Pr. 06-04 is 180%, maximum is 200%. However, if DC voltage is higher than $700 \mathrm{Vdc}(460 \mathrm{~V}$ series) or 350 V (230 V series), then the maximum will be 165 \%

1813-17 Carrier Frequency

Factory Setting: 4
Settings Normal load: 2~15 KHz
Heavy load: 2~15 KHz
[1] This parameter determinates the PWM carrier frequency of the AC motor drive.

Series	230 V		460 V	
Models	$1-15 \mathrm{HP}$ $[0.75-11 \mathrm{~kW}]$	$20-30 \mathrm{HP}$ $[15-37 \mathrm{~kW}]$	$1-20 \mathrm{HP}$ $[0.75-15 \mathrm{~kW}]$	$\left.\begin{array}{c}25-40 \mathrm{HP} \\ \end{array} 18.5-55 \mathrm{~kW}\right]$
Settings Range	$02 \sim 15 \mathrm{kHz}$	$02 \sim 10 \mathrm{kHz}$	$02 \sim 15 \mathrm{kHz}$	$02 \sim 10 \mathrm{kHz}$
Normal Duty	4 kHz			
Factory Setting	4 kHz			
Heavy Duty				
Factory Setting				

Carrier Frequency	Acoustic Noise	Electromagnetic Noise or Leakage Current	Heat Dissipation	Current Wave
2 kHz				$\begin{aligned} & \text { MA- } \\ & W M+ \end{aligned}$
8 kHz				
15 kHz				

1 From the table，we see that the PWM carrier frequency has a significant influence on the electromagnetic noise，AC motor drive heat dissipation，and motor acoustic noise．Therefore，if the surrounding noise is greater than the motor noise，lower the carrier frequency is good to reduce the temperature rise．Although it is quiet operation in the higher carrier frequency，the entire wiring and prevention of interference should be considered．
［1］When the carrier frequency is higher than the factory setting，must decreasing the carrier frequency to protect the drive．Refer to Pr．06－55 for the related setting and details．

93－19
 PLC Command Mask

Factory Setting：Read Only
Settings bit 0：Control command forced by PLC control
bit 1：Frequency command forced by PLC control
bit 2：Position command forced by PLC control
bit 3：Torque command forced by PLC control
\square This parameter determines if frequency command or control command is locked by PLC

日昭－2日

Source of the Master Frequency Command（AUTO）
Factory Setting： 0
Settings 0：Digital keypad
1：RS－485 serial communication
2：External analog input（Refer to Pr．03－00）
3：External UP／DOWN terminal
4：Pulse input without direction command（Refer to Pr．10－16 without direction）
5：Pulse input with direction command（Refer to Pr．10－16）
6：CANopen communication card
7：Digital keypad dial
8：Communication card（not includes CANopen card）
［Note］：Need to use with MO setting as 42 ，or use with KPC－CC01The AUTO / HAND mode can be switched by the keypad KPC-CC01 (optional) or multi-function input terminal (MI) to set the source of the master frequency.Pr. 00-20 and Pr. 00-21 are for the settings of frequency source and operation source in AUTO mode. Pr. 00-30 and Pr. 00-31 are for the settings of frequency source and operation source in HAND mode.
1 The factory setting of frequency source or operation source is for AUTO mode. It will return to AUTO mode whenever power on again after power off. If there is multi-function input terminal used to switch AUTO / HAND mode, the highest priority is the multi-function input terminal. When the external terminal is OFF, the drive will not accept any operation signal and cannot execute JOG.

9月-2 : Source of the Operation Command (AUTO)

Factory Setting: 0
Settings 0: Digital keypad
1: External terminals.
2. Communication RS-485 input

3: CANopen communication card
5: Communication card (not includes CANopen card)
[Note] : Need to use with MO setting as 42, or use with KPC-CC01
It is used to set the source of the operation frequency in AUTO mode.When the operation command is controlled by the keypad KPC-CC01 (optional), keys RUN, STOP and JOG (F1) are valid.

78-2 2 Stop Method

Factory Setting: 0
Settings 0: Ramp to stop
1: Coast to stopThe parameter determines how the motor is stopped when the drive receives stop command.

Ramp to Stop and Coast to Stop

1. Ramp to stop: the $A C$ motor drive decelerates to 0 or minimum output frequency (Pr. 01-09) according to current set deceleration time and then stop (by Pr. 01-07).
2. Coast to stop: the AC motor drive stops output immediately, and the motor free runs to stop according to the load inertia.

- It is recommended to use "ramp to stop" for safety of personnel or to prevent material from being wasted in applications where the motor must stop immediately after the drive stops. The deceleration time has to be set accordingly.
\square If the motor free running is allowed or the load inertia is large, it is recommended to select "coast to stop". For example, blowers, punching machines and pumps.

98-23Control of Motor Direction

Factory Setting: 0
Settings 0: Enable forward / reverse
1: Disable reverse
2: Disable forward
This parameter enables the AC motor drives to run in the forward / reverse Direction. It may be used to prevent a motor from running in a direction that would consequently injure the user or damage the equipment.

98-24
 Memory of Digital Operator (Keypad) Frequency Command

Factory Setting: Read Only
Settings Read only
If If keypad is the source of frequency command, when Lv or Fault occurs, the present frequency command will be saved in this parameter.

	ined Characteristics	
		Factory Setting: 0
Settings	Bit 0~3: user defined decimal place	
	0000b: no decimal place	
	0001b: one decimal place	
	0010b: two decimal place	
	0011b: three decimal place	
	Bit 4~15: user defined unit	
	000xh: Hz	
	001xh: rpm	
	002xh: \%	
	003xh: kg	
	004xh: M/S	
	005xh: kW	
	006xh: HP	
	007xh: ppm	
	008xh: l/m	
	009xh: kg/s	
	00Axh: kg/m	
	00Bxh: kg/h	

00Cxh: lb/s
00Dxh: lb/m
00Exh: lb/h
00Fxh: ft/s
010xh: ff/m
011xh: M
012xh: ft
010xh: ft/m
011xh: M
012xh: ft
013xh: degC
014xh: degF
015xh: mbar
016xh: bar
017xh: Pa
018xh: kPa
019xh: mWG
01Axh: inWG
01Bxh: ftWG
01Cxh: Psi
01Dxh: Atm
01Exh: L/s
01Fxh: L/m
020xh: L/h
021xh: m3/s
022xh: m3/h
023xh: GPM
024xh: CFMbit 0~3: Control frequency F page, unit of user defined (Pr. 00-04 = d10, PID feedback value) and the decimal point of Pr. 00-26 which supports up to 3 decimal points.bit 4~15: Control frequency F page, unit of user defined (Pr. 00-04 = d10, PID feedback value) and the displayed units of Pr. 00-26.

userdefined decimal place 0:no decimal place
1:one decimal place
2:two decimal place
3:three decimal place
userdefined unit
0: Hz
1: rpm
2: \%
3: kg

Must be converted to decimal when using the keypad to set parameters.
Example: If user defined unit is inWG and the third decimal point, according to the information above, corresponding to inWG is 01Axh (x is the set decimal point), and corresponding to the third decimal place is 0003h. Then inWG and the third decimal point displayed in hexadecimal is 01A3h, converted to decimal is $01 \mathrm{~A} 3 \mathrm{~h}=419$.
Set Pr. 00-25 $=419$ to complete setting.

59-26 Max. User Defined Value

Factory Setting: 0

Settings	$0:$ Disable
	$0 \sim 65535$ (when Pr. 00-25 set to no decimal place)
	$0.0 \sim 6553.5$ (when Pr. $00-25$ set to 1 decimal place)
	$0.0 \sim 655.35$ (when Pr. $00-25$ set to 2 decimal place)
	$0.0 \sim 65.535$ (when Pr. $00-25$ set to 3 decimal place)

When Pr. 00-26 is NOT set to 0 , the user defined value is enabled. After selecting displayed unit and decimal point by Pr. 00-25, the setting value of Pr. 00-26 will correspond to Pr. 01-00 (Max. operation frequency of motor), then the operation frequency of motor will be a linear correspondence with displayed value of digital keypad.
Example: When the frequency at Pr. $01-00=60.00 \mathrm{~Hz}$, the max. user defined value at Pr. 00-26 is 100.0 \%. That also means $\operatorname{Pr} .00-25$ is set at 0021 h to select \% as the unit.

NOTE

The drive will display as $\operatorname{Pr} .00-25$ setting when $\operatorname{Pr} .00-25$ is properly set and $\operatorname{Pr} .00-26$ is not 0 .

50-2? User Defined Value

Factory Setting: Read only
Settings Read only
[1] Pr. 00-27 will display user defined value when Pr. 00-26 is not set to 0 .
[1] User defined value is valid only when Pr. 00-20 (source of frequency) is set to digital keypad or RS-485 communication.

日月-29 LOCAL / REMOTE Selection

Factory Setting: 0
Settings 0: Standard HOA function
1: Switching Local / Remote, the drive stops
2: Switching Local / Remote, the drive runs as the REMOTE setting for frequency and operation status
3: Switching Local / Remote, the drive runs as the LOCAL setting for frequency and operation status
4: Switching Local / Remote, the drive runs as LOCAL setting when switch to Local and runs as REMOTE setting when switch to Remote for frequency and operation status.
AUTO / HAND mode can be selected or switched by using digital keypad KPC-CC01 (optional) or setting multi-function input terminal $\mathrm{MI}=41,42$.
[1. The factory setting of Pr. 00-29 is 0 (standard Hand-Off-Auto function). The AUTO frequency and source of operation can be set by Pr. 00-20 and Pr. 00-21, and the HAND frequency and source of operation can be set by Pr. 00-30 and Pr. 00-31.
When external terminal (MI) is set to 41 and 42 (AUTO / HAND mode), the settings of Pr. 00-29 = $1,2,3,4$ will be disabled. The external terminal has the highest priority of command, and Pr. 00-29 will function as standard HOA mode.
1 When Pr. 00-29 is not set to 0 , Local / Remote function is enabled, the top right corner of digital keypad KPC-CC01 (optional) will display "LOC" or "REM". The LOCAL frequency and source of operation can be set by Pr. 00-20 and Pr. 00-21, and the REMOTE frequency and source of operation can be set by Pr. 00-30 and Pr. 00-31. LOC / REM mode can be selected or switched by using digital keypad KPC-CC01 (optional) or setting multi-function input terminal $\mathrm{MI}=56$. The AUTO key of the digital keypad is for the REMOTE function, and HAND key is for the LOCAL function.
When external terminal (MI) is set to 56 for LOC / REM mode selection, if Pr. 00-29 is set to 0 , then the external terminal function is disabled.
[a] When external terminal (MI) is set to 56 for LOC / REM mode selection, if Pr. 00-29 is not set to 0, then AUTO / HAND key will be disabled, and the external terminal has the highest priority of command.

3日-3日 Source of the Master Frequency Command (HAND)

Factory Setting: 0
Settings 0: Digital keypad
1: Communication RS-485 input
2: External analog input (Refer to Pr. 03-00)
3: External UP / DOWN terminal
4: Pulse input without direction command (Refer to Pr.10-16 without direction)
5: Pulse input with direction command (Refer to Pr. 10-16)
6: CANopen communication card
7: Digital keypad dial
8: Communication card (not includes CANopen card)
[Note] : Need to use with MO setting as 41, or use with KPC-CC01
[1] It is used to set the source of the master frequency in HAND mode.

Factory Setting: 0

Settings	$0:$ Digital keypad
	1: External terminals
2: Communication RS-485 input	
3: CANopen communication card	
	5: Communication card (not includes CANopen card)
	[Note] : Need to use with MO setting as 41, or use with KPC-CC01

1 AUTO / HAND mode can be selected or switched by using digital keypad KPC-CC01 (optional) or setting multi-function input terminal $\mathrm{MI}=41,42$.
1 Pr. 00-20 and 00-21 are for the settings of frequency source and operation source in AUTO mode. Pr. 00-30 and 00-31 are for the settings of frequency source and operation source in HAND mode.
1 The factory setting of frequency source or operation source is for AUTO mode. It will return to AUTO mode whenever power on again after power off. If there is multi-function input terminal used to switch AUTO / HAND mode. The highest priority is the multi-function input terminal. When the external terminal is OFF, the drive will not accept any operation signal and cannot execute JOG.

98-32 Digital Keypad STOP Function

Factory Setting: 0
Settings 0: STOP key disable
1: STOP key enable
[1] This parameter is valid when the source of operation is not set as digital keypad (Pr. 00-21 $=0$). When Pr. 00-21 = 0, the STOP key of digital keypad will not be affected by this parameter.

519-35Source of Auxiliary Frequency

Factory Setting: 0
Settings 0: Master and auxiliary frequency function disabled
1: By digital keypad
2: By communication RS-485 input
3: By analog input
4: By external UP / DOWN key input
5: Pulse input with steering command (refer to Pr. 10-16)
6: By CANopen
8: By communication card

78-36 Selection of Master and Auxiliary Frequency Command

Factory Setting: 0
Settings 0: Master + auxiliary frequency
1: Master - auxiliary frequency
2: Auxiliary - master frequency
1 Master and auxiliary frequency command sets the source of master frequency by Pr. 00-20, and sets the source of auxiliary frequency by Pr. 00-35. Addition and subtraction mode of auxiliary / master frequency is set by Pr. 00-36.
When Pr. 00-36 = 0, 1, 2, accelerating and decelerating by the system (includes S-curve) after addition and subtraction of auxiliary / master frequency, and then be outputted as control command.
[1f If the value received is negative after addition and subtraction of auxiliary / master frequency, then Pr. 03-10 determines whether to change the running direction.

II If the source of master frequency (Pr. 00-20 = 0) or the source of auxiliary frequency ($\operatorname{Pr} .00-35=1$) is set by keypad, then F page of keypad displays setting frequency, to set master frequency or auxiliary frequency. If the source of master frequency or auxiliary frequency is NOT set by keypad ($\operatorname{Pr} .00-20 \neq 0$ and $\operatorname{Pr} .00-35 \neq 1$), the F page displays the value after addition and subtraction of auxiliary / master frequency.
1 When setting the source of master frequency and auxiliary frequency, Pr. 00-35 can NOT be set the same as Pr. 00-20 or Pr. 00-30.

78-4 Homing Mode

Factory Setting: 0

Settings

[a] Homing action is controlled by Pr. 00-40, 00-41, 00-42 and 02-01~02-07.
1.

Z	Y	X
x	0	0

Function: forward run to home, find PL (forward run limit), and then reverse run to find Z pulse.

2.

Z	Y	X
x	0	1

Function: reverse run to home, find PL (reverse run limit), and then forward run to find Z pulse.

3.

Z	Y	X
0	1	2

Function: forward run and search for ORG (origin) signal (0->1), keep forward running and search for Z pulse. Stop at the forward run limit.

4.

Z	Y	X
0	2	2

Function: forward run searching for ORG (origin) signal (0->1), and stop at the forward run limit.

5.

Z	Y	X
0	1	3

Function: reverse run and search for ORG (origin) signal (0->1), keep reverse running and search for Z pulse. Stop at the reverse run limit.

6.

Z	Y	X
0	2	3

Function: reverse run searching for ORG (origin) signal (0->1), and stop at the reverse run limit.

7.

Z	Y	X
0	x	4

Function: forward run and search for Z pulse directly as the origin, and stop at the forward run limit.

8.

Z	Y	X
0	X	5

Function: reverse run and search for Z pulse directly as the origin. An error will be displayed if Z pulse is not found.

78－4：Homing by Frequency 1

Factory Setting： 8.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
78－43
Homing by Frequency 2
Factory Setting： 2.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
［id Controlled by multi－function input terminal Pr．02－01～02－08（44～47）．
44：Reverse direction homing（NL）
45：Forward direction homing（PL）
46：Homing（ORG）
47：Homing function enabled
Ila If the drive is not controlled by CAN or PLC，when setting Pr．00－10 $=1$（Control mode $=$ P2P position control），set external output terminal to 47 （homing function enabled）for homing．
1 When Pr．00－10 is set to 3 ，after homing is complete，user must set control mode（ $\operatorname{Pr} .00-10=1$ ） to execute P2P position control．

7月－ 48 Display Filter Time（Current）

Factory Setting： 0.100
Settings $0.001 \sim 65.535 \mathrm{sec}$ ．
Set this parameter to minimize the current fluctuation displayed by digital keypad．

98－49 Display Filter Time（Keypad）

Factory Setting： 0.100
Settings $0.001 \sim 65.535 \mathrm{sec}$ ．
1 Set this parameter to minimize the value fluctuation displayed by digital keypad．

日是－5 Software Version（Date）

Factory Setting：\＃\＃\＃\＃\＃

Settings Read only

1 This parameter displays current software version of drive by date．

01 Basic Parameters
\wedge This parameter can be set during operation.

Max. Operation Frequency of Motor 1
Max. Operation Frequency of Motor 2
Max. Operation Frequency of Motor 3
Max. Operation Frequency of Motor 4
Factory Setting: 60.00 / 50.00
Settings $\quad 00.00 \sim 599.00 \mathrm{~Hz}$
[1] This parameter determines the maximum operation frequency range of drive. This setting is frequency range corresponding to maximum value of analog input frequency setting signal ($0 \sim 10 \mathrm{~V}, 4 \sim 20 \mathrm{~mA}, 0 \sim 20 \mathrm{~mA}, \pm 10 \mathrm{~V}$).
When the high speed mode is on, maximum operation frequency is $0.00 \sim 1500.0 \mathrm{~Hz}$.
Bi-7:Output Frequency of Motor 1
Bi-35 Output Frequency of Motor 2
Bi-5\% Output Frequency of Motor 3
Bi-6 Output Frequency of Motor 4
Factory Setting: 60.00 / 50.00
Settings $00.00 \sim 599.00 \mathrm{~Hz}$
MTis value should be set according to the rated frequency of the motor as indicated on the motor nameplate. If the motor is 60 Hz , the setting should be 60 Hz . If the motor is 50 Hz , the setting should be 50 Hz .
$\square i-\Pi \square$ Output Voltage of Motor 1
If 1 -36 Output Voltage of Motor 2

Factory Setting: 220.0 / 440.0

Settings	$110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 255.0 \mathrm{~V}$
	460 V series: $0.0 \sim 510.0 \mathrm{~V}$

1 This value should be set according to the rated voltage of the motor as indicated on the motor nameplate. If the motor is 220 V , the setting should be 220.0 V . If the motor is 200 V , the setting should be 200.0 V .

1 A wide variety of motors are sold in the market, but the power system for each country is different. The economic and convenient way to solve this problem is to install the AC motor drive. The drive can deal with different voltage and frequency. Besides, it can also exert the original characteristics and life of the motor.

19:3 Mid-point Frequency 1 of Motor 1

Factory Setting: 3.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$

7: 74 Mid-point Voltage 1 of Motor 1

Factory Setting: 11.0 / 22.0
Settings $110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$

[1: $\mathbf{3} 7$ Mid-point Frequency 1 of Motor 2

Factory Setting: 3.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
7: 38
Mid-point Voltage 1 of Motor 2
Factory Setting: 11.0 / 22.0
Settings $110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$
[1:5 Mid-point Frequency 1 of Motor 3
Factory Setting: 3.00
Settings $\quad 00.00 \sim 599.00 \mathrm{~Hz}$

5:-57

Mid-point Voltage 1 of Motor 3
Factory Setting: 11.0 / 22.0
Settings $\quad 110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$

$91-55$

Mid-point Frequency 1 of Motor 4
Factory Setting: 3.00
Settings $\quad 00.00 \sim 599.00 \mathrm{~Hz}$
8:-65
Mid-point Voltage 1 of Motor 4
Factory Setting: 11.0 / 22.0
Settings $110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$

51-95
 Mid-point Frequency 2 of Motor 1

Factory Setting: 0.50
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
8:-96
Mid-point Voltage 2 of Motor 1
Factory Setting: 2.0 / 4.0
Settings $110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$

8: 39

Mid-point Frequency 2 of Motor 2
Factory Setting: 0.50
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
7: 97
Mid-point Voltage 2 of Motor 2
Factory Setting: 2.0 / 4.0
Settings $110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$
B: 5月 Mid-point Frequency 2 of Motor 3

Factory Setting: 0.50
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
5: 5 M Mid-point Voltage 2 of Motor 3
Factory Setting: 2.0 / 4.0
Settings $110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$
460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$
[i-6 Mid-point Frequency 2 of Motor 4
Factory Setting: 0.50
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$

5: 58 Mid-point Voltage 2 of Motor 4

Factory Setting: 2.0 / 4.0
Settings $110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$
[1-7] Min. Output Frequency of Motor 1
Factory Setting: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
B: - 8 Min. Output Voltage of Motor 1
Factory Setting: 0.0 / 0.0
Settings $110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$
460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$

P: $\%$ Min. Output Frequency of Motor 2

Factory Setting: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$

[i] -4 2 Min. Output Voltage of Motor 2

Factory Setting: 0.0 / 0.0
Settings $110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$
日: 6
Min. Output Frequency of Motor 3
Factory Setting: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$

Factory Setting: 0.0 / 0.0
Settings $110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$
460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$
Bi-6 3
Min. Output Frequency of Motor 4
Factory Setting: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$

7 : 7 I 13 Min. Output Voltage of Motor 4

Factory Setting: 0.0 / 0.0
Settings $110 \mathrm{~V} / 230 \mathrm{~V}$ series: $0.0 \mathrm{~V} \sim 240.0 \mathrm{~V}$ 460 V series: $0.0 \mathrm{~V} \sim 480.0 \mathrm{~V}$
V/F curve setting is usually set by the motor's allowable loading characteristics. If the loading characteristics exceed the loading limit of the motor, must pay more attention to the heat dissipation, dynamic balance, and bearing lubricity of the motor.If the voltage is too high at low frequency, it may cause motor damage, overheat, and stall prevention or over-current protection. To prevent motor damage or motor fault, please be careful when setting the voltage.
10 Pr. 01-35 ~ Pr. 01-42 is the V/F curve for motor 2. When multi-function input terminals Pr. 02-01~ 02-08 and Pr. 02-26 ~ Pr. 02-31 (extension card) are set to 14 and enabled, the AC motor drive will act as the $2^{\text {nd }} V / F$ curve.

When the high speed mode is on, maximum operation frequency is $0.00 \sim 1500.0 \mathrm{~Hz}$.The V/F curve for motor 1 is shown as follows. The V/F curve for motor 2 can be deduced from it.

V/F Curve

Common settings of V/F curve:
(1) General purpose

(2) Fan and hydraulic machinery
Motor spec. $60 \mathrm{~Hz}_{2}$

VA
220

Pr.	Setting
$01-00$	50.0
$01-01$	50.0
$01-02$	220.0
$01-03$	25.0
$01-05$	
$01-04$	50.0
$01-06$	
$01-07$	1.30
$01-08$	10.0

(3) High starting torque

Motor spec. 60 Hz

Pr.	Setting
$01-00$	60.0
$01-01$	60.0
$01-02$	220.0
$01-03$	3.00
$01-05$	
$01-04$	23.0
$01-06$	
$01-07$	1.50
$01-08$	18.0

Motor spec. 50 Hz

Pr.	Setting
$01-00$	50.0
$01-01$	50.0
$01-02$	220.0
$01-03$	2.20
$01-05$	
$01-04$	23.0
$01-06$	
$01-07$	1.30
$01-08$	14.0

7: 78 Start-up Frequency

Factory Setting: 0.50
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
10 When start frequency is higher than the min. output frequency, drive's output will be from start frequency to the setting frequency. Please refer to the following diagram for details.
Fcmd = frequency command;
Fstart = start frequency (Pr. 01-09);
fstart = actual start frequency of drive;
Fmin $=4$ th output frequency setting (Pr. 01-07 / Pr. 01-41);
Flow = output frequency lower limit (Pr. 01-11)
When Fcmd > Fmin and Fcmd < Fstart:
If Flow < Fcmd, drive will run directly by Fcmd.
If Flow \geq Fcmd, drive will run by Fcmd, then rise to Flow according to acceleration time.
\square The output frequency will attain directly to 0 when decelerating to Fmin.

7: 19 Output Frequency Upper Limit

Factory Setting: 599.00

Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$

B : - ! Output Frequency Lower Limit

Factory Setting: 0.00

Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$

$1 \mathbb{1}$ The upper / lower limit output frequency setting is used to limit the actual output frequency. If the frequency setting is higher than the upper limit (Pr. 01-10), it will run by the upper limit frequency. If output frequency is lower than lower limit (Pr. 01-11) and frequency setting is higher than min. frequency (Pr. 01-07), it will run by lower limit frequency. The upper limit frequency should be set > lower limit frequency. (Pr. 01-10 setting value must be > Pr. 01-11 setting value).Upper output frequency will limit the max. output frequency of drive. If frequency setting is higher than Pr. 01-10, the output frequency will be limited by Pr. 01-10 setting.
[1]
When the drive starts the function of slip compensation (Pr. 07-27) or PID feedback control, drive output frequency may exceed frequency command but still be limited by this setting.Related parameters: Pr. 01-00 Max. Operation Frequency and Pr.01-11 Output Frequency Lower Limit

10. Lower output frequency will limit the min. output frequency of drive. When drive frequency command is lower than this setting, drive output frequency will be limited by the lower limit of frequency.When the drive starts, it will operate from min. output frequency (Pr. 01-07) accelerate to the setting frequency. It will not be limited by lower output frequency setting.The setting of output frequency upper / lower limit is used to prevent operator misuse, overheat caused by too low operation frequency or damage caused by excessive speed.If the output frequency upper limit setting is 50 Hz and frequency setting is 60 Hz , max. output frequency will be 50 Hz .If the output frequency lower limit setting is 10 Hz and min. operation frequency setting (Pr. 01-07) is 1.5 Hz , it will operate by 10 Hz when the frequency command is greater than Pr. 01-07 and less than 10 Hz . If the frequency command is less than Pr. 01-07, the drive will be in ready status with no output.If the frequency output upper limit is 60 Hz and frequency setting is also 60 Hz , only frequency command will be limited in 60 Hz . Actual frequency output may exceed 60 Hz if the drive starts the function of slip compensation.
When the high speed mode is on, maximum operation frequency is $0.00 \sim 1500.0 \mathrm{~Hz}$.

8:-iz

Accel. Time 1

\#i-i3

Decel. Time 1

(7:-!

Accel. Time 2
B:-:
Decel. Time 2
Accel. Time 3
Decel. Time 3
N : : i 8 Accel. Time 4
Bi-! 9 Decel. Time 4
N 1 I- 3 JOG Acceleration Time

Factory Setting: 10.00 / 10.0
Settings Pr. 01-45 = 0: 0.00~600.00 sec.
Pr. $01-45=1: 0.00 \sim 6000.0$ sec.
1 The acceleration time is used to determine the time required for the AC motor drive to accelerate from 0 Hz to maximum output frequency (Pr. 01-00).
[10] The acceleration / deceleration time is invalid when using Pr. 01-44 Auto acceleration / deceleration setting.
[1] The acceleration / deceleration time 1, 2, 3, 4 are selected according to the multi-function input terminals settings. The factory settings are accel. / decel. time 1.
10. When enable torque limits and stalls prevention function, the actual accel. / decel. time will be longer than the above action time.
1 Please note that it may trigger the protection function (Pr. 06-03 Over-current stall prevention during acceleration or Pr. 06-01 Over-voltage stall prevention) when setting of accel. / decel. time is too short.
1 Please note that it may cause motor damage or drive protection enabled due to over current during acceleration when the setting of acceleration time is too short.
$\mathbb{1} \square$ Please note that it may cause motor damage or drive protection enabled due to over current during deceleration or over-voltage when the setting of deceleration time is too short.
[1] Use suitable brake resistor (please refer to Chapter 07 Optional accessories) to decelerate in a short time and prevent over-voltage.
\square When enable Pr. 01-24 ~ Pr. 01-27 (S-curve accel. / decel. begin and arrival time), the actual accel. / decel. time will be longer than the setting.

Accel./Decel. Time

［1－ご JOG Frequency

Factory Setting： 6.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
Both external terminal JOG and key＂F1＂on the keypad KPC－CC01（optional）can be used to set JOG function．When the JOG command is ON，the AC motor drive will accelerate from 0 Hz to JOG frequency（Pr．01－22）．When JOG command is OFF，the AC motor drive will decelerate from Jog frequency to stop．The JOG accel．／decel．time（Pr．01－20，Pr．01－21）is the time that accelerates from 0.0 Hz to JOG frequency（Pr．01－22）．The JOG command cannot be executed when the AC motor drive is running．In the same way，when the JOG command is executing， other operation commands are invalid．

If \boldsymbol{f} ？ $1^{\text {st }} / 4^{\text {th }}$ Accel．／decel．Frequency

Factory Setting： 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$This function does not require external terminal switching function，it will switch the accel．／decel． time automatically by Pr．01－23 setting．If the external terminal is set，it will be prior to Pr．01－23．
1 When using this function，please set S－curve acceleration time as 0 if $4^{\text {th }}$ acceleration time is set too short．

1st／4th Acceleration／Deceler ation Frequency Switching

7： 1 － 4 S－curve Acceleration Begin Time 1

是：1－5 S－curve Acceleration Arrival Time 2
1 1 － 5 S－curve Deceleration Begin Time 1
［1：？
Factory Setting： 0.20 ／ 0.2
Settings Pr．01－45＝0：0．00～25．00 sec．
Pr． $01-45=1: 0.0 \sim 250.0$ sec．
\square This parameter is used to set slow start when the drive begins to accelerate at start．The accel．／ decel．curve can adjust the S－curve accel．／decel by setting parameter value．When it is enabled， the drive will have different accel．／decel．curve by the accel．／decel．time．
1 The S－curve function is disabled when accel．／decel．time is set to 0 ．
1 When Pr．01－12，01－14，01－16，01－18 \geq Pr．01－24 and Pr．01－25， the actual accel．time $=$ Pr．01－12，01－14，01－16，01－18 $+($ Pr．01－24 + Pr．01－25）$/ 2$

When Pr. 01-13, 01-15, 01-17, 01-19 \geq Pr. 01-26 and Pr. 01-27, the actual decel. time $=\operatorname{Pr} .01-13,01-15,01-17,01-19+(\operatorname{Pr} .01-26+\operatorname{Pr} .01-27) / 2$

Skip Frequency 1 (Upper Limit)
Skip Frequency 1 (Lower Limit)
Skip Frequency 2 (Upper Limit)
Skip Frequency 2 (Lower Limit)
Skip Frequency 3 (Upper Limit)
Skip Frequency 3 (Lower Limit)
Factory Setting: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
1 These parameters are used to set skip frequency of the AC drive. Frequency setting of the drive will skip these frequency ranges. However, the frequency output is continuous. There is no limit for the setting of these six parameters and it can be combined. Pr. 01-28 does not need to be greater than Pr. 01-29; Pr. 01-30 does not need to be greater than
Pr. 01-31; Pr. 01-32 does not need to be greater than Pr. 01-33. Pr. 01-28~01-33 can be set as required. There is no size distinction between these six parameters.
10 These parameters set skip frequency ranges of the AC motor drive. This function can be used to prevent the mechanical resonance. The skip frequencies are useful when a motor has vibration at a specific frequency bandwidth. By skipping this frequency, the vibration will be avoided. There are 3 zones offered for use.
[10] Frequency command (F) can be set within the range of skip frequencies. Then the output frequency (H) will be limited to the lower limit of skip frequency ranges.
When accelerating / decelerating, the output frequency will still pass the skip frequency ranges.

13:-34Zero-speed Mode

Factory Setting: 0

Settings 0: Output waiting
 1: Zero-speed operation
 2: Fmin (Refer to Pr. 01-07, 01-41)

[a] When the frequency command of drive is less than Fmin (Pr. 01-07, Pr. 01-41), the drive will operate by this parameter.
[10]
When it is set to 0 , the AC motor drive will be in waiting mode without voltage output from terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$.
\square When it is set to 1, it will execute DC brake by Vmin (Pr. 01-08 and Pr. 01-42) in V/F and SVC modes.When it is set to 2, the AC motor drive will run by Fmin (Pr. 01-07, Pr. 01-41) and Vmin (Pr. 01-08, Pr. 01-42) in V/F and SVC modes.

19:-4 V/F Curve Selection

Factory Setting: 0
Settings 0: V/F curve determined by Pr. 01-00~01-08
1: $1.5^{\text {th }}$ V/F curve
2: $2^{\text {nd }}$ V/F curveWhen setting to 0 , refer to Pr. 01-01~01-08 for motor 1 V/F curve. For motor 2, please refer to Pr. 01-35~01-42.When setting to 1 or $2,2^{\text {nd }}$ and $3^{\text {rd }}$ voltage frequency setting are invalid.If motor load is variable torque load (torque is in direct proportion to rotating speed, such as the load of fan or pump), load torque will be low at low rotating speed, decrease input voltage to make magnetic field of input current smaller, which will reduce flux loss and iron loss of the motor to raise the entire efficiency.When setting high power of V/F curve, it is lower torque at low frequency, and the drive is not suitable for rapid acceleration / deceleration. It is recommended NOT to use this parameter for the rapid acceleration / deceleration.

5: $1 / 4$ Auto Acceleration / Deceleration Setting

Factory Setting: 0
Settings 0: Linear accel. / decel.
1: Auto accel., linear decel.
2: Linear accel., auto decel.
3: Auto accel. / decel.
4: Linear, stall prevention by auto accel. / decel. (limited by 01-12 to 01-21)
[1] Setting 0 linear accel. / decel. : it will accel. / decel. according to the setting of Pr. 01-12~01-19.
LD] Setting to auto accel. / decel. : it can reduce the mechanical vibration and prevent the complicated auto-tuning processes. It will not stall during acceleration and no need to use brake resistor. In addition, it can improve the operation efficiency and save energy.Setting 3 auto accel. / decel. (Decelerate by actual load): it can auto detect the load torque and accelerate from the fastest acceleration time and smoothest start current to the setting frequency. When decelerating, it can auto detect the load re-generation and stop the motor smoothly with the fastest decel. time.
(1)] Setting 4 stall prevention by auto accel. / decel. (Refer to accel. / decel. time) : if the acceleration / deceleration is in the reasonable range, it will accelerate / decelerate by Pr. 01-12~01-19. If the accel. /decel. time is too short, the actual accel./decel. time is greater than the setting of accel. /decel. time.

Bi-45 Time Unit for Acceleration / Deceleration and S Curve

Factory Setting: 0
Settings 0 : Unit 0.01 sec .
1: Unit 0.1 sec .

5! 195

Time for CANopen Quick Stop
Factory Setting: 1.00
Settings Pr. 01-45 = 0: 0.00~600.00 sec.
Pr. 01-45 = 1: 0.0~6000.0 sec.
[D] It is used to set the time decelerating from maximum operation frequency (Pr. 01-00) to 0.00 Hz by CANopen control.

7: - 9 Deceleration Method
Factory Setting: 0
Settings 0: Normal decel.
1: Overfluxing decel.
2: Traction energy controlWhen 0 is set: decelerate or stop in accordance with original decelerating setting.When 1 is set: during deceleration, the drive will make control according to the setting of Pr. 06-01 and the voltage recovery size of DC BUS. The controller will start when DC BUS voltage reaches to 95% of Pr. 06-01. When Pr. 06-01 is set to 0 , the drive will make control according to operating voltage and the voltage recovery size of DC BUS. This method will decelerate according to the setting value of deceleration time. The fastest actual deceleration time will not be less than the setting of deceleration time.The actual deceleration time of motor is more than the setting of deceleration time due to overvoltage stall prevention operation.When 1 is set: can be used with Pr. 06-02 set to 1 to get a better effect of deceleration over-voltage suppression.When 2 is set: this function can auto tuning output frequency and output voltage to accelerate consuming DC BUS energy according to the ability of the drive. So that the actual deceleration time can comply with the parameter setting as possible. This setting is recommended when overvoltage occurs due to use the deceleration time which is not as expected.

Factory Setting: 1

Settings 0 : No function

1: 2-wire mode 1, power on for operation control (M1: FWD / STOP, M2: REV / STOP)
2: 2-wire mode 2, power on for operation control
(M1: RUN / STOP, M2: REV / FWD)
3: 3-wire, power on for operation control (M1: RUN, M2: REV / FWD, M3: STOP)
4: 2-wire mode 1, fast start up (M1: FWD / STOP, M2: REV / STOP)
5: 2-wire mode 2, fast start up (M1: RUN / STOP, M2: REV / FWD)
6: 3-wire, fast start up
(M1: RUN, M2: REV / FWD, M3: STOP)

IMPORTANT

1. In fast start up function, terminal output will keep in ready status, drive will response to the command immediately.
2. When using fast start up function, the output terminal will have higher voltage potentially.
In Quick Start function, the output will remain ready for operation. The drive will respond to start command immediately.
$\mathbb{1}$ When using Quick Start function, there will be greater potential voltage on the output terminals.This parameter is for setting the configuration of external drive operation control, plus Quick Start function, there are six different control modes:

Pr. 02-00	Control Circuits of the External Terminal	
Setting value: 1 2-wire FWD / STOP REV / STOP	FWD / STOP \qquad REV / STOP • \bar{O}	MI1 "OPEN": STOP "CLOSE": FWD MI2 "OPEN": STOP "CLOSE": REV DCM M300
Setting value: 2 2-wire RUN / STOP REV / FWD	$\begin{aligned} & \text { RUN / STOP } \\ & \text { FWD / REV } \\ & \overline{O O}-\bar{O} \end{aligned}$	MI1 "OPEN": STOP "CLOSE": RUN MI2 "OPEN": FWD "CLOSE": REV "OPEN": STOP "CLOSE": RUN "OPEN": FWD "CLOSE": REV

2: Multi-stage speed command 2 / multi-stage position command 2
3: Multi-stage speed command 3 / multi-stage position command 3
4: Multi-stage speed command 4 / multi-stage position command 4
5: Reset
6: JOG command (By KPC-CC01 or external control)
7: Acceleration / deceleration speed not allow
8: The $1^{\text {st }}, 2^{\text {nd }}$ acceleration / deceleration time selection
9: The $3^{\text {rd }}, 4^{\text {th }}$ acceleration / deceleration time selection
10: EF input (Pr. 07-20)
11: B.B input from external (Base Block)
12: Output stop
13: Cancel the setting of the optimal acceleration / deceleration time

15: Operation speed command from AVI
16: Operation speed command from ACl
18: Emergency stop (Pr. 07-20)
19: Digital up command
20: Digital down command
21: PID function disabled
22: Clear counter
23: Input the counter value (MI6)
24: FWD JOG command
25: REV JOG command
26: TQC / FOC model selection
27: ASR1 / ASR2 selection
28: Emergency stop (EF1)
29: Signal confirmation for Y-connection
30: Signal confirmation for Δ-connection
31: High torque bias (Pr. 11-30)
32: Middle torque bias (Pr. 11-31)
33: Low torque bias (Pr. 11-32)
34: Switch between multi-stage position and multi-speed control
35: Enable single point position control
36: Enable multi-stage position learning function (valid at stop)
37: Full position control pulse command input enable
38: Disable write EEPROM function
39: Torque command direction
40: Force coast to stop
41: HAND switch
42: AUTO switch
43: Enable resolution selection (Pr. 02-48)
44: Reversed direction homing (NL)

45: Forward direction homing (PL)
46: Homing (ORG)
47: Homing function enable
48: Mechanical gear ratio switch
49: Drive enable
50: Master dEb action to execute
51: Selection for PLC mode bit 0
52: Selection for PLC mode bit 1
53: Trigger CANopen quick stop
56: Local / Remote Selection
70: PID Integral Hold
71: Disable auxiliary frequency input
72: Disable PID function, remain the output value before disabled
73: PID integral gain is forced to 0 , integral disabled
74: PID feedback reversed
83: Multi-motors (IM) selection bit 0
84: Multi-motors (IM) selection bit 1
85: Multi-motors (IM) selection bit 2
86: Enable reset initial reel diameter
87: Reset initial reel diameter 1
88: Reset initial reel diameter 2
89: Reset the integration of tension PID control
90: Pause reel diameter calculation
91: Reeling in / Reeling out
92: Disable tension PID
93: Pause tension PIDThis parameter selects the functions for each multi-function terminal.When Pr. 02-00 $=0$, multi-function options can be set by multi-function input terminal MI1, MI2.
When Pr. $02-00 \neq 0$, specify the use of multi-function input terminals MI1, MI2 with reference to the setting value of Pr. 02-00.
Example:
If Pr. 02-00 = 1: multi-function input terminal MI1 = FWD / STOP,
multi-function input terminal MI2 $=$ REV $/$ STOP.
If Pr. 02-00 $=2$: multi-function input terminal MI1 $=$ RUN $/$ STOP, multi-function input terminal MI2 $=$ FWD $/$ REV.
[1] When multi-function input terminal MI7 $=0$, MI7 is designated as pulse input terminal.If Pr. 02-00 is set to 3-wire operation control, terminal MI3 is for STOP contact. The function set will be invalid automatically.

Summary of function settings

(Take the N.O. normally opened contact for example, ON: contact is closed, OFF: contact is open)

Settings	Functions	Descriptions
0	No Function	
1	Multi-stage speed command 1 / multi-stage position command 1	15 -stages speed or 15 positions could be set by the digital status of these 4 terminals. 16 -stages speed could be operate if the master speed is included when setting as 15 stages speed. (Refer to Parameter 04)
2	Multi-stage speed command 2 / multi-stage position command 2multi-stage	
3	Multi-stage speed command 3 / multi-stage position command 3	
4	Multi-stage speed command 4 / multi-stage position command 4	
5	Reset	Use this terminal to reset the drive after the error of the drive is eliminated.
6	JOG operation KPC-CC01 required (optional)	This function is valid when the source of operation command is external terminals. The JOG operation executes when the drive stops completely. During running, the operation direction can be changed, and STOP key on the keypad is valid. Once the external terminal receives OFF command, the motor will stop by the JOG deceleration time. Refer to Pr. 01-20~01-22 for details.
7	Acceleration / deceleration speed inhibit	When this function is enabled, the drive will stop acceleration and deceleration immediately. After this function is disabled, the AC motor drive starts to accel. / decel. from the inhibit point.

Settings	Functions	Descriptions
8	The $1^{\text {st }}, 2^{\text {nd }}$ acceleration / deceleration time selection	The acceleration / deceleration time of the drive can be selected from this function or the digital status of terminals; there are 4 acceleration / deceleration for selection.
9	The $3^{\text {rd }}, 4^{\text {th }}$ acceleration / deceleration time selection	
10	EF input (EF: External fault)	For external fault input. The drive will decelerate by Pr. 07-20 setting, and keypad will show EF. (It will have fault record when external fault occurs). The drive will keep running until the fault is cleared (terminal status restored) after RESET.
11	B.B input from external (B.B.: Base Block)	When the contact of this function is ON, output of the drive will stop immediately. The motor will be in free run and keypad will display B.B. signal. Refer to Pr. 07-08 for details.
12	Output stop (Output pause)	When the contact of this function is ON, output of the drive will stop immediately. The motor will be in free run. The drive is in output waiting status until the switch turned to OFF, the drive will re-start to current setting frequency.
13	Cancel the setting of the auto accel. / decel. time	Pr. 01-44 should be set to one of 01~04 modes before using this function. When this function is enabled, OFF is for auto mode and ON is for linear accel. / decel.
15	Rotating speed command form AVI	When the contact of this function is ON, the source of the frequency will force to be AVI. (If the rotating speed commands are set to $\mathrm{AVI}, \mathrm{ACl}$ at the same time, the priority is $\mathrm{AVI}>\mathrm{ACI}$)
16	Rotating speed command form ACI	When the contact of this function is ON, the source of the frequency will force to be ACl . (If the rotating speed commands are set to $\mathrm{AVI}, \mathrm{ACl}$ at the same time, the priority is $\mathrm{AVI}>\mathrm{ACI}$)
18	Forced to stop	When the contact of this function is ON, the drive will ramp to stop by Pr. 07-20 setting.

Settings	Functions	Descriptions
19	Digital up command	When the contact of this function is ON , the frequency of drive will increase or decrease by one unit. If this function remains ON continuously, the frequency will increase / decrease by Pr. 02-09 / Pr. 02-10.
20	Digital down command	The frequency command returns to zero when the drive stops, and the displayed frequency is 0.00 Hz . Select Pr. 11-00, bit $7=$ 1, frequency is not saved.
21	PID function disabled	When the contact of this function is ON, the PID function is disabled.
22	Clear counter command	When the contact of this function is ON , current counter value will be cleared and display " 0 ". Only when this function is disabled, the drive will keep counting upward.
23	Input the counter value (MI 6)	The counter value will increase 1 once the contact of this function is ON. The function needs to be set with Pr. 02-19.
24	FWD JOG command	This function is valid when the source of operation command is external terminals. When the contact of this function is ON, the drive will execute forward JOG. When execute JOG command in torque mode, the drive will automatically switch to speed mode. The drive will return to torque mode after JOG command is done.
25	REV JOG command	This function is valid when the source of operation command is external terminals. When the contact of this function is ON the drive will execute reverse JOG. When execute JOG command in torque mode, the drive will automatically switch to speed mode. The drive will return to torque mode after JOG command is done.
26	TQC / FOC model selection	When the contact of this function is ON: TQC mode. When the contact of this function is OFF: FOC mode.
27	ASR1 / ASR2 selection	When the contact of this function is ON: speed will be adjusted by ASR 2 setting. OFF: speed will be adjusted by ASR 1 setting. Refer to Pr. 11-02 for details.
28	Emergency stop (EF1)	When the contact of this function is ON: output of the drive will stop immediately, and display EF1 on the keypad. The motor will be in free run. The drive will keep running until the fault is cleared

Settings	Functions	Descriptions				
		after pressing "RESET". (EF: External Fault)				
29	Signal confirmation for Y-connection	When the control mode is V/F. If the contact of this function is ON , the drive will operate by $1^{\text {st }} \mathrm{V} / \mathrm{F}$.				
30	Signal confirmation for Δ-connection	When the control mode is V/F. If the contact of this function is ON , the drive will operate by $2^{\text {nd }} \mathrm{V} / \mathrm{F}$.				
31	High torque bias	Refer to Pr. 11-30~11-32 for details.				
32	Middle torque bias					
33	Low torque bias					
34	Switch between multi-stage position and multi-speed control	When the contact of this function is ON, the corresponding 15 -stage speed for the multi-function inputs $1-4$ will be 15 positions. (Refer to Pr. 04-16 to Pr. 04-44)				

Settings	Functions	Descriptions			
36	Enable multi-stage position learning function (valid at stop)	When the contact of this function is ON/OFF, the drive will base the multi-function inputs 1-4 ON/OFF status to find the corresponding multi-stage positions and write current motor position into such corresponding multi-stage position.			
37	Full position control pulse command input enable	When Pr. 00-20 is set to 4 or 5 and the contact of this function is ON, the input pulse of PG card is position command. When using this function, it is recommended to set Pr. 11-25 to 0 . Example: please refer to the following diagram when using this faction with MI=d35 return to home position.			
38	Disable EEPROM write function (Parameters memory disable)				

Settings	Functions	Descriptions			
49	Drive enable	When drive is enabled, RUN command is valid. When drive is disabled, RUN command is invalid. When drive is operating, motor will coast to stop. This function will interact with MO $=45$			
50	Master dEb input	Input the message setting in this parameter when dEb occurs to Master. This will ensure that dEb also occurs to Slave, then Master and Slave will stop simultaneously.			
	Selection for PLC mode	PLC status		bit 1	bit 0
51	(bit 0)	Disable PLC function (PLC 0)		0	0
		Trigger PLC to operate (PLC 1)		0	1
52	Selection for PLC mode (bit 1)	Trigger PLC to stop (PLC 2)		1	0
		No function		1	1
53	Trigger CANopen quick stop	When this function is enabled under CANopen control, it will change to quick stop. Refer to Chapter 15 for more details.			
56	LOCAL / REMOTE selection	Use Pr. 00-29 to select LOCAL / REMOTE mode (refer to Pr. 00-29). When Pr. 00-29 is not set to 0 , the digital keypad KPC-CC01 (optional) will display the status of LOC / REM.			
70	Auxiliary frequency is forced to 0	Auxiliary frequency will be forced to return 0 when using this function; PID will keep operating if PID is master frequency. (When Pr. 00-35 $\neq 0$, master frequency is enabled, selecting this function valid by terminal to force closing the auxiliary frequency $=0$)			
71	Disable PID function, PID output is forced to 0	When master and auxiliary frequency are enabled and using PID function, PID will not operate if setting terminal contact of this parameter ON, integral value return to zero, and PID output is forced to zero.			
72	Disable PID function, remain the output value before disabled	Master and auxiliary frequency are enabled and using PID function, PID will not operate if setting terminal contact of this parameter ON. Output value can be maintained at the value before PID is disabled.			
73	PID integral gain is forced to 0, integral disabled	When setting terminal contact of this parameter ON, PID continues to operate, integral control is disabled, and integral value return to zero.			
74	PID feedback reversed	When setting terminal contact of this parameter ON, PID negative feedback will become positive feedback; PID positive feedback will become negative feedback.			

Settings	Functions	Descriptions		
83	Multi-motors (IM) selection bit 0	When the contact of this function is ON , parameters can be changed (Pr. 01.01~01.06, Pr. 01.26~01.43, Pr. 07.18~07.38, Pr. 07.00~07.06) Example: $\mathrm{MI} 1=27, \mathrm{MI} 2=28$		
84	Multi-motors (IM) selection bit 1	When MI1 OFF, MI2 OFF: motor 1 MI1 ON, MI2 OFF: motor 2 MI1 OFF, MI2 ON: motor 3 MI1 ON, MI1 ON: motor 4		
85	Multi-motors (IM) selection bit 2	This function requires a built-in multi-motor PLC.		
86	Enable reset initial reel diameter	When the drive is at stop and it is in tension control mode, it needs to set 3 -stage initial reel by the digital status of terminals 87 and 88 (Pr. 12-25~27). Using terminal 86 function after setting contact status of 87 and 88 as shown in the following table.		
87	Reset initial reel diameter 1	$\mathrm{MI}=88$	$\mathrm{MI}=87$	$\mathrm{Ml}=86$
		OFF	OFF	ON: writing Pr. 12-25 setting into Pr. 12-33
		OFF	ON	ON: writing Pr. 12-26 setting into Pr. 12-33
		ON	OFF	ON: writing Pr. 12-26 setting into Pr. 12-33
88	Reset initial reel diameter 2	ON	ON	ON: reset Pr. 12-25 setting to the factory setting
89	Reset the integration of tension PID control	When this contact is ON, the PID control integration of tension will be reset.		
90	Pause reel diameter calculation	The calculation of reel diameter is paused, and the reel diameter value before the pause is maintained.		
91	Reeling in / Reeling out	When reeling in mode is selected, the reel diameter (D) will increase. When reeling out mode is selected, the reel diameter will decrease.		
92	Disable tension PID	The tension PID output is forced to 0 .		
93	Pause tension PID	The output value of the tension PID before disabling is maintained.		

BE-93UP / DOWN Key Mode

Factory Setting: 0
Settings 0: UP / DOWN by the accel. / decel. time
1: UP / DOWN constant speed (Pr. 02-10)
2: Pulse signal (Pr. 02-10)
3: External terminals UP / DOWN key mode

[9]-19 Constant Speed. the Accel. / Decel. Speed of the UP / DOWN Key

Factory Setting: 0.001
Settings $\quad 0.001 \sim 1.000 \mathrm{~Hz} / \mathrm{ms}$These settings are used when multi-function input terminals are set to 19, 20 (UP / DOWN Command). The frequency increases / decreases according to Pr. 02-09 and Pr. 02-10.
$\mathbb{1}$ Pr. 11-00 bit $7=1$, frequency is not saved. The frequency command returns to zero when the drive stops, and the displayed frequency is 0.00 Hz . The frequency increases / decreases command by using UP / DOWN key is valid only when the drive is running.
[1] When Pr. 02-09 set to 0 : increasing / decreasing frequency command (F) according to the setting of acceleration / deceleration (Refer to Pr. 01-12~01-19)

Frequency

[1] When Pr. 02-09 set to 1 : increasing / decreasing frequency command (F) according to the setting of Pr. 02-10 ($0.01 \sim 1.00 \mathrm{~Hz} / \mathrm{ms}$).

BE- : : Multi-function Input Response Time

Factory Setting: 0.005
Settings $0.000 \sim 30.000 \mathrm{sec}$.
1 This parameter is used to set the response time of digital input terminals MI1~MI7.
11 This function is used for digital input terminal signal delay and confirmation. The delay time is confirmation time to prevent some uncertain interference that would cause error in the input of the digital terminals. Under this condition, confirmation for this parameter would improve effectively, but the response time will be delayed.

Factory Setting: 0000
Settings 0000h~FFFFh (0: N.O.; 1: N.C.)
10 The setting of this parameter is in hexadecimal.
This parameter is to set the status of multi-function input signal (0: Normal Open ; 1: Normal Close) and it is not affected by the status of SINK / SOURCE.
1 bit $0 \sim$ bit 6 correspond to MI1 ~MI7 respectively.
1 bit 0 (MI1) default is FWD terminal, bit 1 (MI2) default is REV terminal. This parameter cannot be used to change input mode when Pr. 02-00 $\neq 0$.
\square User can change terminal ON / OFF status by communicating.
For example: MI3 is set to 1 (multi-stage speed command 1), MI4 is set to 2 (multi-stage speed command 2). Then the forward $+2^{\text {nd }}$ stage speed command $=1001_{2}=9_{10}$
As long as Pr. 02-12 = 9 be set by communication, there is no need to make wiring of any multi-function terminal to run forward with $2^{\text {nd }}$ stage speed.

bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
$\mathrm{MI7}$	$\mathrm{MI6}$	$\mathrm{MI5}$	$\mathrm{MI4}$	$\mathrm{MI3}$	$\mathrm{MI2}$	MI 1

N BE- ! 3 Multi-function Output 1 (Relay1)

Factory Setting: 11

Multi-function Output 2 (MO1)

Multi-function Output 3 (MO2)

Output Terminal of Extension Card (MO10) or (RY10)
N \quad B2-37
Output Terminal of Extension Card (MO11) or (RY11)
Output Terminal of Extension Card (MO12) or (RY12)
Factory Setting: 0

Settings	0: No function
1: Operation indication	
2: Operation speed attained	
3: Desired frequency attained 1 (Pr. 02-22)	
4: Desired frequency attained 2 (Pr. 02-24)	
5: Zero speed (Frequency command)	
6: Zero speed, include STOP (Frequency command)	
7: Over torque 1 (Pr. 06-06~06-08)	
8: Over torque 2 (Pr. 06-09~06-11)	
9: Drive is ready	
10: Low voltage warning (LV) (Pr. 06-00)	
11: Malfunction indication	
13: Overheat warning (Pr. 06-15)	
14: Software brake signal indication (Pr. 07-00)	
15: PID feedback error	

16: Slip error (oSL)
17: Count value attained (Pr. 02-20; not return to 0)
18: Count value attained (Pr. 02-19; returns to 0)
19: External interrupt B.B. input (Base Block)
20: Warning output
21: Over voltage warning
22: Over-current stall prevention warning
23: Over-voltage stall prevention warning
24: Operation mode indication
25: Forward command
26: Reverse command
29: Output when frequency \geq Pr. 02-34
30: Output when frequency < Pr. 02-34
31: Y-connection for the motor coil
32: \triangle-connection for the motor coil
33: Zero speed (actual output frequency)
34: Zero speed include stop (actual output frequency)
35: Error output selection 1 (Pr. 06-23)
36: Error output selection 2 (Pr. 06-24)
37: Error output selection 3 (Pr. 06-25)
38: Error output selection 4 (Pr. 06-26)
39: Position attained (Pr. 10-19)
40: Speed attained (including Stop)
41: Multi-position attained
42: Crane function
43: Actual motor speed slower than Pr. 02-47
44: Low current output (Pr. 06-71 to Pr. 06-73)
45: UVW output electromagnetic valve On / Off Switch
46: Master dEb action output
49: Homing action complete output
50: As output control for CANopen
51: As output control for RS-485
52: As output control for communication card
66: SO logic A
67: Analog input level reached
68: SO logic B
69: Max. reel diameter attained
70: Empty reel diameter attained
71: Broken belt detection
72: Tension PID feedback error
73: Over torque 3
74: Over torque 4

Iad This parameter is used to set the function of multi-function terminals.
Summary of function settings
(Take N.O. normally open contact for example, ON: contact is closed)

Settings	Functions	Descriptions
0	No Function	Output terminal with no function
1	Indication during RUN	Active when the drive is not at STOP.
2	Operating speed attained	Active when output frequency of drive reaches to the setting frequency.
3	Desired frequency attained 1 (Pr. 02-22)	Active when the desired frequency (Pr. 02-22) is attained.
4	Desired frequency attained 2 (Pr. 02-24)	Active when the desired frequency (Pr. 02-24) is attained.
5	Zero speed (frequency command)	Active when frequency command $=0$. (the drive must be at RUN status)
6	Zero speed, include STOP (frequency command)	Active when frequency command $=0$ or stops.
7	Over torque 1	Active when the drive detects over-torque. Pr. 06-07 is for setting the over-torque detection level (motor 1), and Pr. 06-08 is for setting over-torque detection time (motor 1). Refer to Pr. 06-06~06-08.
8	Over torque 2	Active when the drive detects over-torque. Pr. 06-10 is for setting the over-torque detection level (motor 2), and Pr. 06-11 is for setting over-torque detection time (motor 2). Refer to Pr. 06-09~06-11.
9	Drive is ready	Active when the drive is ON with no abnormality detected.
10	Low voltage warn (LV)	Active when the DC Bus voltage is too low. (refer to Pr. 06-00 low voltage level)
11	Malfunction indication	Active when fault occurs (except Lv stop).
13	Overheat	Active when IGBT or heat sink overheats to prevent OH turn off the drive. (refer to Pr. 06-15)
14	Software brake signal indication	Active when the soft brake function is ON. (refer to Pr. 07-00)
15	PID feedback error	Active when the PID feedback signal error is detected.
16	Slip error (oSL)	Active when the slip error is detected.
17	Count value attained (Pr. 02-20)	When the drive executes external counter, this contact will active if the count value is equal to the setting value of Pr. 02-20. This contact will not active when the setting value of Pr. 02-20 > Pr. 02-19.
18	Count value attained (Pr. 02-19)	When the drive executes external counter, this contact will active if the count value is equal to the setting value of Pr. 02-19.

Settings	Functions	Descriptions
19	External interrupt B.B. input (Base Block)	Active when external interrupt (B.B.) stop output occurs in the drive.
20	Warning output	Active when the warning is detected.
21	Over-voltage warning	Active when the over-voltage is detected.
22	Over-current stall prevention warning	Active when the over-current stall prevention is detected.
23	Over-voltage stall prevention warning	Active when the over-voltage stall prevention is detected.
24	Operation source	Active when the source of operation command is controlled by digital keypad. (Pr. 00-21 = 0)
25	Forward command	Active when the operation direction is forward.
26	Reverse command	Active when the operation direction is reverse.
29	Output when frequency $\geq \text { Pr. 02-34 }$	Active when frequency is $\geq \operatorname{Pr}$. 02-34. (Actual output $\mathrm{H} \geq \operatorname{Pr} .02-34$)
30	Output when frequency < Pr. 02-34	Active when frequency is < Pr. 02-34. (Actual output H < Pr. 02-34)
31	Y-connection for the motor coil	Active when Pr. 05-24 = 1, frequency output is lower than Pr. 05-23 minus 2 Hz , and time is longer than Pr. 05-25.
32	\triangle-connection for the motor coil	Active when Pr. 05-24 = 1, frequency output is higher than Pr. 05-23 plus 2 Hz , , and time is longer than Pr. 05-25.
33	Zero speed (actual output frequency)	Active when the actual output frequency is 0 . (the drive should be in RUN mode)
34	Zero speed include stop (actual output frequency)	Active when the actual output frequency is 0 or stop.
35	Error output selection 1 (Pr. 06-23)	Active when Pr. 06-23 is ON.
36	Error output selection 2 (Pr. 06-24)	Active when Pr. 06-24 is ON.
37	Error Output Selection $3 \text { (Pr. 06-25) }$	Active when Pr. 06-25 is ON.
38	Error Output Selection $4 \text { (Pr. 06-26) }$	Active when Pr. 06-26 is ON.
39	Position attained (Pr. 10-19)	Active when the PG position control point reaches Pr. 10-19.
40	Speed attained (including Stop)	Active when the output frequency attains to setting frequency or stop.
41	Multi-position attained	This terminal will output according to the completed position of multi-point positioning. The currently completed position can be monitored by Pr. 00-04 $=51$.

Settings	Functions	Descriptions
42	Crane function	This function should be used with Pr. 02-32, Pr. 02-33, Pr. 02-34 Pr. 02-57 and Pr. 02-58. Active when setting Pr. 07-16 = Pr.02-34, Fcmd $>$ Pr. 02-34, output current $>\operatorname{Pr}$. 02-33 and time $>$ Pr. 02-32; multi-function output setting $=42$ crane function. The example of the crane application is as follows for your reference.
43	Motor actual speed output < Pr. 02-47	Active when motor actual speed is less than Pr. 02-47.
44	Low current output	This function is used with Pr. 06-71 ~ Pr. 06-73.
45	UVW magnetic contactor ON / OFF switch	Use this function with external terminal input $=49$ (drive enabled) and external terminal output $=45$ (electromagnetic contractor enabled), then the magnetic contactor will be ON or OFF according to the status of drive.
46	Master dEb signal output	When dEb arises at Master, MO will send a dEb signal to Slave. Output the message when dEb occurs to Master. This will ensure that dEb also occurs to Slave. Then Slave will follow the decelerate time of Master to stop simultaneously.
49	Homing action complete output	Output when homing action complete.

Settings	Functions	Descriptions				
50	Output for CANopen control	Control multi-function output terminals by CANopen. The mapping table of the CANopen DO is as follows:				
		Physical terminal		Attribute	Corre	ponding index
		RY1	Pr. 2	RW	bit 0 of	2026-41 itial value 0×01
		MO1	Pr. 2	RW	bit 3 of	2026-41 itial value 0×01
		MO2	Pr.	RW	bit 4 of	2026-41 itial value 0×01
		Refer to Chapter 15-3-5 for more information.				
51	As output control for RS-485	For RS-485 communication control output.				
52	Output for communication card control	Control output by communication cards (CMM-MOD01, CMM-EIP01, CMM-PN01, CMM-DN01)				
		Physical terminal	Setting of related parameters		Attribute	Corresponding Address
		RY	Pr. 02-13 $=51$		RW	bit 0 of 2640
		MO1	Pr. 02-16 $=51$		RW	bit 3 of 2640
		MO2	Pr. 02-17 $=51$		RW	bit 4 of 2640
66	SO output logic A	Status of drive		Status of safety output		
				Status A (MO = 66)		tus B (MO = 68)
		Normal		Broken circuit (Open)		Short circuit (Close)
68	SO output logic B	STO		Short circuit (Close)		Broken circuit (Open)
		$\begin{gathered} \text { STL1~S } \\ 3 \end{gathered}$		Short circuit (Close)		Broken circuit (Open)
67	Analog input level reached output	Multi-function output terminals operate when analog input level is between high level and low level. 03-44: Select one of the analog input channels (AVI, ACI) to be compared. $03-45$: The high level of analog input, factory setting is 50%. 03-46: The low level of analog input, factory setting is 10%. If analog input > 03-45, multi-function output terminal operates. If analog input < 03-46, multi-function output terminal stops output.				
69	Max. reel diameter attained	In tension control mode, when reel diameter reaches Pr. 12-22, the contact is closed.				

Settings	Functions	Descriptions
70	Empty reel diameter attained	In tension control mode, when reel diameter reaches Pr. 12-23, the contact is closed.
71	Broken belt detection	In tension control mode, the broken belt occurs when line speed is higher than Pr. 12-40, the error of reel diameter exceeds Pr. $12-40 ., ~ a n d ~ d e t e c t i o n ~ t i m e ~ e x c e e d s ~ P r .12-41 . ~$
72	Tension PID feedback error	In tension control mode, when the error between PID target value and PID feedback exceeds Pr. 12-42 and allowed error detection time of tension PID feedback exceeds Pr. 12-43, please refer to Pr. 12-43 for error treatment of tension PID feedback.
73	Over torque 3	Active when over torque is detected. Pr. 14-75 is for setting over-torque detection level. Pr. 14-76 is for setting over-torque detection time. (Refer to Pr. 14-74~14-76)
74	Over torque 4	Active when over torque is detected. Pr. 14-78 is for setting over-torque detection level. Pr. 14-79 is for setting over-torque detection time. (Refer to Pr. 14-77~14-79)

Example of crane application:

It is recommended to be used with Dwell function as shown in the following:

BE $\mathbf{B E}^{3}$ Multi－function Output Direction

Factory Setting： 0000
Settings 0000h～FFFFh（0：N．O．； $1:$ N．C．）
1 The setting of this parameter is in hexadecimal．
1 This parameter is set via bit setting．If the bit is 1 ，the corresponding multi－function output acts in the opposite way．

Example：

If $\operatorname{Pr} .02-13=1$（Indicate when operating）．If output is positive，bit is set to 0 ，then Relay 1 is ON when the drive runs and is OFF when the drive stops．On the contrary，if action is reversed，bit is set to 1 ，then Relay is OFF when the drive runs and is ON when the drive stops．

bit 4	bit 3	bit 2	bit 1	bit 0
MO2	MO1	reserved	reserved	RY

日コ一 19 Terminal Counting Value Attained（return to 0 ）

Factory Setting： 0
Settings 0～65500
［a］This parameter needs to use KPC－CC01（optional）．
［1］Input point of the counter can be set by multi－function terminal M16 as a trigger terminal（set Pr．02－06 to 23）．When counting completed，the specified multi－function output terminal will be activated（Pr．02－13，Pr．02－36，Pr．02－37 is set to 18）．Pr．02－19 cannot be set to 0 at this time．

Example：When displayed c5555，the drive has counted 5,555 times．If displayed c5555．，the actual count value is $55,550 \sim 55,559$ ．

23－3 Preliminary Counting Value Attained（not return to 0）

Factory Setting： 0
Settings 0～65500
［1］This parameter needs to use KPC－CC01（optional）．When the count value counts from 1 to attain this value，the corresponding multi－function output terminal will be activated（Pr．02－13，Pr．02－36，Pr．02－37 is set to 17）．This parameter can be used for the end of counting to make the drive runs from the low speed to stop．
Time series diagram is shown below：

[2-2 : Digital Output Gain (DFM)

Factory Setting: 1

Settings 1~55

1 It is used to set the signal for the digital output terminals (DFM-DCM) and digital frequency output (pulse, work period $=50 \%$). Output pulse per second $=$ output frequency X Pr. 02-21.

Factory Setting: 60.00 / 50.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$

Factory Setting: 2.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$

M2

Factory Setting: 60.00 / 50.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
B2-25
The Width of the Desired Frequency Attained 2
Factory Setting: 2.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
\square Once output speed (frequency) reaches desired speed (frequency), if the corresponding multi-function output terminal is set to $3 \sim 4$ (Pr. 02-13, Pr. 02-36, and Pr. 02-37), this multi-function output terminal will be "closed".

B2-34 Output Frequency Setting for Multi-function Output Terminal
Factory Setting: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
1 When output frequency is $\geq \operatorname{Pr}$. 02-34 (actual output $\mathrm{H} \geq 02-34$), the multi-function terminal (Pr. 02-13, 02-16, 02-17) be set to 29 will activate.
1 When output frequency is < Pr. 02-34 (actual output $\mathrm{H}<02-34$), the multi-function terminal (Pr. 02-13, 02-16, 02-17) be set to 30 will activate.

RI 35 External Operation Control Selection after Reset and Activate

Factory Setting: 0

$$
\begin{array}{ll}
\text { Settings } & 0 \text { : Disable } \\
& 1 \text { : Drive runs if the run command still exists after reset or re-boots. }
\end{array}
$$

Set value is 1 :
$\mathbb{1}$ Status 1: After the drive is powered on and the external terminal for RUN keeps ON, the drive will run.
1 Status 2: After clearing fault once a fault is detected and the external terminal for RUN keeps ON, the drive can run after pressing RESET key.

52-47 Zero-speed Level of Motor

Factory Setting: 0
Settings 0~65535 rpm
110 This parameter should be used with the multi-function output terminals set to 43 . Required to be used with PG cared and motor with encoder feedback.
1 This parameter is used to set the level of motor at zero-speed. When the actual speed is lower than this setting, the corresponding multi-function output terminal which is set to 43 will be ON, as shown below:

B2-48 Max. Frequency of Resolution Switch

Factory Setting: 60.00
Settings $\quad 0.01 \sim 599.00 \mathrm{~Hz}$ (Use with MI set as 43)

BI -4 Switch the Delay Time of Max. Output Frequency

Factory Setting: 0.000

$$
\text { Settings } \quad 0.000 \sim 65.000 \mathrm{sec} .
$$

\square It is used to improve the unstable speed or unstable position due to the insufficient of analog resolution. It needs to be used with external terminal (set to 43). After setting this parameter, it needs to adjust the analog output resolution of controller simultaneously by this setting.

Factory Setting: Read only
Settings Monitor the status of multi-function input terminals

Weights $2^{6} 2^{5} 2^{4} \quad 2^{3} \quad 2^{2} 2^{1} 2^{0}$								
Bit	6	5	4	3	2			-MI1
$\begin{aligned} & 0=\mathrm{ON} \\ & 1=\mathrm{OFF} \end{aligned}$	\& M \uparrow MI2							

[1] For Example:
If Pr. 02-50 displays 0034h (Hex), i.e. the value is 52 (decimal), and 110100 (binary). It means MI3, MI5 and MI6 are ON.
Weights
Bit

$0=\mathrm{ON}$
$1=\mathrm{OFF}$
Settings
$=$ bit $5 \times 2^{5}+$ bit $4 \times 2^{4}+$ bit 2×2^{2}
$=1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{2}$
$=32+16+4=52$
$\begin{array}{llll}\text { NOTE } & & \\ 2^{6}=64 & 2^{5}=32 & 2^{4}=16 & 2^{3}=8 \\ 2^{2}=4 & 2^{2}=2 & 2=1 & \\ 2=1\end{array}$

TE-5 : Status of Multi-function Output Terminal

Factory Setting: Read only
Settings Monitor the status of multi-function output terminals
(1) For Example:

When Pr. 02-51 displays 000Bh (hex), i.e. the value is 11 (decimal), and switched to 1011 (binary) which means RY. MO1 is at ON status.

[2]

Factory Setting: Read only
Settings Monitor the status of PLC input terminals
1 Pr. 02-52 displays the external multi-function input terminal that used by PLC.

For Example:
When Pr. 02-52 displays 0034h (hex) and switched to 110100 (binary), it means MI3, MI5 and MI6 are used by PLC.


```
0= Notused by PLC
1= Used by PLC
Displays
=bit5 }\times\mp@subsup{2}{}{5}+\textrm{bit4}4\times\mp@subsup{2}{}{4}+\textrm{bit2}2\times\mp@subsup{2}{}{2
=1\times\mp@subsup{2}{}{5}+1\times\mp@subsup{2}{}{4}+1\times\mp@subsup{2}{}{2}
=32+16+4=52
NOTE
25=32 2=16 2 2=8 2 2=4
2=2
```


[2-53 Display External Multi-function Output Terminals Used by PLC

Factory Setting: Read only
Settings Monitor the status of PLC output terminals
[10] Pr. 02-53 displays the external multi-function output terminal that used by PLC.
1 For Example:
When Pr. 02-51 displays 000Bh (hex), i.e. the value is 11 (decimal), and switched to 1011 (binary) which means RY. MO1 is at ON status.

$$
\begin{aligned}
& \text { NOTE } \\
& 2^{2}=4 \quad 2^{1}=2 \quad 2^{0}=1
\end{aligned}
$$

[10] For Example:
If the value of Pr. 02-53 displays 0003h (hex), it means RY is used by PLC.

A2-54 Display the Frequency Command Executed by External Terminal
Factory Setting: Read only
Settings Read only
1 When the source of frequency command set as external terminal, if Lv or Fault occurs at this time, the frequency command of external terminal will be saved in this parameter.

是気-5 Multi-function Output Terminal: Function 42: Brake Frequency Checking Point

Factory setting: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
(1) Pr. 02-34 can be used with Pr. 02-58 for crane function. (Choose crane action \# 42 to set up multi-function output Pr. 02-13, Pr. 02-16, and Pr. 02-17)
$\mathbb{1}$ When output frequency of the drive is higher than the setting of Pr. 02-34 set frequency level (\geq Pr. 02-34), choose \# 42 to set up multi-function output terminal.
\square When the output frequency is lower than the setting of Pr. 02-58 (< Pr. 02-58), choose \# 42 to disable multi-function output terminal.

Factory setting: Read only

Settings	1: EMC-BPS01 (Backup power supply)
10: EMM-D33A	
	11: EMM-A22A
	12: EMM-R2CA
	13: EMM-R3AA

1: EMC-BPS01 (Backup power supply)
10: EMM-D33A
11: EMM-A22A
12: EMM-R2CA
13: EMM-R3AA

BE-8:EF Active when Terminal Count Value Attained

Factory setting: 0
Settings 0: Terminal count value attained, no EF display (Continue to operate)
1: Terminal count value attained, EF active
(2)

Factory setting: 0
Settings 0: By current freq. command
1: By zero freq. command
2: Refer to Pr. 02-83 to set up
N
Factory setting: 60.00
Settings $0.00 \sim 599.0 \mathrm{~Hz}$

03 Analog Input / Output Parameter

 This parameter can be set during operation.
73-7.7 Analog Input Selection (AVI)

Factory Setting: 1
(73-7 : Analog Input Selection (ACI)
Factory Setting: 0

Settings	0: No function
	1: Frequency command
	2: Torque command (torque limit in speed mode)
	3: Torque compensation command
	4: PID target value
	5: PID feedback signal
	6: PTC thermistor input value
	7: Positive torque limit
	8: Negative torque limit
	9: Regenerative torque limit
	10: Positive / negative torque limit
	11: PT100 thermistor input value
	12: Auxiliary frequency input
	13: PID compensation value
	14: Tension PID feedback signal
	15: Line speed
	16: Reel diameter
	17: Tension PID target value
	18: Tension setting value
	19: Zero-speed tension
	20: Tension taper

$1 \mathbb{1}$ When using analog input as PID reference value, Pr. 00-20 must set 2 (analog input).
Setting method 1: Pr. 03-00~03-01 set 1 as PID reference input
Setting method 2: Pr. 03-00~03-01 set 4 as PID reference input
If the setting value 1 and set value 4 exist at the same time, AVI input has highest priority to become PID reference input.
1 When using analog input as PID compensation value, Pr. 08-16 must set 1 (Source of PID compensation is analog input). The compensation value can be observed via Pr. 08-17.
1 When it is frequency command, the corresponding value for $0 \sim \pm 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is $0 \sim$ max. output frequency (Pr. 01-00).
(1) When it is torque command, the corresponding value for $0 \sim \pm 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is $0 \sim$ max. output torque (Pr. 11-27).
When it is torque compensation, the corresponding value for $0 \sim \pm 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is $0 \sim$ rated torque.

When the setting of Pr. 03-00~Pr. 03-01 is the same, the AVI will be selected first.

5-3 3 Analog Input Bias (AVI)

Factory Setting: 0

$$
\text { Settings } \quad-100.0 \sim 100.0 \%
$$

ITd It is used to set the corresponding AVI voltage of the external analog input 0 .

193-94 Analog Input Bias (ACl)

Factory Setting: 0
Settings -100.0~100.0 \%
Ital is used to set the corresponding ACl voltage of the external analog input 0 .

[3-7 Positive / Negative Bias Mode (AVI)
 [3-98 Positive / Negative Bias Mode (ACI)

Factory Setting: 0
Settings 0 : Zero bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
1 In a noisy environment, it is advantageous to use negative bias to provide a noise margin. It is recommended NOT to use less than 1V to set the operation frequency.

13-17 Reverse Setting when Analog Signal Input is Negative Frequency

Factory Setting: 0
Settings 0 : Negative frequency input is not allowed. Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency input is allowed. Positive frequency = forward run; negative frequency $=$ reverse run. Run direction can not be switched by digital keypad or the external terminal control.
1 Pr. 03-10 is used to enable reverse run command when a negative frequency (negative bias and gain) is input to AVI or ACl analog signal input.
1 Condition for negative frequency (reverse)

1. Pr. $03-10=1$
2. Bias mode $=$ Serve bias as center
3. Corresponded analog input gain <0 (negative), make input frequency be negative.

In using addition function of analog input (Pr. 03-18=1), when analog signal is negative after addition, this parameter can be set for allowing reverse or not. The result after adding will be restricted by "Condition for negative frequency (reverse)"

In the diagram below: Black line: Curve with no bias. Gray line: curve with bias

Diagram 01

Diagram 02

Diagram 03

Pr.03-03=10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Diagram 04

Pr.03-03=10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center

4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Diagram 05

Pr.03-03=10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Diagram 06

Diagram 07

Diagram 08

Pr.03-03=10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11Analog Input Gain (AVI) $=100 \%$

Pr.03-03=10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain $($ AVI $)=100 \%$

Pr.03-03=10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Diagram 09

Pr.03-03=-10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI)=100\%

Diagram 10

Pr.03-03=-10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI)= 100\%

Diagram 11

Pr.03-03=-10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Diagram 12

Diagram 13

Diagram 14

Pr.03-03=-10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=100 \%$

Diagram 15

Pr.03-03=-10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain $(A V I)=100 \%$

Diagram 16

Pr.03-03=-10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain $(\mathrm{AVI})=100 \%$

Diagram 17

Pr.03-03=10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive
frequency = forward run; negative
frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=111.1 \%$

Diagram 18

Diagram 19

Pr.03-03=10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=111.1 \%$

$$
10 / 9=111.1 \%
$$

Diagram 20

Pr.03-03=10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center

4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.03-11 Analog Input Gain (AVI) $=111.1 \%$
10/9 = 111.1\%

Diagram 21

Pr.03-03=10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=111.1 \%$ $10 / 9=111.1 \%$

Diagram 22

Pr.03-03=10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=111.1 \%$ 10/9 = 111.1\%

Diagram 23

Pr.03-03=10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control
Pr.03-11 Analog Input Gain $(\mathrm{AVI})=111.1 \%$ $10 / 9=111.1 \%$

Diagram 24

Pr.03-03=10\%
Pr.03-07~03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.03-11 Analog Input Gain (AVI) $=111.1 \%$

$$
10 / 9=111.1 \%
$$

Diagram 25

Pr.03-07~03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad \mathrm{XV}=\frac{10}{-9}=-1.11 \mathrm{~V}$

$$
\operatorname{Pr} .03-03=\frac{-1.11}{10} \times 100 \%=-11.1 \%
$$

Calculate the gain: Pr. $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Diagram 26

Pr.03-07~03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Diagram 27

Pr.03-07~03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

$$
\begin{aligned}
& \text { Calculate the bias: } \frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \mathrm{XV}=\frac{10}{-9}=-1.11 \mathrm{~V} \\
& \therefore \operatorname{Pr} .03-03=\frac{-1.11}{10} \times 100 \%=-11.1 \%
\end{aligned}
$$

Diagram 28

Pr.03-07~03-08(Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Calculate the bias: | $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad \mathrm{XV}=\frac{10}{-9}=-1.11 \mathrm{~V}$ |
| :--- |
| $\therefore \operatorname{Pr} .03-03=\frac{-1.11}{10} \times 100 \%=-11.1 \%$ |

Calculate the gain: $\operatorname{Pr} .03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Diagram 29

Diagram 30

Pr.03-07~03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Diagram 31

Pr.03-07~03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagative frequency is valid.
Positive frequency = forward run;
negative frequency $=$ reverse run.
Direction can not be switched by digital keypad or external terminal control

Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad \mathrm{XV}=\frac{10}{-9}=-1.11 \mathrm{~V}$ Pr. $03-03=\frac{-1.11}{10} \times 100 \%=-11.1 \%$
Calculate the gain: $\operatorname{Pr} .03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Diagram 32

Pr.03-07~03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagative frequency is valid.
Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \mathrm{XV}=\frac{10}{-9}=-1.11 \mathrm{~V}$
$\operatorname{Pr} .03-03=\frac{-1.11}{10} \times 100 \%=-11.1 \%$
Calculate the gain: Pr. $03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

63-1!
 (3) ! ?

Analog Input Gain (AVI)
Analog Input Gain (ACI)
Factory Setting: 100.0
Settings -500.0~500.0\%
Pr. 03-03 to 03-14 are used when the source of frequency command is the analog voltage / current signal.

Factory Setting: 0.01
Settings $0.00 \sim 20.00 \mathrm{sec}$.
1 These input delays can be used to filter noisy analog signal.
$10]$ When the setting of the time constant is too large, the control will be stable but the control response will be slow. When the setting of time constant is too small, the control response will be faster but the control may be unstable. To find the optimal setting, please adjust the setting according to the control stable or response status.

53-18 Addition Function of the Analog Input

Factory Setting: 0

Settings	$0:$ Disable (AVI, ACI)
	1: Enable (Exclude analog extension card)

[1] When Pr. 03-18 is set to 1 :
EX1: Pr. 03-00 = Pr. 03-01 = $1 \quad$ Frequency command $=$ AVI + ACI
Lal When Pr. 03-18 is set to 0 and the analog input setting is the same, the priority for $\mathrm{AVI}, \mathrm{ACl}$ and AVI $>\mathrm{ACl}$

F command $=\left[(a y \pm \text { bias })^{*}\right.$ gain $] \frac{* \operatorname{Fmax}(01-00)}{10 \mathrm{~V} \text { or } 16 \mathrm{~mA} \text { or } 20 \mathrm{~mA}}$
F command: the corresponding frequency for 10 V or 20 m .
ay: $0 \sim 10 \mathrm{~V}, 4 \sim 20 \mathrm{~mA}, 0 \sim 20 \mathrm{~mA}$
bias: Pr. 03-03, Pr. 03-04
gain: Pr. 03-11, Pr. 03-12

Signal Loss Selection of Analog Input 4~20 mA
Factory Setting: 0
Settings 0: Disable
1: Continue operation at the last frequency
2: Decelerate to 0 Hz
3: Stop immediately and display ACE
[1] This parameter determines the treatment when $4 \sim 20 \mathrm{~mA}$ signal is loss, when ACIc $(03-29=0)$.
[1]
When Pr. $03-29 \neq 0$, it means the voltage input to ACl terminal is $0-10 \mathrm{~V}$ or $0 \sim 20 \mathrm{~mA}$. At this moment, Pr. 03-19 will be invalid.

When setting is 1 or 2 , it will display warning code "ANL" on the keypad. It will be blinking until the loss of the ACI signal is recovered.
When the motor drive stops, the condition of warning does not exist, then the warning will disappear.

N 프표 Multi-function Output (AFM)
Factory Setting: 0
Settings 0~23
Function Chart

Settings	Functions	Descriptions
0	Output frequency (Hz)	Max. frequency Pr. 01-00 is regarded as 100%.
1	Frequency command (Hz)	Max. frequency Pr. 01-00 is regarded as 100%.
2	Motor speed (Hz)	Max. frequency Pr. 01-00 is regarded as 100%
3	Output current (rms)	$(2.5 \mathrm{X}$ rated current) is regarded as 100%
4	Output voltage	$(2 \mathrm{X}$ rated voltage) is regarded as 100%
5	DC BUS voltage	$450 \mathrm{~V}(900 \mathrm{~V})=100 \%$
6	Power factor	$-1.000 \sim 1.000=100 \%$
7	Power	$(2 \mathrm{X}$ rated power) is regarded as 100%
8	Output torque	Full load torque $=100 \%$
9	AVI	$0 \sim 10 \mathrm{~V}=0 \sim 100 \%$
10	ACI	$4 \sim 20$ mA $=0 \sim 100 \%$
12	Iq current command	$(2.5 \mathrm{X}$ rated current) is regarded as 100%
13	Iq feedback value	$(2.5 \mathrm{X}$ rated current) is regarded as 100%
14	Id current command	$(2.5 \mathrm{X}$ rated current) is regarded as 100%
15	Id feedback value	$(2.5 \mathrm{X}$ rated current) is regarded as 100%
16	Vq-axis voltage command	$250 \mathrm{~V}(500 \mathrm{~V})=100 \%$
17	Vd-axis voltage command	250 V (500V) $=100 \%$
18	Torque command	Rated current of motor = 100 \%
19	PG2 frequency command	Max. frequency Pr. 01-00 is regarded as 100%.
20	CANopen analog output	For CANopen communication analog output
21	RS-485 analog output	For InnerCOM analog output
22	Communication card analog	For communication analog output (CMM-MOD01,
output	CMM-EIP01, CMM-PN01, CMM-DN01)	
23	Constant voltage output	Pr. 03-32 controls voltage output level
$0 \sim 100 \%$ of Pr. 03-32 corresponds to 0~10V of AFM.		

B3-2 3 Gain of Analog Output (AFM)

Factory Setting: 100.0
Settings 0~500.0 \%
This function is used to adjust the voltage level outputted to analog meter head from analog signal (Pr. 03-20) output terminal AFM of drive.

Settings 0: Absolute value of output voltage
1: Reverse output 0 V ; Positive output $0 \sim 10 \mathrm{~V}$
2: Reverse output 5-0 V; Positive output 5~10 V

Analog output direction selection

193-27 AFM Output Bias

Factory Setting: 0.00
Settings -100.00~100.00 \%
ILI Example 1, AFM $0-10 \mathrm{~V}$ is set output frequency, the output equation is
$10 \mathrm{~V} \times\left(\frac{\text { Output Frequency }}{01-00}\right) \times 03-24+10 \mathrm{~V} \times 03-27$
[1] Example 2, AFM 0-20 mA is set output frequency, the output equation is
$20 \mathrm{~mA} \times\left(\frac{\text { Output Frequency }}{01-00}\right) \times 03-24+20 \mathrm{~mA} \times 03-27$
[1] Example 3, AFM 4-20 mA is set output frequency, the output equation is
$4 \mathrm{~mA}+16 \mathrm{~mA} \times\left(\frac{\text { Output Frequency }}{01-00}\right) \times 03-24+16 \mathrm{~mA} \times 03-27$
(1) This parameter can set the corresponding voltage of analog output 0 .

13-28 AVI Terminal Input Selection

Factory Setting: 0
Settings $0: 0-10 \mathrm{~V}$
3: -10 V ~ +10 V (Pr. 03-69~03-74 is valid)

13-9 ACI Terminal Input Selection

Factory Setting: 0
Settings $\quad 0: 4-20 \mathrm{~mA}$
1: 0-10 V
2: 0-20 mA
1 When changing the input mode, please check if the switch position of external terminal (ACI) is correct or not.

53-39 Status of PLC Analog Output Terminal

Factory Setting: Read only
Settings Monitor the status of PLC analog output terminals

bit 1: AFM
bit 2: AO10
bit 3: AO11

@ P. 03-30 shows the external multi-function output terminal that used by PLC.

Weights	2^{15}		$2^{14} 2$	${ }^{13} 2^{1}$	2^{11}	2					2				2		2	2°	$\begin{aligned} & 0=O N \\ & 1=O F F \end{aligned}$
Bit	15	14	13	12	11	10	9	8	7	7	6	5		4	3	2	1	0	- AFM

NOTE		
$2^{7}=128$	$2^{6}=64$	
$2_{5}=32$	$2^{3}=16$	$2^{3}=8$
$2^{2}=4$	$2^{1}=2$	$2^{0}=1$

11 For Example:
If the value of Pr. 03-30 displays 0002h (Hex), it means AFM is used by PLC.

$$
\begin{aligned}
& 0=\text { Not used by PLC } \\
& 1=U \text { sed by PLC }
\end{aligned}
$$

Display value

$$
\begin{aligned}
2 & =1 \times 2^{1}+0 \times 2^{0} \\
& =\text { bit } 1 \times 2^{1}+\text { bit } 0 \times 2^{0}
\end{aligned}
$$

193-3:AFM Output Selection

Factory Setting: 0
Settings $0: 0-10 \mathrm{~V}$ output
1: 0-20 mA output
2: 4-20 mA output

13-30 AFM DC Output Setting Level

Factory Setting: 0.00
Settings 0.00~100.00 \%
53-35AFM Filter Output Time
Factory Setting: 0.01
Settings $0.00 \sim 20.00 \mathrm{Sec}$.

53-39 VR Input Selection

Factory Setting: 1
Settings 0 : Disable
1 : Frequency command

[13-44 Multi-function MO Output by Source of AI Level

Factory Setting: 0
Settings 0: AVI
1: ACI
3: Extension card input termnal Al10
4: Extension card input terminal AI11

75-45AI Upper Level 1

Factory Setting: 50
Settings -100 \%~100 \%

73-45Al Lower Level 2

Factory Setting: 10
Settings -100 \%~100 \%
[1] This function requires working with multi-function output item "67" Analog signal level achieved.
The MO active when AI input level is higher than Pr. 03-45 AI Upper level. The MO shutoffs when the AI input is lower that Pr. 03-46 AI Lower level.
AI Upper level must be higher than AI Lower level

日3-5 Analog Input Curve Selection

Factory Setting: 0

Settings 0: Regular Curve

1:3 point curve of AVI (\& AI10)
2: 3 point curve of ACI (\& AI11)
3: 3 point curve of AVI \& ACI (\& AI10 \& AI11)
(Al10, Al11 is valid when extension card is installed)

73-5 7 ACl Lowest Point

Factory Setting: 4.00
Settings Pr. $03-29=1,0.00 \sim 10.00 \mathrm{~V}$
Pr. 03-29 $=1,0.00 \sim 20.00 \mathrm{~mA}$
ACI Proportional Lowest Point
Factory Setting: 0.00
Settings $0.00 \sim 100.00 \%$

Settings $\quad 03-29=1,0.00 \sim 10.00 \mathrm{~V}$
$03-29 \neq 1,0.00 \sim 20.00 \mathrm{~mA}$

73-6. ACI Proportional Mid-point

Factory Setting: 50.00
Settings $0.00 \sim 100.00 \%$

53-6:ACI Highest Point

Factory Setting: 20.00

$$
\begin{array}{ll}
\text { Settings } & 03-29=1,0.00 \sim 10.00 \mathrm{~V} \\
& 03-29 \neq 1,0.00 \sim 20.00 \mathrm{~mA}
\end{array}
$$

[3-62 ACI Proportional Highest Point

Factory Setting: 100.00
Settings $0.00 \sim 100.00 \%$
1 When Pr. 03-29 = 1, ACl setting is $0-10 \mathrm{~V}$ and the unit is in voltage (V).
When Pr. $03-29 \neq 1, \mathrm{ACl}$ setting is $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ and the unit is in current (mA).
1 When setting analog input ACI to frequency command, it 100% corresponds to Fmax (Pr. 01-00 Max. operation frequency).
11 The 3 parameters (Pr. 03-57, Pr. 03-59 and Pr. 03-61) must meet the following argument:
Pr. 03-57 < Pr. 03-59 < Pr. 03-61. The 3 proportional points (Pr. 03-58, Pr. 03-60 and Pr. 03-62) doesn't have any limit. Between two points is a linear calculation.
The output $\%$ will become 0% when the ACI input value is lower than low point setting.
For example:
If Pr. 03-57 = 2mA; Pr. 03-58 = 10%, then the output will become 0% when AVI input is $\leq 2 \mathrm{~mA}$.
If the ACl input is swing between 2 mA and 2.1 mA , drive's output frequency will beats between 0 \% and 10 \%.

13-63 AVI Voltage Lowest Point

Factory Setting: 0.00
Settings $0.00 \sim 10.00 \mathrm{~V}$

[3-64AVI Voltage Proportional Lowest Point

Factory Setting: 0.00
Settings -100.00~100.00 \%
93-65 AVI Voltage Mid-point
Factory Setting: 5.00
Settings $0.00 \sim 10.00 \mathrm{~V}$
53-65AVI Voltage Proportional Mid-point
Factory Setting: 50.00
Settings -100.00~100.00 \%

93-67 AVI Voltage Highest Point

Factory Setting: 10.00
Settings $0.00 \sim 10.00 \mathrm{~V}$

Factory Setting: 100.00
Settings -100.00~100.00 \%
When setting positive voltage AVI to frequency command, it 100% corresponds to Fmax (Pr. 01-00 Max. operation frequency) and the motor runs in forward direction.
[a] The 3 parameters (Pr. 03-63, Pr. 03-65 and Pr. 03-67) must meet the following argument:
Pr. 03-63 < Pr. 03-65 < Pr. 03-67. The 3 proportional points (Pr. 03-64, Pr. 03-66 and Pr. 03-68) doesn't have any limit. Between two points is a linear calculation.
[a] The output \% will become 0% when positive voltage AVI input value is lower than low point setting.
For example:
If Pr. 03-63 = 1V; Pr. 03-64 $=10 \%$, then the output will become 0% when AVI input is $\leq 1 \mathrm{~V}$. If the AVI input is swing between 1 V and 1.1 V , drive's output frequency will beats between 0% and 10%.

日3-69
 Negative AVI Voltage Lowest Point

Factory Setting: 0.00
Settings $0.00 \sim-10.00 \mathrm{~V}$
(valid when Pr. 03-28 set as $-10 \mathrm{~V} \sim+10 \mathrm{~V}$)

73-79

Negative AVI Voltage Proportional Lowest Point
Factory Setting: 0.00
Settings -100.00~100.00 \%
(valid when Pr. 03-28 set as -10 V ~+10 V)

[83-7

Negative AVI Voltage Mid-point
Factory Setting: -5.00
Settings $0.00 \sim-10.00 \mathrm{~V}$
(valid when Pr. 03-28 set as $-10 \mathrm{~V} \sim+10 \mathrm{~V}$)

63-72

Negative AVI Voltage Proportional Mid-point
Factory Setting: -50.00
Settings -100.00~100.00\%
(valid when Pr. 03-28 set as -10 V ~ +10 V)
Negative AVI Voltage Highest Point
Factory Setting: -10.00
Settings $0.00 \sim-10.00 \mathrm{~V}$
(valid when Pr. 03-28 set as $-10 \mathrm{~V} \sim+10 \mathrm{~V}$)

73-74

Negative AVI Voltage Proportional Highest Point
Factory Setting: -100.00
Settings -100.00~100.00\%
(valid when Pr. 03-28 set as $-10 \mathrm{~V} \sim+10 \mathrm{~V}$)
(1) When setting negative voltage AVI to frequency command, it -100 \% corresponds to Fmax (Pr. 01-00 Max. operation frequency) and the motor runs in reverse direction.The 3 parameters (Pr. 03-69, Pr. 03-71 and Pr. 03-73) must meet the following argument: Pr. 03-69 < Pr. 03-71 < Pr. 03-73 The 3 proportional points (Pr. 03-70, Pr. 03-72 and Pr. 03-74) doesn't have any limit. Between two points is a linear calculation.
1 The output \% will become 0% when the negative AVI input value is lower than low point setting. For example:
If Pr. 03-69 = -1 V; Pr. 03-70 = 10%, then the output will become 0% when AVI input is $\geq-1 \mathrm{~V}$. If the AVI input is swing between -1 V and -1.1 V , drive's output frequency will beats between 0% and 10 \%.

Factory Setting: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
1 The multi-function input terminals (refer to setting 1~4 of Pr. 02-01~02-07, 02-26~02-28 Multi-function input command) are used to select multi-stage speed command (max. is $15^{\text {th }}$ stage speed). The multi-stage speed (frequency) is set by Pr. 04-00 to 04-14 as shown in the following diagram.
The run / stop command can be controlled by the external terminal / digital keypad / communication via Pr. 00-21.
Each multi-stage speed can be set within $0.00 \sim 599.00 \mathrm{~Hz}$ during operation.
[1]. Explanation for the timing diagram of multi-stage speed and external terminals The related parameter settings are:

1. Pr. 04-00~04-14: setting $1^{\text {st }} \sim 15^{\text {th }}$ multi-stage speed (to set the frequency of each stage speed)
2. Pr. 02-01~02-07, 02-26~02-28: setting multi-function input terminals (multi-stage speed command 1~4)
1 Related parameters:

- 01-22 JOG frequency setting
- 02-01 multi-function input command 1 (MI1)
- 02-02 multi-function input command 2 (MI2)
- 02-03 multi-function input command 3 (MI3)
- 02-04 multi-function input command 4 (MI4)

Speed selection via External Terminals
N
N

Factory Setting: 0
Settings -32767~32767
1 Please refer to Pr. 02-01~02-07 (Multi-function Input Command) for description on setting 34 (Switch between multi-stage position and multi-stage speed control), setting 36 (Enable multi-stage position learning function) and setting 35 (Enable single point position control).
[ad Multi-function input 35 (Enable single point position control) can switch between multi-stage speed and multi-stage position by multi-function input 34 (when enabled). There are 16 positions can be selected.

Multi-stage position corresponding	MI4	MI3	MI2	MI1	Multi-stage speed corresponding
$10-19$	0	0	0	0	Position for internal positioning
04-16 Position command 1 (pulse)	0	0	0	1	$04-001^{\text {st }}$ stage speed frequency
04-18 Position command 2 (pulse)	0	0	1	0	$04-012^{\text {nd }}$ stage speed frequency
04-20 Position command 3 (pulse)	0	0	1	1	$04-023^{\text {rd }}$ stage speed frequency
04-22 Position command 4 (pulse)	0	1	0	0	$04-034^{\text {th }}$ stage speed frequency
04-24 Position command 5 (pulse)	0	1	0	1	$04-045^{\text {th }}$ stage speed frequency
04-26 Position command 6 (pulse)	0	1	1	0	$04-056^{\text {th }}$ stage speed frequency
04-28 Position command 7 (pulse)	0	1	1	1	$04-067^{\text {th }}$ stage speed frequency
04-30 Position command 8 (pulse)	1	0	0	0	$04-078^{\text {th }}$ stage speed frequency
04-32 Position command 9 (pulse)	1	0	0	1	$04-089^{\text {th }}$ stage speed frequency
04-34 Position command 10 (pulse)	1	0	1	0	$04-0910^{\text {th }}$ stage speed frequency
04-36 Position command 11 (pulse)	1	0	1	1	$04-1011^{\text {th }}$ stage speed frequency
04-38 Position command 12 (pulse)	1	1	0	0	$04-1112^{\text {th }}$ stage speed frequency
04-40 Position command 13 (pulse)	1	1	0	1	$04-1213^{\text {th }}$ stage speed frequency
$04-42$ Position command 14 (pulse)	1	1	1	0	$04-1314^{\text {th }}$ stage speed frequency
$04-44$ Position command 15 (pulse)	1	1	1	1	$04-1415^{\text {th }}$ stage speed frequency

Factory Setting: 0
Settings -30000~30000
Ild To switch the target position of the external terminal, set multi-function input command Pr. $02-01=1, \operatorname{Pr} .02-02=2, \operatorname{Pr} .02-03=3, \operatorname{Pr} .02-04=4$ by selecting the P2P target position via multi-stage speed.
Setting: Target Position $=04-15 \times(10-01 * 4)+04-16$

Multi-stage Speed Status	Target Position of P2P			Maximum Speed of P2P	
0000		0		11-00 bit 8=0	11-00 bit 8=1
0001	Position 1	04-15	04-16	11-43	04-00
0010	Position 2	04-17	04-18		04-01
0011	Position 3	04-19	04-20		04-02
0100	Position 4	04-21	04-22		04-03
0101	Position 5	04-23	04-24		04-04
0110	Position 6	04-25	04-26		04-05
0111	Position 7	04-27	04-28		04-06
1000	Position 8	04-29	04-30	11-43	04-07
1001	Position 9	04-31	04-32		04-08
1010	Position 10	04-33	04-34		04-09
1011	Position 11	04-35	04-36		04-10
1100	Position 12	04-37	04-38		04-11
1101	Position 13	04-39	04-40		04-12
1110	Position 14	04-41	04-42		04-13
1111	Position 15	04-43	04-44		04-14

N4-5 5 PLC Buffer 0
N

Factory Setting: 0
Settings 0~65535
凹 PLC buffer can be combined with built-in PLC function for a variety of applications.

日5-8日
 Motor Parameter Auto Tuning

Factory Setting: 0

Settings	$0:$ No function
1: Dynamic test for induction motor (IM)	
2: Static test for induction motor (IM)	
4: Dynamic test for PM synchronous motor magnetic pole	
	12: FOC Sensorless inertia estimation
13: High frequency stall test for PM synchronous motor	

75-I : Full-load Current of Induction Motor 1 (A)
Unit: Ampere
Factory Setting: \#.\#\#
Settings 10~120 \% of drive's rated current
\square This value should be set according to the rated current of the motor as indicated on the motor nameplate. The factory setting is 90% of rated current.
Example: The rated current of $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ is 25 A , the factory setting is 22.5 A .
The setting range will be $2.5 \sim 30 \mathrm{~A}$. $(25 \times 10 \%=2.5 \mathrm{~A}$ and $25 \times 120 \%=30 \mathrm{~A})$

!5-92 Rated Power of Induction Motor 1 (kW)

Factory Setting: \#.\#\#
Settings $0 \sim 655.35 \mathrm{~kW}$
1 It is used to set rated power of motor 1. Factory setting is the power value of drive.

55-93 Rated Speed of Induction Motor 1 (rpm)

Factory Setting: 1710
Settings 0~65535
1710 (60 Hz 4 poles); 1410 (50 Hz 4 poles)
[1] It is used to set the rated speed of the motor according to motor nameplate.

I5 - 54 Pole Number of Induction Motor 1

Factory Setting: 4
Settings 2~20
1 It is used to set the number of motor poles (must be an even number).
1 Set up Pr. 01-01 and Pr. 05-03 before setting up Pr. 05-04 to make sure motor operates normally.

$5-75$ No-load Current of Induction Motor $1(\mathrm{~A})$	
Settings $0 \sim$ Pr. $05-01$ factory setting	Fnit: Ampere
Factory Setting: \#.\#\#	
The factory setting is 40% of the motor rated current.	

55-95 Stator Resistance (Rs) of Induction Motor 1
[5-77 Rotor Resistance (Rr) of Induction Motor 1
Factory Setting: \#.\#\#\#
Settings $\quad 0 \sim 65.535 \Omega$

Stator inductance (LX) of Induction Motor 1
Factory Setting: \#.\#
Settings $\quad 0 \sim 6553.5 \mathrm{mH}$
55- ! F Full-load Current of Induction Motor 2 (A)
Unit: Ampere
Factory Setting: \#.\#\#
Settings 10~120 \% of drive's rated current
\square This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. The factory setting is 90% of rated current.
Example: The rated current of $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ is 25 A , the factory setting is 22.5 A .
The setting range will be $2.5 \sim 30 \mathrm{~A}$. $(25 \times 10 \%=2.5 \mathrm{~A}$ and $25 \times 120 \%=30 \mathrm{~A})$
75- 14 Rated Power of Induction Motor 2 (kW)
Factory Setting: \#.\#\#
Settings $0 \sim 655.35 \mathrm{~kW}$
It is used to set rated power of motor 2. Factory setting is the power value of drive.

55-15 Rated Speed of Induction Motor 2 (rpm)

Factory Setting: 1710
Settings 0~65535
1710 (60 Hz 4 poles); 1410 (50 Hz 4 poles)
[1t It is used to set the rated speed of the motor according to motor nameplate.

55-16 Pole Number of Induction Motor 2

Factory Setting: 4
Settings 2~20
\square It is used to set the number of motor poles (must be an even number).
10 Set up Pr. 01-35 and Pr. 05-15 before setting up Pr. 05-04 to make sure motor operates normally.
万5- : 7 No-load Current of Induction Motor 2 (A)
Unit: Ampere
Factory Setting: \#.\#\#
Settings 0~ Pr. 05-13 factory setting
\ldots The factory setting is 40% of the motor rated current.

Stator Resistance (Rs) of Induction Motor 2
Rotor Resistance (Rr) of Induction Motor 2
Factory Setting: \#.\#\#\#
Settings $\quad 0 \sim 65.535 \Omega$

Magnetizing Inductance (Lm) of Induction Motor 2
Stator Inductance (Lx) of Induction Motor 2
Factory Setting: \#.\#
Settings $\quad 0 \sim 6553.5 \mathrm{mH}$
[$\mathbf{H 5}-2$
Multi-motors (Induction) Selection
Factory Setting: 1
Settings 1: Motor 1
2: Motor 2
3: Motor 3 (VF or SVC control mode only)
4: Motor 4 (VF or SVC control mode only)
1 It is used to set the motor that driven by the AC motor drive. Multi-motors selection only supports single control mode. For example: When motor 1 is set as SVC control mode, the control mode of motor $2 \sim 4$ is also set as SVC.

75-33

Frequency for Y-connection / \triangle-connection Switch of Induction Motor
Factory Setting: 60.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$

Y-connection / \triangle-connection Switch of Induction Motor IM
Factory Setting: 0
Settings 0: Disable
1: Enable

65-25

Delay Time for Y -connection/ \triangle-connection Switch of Induction Motor
Factory Setting: 0.200
Settings $\quad 0.000 \sim 60.000 \mathrm{sec}$.
1 Pr. 05-23~Pr. 05-25 are applied in the wide range motors and the motor coil will execute the switch of Y -connection / Δ-connection as required. (The wide range motors are related to the motor design. In general, it has higher torque at low speed with Y-connection and has higher speed at high speed with Δ-connection)
[0] Pr. 05-24 is used to enable / disable the switch of Y-connection / Δ-connection.
1 When Pr. 05-24 is set to 1 , the drive will select by Pr. 05-23 setting and current motor frequency, and switch current motor to Y-connection or Δ-connection. Relevant parameter settings of the motor can be switched simultaneously.
1 Pr. 05-25 is used to set the switch delay time of Y -connection / Δ-connection.
When output frequency reaches Y -connection / Δ-connection switch frequency, drive will delay by Pr. 05-25 before multi-function output terminals are active.

Chapter 12 Description of Parameter Settings | MH300

Y- \triangle connection switch: can be used for wide range motor
Y -connection for low speed: higher torque can be used for rigid tapping
\triangle-connection for high speed: higher torque can be used for high-speed drilling

Accumulative Watt－second of Motor in Low Word（W－sec）
Accumulative Watt－second of Motor in High Word（W－sec）
Accumulative Watt－hour of Motor（W－Hour）
Accumulative Watt－hour of Motor in Low Word（KW－Hour）
Accumulative Watt－hour of Motor in High Word（KW－Hour）
Factory Setting：\＃．\＃
Settings Read only
（1）Pr．05－26～05－30 records the amount of power consumed by motors．The accumulation begins when the drive is activated and record is saved when the drive stops or turns OFF．The amount of consumed watts will continue to accumulate when the drive is activated again．To clear the accumulation，set Pr．00－02 to 5 then the accumulation record will return to 0 ．

凹】 Accumulated total watts of motor per second＝Pr．05－27 x 65536＋Pr．05－26
Example：When Pr．05－26＝ 2548.1 and Pr．05－27＝15．2，the accumulated total watts of motor per second $=15.2 \times 65536+2548.1=996147.2+2548.1=998695.3$
［a］Accumulated total kilowatts of motor per hour $=\operatorname{Pr} .05-30 \times 65536+$ Pr．05－29
Example：When Pr．05－29＝3361．4 and Pr．05－30 $=11.2$ ，the accumulated total kilowatts of motor per hour $=11.2 \times 65536+3361.4=734003.2+3361.4=737346.6$

75－3 ：Accumulative Motor Operation Time（Min．）

Factory Setting： 0
Settings 00～1439
Accumulative Motor Operation Time（Day）
Factory Setting： 0
Settings 00～65535
2al Pr．05－31 and Pr．05－32 are used to record the motor operation time．To clear the operation time， set Pr．05－31 and Pr．05－32 to 00．Operation time shorter than 60 seconds will not be recorded．

15－3〕Induction Motor（IM）or Permanent Magnet Synchronous Motor Selection

Factory Setting： 0
Settings 0：Induction Motor
1：SPM
2：IPM
55－34 Full－load current of Permanent Magnet Synchronous Motor
Factory Setting：\＃．\＃
Settings 0～120 \％of drive＇s rated current

Factory Setting：\＃．\＃
Settings $\quad 0.00 \sim 655.35 \mathrm{~kW}$
［1］It is used to set rated power of permanent magnet synchronous motor．Factory setting is the power value of drive．

55-36 Rated speed of Permanent Magnet Synchronous Motor
Factory Setting: 2000
Settings 0~65535 rpm
[55-37 Pole number of Permanent Magnet Synchronous Motor
Factory Setting: 10
Settings 0~65535
75-33 Stator Resistance of Permanent Magnet Synchronous Motor
Factory Setting: 0.000
Settings $\quad 0.000 \sim 65.535 \Omega$
B5-4 Permanent Magnet Synchronous Motor Ld
Factory Setting: 0.00
Settings $\quad 0.00 \sim 655.35 \mathrm{mH}$
$\overline{\square 5} 5-4$ Permanent Magnet Synchronous Motor Lq
Factory Setting: 0.00
Settings $\quad 0.00 \sim 655.35 \mathrm{mH}$
75-42 PG Offset angle of Permanent Magnet Synchronous Motor
Factory Setting: 0.0
Settings $0.0 \sim 360.0^{\circ}$
1 When Pr. 05-00 is set to 4 , the drive will detect offset angle and write into Pr. 05-42.
[5-43Ke parameter of Permanent Magnet Synchronous Motor
Unit: V / 1000 rpm
Factory Setting: 0
Settings 0~65535
55-54 Full-load Current of Induction motor 3 (A)
Unit: Ampere
Factory Setting: \#.\#\#
Settings 10~120 \% of drive's rated current
$110]$ Set this parameter according to nameplate of motor. The factory setting is 90% of rated current.
Example: The rated current of $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ is 25 A , the factory setting is 22.5 A .
The setting range will be $2.5 \sim 30 \mathrm{~A}$. $(25 \times 10 \%=2.5 \mathrm{~A}$ and $25 \times 120 \%=30 \mathrm{~A})$
55-55 Rated Power of Induction Motor 3 (kW)
Factory Setting: \#.\#\#
Settings 0~655.35 kW
1 It is used to set rated power of motor 3. Factory setting is the power value of drive.

Factory Setting: 1710

Settings	$0 \sim 65535$
	$1710(60 \mathrm{~Hz} 4$ poles); $1410(50 \mathrm{~Hz} 4$ poles $)$

1 It is used to set the rated speed of the motor according to motor nameplate.

15-67 Pole Number of Induction Motor 3

Factory Setting: 4
Settings 2~20
1 It is used to set the number of motor poles (must be an even number).
Set up Pr. 01-54 and Pr. 05-66 before setting up Pr. 05-67 to make sure motor operates normally.

75-68

No-load Current of Induction Motor 3 (A)
Unit: Ampere
Factory Setting: \#.\#\#
Settings 0~ Pr. 05-64 factory setting
The factory setting is 40% of the motor rated current.

55-69 Stator Resistance (Rs) of Induction Motor 3

Factory Setting: \#.\#\#\#
Settings $0 \sim 65.535 \Omega$
55-7.15 Full-load Current of Induction Motor 4 (A)
Unit: Ampere
Factory Setting: \#.\#\#
Settings 10~120 \% of drive's rated current
\square This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. The factory setting is 90% of rated current.
Example: The rated current of $7.5 \mathrm{HP}(5.5 \mathrm{~kW})$ is 25 A , the factory setting is 22.5 A .
The setting range will be $2.5 \sim 30 \mathrm{~A} .(25 \times 10 \%=2.5 \mathrm{~A}$ and $25 \times 120 \%=30 \mathrm{~A})$
[55-7 : Rated Power of Induction Motor 4 (kW)
Factory Setting: \#.\#\#
Settings $\quad 0 \sim 655.35 \mathrm{~kW}$
1 It is used to set rated power of motor 4. Factory setting is the power value of drive.

55-72 Rated Speed of Induction Motor 4 (rpm)

Factory Setting: 1710
Settings Settings
It is used to set the rated speed of the motor according to motor nameplate.

195-73 Pole Number of Induction Motor 4
Factory Setting: 4
Settings 2~20It is used to set the number of motor poles (must be an even number).Set up Pr. 01-63 and Pr. 05-72 before setting up Pr. 05-73 to make sure motor operates normally.
85-7世 No-load Current of Induction Motor 4 (A)
Unit: Ampere
Factory Setting: \#.\#\#
Settings $0 \sim$ Pr. 05-70 factory settingThe factory setting is 40% of the motor rated current.
5-75Stator Resistance (Rs) of Induction Motor 4
Factory Setting: \#.\#\#\#
Settings $\quad 0 \sim 65.535 \Omega$

56-97 Low Voltage Level

Settings	$110 \mathrm{~V} / 230 \mathrm{~V}: 150.0 \sim 220.0 \mathrm{Vdc}$	180.0
460V: 300.0~440.0 Vdc	360.0	

1 This parameter is used to set the Low Voltage (LV) level. When the DC BUS voltage is lower than Pr. 06-00, drive will stop output and free to stop.
1 If LV fault is triggered during operation, the drive will stop output and free to stop. There are three LV faults, LvA (LV during acceleration), Lvd (LV during deceleration), and Lvn (LV in constant speed) which will be triggered according to the status of acceleration / deceleration. These faults need to be RESET manually to restart the drive, while setting restart after momentary power off function (Refer to Pr. 07-06 and Pr. 07-07), the drive will restart automatically.
If LV fault is triggered when the drive is in stop status, the drive will display LvS (LV during stop), which will not be recorded, and the drive will restart automatically when input voltage is higher than LV level 30V (230V series) or 60V (460V series).

56-71

Over-voltage Stall Prevention

Settings

$0:$ Disabled	Factory Setting:
$110 \mathrm{~V} / 230 \mathrm{~V}: 0.0 \sim 450.0 \mathrm{Vdc}$	380.0
$460 \mathrm{~V}: 0.0 \sim 900.0 \mathrm{Vdc}$	760.0

When Pr. 06-01 is set to 0.0 , the over-voltage stall prevention function is disabled (connected with braking unit or braking resistor). This setting is recommended when braking units or resistors are connected to the drive.When the setting value is not 0.0 , the over-voltage stall prevention is activated. This setting should refer to power supply system and loading. If the setting is too low, then over-voltage stall prevention will be easily activated, which may increase deceleration time.
1 Related parameters: Pr. 01-13, Pr. 01-15, Pr. 01-17, Pr. 01-19 Decel. Time 1~4, Pr. 02-13 Multi-function output (Relay), Pr. 02-16~Pr. 02-17 Multi-function output (MO1, 2), and Pr. 06-02 Selection for over-voltage stall prevention.

55-93 Selection for Over-voltage Stall Prevention
Factory Setting: 0
Settings 0: Traditional over-voltage stall prevention
1: Smart over-voltage prevention
[1 This function is used for the occasion that the load inertia is unsure. When it stops in normal load, the over-voltage won't occur during deceleration and meet the setting of deceleration time. Sometimes, it may not stop due to over-voltage during decelerating to stop when increasing the load regenerative inertia. At this moment, the AC motor drive will extend the deceleration time automatically until the drive stops.
1 When Pr. 06-02 is set to 0 : During deceleration, the motor will exceed the synchronous speed due to load inertia. In this case the motor becomes an electric generator. The DC bus voltage may exceed its maximum allowable value due to motor regeneration in some situation, such as loading inertia is too high or Decel. Time is set too short. When traditional over-voltage stall prevention is enabled and the DC voltage detected is too high, the drive will stop decelerating (output frequency remains unchanged) until the DC voltage drops below the setting value again.

When Pr. 06-02 is set to 1: When use smart over-voltage stall prevention during deceleration, the drive will maintain DC bus voltage when decelerating and prevent the drive from OV.

10. When the over-voltage stall prevention is enabled, drive deceleration time will be longer than the setting.
1 When there is any problem as using deceleration time, refer to the following items to solve it.

1. Increase suitable deceleration time.
2. Install brake resistor (refer to Chapter 7-1 for details) to dissipate the electrical energy that regenerated from the motor as the form of heat.
$\square \square$ Related parameters: Pr. 01-13, Pr. 01-15, Pr. 01-17, Pr. 01-19 Decel. Time 1~4, Pr. 02-13 Multi-function output (Relay), Pr. 02-16~Pr. 02-17 Multi-function output (MO1, 2), and Pr. 06-01 over-voltage stall prevention.

56-93 Over-current Stall Prevention during Acceleration

Factory Setting:
Settings
Normal Load: $0 \sim 150 \%(100 \%$ corresponds to the rated
current of the drive)
Heavy Load: 0~200 \% (100 \% corresponds to the rated current of the drive)
[a] This parameter only works in VF, VFPG, and SVC mode.
In If the motor load is too large or acceleration time of drive is too short, the output current of drive may be too high during acceleration, and it may cause motor damage or trigger protection functions (OL or OC). This parameter is used to prevent these situations.
1 During acceleration, the output current of drive may increase abruptly and exceed the setting value of Pr. 06-03. The drive will stop accelerating and keep the output frequency constant, and continues to accelerate after the output current drops.
$10]$ When the over-current stall prevention is enabled, the acceleration time of drive will be longer than the setting.
[1] When the over-current stall prevention occurs due to the motor capacity is too small or operates in the factory setting, please decrease Pr. 06-03 setting value.
1 When there is any problem by using acceleration time, refer to the following items to solve it.

1. Increase suitable deceleration time.
2. Setting Pr.01-44 Auto Acceleration / Deceleration Setting to 1,3 or 4 (auto accel.)
3. Related parameters: Pr. 01-12, 01-14, 01-16, 01-18 (settings of accel. time 1~4), Pr. 01-44

Auto Acceleration / Deceleration Setting, Pr. 02-13 Multi-function Output (Relay),
Pr. 02-16~02-17 Multi-function Output (MO1, 2)

55-74 Over-current Stall Prevention during Operation

		Factory Setting:
Nettings	Normal duty: $0 \sim 150 \%$ (100 \% corresponds to the rated current of the drive)	120
	Heavy duty: $0 \sim 200 \%$ (100 \% corresponds to the rated current of the drive)	180

Ild This parameter only works in VF, VFPG, and SVC mode.
[]
It is a protection for drive to decrease output frequency automatically when the motor is over-load abruptly during motor constant operation.
10] If the output current exceeds the setting value of Pr. 06-04 when the drive is operating, the drive will decrease output frequency (according to Pr. 06-05) to prevent the motor from stall. If the output current is lower than the setting value of Pr. 06-04, the drive will accelerate (according to Pr. 06-05) again to the setting frequency.

56-75Accel. / Decel. Time Selection of Stall Prevention at Constant Speed

Factory Setting: 0
Settings 0: By current accel. / decel. time
1: By the $1^{\text {st }}$ accel. / decel. time
2: By the $2^{\text {nd }}$ accel. / decel. time
3: By the $3^{\text {rd }}$ accel. / decel. time
4: By the $4^{\text {th }}$ accel. / decel. time
5: By auto accel. / decel.
1 It is used to set the accel. / decel. time selection when stall prevention occurs at constant speed.
~ 76 - 96 Over-torque Detection Selection (Motor 1)

Settings	0: No function
1: Continue operation after Over-torque detection during constant speed	
operation	
2: Stop after Over-torque detection during constant speed operation	
3: Continue operation after Over-torque detection during RUN	
4: Stop after Over-torque detection during RUN	

56-98 Over-torque Detection Selection (Motor 2)

Factory Setting: 0
Settings 0: No function
1: Continue operation after Over-torque detection during constant speed operation

2: Stop after Over-torque detection during constant speed operation
3: Continue operation after Over-torque detection during RUN
4: Stop after Over-torque detection during RUN
[1] When Pr. 06-06 and Pr. 06-09 are set to 1 or 3 , warning message will be displayed but there will not be an abnormal record.
When Pr. 06-06 and Pr. 06-09 are set to 2 or 4 , warning message will be displayed and there will be an abnormal record.

76-97 Over-torque Detection Level (Motor 1)

Factory Setting: 120
Settings 10 to 250% (100% corresponds to the rated current of the drive)

56-98 Over-torque Detection Level (Motor 1)

Factory Setting: 0.1
Settings $\quad 0.0 \sim 60.0 \mathrm{sec}$.

56-19 Over-torque Detection Level (Motor 2)

Factory Setting: 120
Settings 10~250 \% (100 \% corresponds to the rated current of the drive)

55- : : Over-torque Detection Time (Motor 2)

Factory Setting: 0.1
Settings $0.0 \sim 60.0 \mathrm{sec}$.
\square When the output current exceeds over-torque detection level (Pr. 06-07 or Pr. 06-10) and also exceeds over-torque detection time (Pr. 06-08 or Pr. 06-11), the over-torque detection will follow the setting of Pr. 06-06 and Pr. 06-09.
11] When Pr. 06-06 or Pr. 06-09 is set to 1 or 3 , there will be ot $1 /$ ot 2 warning displayed while the drive will keep running. The warning will be off only until the output current is smaller than 5% of the over-torque detection level.
When Pr. 06-06 or Pr. 06-09 is set to 2 or 4 , there will be ot $1 /$ ot 2 warning displayed and the drive will stop running after over-torque detection. The drive will keep running after manually reset.

日6-: 3 Current Limit

Factory Setting: 150
Settings $\quad 0 \sim 250 \%$ (100 \% corresponds to the rated current of the drive)
Dal Pr. 06-12 sets the maximum output current of the drive. Pr. 11-17 ~ Pr. 11-20 are used to set the drive's output current limit.

55- ! 3 Electronic Thermal Relay Selection 1 (Motor 1)

55-2 7 Electronic Thermal Relay Selection 2 (Motor 2)
Factory Setting: 2
Settings 0: Inverter motor (with external forced cooling)
1: Standard motor (motor with fan on the shaft)
2: Disable
1 It is used to prevent self-cooled motor overheats under low speed. User can use electronic thermal relay to limit the output power of drive.
1 Setting as 0 is suitable for Inverter motor (motor fan using independent power supply). For this kind of motor, there is no significant correlation between cooling capacity and motor speed. Therefore the action of electronic thermal relay will remain stable in low speed to ensure the load capability of motor in low speed.
1 Setting as 1 is suitable for standard motor (motor fan is fixed on the rotor shaft). For this kind of motor, the cooling capacity is lower in low speed. Therefore the action of electronic thermal relay will reduce the action time to ensure the life of motor.
1 When the power ON / OFF is switched frequently, if the power is switched OFF, the electronic thermal relay protection will be reset. Therefore even setting as 0 or 1 may not protect the motor well. If there are several motors connected to one drive, please install electronic thermal relay in each motor respectively.

56-14

Electronic Thermal Relay Action Time 1 (Motor 1)
~ $65-28$
Electronic Thermal Relay Action Time 2 (Motor 2)
Factory Setting: 60.0
Settings $30.0 \sim 600.0 \mathrm{sec}$.
11 The parameter is set by 150% of motor rated current and used with the setting of Pr. 06-14 and Pr. 06-28 to prevent the motor from damage due to overheating. When it reaches the setting, the drive will display "EoL1 / EoL2", and the motor will be free running to stop.
1 This parameter is to set the action time of electronic thermal relay. It works based on the 12 t characteristic curve of electronic thermal relay, output frequency and current of drive, and operation time to prevent motor from overheating.

The action of electronic thermal relay depends on the setting of Pr. 06-13 and Pr. 06-27.

1. Pr. 06-13 or Pr. $06-27$ is set 0 (using inverter motor):

When output current of drive is higher than 150% of motor rated current (refer to motor cooling curve with independent fan), the drive will start to count the time. Electronic thermal relay will act when the accumulated time exceeds Pr. 06-14 or Pr. 06-28.
2. Pr. 06-13 or Pr. 06-27 is set 0 (using standard motor):

When output current of the drive is higher than 150% of motor rated current (refer to motor cooling curve with shaft-fixed fan), the drive will start to count the time. Electronic thermal relay will act when the accumulated time exceeds Pr. 06-14 or Pr. 06-28. The actual electronic thermal relay action time will adjust according to drive output current (shown as motor loading rate \%). The action time is short when the current is high, and the action time is long when the current is low. Please refer to the following chart:

Operation time

55- 15 Temperature Level Over-heat (OH) Warning

Factory Setting: 105.0
Settings $\quad 0.0 \sim 110.0^{\circ} \mathrm{C}$
\square The factory setting of this parameter is $105^{\circ} \mathrm{C}$. When using Heavy Duty or Sensorless control mode, the OH warning will be disabled if Pr. 06-15 is not reduced. When the temperature reaches $100^{\circ} \mathrm{C}$, the drive will stop with IGBT over-heat fault.
[1] When using control mode except Normal Duty or Sensorless mode, if Pr. $06-15$ is set to $110^{\circ} \mathrm{C}$. When the temperature reaches $110^{\circ} \mathrm{C}$, the drive will stop with IGBT over-heat fault.

56-95Stall Prevention Limit Level

Factory Setting: 100
Settings 0~100\% (Refer to Pr. 06-03, Pr. 06-04)
[a] Over-current stall prevention level when operation frequency is larger than Pr. 01-01.
Example: When Pr. 06-03 = 150 \%, Pr. 06-04 = 100 \% and Pr. 06-16 = 80 \%.
The over-current stall prevention level during acceleration:
Pr. 06-03 * Pr. 06-16 = $150 \times 80 \%=120 \%$.
The over-current stall prevention level during operating:
Pr. 06-04 * Pr. 06-16 = $100 \times 80 \%=80 \%$.

16-1	
96-98	Fa
96-19	Faut
96-37	Fault Record
96-3	Fault Record
56-3	cor

Factory Setting: 0

Settings	0: No fault record
1: Over-current during acceleration (ocA)	
2: Over-current during deceleration (ocd)	
3: Over-current during constant speed (ocn)	
4: Ground fault (GFF)	
6: Over-current at stop (ocS)	
7: Over-voltage during acceleration (ovA)	
8: Over-voltage during deceleration (ovd)	
9: Over-voltage during constant speed (ovn)	
10: Over-voltage at stop (ovS)	
11: Low-voltage during acceleration (LvA)	
12: Low-voltage during deceleration (Lvd)	
13: Low-voltage during constant speed (Lvn)	
14: Low-voltage at stop (LvS)	
15: Phase loss protection (orP)	
16: IGBT over-heat (oH1)	

18: TH1 open: IGBT over-heat protection error(tH1o)
21: Drive over-load (oL)
22: Electronics thermal relay protection 1 (EoL1)
23: Electronics thermal relay protection 2 (EoL2)
24: Motor PTC overheat (oH3)
26: Over-torque 1 (ot1)
27: Over-torque 2 (ot2)
28: Low current (uC)
29: Home limit error (Lit)
31: Memory read-out error (cF2)
33: U-phase current detection error (cd1)
34: V-phase current detection error (cd2)
35: W-phase current detection error (cd3)
36: Clamp current detection error (HdO)
37: Over-current detection error (Hd1)
40: Auto tuning error (AUE)
41: PID feedback loss (AFE)
42: PG feedback error (PGF1)
43: PG feedback loss (PGF2)
44: PG feedback stall (PGF3)
45: PG slip error (PGF4)
48: Analog current input loss (ACE)
49: External fault input (EF)
50: Emergency stop (EF1)
51: External Base Block (bb)
52: Password error (Pcod)
54: Communication error (CE1)
55: Communication error (CE2)
56: Communication error (CE3)
57: Communication error (CE4)
58: Communication Time-out (CE10)
59: PU panel time out (CP10) (for MH LCD keypad and CC01 keypad)
61: Y-connection / \triangle-connection switch error (ydc)
62: Decel. Energy Backup Error (dEb)
63: Slip error (oSL)
65: PG card error (PGF5)
72: Channel 1 (S1~DCM) safety loop error (STL1)
76: Safety torque off (STo)
77: Channel 2 (S2~DCM) safety loop error (STL2)
78: Internal loop error (STL3)
79: U phase Over current before run (Uoc)

80: V phase Over current before run (Voc)
81: W phase Over current before run (Woc)
82: U phase output phase loss (OPHL)
83: V phase output phase loss (OPHL)
84: W phase output phase loss (OPHL)
87: Drive over load in low frequency (oL3)
89: Initial rotor position detection error (RoPd)
101: CANopen software disconnect 1 (CGdE)
102: CANopen software disconnect 2 (CHbE)
104: CANopen hardware disconnect (CbFE)
105: CANopen index setting error (CIdE)
106: CANopen station number setting error (CAdE)
107: CANopen memory error (CFrE)
111: Internal communication overtime error (ictE)
121: Internal communication error (CP20)
123: Internal communication error (CP22)
124: Internal communication error (CP30)
126: Internal communication error (CP32)
127: Software version error (CP33)
128: Over-torque 3 (ot3)
129: Over-torque 4 (ot4)
130: Over-torque 5 (ot5)
131: Over-torque 6 (ot6)
132: Over-torque 7 (ot7)
133: Over-torque 8 (ot8)
134: Electronics thermal relay 3 protection (EoL3)
135: Electronics thermal relay 4 protection (EoL4)
136: Electronics thermal relay 5 protection (EoL5)
137: Electronics thermal relay 6 protection (EoL6)
138: Electronics thermal relay 7 protection (EoL7)
139: Electronics thermal relay 8 protection (EoL8)
140: GFF detected when power on (Hd6)
141: GFF before run (BGFF)
142: Auto tuning error 1 (DC test stage) (AUE1)
143: Auto tuning error 2 (High frequency test stage) (AUE2)
144: Auto tuning error 3 (Rotary test stage) (AUE3)
146: Tension belt broken (TBB)
147: Tension PID error (TPD)
When the fault occurs and force stopping, it will be recorded in this parameter.
1 During stop with low voltage Lv (LvS warning, no record). During operation with mid-low voltage Lv (LvA, Lvd, Lvn error, with record).
When dEb function is valid and enabled, the drive will execute dEb and record fault code 62 to Pr. 06-17 ~ Pr. 06-22 simultaneously.

Fault Output Option 1
Fault Output Option 2
Fault Output Option 3
Fault Output Option 4
Factory Setting: 0
Settings 0~65535 (refer to bit table for fault code)
1 These parameters can be used with multi-function output terminal (set to 35-38) for the specific requirement. When the fault occurs, the corresponding terminals will be activated (binary value needs to be converted to decimal value before filled in Pr. 06-23 ~ Pr. 06-26).

Fault Code	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6
	current	Volt.	OL	SYS	FBK	EXI	CE
0: No fault record							
1: Over-current during acceleration (ocA)	\bullet						
2: Over-current during deceleration (ocd)	\bullet						
3: Over-current during constant speed (ocn)	\bullet						
4: Ground fault (GFF)	\bullet						
6: Over-current at stop (ocS)	\bullet						
7: Over-voltage during acceleration (ovA)		\bullet					
8: Over-voltage during deceleration (ovd)		\bullet					
9: Over-voltage during constant speed (ovn)		\bullet					
10: Over-voltage at stop (ovS)		\bullet					
11: Low-voltage during acceleration (LvA)		\bullet					
12: Low-voltage during deceleration (Lvd)		\bullet					
13: Low-voltage during constant speed (Lvn)		\bullet					
14: Low-voltage at stop (LvS)		\bullet					
15: Phase loss protection (orP)		\bullet					
16: IGBT over-heat (oH1)			\bullet				
18: TH1 open: IGBT over-heat protection			\bullet				
error(tH1o)			\bullet				
21: Drive over-load (oL)			\bullet				
22: Electronics thermal relay protection 1							
(EoL1)							

Fault Code	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6
	current	Volt.	OL	SYS	FBK	EXI	CE
33: U-phase current detection error (cd1)				\bullet			
34: V-phase current detection error (cd2)				\bullet			
35: W-phase current detection error (cd3)				-			
36: Clamp current detection error (Hd0)				\bullet			
37: Over-current detection error (Hd1)				-			
40: Auto tuning error (AUE)				\bullet			
41: PID feedback loss (AFE)					-		
42: PG feedback error (PGF1)					\bullet		
43: PG feedback loss (PGF2)					\bullet		
44: PG feedback stall (PGF3)					-		
45: PG slip error (PGF4)					\bullet		
48: Analog current input loss (ACE)					-		
49: External fault input (EF)						-	
50: Emergency stop (EF1)						\bullet	
51: External Base Block (bb)						\bullet	
52: Password error (Pcod)				\bullet			
54: Communication error (CE1)							\bullet
55: Communication error (CE2)							\bullet
56: Communication error (CE3)							\bullet
57: Communication error (CE4)							-
58: Communication Time-out (CE10)							-
59: PU panel time out (CP10) (for MH LCD keypad and CC01 keypad)							\bullet
61: Y-connection / \triangle-connection switch error (ydc)						\bullet	
62: Decel. Energy Backup Error (dEb)		\bullet					
63: Slip error (oSL)						\bullet	
65: PG card error (PGF5)					\bullet		
72: Channel 1 (S1~DCM) safety loop error (STL1)				\bullet			
76: Safety torque off (STo)				\bullet			
77: Channel 2 (S2~DCM) safety loop error (STL2)				\bullet			
78: Internal loop error (STL3)				-			
79: U phase Over current before run (Uoc)	-						
80: V phase Over current before run (Voc)	\bullet						
81: W phase Over current before run (Woc)	\bullet						
82: U phase output phase loss (OPHL)	\bullet						

Fault Code	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6
	current	Volt.	OL	SYS	FBK	EXI	CE
83: V phase output phase loss (OPHL)	-						
84: W phase output phase loss (OPHL)	-						
87: Drive over load in low frequency (oL3)			\bullet				
89: Initial rotor position detection error (RoPd)					\bullet		
101: CANopen software disconnect 1 (CGdE)							\bullet
102: CANopen software disconnect 2 (CHbE)							\bullet
104: CANopen hardware disconnect (CbFE)							-
105: CANopen index setting error (CldE)							-
106: CANopen station number setting error (CAdE)							\bullet
107: CANopen memory error (CFrE)							-
111: Internal communication overtime error (ictE)							\bullet
121: Internal communication error (CP20)							-
123: Internal communication error (CP22)							\bullet
124: Internal communication error (CP30)							\bullet
126: Internal communication error (CP32)							-
127: Software version error (CP33)				-			
128: Over-torque 3 (ot3)			-				
129: Over-torque 4 (ot4)			\bullet				
130: Over-torque 5 (ot5)			\bullet				
131: Over-torque 6 (ot6)			-				
132: Over-torque 7 (ot7)			-				
133: Over-torque 8 (ot8)			-				
134: Electronics thermal relay 3 protection (EoL3)			\bullet				
135: Electronics thermal relay 4 protection (EoL4)			\bullet				
136: Electronics thermal relay 5 protection (EoL5)			\bullet				
137: Electronics thermal relay 6 protection (EoL6)			\bullet				
138: Electronics thermal relay 7 protection (EoL7)			\bullet				
139: Electronics thermal relay 8 protection (EoL8)			\bullet				
140: GFF detected when power on (Hd6)				\bullet			
141: GFF before run (BGFF)				\bullet			
142: Auto tuning error 1 (DC test stage) (AUE1)				\bullet			

Fault Code	bit 0	bit 1	bit 2	bit 3	bit 4	bit 5	bit 6
	current	Volt.	OL	SYS	FBK	EXI	CE
143: Auto tuning error 2 (High frequency test stage) (AUE2)				\bullet			
144: Auto tuning error 3 (Rotary test stage) (AUE3)				\bullet			
146: Tension belt broken (TBB)					\bullet		
147: Tension PID error (TPD)					\bullet		

96-3 9 PTC Detection Selection

Factory Setting: 0
Settings 0 : Warn and keep operating
1: Warn and ramp to stop
2: Warn and coast to stop
3: No warning
1 This is the operating mode of a drive after Pr. 06-29 is set to define PTC detection.

75-3日 PTC Level

Factory Setting: 50.0
Settings 0.0~100.0 \%
[1] It needs to set AVI / ACI analog input function Pr. 03-00~03-02 to 6 [Positive temperature coefficient (PTC) thermistor input value)].
It is used to set the PTC level, and the corresponding value for 100% is analog input max. value.

56-3 : Frequency Command for Malfunction

Factory Setting: Read only
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
[ad When malfunction occurs, user can check current frequency command. If it happens again, it will overwrite the previous record.

56-3』 Output Frequency at Malfunction
Factory Setting: Read only
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
When malfunction occurs, user can check current output frequency. If it happens again, it will overwrite the previous record.

56-33 Output Voltage at Malfunction

Factory Setting: Read only
Settings 0.0~6553.5 V
When malfunction occurs, user can check current output voltage. If it happens again, it will overwrite the previous record.

55-34DC Voltage at Malfunction

Factory Setting: Read only
Settings $0.0 \sim 6553.5 \mathrm{~V}$
When malfunction occurs, user can check current DC voltage. If it happens again, it will overwrite the previous record.

36-35 Output Current at Malfunction

Factory Setting: Read only
Settings $0.00 \sim 655.35 \mathrm{Amp}$
1 When malfunction occurs, user can check current output current. If it happens again, it will overwrite the previous record.

56-36 IGBT Temperature at Malfunction

Factory Setting: Read only
Settings $\quad 0.0 \sim 6553.5^{\circ} \mathrm{C}$
1 When malfunction occurs, user can check current IGBT temperature. If it happens again, it will overwrite the previous record.

78-37Capacitance Temperature at Malfunction

Factory Setting: Read only
Settings $\quad-0.0 \sim 6553.5^{\circ} \mathrm{C}$
When malfunction occurs, user can check current capacitance temperature. If it happens again, it will overwrite the previous record.

85-38
 Motor Speed in rpm at Malfunction

Factory Setting: Read only
Settings 0~65535 rpm
1 When malfunction occurs, user can check current motor speed in rpm. If it happens again, it will overwrite the previous record.

56-39 Torque Command at Malfunction

Factory Setting: Read only
Settings 0~65535
1 When malfunction occurs, user can check current torque command. If it happens again, it will overwrite the previous record.

56-49 Status of Multi-function Input Terminal at Malfunction

Factory Setting: Read only
Settings 0000h~FFFFh

Mo-

Factory Setting: Read only
Settings 0000h~FFFFh
1 When malfunction occurs, user can check current status of multi-function input / output terminals. If it happens again, it will overwrite the previous record.

95-42 Drive Status at Malfunction

Factory Setting: Read only
Settings 0000h~FFFFh
1 When malfunction occurs, user can check current drive status (communication address 2101H).
If malfunction happens again, the previous record will be overwritten by this parameter.

75-44 STO Latch Selection

Factory Setting: 0

Settings 0: STO Latch

1: STO no Latch
10 Pr. 06-44 = 0 STO Alarm Latch: after the reason of STO Alarm is cleared, a Reset command is needed to clear STO Alarm.
[1] Pr. 06-44 = 1 STO Alarm no Latch: after the reason of STO Alarm is cleared, the STO Alarm will be cleared automatically.
14 All of STL1~STL3 error are "Alarm latch" mode (in STL1~STL3 mode, the Pr. 06-44 function is not effective).
56-45 Treatment to Output Phase Loss Detection (OPHL)Factory Setting: 3
Settings 0 : Warn and keep operating
1: Warn and ramp to stop
2: Warn and coast to stop
3: No warning
1 The OPHL protect will be active when the setting is not 3 .
56-45 Detection Time of Output Phase Loss
Factory Setting: 0.500
Settings $\quad 0.000 \sim 65.535 \mathrm{sec}$.
75-47 Current Detection Level of Output Phase LossFactory Setting: 1.00
Settings $0.00 \sim 100.00 \%$
55-48DC Brake Time of Output Phase Loss
Factory Setting: 0.000
Settings $0.000 \sim 65.535 \mathrm{sec}$.
凹 When Pr. 06-48 is 0 , OPHL detection function will be disabled
[a] Status 1: The drive is in operation
When any phase is less than Pr. 06-47 setting level and exceeds Pr. 06-46 setting time, the drive will execute according to Pr. 06-45 setting.

(1) Status 2: The drive is in stop; Pr. 06-48 = 0; Pr. $07-02 \neq 0$

After the drive starts, DC brake will be applied according to Pr. 07-01 and Pr. 07-02. During this period, OPHL detection will not be conducted. After DC brake is completed, the drive starts to run, and conducts the OPHL protection as mentioned in status 1.

[1] Status 3: The drive is in stop; Pr. $06-48 \neq 0 ; \operatorname{Pr} .07-02 \neq 0$
When the drive starts, it will execute Pr. 06-48 first and then Pr. 07-02 (DC brake). DC brake current level in this status includes two parts, one is 20 times of Pr. 06-47 setting value in Pr. 06-48 setting time, and the other is Pr. 07-01 setting value in Pr. 07-02 setting time. In this period, if OPHL happens within the time of Pr. 06-48, the drive will execute Pr. 06-45 setting after the drive starts counting for half time of Pr. 06-48.

Status 3-1: Pr06-48 $\neq 0, \operatorname{Pr07-02} \neq 0$ (No OPHL detected before operation)

Status 3-2: $\operatorname{Pr06-48} \neq 0, \operatorname{Pr07-02} \neq 0$ (OPHL detected before operation)

凹】 Status 4: The drive is in stop; Pr. 06-48 $=0$; Pr. $07-02=0$
When the drive starts, it will execute Pr. 06-48 as DC brake. The DC brake current level is 20 times of Pr. 06-47 setting value. In this period, if OPHL happens within the time of Pr. 06-48, the drive will execute Pr. 06-45 setting after the drive starts counting for half time of Pr. 06-48.

Status 4-1: $\operatorname{Pr06-48} \neq 0$, $\operatorname{Pr07}-02=0$ (No OPHL detected before operation)

Status 4-2: $\operatorname{Pr06-48} \neq 0, \operatorname{Pr07-02=0(OPHL}$ detected before operation)

56-49 LvX Auto Reset

Factory Setting: 0
Settings 0: Disable
1: Enable

85-53

Treatment for the Detected Input Phase Loss (OrP)
Factory Setting: 0
Settings 0: Warn and ramp to stop
1: Warn and coast to stop
10 If DC bus ripple detected is larger than Pr. 06-52 setting, and continue the time of Pr. 06-50, then after 30 seconds, the drive will execute input phase loss protection according to Pr. 06-53.
[1] If ripple voltage decreases below the set value of Pr. 06-52 within the time of Pr. 06-50 plus 30 seconds, the OrP protection function will be recalculate.

56-55 Derating Protection

Factory Setting: 0
$\left.\begin{array}{ll}\text { Settings } & 0: \text { Constant rated current and limit carrier wave by load current and } \\ \text { temperature }\end{array}\right] \begin{aligned} & \text { 1: Constant carrier frequency and limit load current by setting carrier wave } \\ & \text { 2: Constant rated current (same as setting 0), but close current limit }\end{aligned}$
1 Allowable max. output frequency and the min. carrier wave limit in control mode:
VF, SVC, VFPG: When max. output frequency is 599 Hz , the min. carrier wave is 6 k .
FOCPG, FOC, FOC Sensorless, TQCPG, TQC Sensorless, FOCPG, HFI, SynRM, TQCPG:
When max. output frequency is 599 Hz , the min. carrier wave is 12 k .
(1) Setting 0 :

When the operating point is greater than the derating curve (when the operating carrier wave is greater than the rated carrier wave), the rated current is constant, and carrier frequency (Fc) outputted by the drive will auto decrease according to ambient temperature, overload output current and overload time. If overload situation is not frequent and only cares the carrier frequency operated with the rated current for a long time, and can accept the change of carrier wave due to short overload, it is recommended to set to 0 .

Refer to the following diagram for the level of carrier frequency. Take VFD9A0MH43ANSAA in normal duty for example: ambient temperature $50^{\circ} \mathrm{C}, 100 \%$ duty, UL open-type, and independent installation. When the carrier frequency is set to 10 kHz , corresponding to 75% rated output current. When output current is higher than the value, it will auto decrease the carrier wave according to ambient temperature, output current and overload time. At this time, the overload capacity of drive is still 150% of rated current.
© Setting 1:
When the operating point exceeds derating curve 1, carrier frequency is fixed to the set value. Please select this mode if the change of carrier wave and motor noise caused by ambient temperature and frequent overload are not accepted. (Please refer to Pr. 00-17)

Refer to the following diagram for the derating level of rated current. Take VFD9A0MH43ANSAA in normal duty for example, when the carrier frequency is to be maintained at 10 kHz , the rated current is decreased to 75%. The OL protection will execute when the current is 120% * $75 \%=90 \%$ for a minute. Therefore, it needs to operate by the curve to keep the carrier frequency.
1 Setting 2:
The protection method and action is the same as set to 0 , but disables the current limit when output current is derating Ratio $\times 120 \%$ (default value) in normal duty and is derating Ratio $\times 180$ \% (default value) in heavy duty.

The advantage is that it can provide higher starting output current when the carrier frequency setting is higher than the factory setting. The disadvantage is that the carrier wave derates easily when overload.

Example: when Pr. 06-55 = 0 or 1, over-current stall prevention level $=$ Ratio*Pr. 06-03. When Pr. 06-55 = 2, over-current stall prevention level $=$ Pr. 06-03.

1 It should be used with Pr. 00-16 and Pr. 00-17 for setting.The derating will also be affected by ambient temperature, please refer to ambient temperature derating curve.
Example: take VFD9A0MH43ANSAA in normal duty for example: ambient temperature $50^{\circ} \mathrm{C}$, UL open-type, and independent installation. When the carrier frequency is set to 10 kHz , corresponding to 75% rated output current. The ambient temperature $60^{\circ} \mathrm{C}$ is corresponding to 75% * 75% of rated output current.
Derating curve (when Pr. 00-10 = 0 and Pr. 00-11 = 0~3), modulation mode can be adjusted by Pr. 11-41.

D. NOTE Line 1: $\mathrm{T}_{\mathrm{a}}=50^{\circ} \mathrm{C} /$ Duty $=100 \%$

Line 2: $\mathrm{T}_{\mathrm{a}}=50^{\circ} \mathrm{C} /$ Duty $=75 \%$ or $\mathrm{T}_{\mathrm{a}}=40^{\circ} \mathrm{C} /$ Duty $=100 \%$
Line 3: $\mathrm{T}_{\mathrm{a}}=50^{\circ} \mathrm{C} /$ Duty $=50 \%$ or $\mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C} /$ Duty $=100 \%$
Ambient temperature derating curve for general control

55-56PT100 Voltage Level 1

Factory Setting: 5.000
Settings $0.000 \sim 10.000 \mathrm{~V}$
76-57 PT100 Voltage Level 2
Factory Setting: 7.000
Settings $0.000 \sim 10.000 \mathrm{~V}$
[】】 Condition settings: Pr. 06-57 > Pr. 06-56.

86-58 PT100 Level 1 Frequency Protection

Factory Setting: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$

75-53 Delay Time of Activating PT100 Level 1 Frequency Protection

Factory Setting: 60
Settings 0~6000 sec.
[1] PT100 operation instructions
(1) Use voltage type analog input (AVI, ACI voltage 0~10V) and select PT100 mode.
(2) User can select one of voltage type analog input below:
(a) Pr. 03-00 =11, (b) Pr. 03-01 = 11 and Pr. 03-29 = 1
(3) When selecting Pr. 03-01 $=11$ and Pr. 03-29 $=1$, must switch AFM to $0 \sim 10 \mathrm{~V}$.
(4) AFM outputs constant voltage or current, Pr. 03-20 $=23$. Must switch ACM to $0 \sim 20 \mathrm{~mA}$, and set AFM output level to 45% (Pr. 03-32 = 45%) of $20 \mathrm{~mA}=9 \mathrm{~mA}$.
(5) Pr. 03-32 is for adjusting the constant voltage or constant current of AFM output, the setting range is $0 \sim 100.00 \%$.
(6) There are two types of action level for PT100. The diagram of PT100 protecting action is shown below:
When Pr. 06-58 $=0.00 \mathrm{~Hz}$, PT100 function is disabled.
Example:
When using PT100, if motor temperature is higher than $135^{\circ} \mathrm{C}\left(275{ }^{\circ} \mathrm{F}\right)$, the drive will start to count the delay time of auto deceleration (Pr. 06-59). The drive will decrease motor frequency to the setting of Pr. 06-58 when reaches count value. The drive will operate at the frequency set by Pr. 06-58 till the motor temperature is lower than $135^{\circ} \mathrm{C}\left(275{ }^{\circ} \mathrm{F}\right)$. If motor temperature is higher than $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$, the drive will decelerate to stop automatically and display warning "OH3".

Set up process:

1. Switch AFM to $0-20 \mathrm{~mA}$ on control board.
2. Wiring:

Connect external terminal AFM to " + "
Connect external terminal ACM to "-"
Connect AFM and AVI to "short-circuit"
3. Pr. $03-00=11$, Pr. $03-20=23$, Pr. $03-32=45 \%(9 \mathrm{~mA})$
4. Refer to RTD temperature and resistance comparison table

Temperature $=135^{\circ} \mathrm{C}$, resistance $=151.71 \Omega$, input current: 9 mA , voltage: about 1.37 Vdc Temperature $=150^{\circ} \mathrm{C}$, resistance $=157.33 \Omega$, input current: 9 mA , voltage: about 1.42 Vdc
5. When RTD temperature $>135^{\circ} \mathrm{C}$, the drive will decelerate to specified operation frequency automatically. Pr. 06-56 $=1.37$ and Pr. 06-58 $=10 \mathrm{~Hz}$. (When Pr. 06-58 $=0$, specified operation frequency is disabled)
6. When RTD temperature $>150^{\circ} \mathrm{C}$, the drive will output fault and decelerate to stop displaying warning "OH3" simultaneously. Pr. 06-57 = 1.42 and Pr. 06-29 = 1 (warning and decelerate to stop).

56-6. Software Detection GFF Current Level

Factory Setting: 60.0
Settings 0.0~6553.5 \%
Software Detection GFF Filter Time
Factory Setting: 0.10
Settings $0.00 \sim 655.35 \mathrm{sec}$.
1 When the drive detects the unbalanced three-phase output current is higher than the setting of Pr. 06-60, GFF protection will be activated. Then the drive will stop outputting.

Operation Time of Fault Record 1 (Day)
Operation Time of Fault Record 2 (Day)
Operation Time of Fault Record 3 (Day)
Operation Time of Fault Record 4 (Day)
Operation Time of Fault Record 5 (Day)
Operation Time of Fault Record 6 (Day)
Factory Setting: Read only
Settings 0~65535 days

56-64 Operation Time of Fault Record 1 (Min.)
ME-65 Operation Time of Fault Record 2 (Min.)
M6-68 Operation Time of Fault Record 3 (Min.)
55-7.7 Operation of Fault Record 4 (Min.)
56-9: Operation of Fault Record 5 (Min.)
95-93 Operation of Fault Record 6 (Min.)
Factory Setting: Read only
Settings $\quad 0 \sim 1439 \mathrm{~min}$.
1 If there is any malfunction when the drive operating, Pr. 06-17~06-22 will record malfunctions, and Pr. 06-63~06-70 can record the operation time for 4 malfunctions in sequence. It can help to check if there is any problem with the drive according to the spacing of fault time recorded.
For example: The $1^{\text {st }}$ error: ocA occurs after motor drive operates for 1000 minutes.
The $2^{\text {nd }}$ error: ocd occurs after another 1000 minutes.
The $3^{\text {rd }}$ error: ocn occurs after another 1000 minutes.
The $4^{\text {th }}$ error: ocA occurs after another 1000 minutes.
The $5^{\text {th }}$ error: ocd occurs after another 1000 minutes.
The $6^{\text {th }}$ error: ocn occurs after another 1000 minutes.
Then Pr. 06-17~06-22 and Pr. 06-63~06-70 recorded as follows:
Parameter record method as follows:

	$1^{\text {st }}$ fault	$2^{\text {nd }}$ fault	$3^{\text {rd }}$ fault	$4^{\text {th }}$ fault	$5^{\text {th }}$ fault	$6^{\text {th }}$ fault
$06-17$	ocA	ocd	ocn	ocA	ocd	ocn
$06-18$	0	ocA	ocd	ocn	ocA	ocd
$06-19$	0	0	ocA	ocd	ocn	ocA
$06-20$	0	0	0	ocA	ocd	ocn
$06-21$	0	0	0	0	ocA	ocd
$06-22$	0	0	0	0	0	ocA

$06-63$	1000	560	120	1120	680	240
$06-64$	0	1	2	2	3	4
$06-65$	0	1000	560	120	1120	680
$06-66$	0	0	1	2	2	3
$06-67$	0	0	1000	560	120	1120
$06-68$	0	0	0	1	2	2
$06-69$	0	0	0	1000	560	120
$06-70$	0	0	0	0	1	2

※ By time record, it can be known that the last fault (Pr. 06-17) happened after the drive run for 4 days and 240 minutes.

56-7 : Low Current Setting Level

Factory Setting: 0.0

Settings 0.0 ~ 100.0 \%
 Low Current Detection Time

Factory Setting: 0.00
Settings $0.00 \sim 360.00$ sec.
N M6-73 Treatment for Low Current
Factory Setting: 0
0 : No function
$\begin{array}{ll}\text { Settings } & \begin{array}{l}1: \text { Warn and coast to stop } \\ 2: \text { Warn and ramp to stop by } 2^{\text {nd }} \text { deceleration time }\end{array} \\ & 3: \text { Wa }\end{array}$
3 : Warn and operation continue
1 The drive will operate as the setting of Pr. 06-73 when output current is lower than the setting of Pr. 06-71 and when low current exceeds detected time Pr. 06-72. This parameter can be used with external multi-function output terminal 44 (for low current output).The low current detection function will not be executed when drive is at sleep or standby status.

77-93 Software Brake Level

		Factory Setting:
Settings	$110 \mathrm{~V} / 230 \mathrm{~V}: 350.0 \sim 450.0 \mathrm{Vdc}$	370
	$460 \mathrm{~V}: 700.0 \sim 900.0 \mathrm{Vdc}$	740

Enis parameter sets the level of brake transistor which refers to the DC-bus voltage. Users can choose suitable brake resistor to achieve the best deceleration. Refer to Chapter 7 "Optional Accessories" for the information of brake resistor.

Factory Setting: 0
Settings 0~100\%
Ind This parameter sets the level of DC brake current outputted to the motor during start-up and stopping. When setting the percentage of $D C$ brake current, the rated current is regarded as 100%. Be sure to start with a low DC brake current level, and increase slowly until proper brake torque has been attained. However, the DC brake current can NOT exceed the rated current to avoid burning the motor. Therefore, DO NOT use the DC brake as mechanical retention, otherwise it may cause injury accident.

77-7 DC Brake Time at RUN

Factory Setting: 0.0
Settings $\quad 0.0 \sim 60.0 \mathrm{sec}$.
凹a The motor may be in rotation status due to external force or the inertia itself. If the drive is used with the motor at this moment, it may cause motor damage or drive protection due to over current. This parameter can output DC current generating torque to force the motor stop before motor operation to get a stable start. This parameter determines the duration of the DC brake current when the drive start-up. When set to 0.0 , the DC brake is invalid at startup.

17-7. DC Brake Time at Stop

Factory Setting: 0.0
Settings $0.0 \sim 60.0 \mathrm{sec}$.
1 The motor may be in rotation status after the drive stops outputting due to external force or inertia itself, and cannot stop completely. This parameter can output DC current generating torque to force the drive stop after the drive stops outputting to make sure that the motor stops.This parameter determines the duration of the DC Brake current during brakes. To enable DC brake at stop, this function will be valid when Pr. 00-22 (stop method) is set to 0 (ramp to stop).

Related parameters: Pr. 00-22 Stop Method, Pr. 07-04 DC Brake Start Frequency.

77-74DC Brake Frequency at STOP

Factory Setting: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
[1] This parameter determines the start frequency of DC brake before the drive ramp to stop. When this setting is less than start-up frequency (Pr. 01-09), the start frequency of DC brake will start from the min. frequency.

[1] DC brake before run is used for occasions when the load is movable at stop, such as fans and pumps. The motor is in free operating status and in uncertain running direction before the drive startups. Execute DC brake first before starting the motor.
1 DC Brake at stop is used for occasions that hoping to brake the motor quickly or to control the positioning, such as crane or cutting machine.

77-95 Voltage Incrasing Gain

Factory Setting: 100
Settings 1~200 \%
When using speed tracking, adjust Pr. 07-05 to slow down the increasing speed of voltage if there are errors such as oL or oc. However, the time of speed tracking will be longer.

77-96 Restart after Momentary Power Loss

Factory Setting: 0

Settings 0: Stop operation

1: Speed tracking by the speed before the power loss
2: Speed tracking by the minimum output frequency
This parameter determines the operation mode when the drive restarts from a momentary power loss.
【】 The power system connected to the drive may be power off momentarily due to many reasons. This function allows the drive to keep outputting after the drive is repowered and will not cause the drive stops.

Setting 1: Tracking the frequency before momentary power loss, accelerating to master frequency command after the drive output frequency and motor rotator speed is synchronous. This setting is recommended if the characteristics of motor load are large inertia and small resistance. Example: In the equipment with big inertia flywheel, there is NO need to wait till the flywheel stops completely after restart to execute operation command, therefore it saves time.
[1] Setting 2: Frequency tracking starts from the minimum output frequency, accelerating to master frequency command after the drive output frequency and motor rotator speed is synchronous. This setting is recommended if the characteristics of motor load are small inertia and large resistance.
[】] In PG control mode, the AC motor drive will execute the speed tracking function automatically by PG speed when this setting is NOT set to 0 .

97-9 Allowed Power Loss Duration

Factory Setting: 2.0
Settings $0.0 \sim 20.0 \mathrm{sec}$.
This parameter determines the maximum time of allowable power loss. If the duration of a power loss exceeds this parameter setting, the AC motor drive will stop outputting.
[1] Pr. 07-06 is valid when the maximum allowable power loss time is ≤ 20 seconds and the AC motor drive displays "LU". But if the AC motor drive is powered off due to overload, even if the maximum allowable power loss time is ≤ 20 seconds, the operation mode as set in Pr. 07-06 is not executed. In that case it

97-98 Base Block Time

Factory Setting: 0.5
Settings $0.1 \sim 5.0 \mathrm{sec}$.
1 When momentary power loss is detected, the AC motor drive will block its output and then wait for a specified period of time (determined by Pr. 07-08, called Base-Block Time) before resuming operation. This parameter should be set at the time which allows the residual voltage at output side to decrease to 0 V before the drive is activated again.

97-93Current Limit of Speed Tracking

Factory Setting: 100
Settings 20~200 \%
[1] The AC motor drive will execute the speed tracking only if the output current is greater than the value set by Pr. 07-09.
[1] The maximum current of speed tracking will affect the synchronous time. The larger the parameter setting is, the faster the synchronization arrives. However, if parameter setting is too large, overload protection function may be activated.

B7-17 Treatment of Restart after Fault

Factory Setting: 0

Settings 0: Stop operation

1: Speed tracking by current speed
2: Speed tracking by minimum output frequency
! In PG control mode, the AC motor drive will execute the speed tracking function automatically by the PG speed when this setting is NOT set to 0 .
1
Fault includes: bb, oc, ov, occ. To restart after oc, ov, occ, Pr. 07-11 can NOT be set to 0 .
Restart Times after Fault
Factory Setting: 0
Settings 0~10
dal After fault (allowed fault: oc, ov, occ) occurs, the AC motor drive can be reset / restarted automatically up to 10 times.
[1] If the times of fault occurs exceeds Pr. 07-11 setting, the fault will not be restart /reset until user press "RESET" manually and execute operation command again.

Factory Setting: 0

Settings 0: Disable

1: Speed tracking by maximum output frequency
2: Speed tracking by motor frequency at start
3: Speed tracking by minimum output frequency
[1] Speed tracking function is suitable for punch, fans and other large inertia load. For example, mechanical punch usually has a large inertia flywheel, and the general stop method is coast to stop. Therefore, if it needs to be restarted again, the flywheel will take 2-5 minutes or longer to stop. By setting this parameter, there is NO need to wait till the flywheel stops completely to make the flywheel start operating immediately.
! In PG control mode, the AC motor drive will execute the speed tracking function automatically by the PG speed when this setting is NOT set to 0 .

B7-13dEb Function Selection

Factory Setting: 0

> | Settings | 0: Disable |
| :--- | :--- |
| | 1: dEb with auto accel. / decal., the frequency will not return after power |
| reply. | |
| | 2: dEb with auto accel. / decal., the frequency will return after power reply |

1 dEb (Deceleration Energy Backup) let the motor decelerate to stop when momentary power loss occurs. When the power loss instantly, this function can be used to let the motor decelerate to zero speed. If the power recovers at this time, drive can restart the motor after dEb return time.
1 Lv return level: Default value will depend on the drive power model.
Frame A, B, C, D = Pr. 06-00 + 60V / 30V (220V series)
Frame E and above $=$ Pr. 06-00 $+80 \mathrm{~V} / 40 \mathrm{~V}$ (220V series)Lv level: Default is Pr. 06-00During dEb in operation, it may be interrupted by other protection, such as ryF, ov, oc, occ, EF...etc., and these error codes will be recorded.The STOP (RESET) command will be ineffective during the dEb auto deceleration, and the drive will keep decelerating to stop. To make the drive coast to stop immediately, please use another function EF instead.
(1)
B.B. function is ineffective when executing dEb. B.B. function is enabled after dEb function is finished.
[1]
Even though Lv warning is not displayed during the dEb operates. If DC BUS voltage is lower than Lv level, MO = 10 (Low voltage warning) still operates.
ded dEb action illustrated as follows:
When DC voltage drops below dEb activated level, the dEb function starts to work (soft start relay remain closed), and the drive will execute auto deceleration.

- Situation 1: Momentary power loss/ power current too low and unstable/ power supply sliding down because of sudden heavy load
Pr. 07-13 = 1 and power recovers
When the power recovers and DC BUS voltage exceeds dEb return level, the drive will linear decelerates to 0 Hz and stop. The keypad will display "dEb" warning until reset manually, to avoid that the users do not know the reason of stopping.

Chapter 12 Description of Parameter Settings

- Situation 2: Momentary power loss/ power current too low and unstable/ power supply sliding down because of sudden heavy load
Pr. 07-13 = 2 and power recovers
During the dEb deceleration (includes 0 Hz run), if the power recovers higher than dEb return level, the drive will maintain the frequency for 3 seconds and then accelerate again. The dEb warning on the keypad will be cleared automatically.

- Situation 3: Power supply unexpected shut down / power loss

Pr. 07-13 = 1 and power will not recover
The keypad will display "dEb" warning and stop after decelerating to the lowest running frequency. When the DC BUS voltage is lower than Lv level, the drive will disconnect soft start relay until running out of power completely.

- Situation 4: Power supply unexpected shut down / power loss

Pr. 07-13 = 2 and power will not recover
The drive will decelerate to 0 Hz . The DC BUS voltage will continue to decrease until the voltage is lower than Lv level, then the drive will disconnect soft start relay. The keypad will display "dEb" warning until the drive run out of power completely.

- Situation 5: Pr. 07-13 = 2 and power will recover after DC BUS voltage is lower than Lv level. The drive will decelerate to 0 Hz . The DC BUS voltage will continue to decrease until the voltage is lower than Lv level, then the drive will disconnect soft start relay. The soft start relay will close again after the power recovers and DC BUS voltage is higher than Lv return level. When the DC BUS voltage is higher than dEb return level, the drive will maintain the frequency for 3 seconds and restart to linear accelerate, the dEb warning on the keypad will be cleared automatically.

79-15 Dwell Time at Accel.

Factory Setting: 0.00
Settings $0.00 \sim 600.00 \mathrm{sec}$.

[7- : 7 Dwell Time at Decel.

Factory Setting: 0.00
Settings $0.00 \sim 600.00 \mathrm{sec}$.
Dwell Frequency at Accel.
Factory Setting: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$

97-18

Dwell Frequency at Decel.
Factory Setting: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
[1] In heavy load situation, Dwell can maintain stable output frequency temporarily. It can be applied to crane, elevators and so on.
[1] When the load is heavier, use Pr. 07-15 ~ Pr. 07-18 to avoid the protection of OV or OC.

Dwell at accel./decel.

77-19 Fan Cooling Control

Factory Setting: 3
Settings 0: Fan always ON
1: Fan will be OFF after the AC motor drive stops 1 minute
2: When the $A C$ motor drive runs, the fan is $O N$. When the $A C$ motor drive stops, the fan is OFF

3: Fan turns ON when the temperature attain around $60^{\circ} \mathrm{C}$
1 This parameter is used for controlling the fan.
\square Setting 0: Fan will run immediately when the power of drive is turned ON.
[0] Setting 1: AC motor drive runs and fan will run. 1 minute after AC motor drive stops, fan will be OFF
[1] Setting 2: AC motor drive runs and fan will run. AC motor drive stops and fan will stop immediately
凹le Setting 3: When temperature of IGBT or capacitance is higher than 60 degrees, fan will run. When temperature of IGBT and capacitance both are lower than 40 degrees, fan will stop.

日

Factory Setting: 0
Settings 0: Coast to stop
1: Stop by $1^{\text {st }}$ deceleration time
2 : Stop by $2^{\text {nd }}$ deceleration time
3: Stop by $3^{\text {rd }}$ deceleration time
4: Stop by $4^{\text {th }}$ deceleration time
5: System Deceleration
6: Automatic Deceleration
[1] When the multi-function input terminal is set to EF (10) or forced stop (18) and the terminal contact is ON, the drive will stop according to the setting of this parameter.

日7-2;
 Auto Energy-saving Setting

Factory Setting: 0

$$
\begin{array}{ll}
\text { Settings } & 0: \text { Disable } \\
& \text { 1: Enable }
\end{array}
$$

(1) When energy-saving is ON, the acceleration will operate with full voltage. During constant speed operation, it will calculate the best voltage value automatically by the load power for the load. This function is not suitable for the ever-changing load or the load which is nearly full during operation.
When the output frequency is constant, i.e. constant operation, the output voltage will decrease automatically as the load decreases. Therefore, the drive will operate with min. multiplication of voltage and current (electric power).

Factory Setting: 100

Settings 10~1000 \%

\square When Pr. 07-21 is set to 1 , this parameter can be used to adjust the gain of energy-saving. The factory setting is 100%. If the result is not well, it can be adjusted by decreasing the setting value. If the motor oscillates, then increase the setting value.
1 In certain applications such as high speed spindle, the temperature rise of motor is highly concerned. Thus, when the motor is not in working status, the motor current should reduce to a lower level. Reducing this parameter setting can meet this requirement.

[7-9 Auto Voltage Regulation (AVR) Function

Factory Setting: 0

Settings 0: Enable AVR
1: Disable AVR
2: Disable AVR during deceleration

[1] The rated voltage of the motor is usually AC $220 \mathrm{~V} / 200 \mathrm{~V}, 60 \mathrm{~Hz} / 50 \mathrm{~Hz}$, and the input voltage of the AC motor drive may vary from AC 180 V to $264 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$. Therefore, when the AC motor drive is used without AVR function, the output voltage will be the same as the input voltage. When the motor runs at the voltage exceeding $12 \% \sim 20 \%$ of rated voltage, it will cause higher temperature, damaged insulation and unstable torque output, which will result in losses due to shorter lifetime of motor.
(1) AVR function automatically regulates the output voltage of AC motor drive to the motor rated voltage. For example, if V/F curve is set at AC $200 \mathrm{~V} / 50 \mathrm{~Hz}$ and the input voltage is at AC 200 V to 264 V , then output voltage to the motor will automatically be reduced to a maximum of AC $200 \mathrm{~V} / 50 \mathrm{~Hz}$. If the input voltage is at AC 180 V to 200 V , the output voltage to motor and input power will be in direct proportion.
Lad Setting 0: when AVR function is enabled, the drive will calculate the output voltage by actual DC BUS voltage. The output voltage will NOT change when DC BUS voltage changes.
(1) Setting 1: when AVR function is disabled, the drive will calculate the output voltage by actual DC BUS voltage. The output voltage will be changed by DC BUS voltage. It may cause insufficient / over current or shock.
[1] Setting 2: the drive will disable the AVR when deceleration to stop, and may accelerate to brake.
When the motor ramps to stop, the deceleration time will be shorter when setting this parameter to 2 with auto acceleration / deceleration, the deceleration will be more stable and quicker.

Factory Setting: 0.050
Settings $0.001 \sim 10.000 \mathrm{sec}$.
[10] When the setting is too long, the control will be stable but the control response will be delayed. When the setting is too short, the response will be quicker but the control may be unstable. User can adjust the setting according to the stability of control and response time.

[7-3 Filter Time of Slip Compensation (V/F and SVC Control Mode)

Factory Setting: 0.100
Settings $0.001 \sim 10.000 \mathrm{sec}$.
The response time of compensation can be changed by Pr. 07-24 and Pr. 07-25.
(1) If Pr. 07-24 and Pr. 07-25 are set to 10 seconds, the response time of compensation is the slowest. However, the system may be unstable if the time set is too short.

```
B7-3G}\mathrm{ Torque Compensation Gain
! 7- 7 ! Torque Compensation Gain (Motor 2)
[7-73}\mathrm{ Torque Compensation Gain (Motor 3)
77-75 Torque Compensation Gain (Motor 4)
```

Settings IM: 0~10 (when Pr. 05-33 = 0)
PM: 0~5000 (when Pr. 05-33 = 1 or 2)
[1] When the motor load is large, a part of drive output voltage is absorbed by the resistor of stator winding, therefore, the air gap magnetic field is insufficient, which causes insufficient voltage at motor induction and result in over output current but insufficient output torque. Auto torque compensation can auto adjust output voltage according to the load, and keep the air gap magnetic fields stable to get the optimal operation.
Ind In the V/F control, the voltage will decrease in direct proportion with the frequency decreased. It will cause the torque decreasing at low speed due to the AC resistor is smaller while DC resistor is unchanged. Therefore, auto torque compensation function will increase output voltage in low frequency to get higher start torque.
[ad When compensation gain is set too large, it may cause motor overflux and result in too large output current, motor overheat or protection function be triggered.

Slip Compensation Gain (V/F and SVC Control Mode)
Slip Compensation Gain (Motor 2)
Slip Compensation Gain (Motor 3)
Slip Compensation Gain (Motor 4)

Settings 0.00~10.00

Factory Setting: 0.00
Settings 0.00~10.00 (Default value is 1 in SVC mode)
[1] The induction motor needs the constant slip to produce magnetic torque. It can be ignore in the higher motor speed, such as rated speed or 2-3 \% of slip.
In In operation, the slip and the synchronous frequency will be in reverse proportion to produce the same magnetic torque. That is the slip will be larger with the reduction of synchronous frequency. The motor may stop when the synchronous frequency decreases to a specific value. Therefore, the slip seriously affects the accuracy of motor speed at low speed.
1 In another situation, when the drive is used with induction motor, the slip will increase when the load increases. It also affects the accuracy of motor speed.
[a] This parameter can be used to set compensation frequency, and reduce the slip to make the synchronous speed when the motor runs in rated current, thereby to improve the accuracy of the drive. When the drive output current is higher than Pr. 05-05 No-load Current of Induction Motor 1 (A), the drive will compensate the frequency by this parameter.
[1] This parameter will be set to 1.00 automatically when the control method (Pr. 00-11) is changed from V/F mode to vector mode. Please do the compensation of slip after loaded and acceleration. The compensation value should be increased from small to big gradually. That is to add the output frequency with motor rated slip \times Pr. 07-27 Slip Compensation Gain when the motor is at rated load. If the actual speed ratio is slower than expected, then increase the setting value. Otherwise, decrease the setting value.

97-3 9 Slip Deviation Level

Factory Setting: 0
Settings 0.0~100.0 \%
0 : No detection

17-3 9 Detection Time of Slip Deviation

Factory Setting: 1.0
Settings $0.0 \sim 10.0 \mathrm{sec}$.

N [7-3 : Treatment of Slip Deviation

Factory Setting: 0
Settings 0: Warn and keep operation
1: Warn and ramp to stop
2: Warn and coast to stop
3: No warning
[al The Pr. 07-29 to Pr. 07-31 is to set allowable slip level / time and the over slip treatment when the drive is running.

17-3 3 Motor Shock Compensation Factor

Factory Setting: 1000
Settings 0~10000
[1] If there are current wave motion of motor in some specific area, setting this parameter can improve this situation effectively. (When running with high frequency or PG, it can be set to 0 . when the current wave motion occurs in low frequency and high-powered, please increase the value of Pr. 07-32.)

97-33 Return Time of Fault Restart

Factory Setting: 60.0
Settings $0.0 \sim 6000.0 \mathrm{sec}$.

Abstract

[a] When a reset / restart after fault occurs, the drive will regards Pr.07-33 as a time period and start counting the number of faults occurred within this time period. Within the period, if the number of faults occurred did not exceed the setting in Pr. 07-11, the counting will be cleared and starts from 0 when next fault occurs.

17-52d

Factory Setting: 8000
Settings 0~65535

98-98
 Terminal Selection of PID Feedback

Factory Setting: 0
Settings 0: No function
1: Negative PID feedback: by analog input (Pr. 03-00)
2: Negative PID feedback: by PG card pulse input, without direction (Pr. 10-16)

3: Negative PID feedback: by PG card, with direction (Pr. 10-16)
4: Positive PID feedback: by analog input (Pr. 03-00)
5: Positive PID feedback: by PG card pulse input, without direction (Pr. 10-16)
6: Positive PID feedback: by PG card, with direction (Pr. 10-16)
7: Negative PID feedback: by communication protocol
8: Positive PID feedback: by communication protocol
(1) Negative feedback means: + target value - feedback. It is used for the detection value will be increased by increasing the output frequency.
1 Positive feedback means: - target value + feedback. It is used for the detection value will be decreased by increasing the output frequency.
(1) When Pr. $08-00 \neq 7$ neither $\neq 8$, input value is disabled. The value of the setting remains the same after the drive is off.

1. Common applications for PID control

च Flow control: A flow sensor is used to feedback the flow data and performs accurate flow control.
$\square \quad$ Pressure control: A pressure sensor is used to feedback the pressure data and performs precise pressure control.
■ Air volume control: An air volume sensor is used to feedback the air volume data to have excellent air volume regulation.
ஏ Temperature control: A thermocouple or thermistor is used to feedback temperature data for comfortable temperature control.
\square Speed control: A speed sensor or encoder is used to feedback motor shaft speed or input another machines speed as a target value for closed loop speed control of master-slave operation. Pr. 10-00 sets the PID set point source (target value).
2. PID control loop:

Drive execute PID control

K_{p} : Proportional gain(P) $\quad \mathrm{T}_{\mathrm{i}}$: Integral time(I) T_{d} : Derivative control(D) S: Operator
3. Concept of PID control

Proportional gain (P):
The output is proportional to input. With only proportional gain control, there will always be a steady-state error.

Integral time (I):
The controller output is proportional to the integral of the controller input. To eliminate the steady-state error, an "integral part" needs to be added to the controller. The integral time decides the relation between integral part and error. The integral part will be increased by time even if the error is small. It gradually increases the controller output to eliminate the error until it is 0 . In this way a system can be stable without steady-state error by proportional gain control and integral time control.

Differential control (D):
The controller output is proportional to the differential of the controller input. During elimination of the error, oscillation or instability may occur. The differential control can be used to suppress these effects by acting before the error. That is, when the error is near 0 , the differential control should be 0 . Proportional gain (P) + differential control (D) can be used to improve the system state during PID adjustment.
4. When PID control is used in a constant pressure pump feedback application:

Set the application's constant pressure value (bar) to be the set point of PID control. The pressure sensor will send the actual value as PID feedback value. After comparing the PID set point and PID feedback, there will be an error. Thus, the PID controller needs to calculate the output by using proportional gain (P), integral time (I) and differential time (D) to control the pump. It controls the drive to have different pump speed and achieves constant pressure control by using a 4-20 mA signal corresponding to 0-10 bar as feedback to the drive.

- Pr. 00-04 is set to 10 (Display PID analog feedback signal value (b) (\%))
- Pr. 01-12 Acceleration Time will be set as required
- Pr. 01-13 Deceleration Time will be set as required
- Pr. 00-21 = 0 to operate from the digital keypad
- Pr. $00-20=0$, the set point is controlled by the digital keypad
- Pr. 08-00 = 1 (Negative PID feedback from analog input)
- ACI analog input Pr. 03-01 set to 5, PID feedback signal.
- Pr. 08-01-08-03 will be set as required If there is no vibration in the system, increase Pr. 08-01 (Proportional Gain (P)) If there is no vibration in the system, reduce Pr. 08-02 (Integral Time (I)) If there is no vibration in the system, increase Pr. 08-03 (Differential Time (D))
- Refer to Pr. 08-00 to 08-21 for PID parameters settings.

58-9 : Proportional Gain (P)

Factory Setting: 1.0
Settings $0.0 \sim 500.0$
[a] When the setting is 1.0 , it means Kp gain is 100%; setting is $0.5, \mathrm{Kp}$ gain means 50%.
[1] It is used to eliminate the system error. It is usually used to decrease the error and get the faster response speed. But if the value is set too high, it may cause the system oscillation and instability.
[1] If the other two gains (I and D) are set to zero, proportional control is the only one effective.

98-93 Integral Time (I)

Factory Setting: 1.00
Settings $0.00 \sim 100.00 \mathrm{sec}$.
[1] The integral controller is used to eliminate the error during stable system. The integral control doesn't stop working until error is 0 . The integral is acted by the integral time. The smaller integral time is set, the stronger integral action will be. It is helpful to reduce overshoot and oscillation to make a stable system. At this moment, the decreasing error will be slow. The integral control is often used with other two controls to become PI controller or PID controller.
[1] This parameter is used to set the integral time of I controller. When the integral time is long, it will have small gain of I controller, the slower response and bad external control. When the integral time is short, it will have large gain of I controller, the faster response and rapid external control.
[1] When the integral time is too small, it may cause system oscillation.
[1] If the integral time is set as 0.00 , Pr. 08-02 will be disabled.
N 日昌 - D Derivative Time (D)
Factory Setting: 0.00
Settings $0.00 \sim 1.00 \mathrm{sec}$.
(1) The differential controller is used to show the change of system error and it is helpful to preview the change of error. So the differential controller can be used to eliminate the error to improve system state. With the suitable differential time, it can reduce overshoot and shorten adjustment time. However, the differential operation will increase the noise interference. Please note that too large differential will cause big noise interference. Besides, the differential shows the change and the output of the differential will be 0 when there is no change. Therefore, the differential control can't be used independently. It needs to be used with other two controllers to make a PD controller or PID controller.
[1] This parameter can be used to set the gain of D controller to decide the response of error change. The suitable differential time can reduce the overshoot of P and I controller to decrease the oscillation and have a stable system. But too long differential time may cause system oscillation.
[1] The differential controller acts for the change of error and can't reduce the interference. It is not recommended to use this function in the serious interference.

58-54 Upper Limit of Integral Control

Factory Setting: 100.0

Settings 0.0~100.0 \%

$\mathbb{I} \rrbracket$ This parameter defines an upper bound or limit for the integral gain (I) and therefore limits the Master Frequency. The formula is:
Integral upper bound = Maximum Output Frequency (Pr. 01-00) x (Pr. 08-04 \%)
[1] Too large integral value will make the slow response due to sudden load change. In this way, it may cause motor stall or machine damage.

58-95 PID Output Command Limit (Positive Limit)

Factory Setting: 100.0
Settings 0.0~100.0 \%
1 This parameter defines the percentage of output frequency limit during the PID control. The formula is Output Frequency Limit $=$ Maximum Output Frequency (Pr. 01-00) \times Pr. 08-05 \%.

88-95 PID Feedback Value by Communication Protocol

Factory Setting: 0.00
Settings -200.00 \%~200.00 \%
[1] When PID feedback input is set as communication (Pr. 08-00 = 7 or 8), PID feedback value can be set by this value.

78-97 PID Delay Time

Factory Setting: 0.0
Settings $0.0 \sim 2.5 \mathrm{sec}$.

Factory Setting: 0
Settings 0: Serial connection
1: Parallel connection
(1) When setting is 0 , it uses conventional PID control structure.

When setting is 1 , proportional gain, integral gain and derivative gain are independent. The P, I and D can be customized to fit users' demand.
[1] Pr. 08-07 determines the primary low pass filter time when in PID control. Setting a large time constant may slow down the response rate of drive.
[1] Output frequency of PID control will filter by primary low pass function. This function could filter a mix frequency. A long primary low pass time means filter degree is high and vice versa.
[1] Inappropriate setting of delay time may cause system error.
\square PI Control:
Controlled by the P action only, and thus, the deviation cannot be eliminated entirely. To eliminate residual deviations, the $\mathrm{P}+\mathrm{I}$ control will generally be utilized. And when the PI control is utilized, it could eliminate the deviation incurred by the targeted value changes and the constant external interferences. However, if the I action is excessively powerful, it will delay the responding toward the swift variation. The P action could be used solely on the loading system that possesses the integral components.
PD Control:
When deviation occurred, the system will immediately generate some operation load that is greater than the load generated single handedly by the D action to restrain the increment of the deviation. If the deviation is small, the effectiveness of the P action will be decreasing as well. The control objects include occasions with integral component loads, which are controlled by the P action only, and sometimes, if the integral component is functioning, the whole system will be vibrating. On such occasions, in order to make the P action's vibration subsiding and the system stabilizing, the PD control could be utilized. In other words, this control is good for use with loading of no brake functions over the processes.
[1] PID Control:
Utilize the I action to eliminate the deviation and the D action to restrain the vibration, thereafter, combine with the P action to construct the PID control. Use of the PID method could obtain a control Process with no deviations, high accuracies and a stable system.

Serial connection

Parallel connection

58-98 Feedback Signal Detection Time

Factory Setting: 0.0
Settings $\quad 0.0 \sim 3600.0 \mathrm{sec}$.
Pr. 08-08 is valid only for $\mathrm{ACl} 4 \sim 20 \mathrm{~mA}$.
© This parameter sets the detection time of abnormal PID signal feedback. If detection time is set to 0.0 , detection function is disabled.

58-89 Feedback Signal Fault Treatment

Factory Setting: 0
Settings 0: Warn and keep operation
1: Warn and ramp to stop
2: Warn and coast to stop
3: Warn and operate at last frequency
[1] This parameter is valid only for $\mathrm{ACl} 4 \sim 20 \mathrm{~mA}$.
[al AC motor drive acts when the feedback signals analog PID feedback is abnormal.

日8- : © Sleep Frequency

Factory Setting: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
Setting value of Pr. 08-10 determines if sleep reference and wake-up reference is enable or disable. When Pr. 08-10 $=0$, it means disable. When Pr. 08-10 $=0$, it means enable.

88- ! i Wake-up Frequency

Factory Setting: 0.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
When Pr. 08-18 = 0, the unit of Pr. 08-10 and that of Pr. 08-11 become frequency. The settings then become to $0 \sim 599.00 \mathrm{~Hz}$.
When Pr. $08-18=1$, the unit of Pr.08-10 and that of Pr. 08-11 switch to percentage. The settings then switch to 0~200.00 \%.
1 And the percentage is based on the input command value not the maximum. E.g. If the maximum value is 100 Kg , the current value is 30 kg , if $\operatorname{Pr} .08-11=40 \%$, the value is 12 kg .
[10 Pr. 08-10 is according to the same logic for calculation.

日8-12 Sleep Time

Factory Setting: 0.0
Settings $0.0 \sim 6000.0 \mathrm{sec}$.
10 When the frequency command is smaller than the sleep frequency and less than the sleep time, the frequency command is equal to the sleep frequency. However the frequency command remains at 0.00 Hz until the frequency command becomes equal to or bigger than the wake-up frequency.

58-9 PID Deviation Level

Factory Setting: 10.0
Settings 1.0~50.0 \%
N 8 - : 4 PID Deviation Time
Factory Setting: 5.0
Settings $0.1 \sim 300.0 \mathrm{sec}$.
58-!5 Filter Time for PID Feedback
Factory Setting: 5.0
Settings $0.1 \sim 300.0 \mathrm{sec}$.
\square When the PID control function is normal, it should calculate within a period of time and close to the target value.
Refer to the PID control diagram for details. When executing PID feedback control, if IPID reference target value - detection value| > Pr. 08-13 PID Deviation Level and exceeds Pr. 08-14 setting, it will be judged as the PID control fault. Multiple-function output MO $=15$ (PID feedback error) will activate.

N 58- i6 PID Compensation Selection
Factory Setting: 0

Settings	0 : Parameter setting
	1: Analog input

78－： 7 PID Compensation

$$
\text { Factory Setting: } 0
$$

Settings－100．0～＋100．0\％
［1］The PID compensation value $=$ Max．PID target value \times Pr．08－17．For example，the max．output frequency Pr．01－00 $=60 \mathrm{~Hz}$ ，Pr． $08-17=10.0 \%$ ，PID compensation value will increase output frequency $6.00 \mathrm{~Hz} .60 .00 \mathrm{~Hz} \times 100.00 \% \times 10.0 \%=6.00 \mathrm{~Hz}$

58－9 Setting of Sleep Mode Function

Factory Setting： 0

Settings 0：Refer to PID output command
 1：Refer to PID feedback signal

（1）When Pr．08－18＝0，the unit of Pr．08－10 and that of Pr．08－11 becomes frequency．The settings then become $0.00 \sim 599.00 \mathrm{~Hz}$ ．
（1）When Pr．08－18＝ 1 ，the unit of Pr．08－10 and that of Pr．08－11 switches to percentage．The settings then switch to 0～200．00 \％．

78－9 Wake－up Integral Limit

Factory Setting： 50.0
Settings 0．0～200．0 \％
［la The wake－up integral limit of drive is to prevent sudden high speed running when drive wakes up．
The wake－up integral frequency limit $=(01-00 \times 08-19 \%)$
Tla The Pr．08－19 is used to reduce the reaction time from sleep to wake－up．

日B－ \boldsymbol{P} ；Enable PID to Change the Operation Direction

Factory Setting： 0
Settings 0：Operation direction can be changed
1：Operation direction can not be changed

B8－』き Wakeup Delay Time

Factory Setting： 0.00
Settings $0.00 \sim 600.00 \mathrm{sec}$ ．
＠l］Refer to Pr．08－18 for more information．

18－23 PID Control Flag

Factory Setting： 2
Settings bit $0=1$ ，PID reverse running must follow the setting of Pr．00－23
bit $0=0$ ，PID reverse running refers to PID＇s calculated value
bit $1=1$, PID Kp gain is 2 decimal place
bit $1=0$ ，PID Kp gain is 1 decimal place
Lait 0 ，When Pr．08－21＝1，PID reverse running is enable．
11 bit $0=0$ ，if the PID calculated value is positive，it will be forward running．If the PID calculated value is negative，it will be reverse running．
1 When the setting of bit 1 changes，$K p$ gain will not change．For example：$K p=6$ ，when Pr．08－23 bit $1=0, K p=6.0$ ；when Pr． $08-23$ bit $1=1, K p=6.00$ ．

There are three scenarios for sleep and wake-up frequency.

1) Frequency Command (PID is not in use, Pr. $08-00=0$. Only works in VF mode)

When the output frequency \leq the sleep frequency, and the drive reaches the preset sleep time, then drive will be at the sleep mode. When the frequency command reaches the wake-up frequency, the drive will start to count the wake-up delay time. Then when drive reaches the wake-up delay time, the drive will begin acceleration time to reach the frequency command.

2) Frequency Command Calculation of the Internal PID

When the PID calculation reaches the sleep frequency, the drive will start to count the sleep time and the output frequency will start to decrease. If the drive exceeds the preset sleep time, it will directly go to sleep mode which is 0 Hz . But if the drive doesn't reach the sleep time, it will remain at the lower limit (if there is a preset of lower limit.). Or it will remain at the lowest output frequency set at Pr. 01-07 and wait to reach the sleep time then go to sleep mode $(0 \mathrm{~Hz})$.

When the calculated frequency command reaches the wake-up frequency, the drive will start to count the wake-up delay time. Once reaching the wake-up delay time, the drive will start the acceleration time to reach the PID frequency command.

3) PID Feedback Rate Percentage (Use PID, Pr. 08-00 $=0$ and Pr. 08-18 = 1)

When the PID feedback rate reaches the sleep level percentage, the drive starts to count the sleep time. The output frequency will also decrease. If the drive exceeds the preset sleep time, it will go to sleep mode which is 0 Hz . But if the drive doesn't reach the sleep time, it will remain at the lower limit (if there is a preset of lower limit.). Or it will remain at the lowest output frequency set at Pr. 01-07 and wait to reach the sleep time then go to sleep mode $(0 \mathrm{~Hz})$.

When PID feedback value reaches the wake up percentage the motor drive will start to count the wake up delay time. Once reaches the wake up delay time, the motor drives starts the accelerating time to reach PID frequency command

58-26 PID Output Command Limit (Reverse Limit)

Factory Setting: 100.0
Settings $0.0 \sim 100.0 \%$
When PID enables reverse, PID output amount is negative value, and the output amount of PID will be limited by the setting of Pr. 08-26. Need to use with Pr. 08-21.

昌昌-2 Acceleration / Deceleration Time of PID Command

Factory Setting: 0.00
Settings $0.00 \sim 655.35 \mathrm{sec}$.
[1] When Pr. 08-27 is setting to 0.00 sec., there is no command of PID acceleration / deceleration, the target value is equal to PID command. When the settings is not equal to 0.00 sec ., the command of PID acceleration / deceleration is active, the acceleration and deceleration of PID is that when PID target value change, the command value increment / decrement is according to this parameter.

日昌-2 Selection of Frequency Base Corresponding to 100.00 \% PID

Factory Setting: 0
Settings 0: PID control output 100.00 \% corresponding to max. output frequency (Pr. 01-00)
1: PID control output 100.00% corresponding to the input value of auxiliary frequency
14 This parameter is valid when auxiliary and master frequency function opens.
When Pr. 08-29 = 0, PID control output 100.00 \% corresponding to the max. output frequency; When Pr. $08-29=1$, PID control output 100.00% corresponding to the input value of auxiliary frequency (If the auxiliary frequency changes, PID output frequency is also followed changes together.)

09 Communication Parameters

When using communication devices, connects AC drive with PC by using Delta IFD6530 or IFD6500.
N This parameter can be set during the operation.

$8 \leftarrow 1$	Modbus RS-485
	Pin 1~2,7,8: Reserved Pin 3, 6: GND Pin 4: SG-
RS-485	Pin 5: SG+

98-9.7 Communication Address

Factory Setting: 1
Settings 1~254
[1] If the AC motor drive is controlled by RS-485 serial communication, the communication address for this drive must be set via this parameter and each AC motor drive's communication address must be different.

日8-9 ; COM1 Transmission Speed

Factory Setting: 9.6
Settings $4.8 \sim 115.2 \mathrm{Kbps}$
Inis parameter is for setting up the transmission speed of computer and the drive.
(1) Please set 4.8 Kbps, 9.6 Kbps, 19.2 Kbps, 38.4 Kbps, 57.6 Kbps, or 115.2 Kbps. Otherwise the transmission speed will be replaced by 9.6 Kbps .

日 9 - 9 COM1 Transmission Fault Treatment

Factory Setting: 3
Settings 0: Warn and keep operation
1: Warn and ramp to stop
2: Warn and coast to stop
3: No warning and continue operation
[1] This parameter is to set the reaction of MODBUS transmission errors with the host. Detection time can be set in Pr. 09-03.

19-3 COM1 Time-out Detection

Factory Setting: 0.0
Settings $0.0 \sim 100.0 \mathrm{sec}$.
@ It is used to set the communication transmission time-out.

75-84 COM1 Communication Protocol

Factory Setting: 1
Settings 1:7N2 (ASCII)
2: 7E1 (ASCII)
3: 701 (ASCII)
4: 7E2 (ASCII)
5: 702 (ASCII)
6: 8N1 (ASCII)
7: 8N2 (ASCII)
8: 8E1 (ASCII)

9: 801 (ASCII)
10: 8E2 (ASCII)
11: 802 (ASCII)
12: 8N1 (RTU)
13: 8N2 (RTU)
14: 8E1 (RTU)
15: 801 (RTU)
16: 8E2 (RTU)
17: 8 O 2 (RTU)
[1] Control by PC (Computer Link)
When using RS-485 serial communication interface, each drive must be pre-specified its communication address in Pr. 09-00, the computer can implement control according to their individual address.
11 MODBUS ASCII (American Standard Code for Information Interchange): Each byte data is the combination of two ASCII characters. For example, a 1-byte data: 64 Hex, shown as ' 64 ' in ASCII, consists of ' 6 ' (36Hex) and '4' (34Hex).

1. Code Description

Communication protocol is in hexadecimal, ASCII: "0" ... "9", "A" ... "F", every 16 hexadecimal represent ASCII code. For example:

Character	'0'	'1'	'2'	'3'	'4'	'5'	'6'	'7'
ASCII code	30 H	31H	32H	33H	34H	35 H	36H	37H

Character	'8'	'9'	'A'	'B'	'C'	'D'	' E '	' F^{\prime}
ASCII code	38 H	39 H	41 H	42 H	43 H	44 H	45 H	46 H

2. Data Format

10-bit character frame (For ASCII):
(7, N, 2)

(7, E, 1)

(7, O, 1)

11-bit character frame (For RTU):
(8, N, 2)

(8, E, 1)

(8, O, 1)

3. Communication Protocol

Communication Data Frame
ASCII mode :

STX	Start character = ' :' (3AH)
Address Hi	Communication address: 8 -bit address consists of 2 ASCII codes
Address Lo	
Function Hi	Command code: 8-bit command consists of 2 ASCII codes
Function Lo	
DATA (n-1)	Contents of data: $\mathrm{N} \times 8$-bit data consist of 2 n ASCII codes $N \leq 16$, maximum of 32 ASCII codes (20 sets of data)
......	
DATA 0	
LRC CHK Hi	LRC check sum: 8 -bit check sum consists of 2 ASCII codes
LRC CHK Lo	
END Hi	End characters: END Hi $=$ CR (ODH), END Lo $=$ LF (OAH)
END Lo	

RTU mode:

START	A silent interval of more than 10 ms
Address	Communication address: 8-bit address
Function	Command code: 8-bit command
DATA $(\mathrm{n}-1)$	Contents of data: $\ldots \ldots$.
DATA 0	$\mathrm{~N} \times 8$-bit data, $\mathrm{n} \leq 16$
CRC CHK Low	CRC check sum:
CRC CHK High	16-bit check sum consists of 28 -bit characters
END	A silent interval of more than 10 ms

Communication Address (Address)
00 H : broadcast to all AC motor drives
01 H : AC motor drive of address 01
OFH: AC motor drive of address 15
10H: AC motor drive of address 16
:
FEH: AC motor drive of address 254
Function code (Function) and DATA (Data characters)
03H: read data from register
06H: write single register
Example: reading continuous 2 data from register address 2102 H, AMD address is 01 H .

ASCII mode:

Command Message:

STX	\because
Address	'0'
	'1'
Function	'0'
	'3'
Starting register	'2'
	'1'
	'0'
	'2'
Number of register (count by word)	'0'
	'0'
	'0'
	'2'
LRC Check	'D'
	'7'
END	CR
	LF

Response Message

STX	\because
Address	'0'
	'1'
Function	'0'
	'3'
Number of register (count by byte)	'0'
	'4'
Content of starting register 2102H	'1'
	'7'
	'7'
	'0'
Content of register 2103H	'0'
	'0'
	'0'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

RTU mode:
Command Message:
Response Message

Address	01 H
Function	03 H
Starting data register	21 H
Number of register	02 H
(count by world)	00 H
CRC CHK Low	02 H
CRC CHK High	6 FH

$\left.\begin{array}{|c|c|}\hline \text { Address } & 01 \mathrm{H} \\ \hline \text { Function } & 03 \mathrm{H} \\ \hline \text { Number of register } \\ \text { (count by byte) }\end{array}\right) 04 \mathrm{H}$

06 H : single write, write single data to register.
Example: writing data $6000(1770 \mathrm{H})$ to register 0100 H . AMD address is 01 H .

ASCII mode:

Command Message:

STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'6'
Target register	'0'
	'1'
	'0'
	'0'
Register content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

Response Message

STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'6'
Target register	'0'
	'1'
	'0'
	'0'
Register content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

RTU mode:
Command Message:

Address	01 H
Function	06 H
Target register	01 H
	00 H
Register content	17 H
	70 H
CRC CHK High	86 H
	22 H

Response Message

Address	01 H
Function	06 H
Target register	01 H
	00 H
Register content	17 H
CRC CHK Low	70 H
CRC CHK High	86 H
	22 H

10 H : write multiple registers (write multiple data to registers) (at most 20 sets of data can be written simultaneously)

Example: Set the multi-stage speed of AC motor drive (address is 01 H):

$$
\text { Pr. 04-00 }=50.00(1388 \mathrm{H}), \text { Pr. } 04-01=40.00(0 \mathrm{FAOH})
$$

ASCII Mode

Command Message:

STX	' ${ }^{\prime}$
	'0'
ADR 0	'1'
CMD 1	'1'
CMD 0	'0'
Target register	'0'
	'5'
	'0'
	'0'
Number of register (count by word)	'0'
	'0'
	'0'
	'2'
Number of register (count by Byte)	'0'
	'4'
The first data content	'1'
	'3'
	'8'
	'8'
The second data content	'0'
	'F'
	'A'
	'0'
LRC Check	'9'
	'A'
END	CR
	LF

Response Message

STX	' ${ }^{\prime}$
ADR 1	'0'
ADR 0	'1'
CMD 1	'1'
CMD 0	'0'
Target register	'0'
	'5'
	'0'
	'0'
Number of register (count by word)	'0'
	'0'
	'0'
	'2'
LRC Check	'E'
	'8'
END	CR
	LF

RTU mode:
Command Message:
Response Message:

ADR	01 H
CMD	10 H
Target register	05 H
	00 H
(Count by word)	00 H
Quantity of data (Byte)	02 H
The first data content	04
	13 H
CRC Check Low	08 H
CRC Check High	AOH

ADR	01 H
CMD 1	10 H
Target register	05 H
Number of register	00 H
(Count by word)	00 H
CRC Check Low	02 H
CRC Check High	41 H

Check sum
ASCII mode:
LRC (Longitudinal Redundancy Check) is calculated by summing up, module 256 and the values of the bytes from ADR1 to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.

For example:
$01 \mathrm{H}+03 \mathrm{H}+21 \mathrm{H}+02 \mathrm{H}+00 \mathrm{H}+02 \mathrm{H}=29 \mathrm{H}$, the 2 's-complement negation of 29 H is $\underline{\mathrm{D} 7 \mathrm{H}}$.

RTU mode:
CRC (Cyclical Redundancy Check) is calculated by the following steps:
Step 1: Load a 16-bit register (called CRC register) with FFFFH.
Step 2: Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.
Step 3: Examine the LSB of CRC register.
Step 4: If the LSB of CRC register is 0 , shift the CRC register one bit to the right with MSB zero filling, then repeat step 3 . If the LSB of CRC register is 1 , shift the CRC register one bit to the right with MSB zero filling, Exclusive OR the CRC register with the polynomial value A001H, then repeat step 3 .
Step 5: Repeat step 3 and 4 until eight shifts have been performed. When this is done, a complete 8 -bit byte will have been processed.

Step 6: Repeat step 2 to 5 for the next 8 -bit byte of the command message. Continue doing this until all bytes have been processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, i.e. the lower order byte will be transmitted first.

The following is an example of $C R C$ generation using C language. The function takes two arguments:
Unsigned char* data \leftarrow a pointer to the message buffer
Unsigned char length \leqslant the quantity of bytes in the message buffer
The function returns the CRC value as a type of unsigned integer.
Unsigned int crc_chk(unsigned char* data, unsigned char length)
\{

```
int j;
    unsigned int reg_crc=0Xffff;
    while(length--){
    reg_crc ^= *data++;
    for(j=0;j<8;j++){
        if(reg_crc & 0x01){ /* LSB(b0)=1 */
            reg_crc=(reg_crc>>1)^ 0Xa001;
        }else{
            reg_crc=reg_crc >>1;
        }
    }
    }
    return reg_crc; // return register CRC
```

\}
4. Address list

Content	Register		Function
AC motor drive parameters	GGnnH	GG means example, the	parameter group, nn means para the address of Pr. 04-01 is 0401H.
Command write only	2000H	bit 1~0	OOB: No function
			01B: Stop
			10B: Run
			11B: JOG + RUN
		bit 3~2 R	Reserved
		bit 5~4	00B: No function
			01B: FWD
			10B: REV
			11B: Change direction
		bit 7~6	00B: $1^{\text {st }}$ accel. / decel.
			01B: $2^{\text {nd }}$ accel. / decel.
			10B: $3^{\text {rd }}$ accel. / decel.
			11B: $4^{\text {th }}$ accel. / decel.
		bit 11~8	000B: Master speed
			0001B: $1^{\text {st }}$ Stage speed frequency
			0010B: $2^{\text {nd }}$ Stage speed frequency
			0011B: $3^{\text {rd }}$ Stage speed frequency
			0100B: $4^{\text {th }}$ Stage speed frequency
			0101B: $5^{\text {th }}$ Stage speed frequency
			0110B: $6^{\text {th }}$ Stage speed frequency
			0111B: $7^{\text {th }}$ Stage speed frequency
			1000B: $8^{\text {th }}$ Stage speed frequency
			1001B: $9^{\text {th }}$ Stage speed frequency
			1010B: $10^{\text {th }}$ Stage speed frequenc
			1011B: $11^{\text {th }}$ Stage speed frequency
			1100B: $12^{\text {th }}$ Stage speed frequency
			1101B: $13^{\text {th }}$ Stage speed frequency
			1110B: $14^{\text {th }}$ Stage speed frequency
			1111B: $15^{\text {th }}$ Stage speed frequency
		bit 12	1: Enable bit 06-11 function
		bit 14~13	00B: No function
			01B: Operated by digital keypad
			10B: Operated by Pr. 00-21 setting
			11B: Change operation source
		bit 15	Reserved
	2001H	Frequency	command(XXX.XX Hz)
	2002H	bit 0	1: EF (external fault) on
		bit 1	1: Reset
		bit 2	1: B.B ON
		bit 15~3	Reserved
Status monitor read only	2100H	High byte:	Warn code
	2101H	bit 1~0	AC motor drive operation status
			00B: Drive stops
			01B: Drive decelerating
			10B: Drive standby
			11B: Drive operating
		bit 2	1: JOG command
		bit 4~3	Operation direction
			00B: FWD run
			01B: From REV run to FWD run
			10B: REV run
			11B: From FWD run to REV run

Content	Register	Function	
		bit 8	1: Master frequency controlled by communication interface
		bit 9	1: Master frequency controlled by analog signal
		bit 10	1: Operation command controlled by communication interface
		bit 11	1: Parameter locked
		bit 12	1: Enable to copy parameters from keypad
		bit 15~13	Reserved
	2102H	Frequency command (XXX.XX Hz)	
	2103H	Output frequency (XXX. XX Hz)	
	2104H	Output current (XX.XX A). When current is higher than 655.35, it will shift decimal as (XXX.X A). The decimal can refer to High byte of 211F.	
	2105H	DC-BUS voltage (XXX.X V)	
	2106 H	Output voltage (XXX.X V)	
	2107 H	Current step number of multi-stage speed operation	
	2108 H	Reserved	
	2109H	Counter value	
	210AH	Power factor angle (XXX.X)	
	210BH	Output torque (XXX. ${ }^{\text {\% \%) }}$	
	210 CH	Actual motor speed (XXXXX rpm)	
	210DH	Number of PG feedback pulses (0~65535)	
	210EH	Number of PG2 pulse commands (0~65535)	
	210FH	Power output (X.XXX KWH)	
	2116H	Multi-function display (Pr. 00-04)	
	211BH	Max. operation frequency (Pr. 01-00) or Max. user defined value (Pr. 00-26) When Pr. 00-26 is 0 , this value is equal to Pr. 01-00 setting When Pr. 00-26 is not 0 , and the command source is Keypad, this value $=\operatorname{Pr} .00-24 *$ Pr. 00-26 / Pr. 01-00 When Pr. $00-26$ is not 0 , and the command source is 485 , this value $=$ Pr. 09-10 * Pr. 00-26 $/$ Pr. 01-00	
	211FH	High byte: decimal of current value (display)	
	2157H	Display the position of multi-point positioning	
	2200 H	Display output current (A). When current is higher than 655.35, it will shift decimal as (XXX.X A). The decimal can refer to High byte of 211F.	
	2201H	Display counter value (c)	
	2202H	Actual output frequency (XXXXX Hz)	
	2203H	DC-BUS voltage (XXX. X V)	
	2204H	Output voltage (XXX.X V)	
	2205H	Power angle (XXX.X)	
	2206 H	Display actual motor speed kW of U, V, W (XXXXX kW)	
	2207H	Display motor speed in rpm estimated by the drive or encoder feedback (XXXXX rpm)	
	2208H	Display positive / negative output torque in \%, estimated by the drive (t0.0: positive torque, -0.0: negative torque) (XXX.X \%)	
	2209H	Display PG feedback (as Pr. 00-04 NOTE 1)	
	220AH	PID feedback value after enabling PID function (XXX.XX \%)	
	220BH	Reserved	
	220 CH	Display signal of ACI analog input terminal, 4-V20 mA / 0-10 V corresponds to $0.00 \sim 100.00 \%$ (2.) (as Pr. 00-04 NOTE 2)	
	220DH	Reserved	
	220EH	IGBT temperature of drive power module (XXX. $\mathrm{X}^{\circ} \mathrm{C}$)	
	220FH	The temperature of capacitance (XXX. $\times^{\circ} \mathrm{C}$)	

Content	Register	Function
	2210H	The status of digital input (ON / OFF), refer to Pr. 02-12 (as Pr. 00-04 NOTE 3)
	2211H	The status of digital output (ON / OFF), refer to Pr. 02-18 (as Pr. 00-04 NOTE 4)
	2212H	The multi-step speed that is executing (S)
	2213H	The corresponding CPU pin status of digital input (d.) (as Pr. 00-04 NOTE 3)
	2214H	The corresponding CPU pin status of digital output (O.) (as Pr. 00-04 NOTE 4)
	2215H	Number of actual motor revolution (PG1 of PG card) (P.) it will start from 9 when the actual operation direction is changed or keypad display at stop is 0 . Max. is 65535
	2216H	Pulse input frequency (PG2 of PG card) (XXX. ${ }^{\text {(XX Hz) }}$
	2217H	Pulse input position (PG card PG2), maximum setting is 65535.
	2218H	Position command tracing error
	2219H	Display times of counter overload (XXX. XX \%)
	221AH	GFF (XXX. XX \%)
	221BH	DCbus voltage ripples (XXX. X V)
	221CH	PLC register D1043 data (C)
	221DH	Pole of Permanent Magnet Motor
	221EH	User page displays the value in physical measure
	221FH	Output Value of Pr. 00-05 (XXX. ${ }^{\text {PX Hz) }}$
	2220 H	Number of motor turns when drive operates (keeping when drive stops, and reset to zero when operation)
	2221H	Operation position of motor (keeping when drive stops, and reset to zero when operation)
	2222H	Fan speed of the drive (XXX \%)
	2223H	Control mode of the drive 0: speed mode 1: torque mode
	2224H	Carrier frequency of the drive (XX KHZ)
	2225H	Reserved
		Drive status
		bit 1~0 00b: No direction
		01b: Forward
		bit 3~2 01b: Driver ready
	2226H	10b: Error
		bit 40 Ob : Motor drive did not output
		1b: Motor drive did output
		bit 50 Ob: No alarm
		1b: Have Alarm
	2227H	Drive's estimated output torque (positive or negative direction) (XXXX Nt-m)
	2228H	Torque command (XXX. ${ }^{\text {\% \%) }}$
	2229H	KWH display (XXXX.X)
	222AH	MI7pulse input in Low Word
	222BH	M17 pulse input in High Word
	222CH	Motor actual position in Low Word
	222DH	Motor actual position in High Word
	222EH	PID reference ($\mathrm{XXX} . \mathrm{XX}$ \%)
	222FH	PID offset (XXX. ${ }^{\text {(}}$ \%)
	2230H	PID output frequency (XXX.XX Hz)
	2231H	Hardware ID
	2232H	Display auxiliary frequency
	2233H	Display master frequency
	2234H	Display frequency after addition and subtraction of auxiliary and master frequency

5. Exception response:

When drive is doing communication connection, if an error occurs drive will respond the error code and set the highest bit (bit 7) of code to 1 (function code AND 80H) then response to control system to know that an error occurred.

If keypad displays "CE-XX" as a warning message, " XX " is the error code at that time. Please refer to the meaning of error code in communication error for reference.

Example:
ASCII mode:
RTU mode:

STX	' \quad	Address	01H
Address	'0'	Function	86H
	'1'	Exception code	02H
Function	'8'	CRC CHK Low	C 3 H
	'6'	CRC CHK High	A1H
Exception code	'0'		
	'2'		
LRC CHK	'7'		
	'7'		
END	CR		
	LF		

The explanation of exception codes:

Exception code	Explanation
1	Function code is not supported or unrecognized.
2	Address is not supported or unrecognized.
3	Data is not correct or unrecognized.
4	Fail to execute this function code

99-93 Delay Time of Communication Response

Factory Setting: 2.0

Settings $\quad 0.0 \sim 200.0 \mathrm{~ms}$

[a] This parameter is the response delay time after AC motor drive receives communication command as shown in the following.

58- ! 9 Main Frequency of the Communication

Factory Setting: 60.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
【】 When Pr. 00-20 is set to 1 (RS-485 communication). The AC motor drive will save the last frequency command into Pr. 09-10 when abnormal turn-off or momentary power loss. After reboots the power, it will regard the frequency set in Pr. 09-10 if no new frequency command is inputted. When frequency command of 485 is changed (the source of frequency command needs to be set as MODBUS), this parameter is also be changed.

Block Transfer 1			
N 59-!	Block Transfer 2		
N 59- !	Block Transfer 3		
N 59- !	Block Transfer 4		
N 59-!	Block Transfer 5		
N 59-!	Block Transfer 6		
N 59- !	Block Transfer 7		
N 59-!	Block Transfer 8		
N 59- !	Block Transfer 9		
	Block Transfer 10		
	Block Transfer 11		
N 518	Block Transfer 12		
N 8 19-3	Block Transfer 13		
	Block Transfer 14		
	Block Transfer 15		
N 50-3	Block Transfer 16		
Settings 0~65535			
[1] There is a group of block transfer parameter available in the AC motor drive (Pr. 09-11 to Pr. 09-26). Through communication code 03H, user can use them (Pr. 09-11 to Pr. 09-26) to save those parameters that you want to read.			
79-39 Communication Decoding Method			
Settings 0: Decoding method 1 1: Decoding method 2			
Source of Operation Control		Decoding Method 1	Decoding Method 2
	Digital Keypad	Digital keypad controls the drive action regardless decoding method 1 or 2.	
	External Terminal	External terminal controls the drive action regardless decoding method 1 or 2.	
	RS-485	Refer to address: 2000h~20FFh	Refer to address: 6000h ~ 60FFh
	CANopen	Refer to index: 2020-01h~2020-FFh	Refer to index:2060-01h ~ 2060-FFh
	Communication Card	Refer to address: 2000h ~ 20FFh	Refer to address: 6000h ~60FFh
	PLC	PLC commands the drive action regardless decoding method 1 or 2.	

59-33 PLC Command Force to 0

Factory Setting : 0
Setting 0~65535
ITd It defines the action that before PLC scans time sequence, the frequency command or speed command needs to be cleared as 0 or not.

199-35 PLC Address

Factory Setting: 2
Settings 1~254
59-36CANopen Slave Address
Factory Setting: 0
Settings
0: Disable

199-37CANopen Speed
Factory Setting: 0
Settings 0:1 Mbps
1: 500 kbps
2: 250 kbps
3: 125 kbps
4: 100 kbps (Delta only)
5: 50 kbps
73-39 CANopen Warning Record
Factory Setting: 0
Settings bit 0: CANopen software disconnection 1 (CANopen Guarding Time out)
bit 1: CANopen software disconnection 2 (CANopen Heartbeat Time out)
bit 3: CANopen SDO time out
bit 4: CANopen SDO buffer overflow
bit 5: CANopen hardware disconnection warning (Can Bus Off)
bit 6: Error protocol of CANOPEN
59-4 CANopen Decoding Method
Factory Setting: 1
Settings 0: Delta defined decoding method
1: CANopen Standard DS402 protocol

B9-1 : CANopen Communication Status

Factory Setting: Read Only
Settings 0: Node Reset State
1: Com Reset State
2: Boot up State
3: Pre Operation State
4: Operation State
5: Stop State

89-43 CANopen Control Status

Factory Setting: Read Only
Settings 0: Not ready for use state
1: Inhibit start state
2: Ready to switch on state
3: Switched on state
4: Enable operation state
7: Quick stop active state
13: Error reaction activation state
14: Error state

79-43 CANopen Reset Index

Factory Setting: 65535
Settings bit 0: CANopen reset, the internal address 20XX is 0 bit 1: CANopen reset, the internal address 264 X is 0 bit 2: CANopen reset, the internal address 26AX is 0 bit 3: CANopen reset, the internal address 60XX is 0

89-6日

Identifications for Communication Card
Factory Setting: \#\#
Settings 0: No communication card
1: DeviceNet Slave
2: Profibus-DP Slave
3: CANopen Slave
4: Modbus-TCP Slave
5: EtherNet/IP Slave
6: EtherCAT
10: Backup Power Supply

Firmware Version of Communication Card
Product Code
Error code
Factory Setting: \#\#
Settings Read only

Address of Communication Card
Factory Setting: 1
Settings DeviceNet: 0-63
Profibus-DP: 1-125

73-7 i Setting of DeviceNet Speed

Factory Setting: 2
Settings Standard DeviceNet:
0: 125 Kbps
1: 250 Kbps
2: 500 Kbps
3: 1 Mbps (Delta Only)
Non standard DeviceNet: (Delta only)
0: 10 Kbps
1: 20 Kbps
2: 50 Kbps
3: 100 Kbps
4: 125 Kbps
5: 250 Kbps
6: 500 Kbps
7: 800 Kbps
8: 1 Mbps

```
79-73 Other Setting of DeviceNet Speed
                                    Factory Setting: 0
Settings 0: Disable
In this mode, baud rate can only be \(125 \mathrm{Kbps}, 250 \mathrm{Kbps}, 500 \mathrm{Kbps}\),
1 Mbps in standard DeviceNet speed
1: Enable
In this mode, the baud rate of DeviceNet can be same as CANopen (0-8).
[1] It needs to use with Pr. 09-71.
[al Setting 0 : the baud rate can only be set to \(0,1,2\) or 3 .
[1] Setting 1: setting of DeviceNet communication rate can be the same as CANopen (setting 0-8).
```


795-75 IP Configuration of the Communication Card

Factory Setting: 0
Settings 0: Static IP
1: Dynamic IP (DHCP)
\llbracket Setting 0: it needs to set IP address manually.
[l] Setting 1: IP address will be auto set by host controller.
79-76 IP Address 1 of the Communication Card
19-77 IP Address 2 of the Communication Card
59-78 IP Address 3 of the Communication Card
59-79 IP Address 4 of the Communication Card
Factory Setting: 0
Settings 0~255
Pr. 09-76~09-79 should be used with communication card.

Address Mask 1 of the Communication Card
Address Mask 2 of the Communication Card
Address Mask 3 of the Communication Card
Address Mask 4 of the Communication Card
Factory Setting: 0
Settings 0~255

Getway Address 1 of the Communication Card
Getway Address 2 of the Communication Card
Getway Address 3 of the Communication Card
Getway Address 4 of the Communication Card
Factory Setting: 0
Settings 0~255

Password for Communication Card (Low word)
Password for Communication Card (High word)
Factory Setting: 0
Settings 0~99
Reset Communication Card
Factory Setting: 0
Settings 0: Disable
1: Reset, return to factory setting
Additional Setting for Communication Card
Factory Setting: 0
Settings bit 0: Enable IP Filter
bit 1: Internet parameters enable (1 bit) When IP address is set up, this bit will be enabled. After updating the parameters of communication card, this bit will change to disable.
bit 2: Login password enable (1 bit)
When enter login password, this bit will be enabled. After updating the parameters of communication card, this bit will change to disable.
Status of Communication Card
Factory Setting: 0
Settings bit 0: Password enable When the communication card is set with password, this bit is enabled. When the password is clear, this bit will be disabled.

10 Speed Feedback Control Parameters

\wedge This parameter can be set during operation.
In this parameter group, ASR is the abbreviation for Adjust Speed Regulator and PG is the abbreviation for Pulse Generator.

19-9 Encoder Type Selection

Factory Setting: 0

Settings	0: Disabled
	1: ABZ
	3: Resolver 1x PM Encoder
	5. Pulse input (MI7)

If you use MI7 single-phase pulse input function, you only can choose one of them: Encoder input type (Pr. 10-02) or Pulse input type setting (Pr. 10-16). When you set speed feedback function, pulse command can NOT be set, it needs to cancel the speed feedback function first thus you can set the pulse command function. Speed feedback function should be used with Pr. 10-02 = 5 (single-phase input (MI7)), drive will calculate MI7 single-phase pulse input speed when control modes are VF, VFPG and SVC. In addition if MI7 single-phase pulse input is using for speed feedback of close loop control, it only can use in VFPG close loop control mode.

17-1: Encoder Pulse Per Round

Factory Setting: 600
Settings 1~20000
This parameter can set the encoder pulse per revolution (PPR). It is defined as a feedback control signal source when using PG , the encoder must set the pulse number for motor rotating a circle, it means the pulse number generated by A/B phase cycle.
[a] This setting is also the encoder resolution. With the higher resolution, the speed control will be more accurate.

If this parameter is setting error, it will cause motor stall, drive overcurrent, or magnetic pole origin detection error of PM motor in closed loop control. When using PM motor, the pole zero point detection $(\operatorname{Pr} .05-00=13)$ must be done again if the content of this parameter is modified.

19-3 Encoder Input Type Setting

Factory Setting: 0

Settings	$0:$ Disable
	1: A/B phase pulse input, forward run if A-phase leads B-phase by 90
	degrees

2: A / B phase pulse input, forward run if B-phase leads A-phase by 90 degrees

3: Phase A is a pulse input and phase B is a direction input. (low input $=$ reverse direction, high input = forward direction)

4: Phase A is a pulse input and phase B is a direction input. (low input $=$ forward direction, high input $=$ reverse direction)

5: Single-phase input (MI7)

Note 1: When MH300 input A / B phase pulse, MI6 terminal must be connected to the A-phase pulse, MI7 terminal must input B-phase pulse.
Note 2: When MH300 using unidirectional input, MI6 function is disabled, any signal connection is prohibited.

19-93 Output Setting for Frequency Division (Denominator)

Factory Setting: 1
Settings 1~255
[1] This parameter is used to set the denominator for frequency division of PG card feedback and output. When it is set to 2 with feedback 1024 PPR, PG OUT (pulse output) of PG card will be $1024 / 2=512$ PPR.

N	19-74	Electrical Gear at Load Side A1
N	19-75	Electrical Gear at Motor Side B1
N	19-75	Electrical Gear at Load Side A2
N	10-7	Electrical Gear at Motor Side B2

Factory Setting: 100
Settings 1~65535
(1) Pr. 10-04 to 10-07 can be used with the multi-function input terminal (set to 48) to switch to Pr. 10-04~10-05 or Pr. 10-06~10-07, shown as follows.

19-98Treatment for Encoder Feedback Fault

Factory Setting: 2

Settings 0 : Warn and keep operation
 1: Warn and ramp to stop
 2: Warn and coast to stop

19-9 Detection Time of Encoder Feedback Fault

Factory Setting: 1.0

Settings $\quad 0.0 \sim 10.0 \mathrm{sec}$. (0: No function)

When encoder loss, encoder signal error, pulse signal setting error or signal error, if time exceeds the detection time for encoder feedback fault (Pr. 10-09), the encoder signal error will occur. Refer to Pr. 10-08 for encoder feedback fault treatment.
1 When speed controller signal is abnormal, if time exceeds the detection time for encoder speed controller fault (Pr. 10-09), the feedback fault will occur. Refer to Pr. 10-08 for encoder feedback fault treatment.

N 1
Factory Setting: 115
Settings 0~120 \% (0: No function)
[0] This parameter determines the maximum encoder feedback signal allowed before a fault occurs. (Max. output frequency Pr. 01-00 = 100%)

: $\boldsymbol{1}$ - : Detection Time of Encoder Stall

Factory Setting: 0.1
Settings $0.0 \sim 2.0 \mathrm{sec}$.
in- 12 Treatment for Encoder Stall
Factory Setting: 2

Settings	$0:$ Warn and keep operation
	1: Warn and ramp to stop
	2: Warn and coast to stop

When drive output frequency exceeds encoder stall level (Pr. 10-10), it will start to accumulate time, when the error time exceeds detection time of encoder stall (Pr. 10-11), it will start to implement treatment for encoder stall, please refer to the settings of this parameter for detail.

17-13 Encoder Slip Range

Factory Setting: 50
Settings $0 \sim 50$ \% (0: No function)
19-14 Detection Time of Encoder Slip
Factory Setting: 0.5
Settings $0.0 \sim 10.0 \mathrm{sec}$.

19-15 Treatment for Encoder Stall and Slip Error

Factory Setting: 2
Settings 0 : Warn and keep operation
1: Warn and ramp to stop
2: Warn and coast to stop
[1] Action principle of Pr. 10-13~Pr. 10-15:
When the value of (rotation speed - motor frequency) exceeds Pr. 10-13 setting, detection time exceeds Pr. 10-14; it will start to accumulate time. If detection time exceeds Pr. 10-14, the encoder feedback signal error will occur. Refer to Pr. 10-15 encoder stall and slip error treatment.

18-: 18 Pulse Input Type Setting

Factory Setting: 0
Settings 0: Disabled
1: A / B phase pulse input, forward run if A-phase leads B-phase by 90 degrees

2: A / B phase pulse input, forward run if B-phase leads A-phase by 90 degrees

3: Phase A is a pulse input and phase B is a direction input. (low input $=$ reverse direction, high input $=$ forward direction)

4: Phase A is a pulse input and phase B is a direction input. (low input $=$
forward direction, high input $=$ reverse direction)

5: Single-phase input (MI6 or MI7)

When this setting is different from Pr. 10-02 setting and the source of the frequency command is pulse input (Pr. 00-20 is set to 5), it will cause 4 times frequency problem.
Example: Assume that Pr. $10-01=1024$, Pr. $10-02=1$, Pr. $10-16=3$, Pr. $00-20=5, \mathrm{MI}=37$ and ON, the pulse needed to rotate the motor a revolution is 4096.
(1) Assume that Pr. 10-01 = 1024, Pr. 10-02 = 1, Pr. $10-16=1$, Pr. $00-20=5, \mathrm{MI}=37$ and ON , the pulse needed to rotate the motor a revolution is 1024.

19-17 Electrical Gear A
 19 - ! 8 Electrical Gear B

Factory Setting: 100
Settings 1~65535
[1] Rotation speed = pulse frequency / encoder pulse (Pr. 10-01) * Electrical Gear A / Electrical Gear B.

19-19 Positioning for Encoder Position

Factory Setting: 0
Settings -32767~32767 pulse
This parameter determines the internal position in the position mode.
1 It needs to be used with multi-function input terminal setting $=35$ (enable position control).
When it is set to 0 , it is the Z-phase position of encoder.

19-2 Error Range for Encoder Position Attained

Factory Setting: 10
Settings 0~65535 pulse
This parameter determines the range for internal positioning position attained.
For example:
When the position is set by Pr. 10-19 Positioning for Encoder Position and Pr. 10-20 is set to 1000, it reaches the position if the position is within 990-1010 after finishing the positioning.

18-2 : Filter Time (PG2)

Factory Setting: 0.100
Settings $0.000 \sim 65.535 \mathrm{sec}$.
[al When Pr. 00-20 is set to 5 and multi-function input terminal is set to 37 (OFF), the pulse
command will be regarded as frequency command. This parameter can be used to suppress the jump of speed command.
17-2 2 Speed Mode (PG2)
Factory Setting: 0
Settings 0: Electronic Frequency
1: Mechanical Frequency (base on pole pair)

19-2 4 FOC \& TQC Function Control

Factory Setting: 0
Settings 0~65535

Bit\#	Description
0	ASR controller under torque control $0:$ use PI as ASR; 1:use P as ASR
$1 \sim 10$	NA
11	Activate DC braking when executing zero torque command $0: O N ; \quad 1: O F F$
12	FOC Sensorless mode, cross zero means speed goes from negative to positive or positive to negative (forward to reverse direction or reverse to forward direction). $0:$ determine by stator frequency , 1: determine by speed command
13	NA
14	NA
15	Direction control in open loop status $0:$ Switch ON direction control 1: Switch OFF direction control

[1] Except bit = 0 set to be used in closed loop, other bit settings are for open loop.

19-35 FOC Bandwidth of Speed Observer

Factory Setting: 40.0
Settings $\quad 20.0 \sim 100.0 \mathrm{~Hz}$
] Setting speed observer to higher bandwidth could shorten the speed response time but will create greater noise interference during the speed observation.

19-26 FOC Minimum Stator Frequency

Factory Setting: 2.0
Settings $0.0 \sim 10.0 \% \mathrm{fN}$
[1] This parameter is used to set the minimum level of stator frequency in operation status. This setting ensures the stability and accuracy of observer and avoids interferences from voltage, current and motor parameter. fN is motor rated frequency.

19-7 FOC Low-pass Filter Time Constant

Factory Setting: 50
Settings $1 \sim 1000 \mathrm{~ms}$
凹 This parameter sets the low-pass filter time constant of a flux observer at start up. If the motor
cannot be activated during the high-speed operation, please lower the setting in this parameter.

19-38 FOC Gain of Excitation Current Rise Time

Factory Setting: 100

Settings 33~100 \% Tr

[1] This parameter sets the drive's excitation current rise time when activates in sensorless torque mode. When the drive's activation time is too long in torque mode, please adjust this parameter to a shorter time constant.

19-99 Top Limit of Frequency Deviation

Factory Setting: 20.00

Settings $\quad 0.00 \sim 100.00 \mathrm{~Hz}$

\square This parameter can limit the maximum of frequency deviation.
[1] When this parameter is set too large, abnormal feedback malfunction will occur.
(1) If the application needs higher setting of Pr. 10-29, please note that: Higher setting of Pr. 10-29 value will result in larger motor slip, which will cause PG Error (PGF3, PGF4) easily. In this case, setting Pr. 10-10 and Pr. 10-13 as 0 will disable PGF3 and PGF4 detection, but must make sure the MI7 wiring and application is correct. Otherwise it may lose the instant PG protection. Too High Pr. 10-29 setting is not a common setting.

19-39 Resolver Pole Pair

Factory Setting: 1

$$
\text { Settings } \quad 1 \sim 50
$$

(1) To use Pr. 10-30 function, user must set Pr. 10-00 $=3$ (Resolver Encoder) first.

Factory Setting: 40
Settings $\quad 0 \sim 150 \%$ rated current of motor
[l] The parameter is the current command of the drive in low-speed area (low-speed area: frequency command < Pr. 10-39). When it is stalling on heavy duty start-up or forward / reverse with load, adjust the parameter (increase). If inrush current is too high to cause oc stall, then decrease it.

19-32 PM FOC Sensorless Speed Estimator Bandwidth

Factory Setting: 5.00
Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$
[0] The parameter is speed estimator bandwidth. Adjust the parameter will influence the stability and the accuracy of speed for motor.
1 If there is low frequency vibrates (the waveform is similar to sin wave) during the process, then increase the bandwidth. If there is high frequency vibrates (the waveform vibrates extremely and is like spur), then decrease the bandwidth.

19-34 PM Sensorless Speed Estimator Low-pass Filter Gain

Factory Setting: 1.00
Settings $0.00 \sim 655.35$
[1] Adjust the parameter will influence the response speed of speed estimator.
$\llbracket \rrbracket$ If there is low frequency vibrates (the waveform is similar to sin wave) during the process, then increase the gain. If there is high frequency vibrates (the waveform vibrates extremely and is like spur), then decrease the gain.

17-35 ARM (Kp)

Factory Setting: 1.00
Settings 0.00~3.00

19-36 ARM (Ki)

Factory Setting: 0.20
Settings 0.00~3.00

19-39 Frequency Point when Switch from I/F Mode to PM Sensorless Mode

Factory Setting: 20.00
Settings $0.00 \sim 599.00 \mathrm{~Hz}$
[a] The parameter is the switch point which is from low frequency to high frequency.
[1] If the switch point is too low, motor will not generate enough back emf to let the speed estimator measure the right position and speed of rotator, and cause stall and oc when the frequency of switch point is running.
Ild If the switch point is too high, the active area of I/F will be too wide, which will generate larger current and cannot save energy. (The reason is that if the current of Pr. 10-31 sets too high, and the high switch point will make the drive keeps outputting with the setting value of Pr. 10-31).

19-49 Frequency Point when Switch from PM Sensorless Mode to I/F Mode

Factory Setting: 20.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
[10] The parameter is the switch point which is from high frequency to low frequency.
[a] If the switch point is too low, motor will not generate enough back emf to let the speed estimator measure the right position and speed of rotator when the frequency of switch point is running.
[1] If the switch point is too high, the active area of I/F will be too wide, which will generate larger current and cannot save energy. (The reason is that if the current of Pr. 10-31 sets too high, and the high switch point will make the drive keeps outputting with the setting value of Pr. 10-31).

19-42 Initial Angle Detection Pulse Value

Factory Setting: 1.0
Settings $0.0 \sim 3.0$
[a] The angle detection is fixed to 3 : Use the pulse injection method to start. The parameter influences the value of pulse during the angle detection. The larger the pulse is, the higher of the accuracy of rotator's position. But larger pulse might cause oc easily.
Increase the parameter when the running direction and the command are opposite while start-up. If oc occurs in the start-up moment, then decrease the parameter.
1 Please refer to Chapter 12-2 Adjustment \& Application for detailed motor adjustment procedure.

17-43PG Card Version

Settings 0~655.35
$10]$
Corresponding version reference:

PG02U	21.XX
PG01U	$31 . X X$
PG01O / PG01L	$11 . X X$
PG02O / PG02L	$14 . X X$
PG01R	$41 . X X$

19-49Zero Voltage Time while Sstart Up

Factory Setting: 00.000
Settings 00.000~60.000 sec.
[4] This parameter is valid only when the setting of Pr. 07-12 (Speed tracking during start-up) $=0$.
[0] When the motor is in static status at the startup, the accuracy to estimate angles will be increased. In order to make the motor in "static status", 3 phase of drive output 0 V to motor to reach this goal. Pr. 10-49 setting time is the length of time when 3 phase output 0 V .
Id It is possible that even when this parameter is being applied but the motor at the installation site cannot go in to the "static status" caused by the inertia or by any external force. So, if the motor doesn't go into a complete "static status" in 0.2 sec., increase this setting value appropriately.
1 If Pr. 10-49 sets too high, the start-up time will be longer obviously. If it is too low, then the braking performance will be weak.

19-5 injection Frequency

Factory Setting: 500
Settings $0 \sim 1200 \mathrm{~Hz}$
This parameter is a high frequency injection command in PM SVC control mode, and usually it doesn't need to be adjusted. But if a motor's rated frequency (i.e. 400 Hz) is too close to the frequency setting of this parameter (i.e. factory setting 500 Hz), the accuracy of angles detected will be affected. Therefore, refer to the setting of Pr. 01-01 before adjusting this parameter.
[1] If the setting value of Pr. 00-17 is lower than Pr. 10-51*10, then increase the frequency of carrier wave.
(1) Pr. $10-51$ is valid only when $\operatorname{Pr} .10-53=2$.

19-52 Injection Magnitude

Factory Setting: 15.0 / 30.0

Settings $0.0 \sim 200.0 \mathrm{~V}$

$\mathbb{\square}$ The parameter is magnitude command of high frequency injection signal in PM SVC control mode.
[1] Increasing the parameter can get more accurate estimated value of angle. But the noise of electromagnetic might be louder if the setting value is too high.
[1] This parameter will be received when motor's parameter is "Auto". And this parameter will influence the accuracy of angel's estimation.
[al When the ratio of salient pole ($\mathrm{Lq} / \mathrm{Ld}$) is lower, increase Pr. 10-52 to make angle detection be accurate.Pr. $10-52$ is valid only when Pr. $10-53=2$.

19-53Position Detection Method

Factory Setting: 0
Settings 0: Disabled
1: Internal $1 / 4$ rated current attracting the rotor to zero degrees
2: High frequency injection
3: Pulse injection
[1t is suggested to set as " 2 " if it is IPM; set as " 3 " if it is SPM. If there is bad effect when set as " 2 " or " 3 ", then set as " 1 ".

11 Advanced Parameters

\wedge This parameter can be set during operation.
In this parameter group, ASR is the abbreviation for Adjust Speed Regulator

1:-7. System Control

Factory Setting: 0

Settings 0 : Auto tuning for ASR and APR

1: Inertia estimate (only in FOCPG mode)
2: Zero servo
3: Dead time compensation closed
7: Selection to save or not save the frequency
8: Maximum speed of point to point position control
bit $0=0$: Pr. 11-06 to 11-11 will be valid and Pr. 11-03~11-05 are invalid.
bit $0=1$: the system will generate an ASR setting automatically. At this moment, Pr. 11-06 ~ $11-11$ will be invalid and Pr. 11-03~11-05 are valid.

(1) bit 7 = 0 : frequency is saved before power turns off. When power turns ON again, the displayed frequency will be the memorized frequency.
bit $7=1$: frequency is not saved before power turns off. When power turns ON again, the displayed frequency will be 0.00 Hz .

: : - : Per Unit of System Inertia

Factory Setting: 256
Settings 1~65535 (256 = 1PU)
[1] User needs to set Pr. 11-00 to bit $1=1$ and execute continuous forward / reverse running. Go in Pr. 11-01 to see if the per-unit value of the current system is stable, if it is stable, then inertia estimation is completed, turn off the inertia estimation by setting Pr. 11-00 bit $1=0$; if it is NOT stable, then continue to execute forward / reverse running until stable.
IId If the Iq current command generated by ASR has a high frequency burr, then reduce it. If the response of the sudden load is too slow, raise the set value.
The base value of induction motor system inertia (Unit: $0.001 \mathrm{~kg}-\mathrm{m}^{\wedge} 2$)

Power	Setting				
1 HP	2.3				
2 HP	4.3				
3 HP	8.3				
5 HP	14.8				
7.5 HP	26.0	$	$	Power	Setting
:---:	:---:				
10 HP	35.8				
15 HP	74.3				
20 HP	95.3				
25 HP	142.8				
30 HP	176.5				

The base value for induction motor system inertia is set by Pr. 05-38 (Unit: $0.001 \mathrm{~kg}-\mathrm{m}^{\wedge} 2$)

: $\boldsymbol{1}$ - 2 ASR1 / ASR2 Switch Frequency

Factory Setting: 7.00
Settings $\quad 5.00 \sim 599.00 \mathrm{~Hz}$
Lad Low-speed and high-speed ASR switching point in the FOC area.
[】] Can be more flexible to meet the dual needs of customer: in the high-speed region has a high response and low-speed region of the estimator switch point requires a lower response. The recommended switching point is higher than Pr. 10-39.
[1] A low setting will not cover Pr. 10-39. If the setting is too high, high-speed range will be too narrow.

: : - 3 ASR1 Low-speed Bandwidth

Factory Setting: 10
Settings $\quad 1 \sim 40 \mathrm{~Hz}(\mathrm{IM}) / 1 \sim 100 \mathrm{~Hz}$ (PM)

: 1 - 1 ASR2 High-speed Bandwidth

Factory Setting: 10
Settings $\quad 1 \sim 40 \mathrm{~Hz}$ (IM) / 1~100 Hz (PM)
Zero-speed Bandwidth
Factory Setting: 10
Settings $\quad 1 \sim 40 \mathrm{~Hz}(\mathrm{IM}) / 1 \sim 100 \mathrm{~Hz}($ PM $)$

Chapter 12 Description of Parameter Settings | MH300

凹al After estimating inertia and set Pr. 11-00 to bit $0=1$ (auto tuning), user can adjust Pr. 11-03, 11-04 and 11-05 separately by speed response. The larger the set value, the faster the response. Pr. 11-02 is the switch frequency for low-speed / high-speed bandwidth.
[1] Position control pulse command ($\mathrm{Mix}=37$) and P2P position control Kp gain can adjust Pr. 11-05. The higher the value, the lower the steady-state error.

: : - 86 ASR1 Gain

Factory Setting: 10
Settings $\quad 0 \sim 40 \mathrm{~Hz}(\mathrm{IM}) / 1 \sim 100 \mathrm{~Hz}$ (PM)
: : 17 ASR1 Integral Time
Factory Setting: 0.100
Settings $0.000 \sim 10.000 \mathrm{sec}$.

: 1 - 9 ASR2 Gain

Factory Setting: 10
Settings $\quad 0 \sim 40 \mathrm{~Hz}$ (IM) / 0~100 Hz (PM)

: : - 9 ASR2 Integral Time

Factory Setting: 0.100
Settings $0.000 \sim 10.000 \mathrm{sec}$.

; : 1 In ASR Zero Speed Gain

Factory Setting: 10
Settings $\quad 0 \sim 40 \mathrm{~Hz}(I M) / 0 \sim 100 \mathrm{~Hz}$ (PM)

; : - : ASR Zero Speed Integral Time

Factory Setting: 0.100
Settings $0.000 \sim 10.000 \mathrm{sec}$.
N : ! : I Gain for ASR Speed Feed Forward
Factory Setting: 0
Settings 0~200 \%
[1] This parameter is used to improve speed response.

Tq Bias

N: i - 3 PDFF Gain Value

Factory Setting: 30
Settings 0~200 \%
[1 After finishing estimating and set Pr. 11-00 to bit 0=1 (auto tuning), using Pr. 11-13 to reduce overshoot. Please adjust PDFF gain value by actual situation.
In This parameter will be invalid when Pr. 05-24 is set to 1 .

[^0]
: : 1 : 4 Low-pass Filter Time of ASR Output

Factory Setting: 0.008
Settings $0.000 \sim 0.350 \mathrm{sec}$.
[10] It is used to set the filter time of ASR command.

: : - 5 Notch Filter Depth

Factory Setting: 0
Settings $0 \sim 20 \mathrm{db}$
1:-7 Notch Filter Frequency
Factory Setting: 0.00
Settings $\quad 0.00 \sim 200.00 \mathrm{~Hz}$
[1] This parameter is used to set resonance frequency of mechanical system. It can be used to suppress the resonance of mechanical system.
[4] The higher the set value of Pr.11-15, the better the effect of suppressing the mechanical resonance.
[1] The notch filter frequency is the resonance of mechanical frequency.

Settings 0~500 \%
\square FOCPG and FOC Sensorless mode:
The drive rated current $=100 \%$. The setting value of Pr. 11-17~Pr. 11-20 will compare with Pr. $03-00=7,8,9,10$. The minimum of the comparison result will be torque limit. Please refer the torque limit diagram below.
1 TQCPG and TQC sensorless mode:
The function of Pr. 11-17~Pr. 11-20 is the same as FOC. However, in this case, the output torque is limited by the torque command. The minimum value between Pr. 11-17~Pr. 11-20 and Pr. 06-12 will become current output torque limit.

Chapter 12 Description of Parameter Settings | MH300

[ad Calculation equation for motor rated torque:
Motor rated torque $=T(N . M)=\frac{P(W)}{\omega(\mathrm{rad} / \mathrm{s})} ;$
$\mathrm{P}(\mathrm{W})$ value $=\operatorname{Pr} .05-02 ; \omega(\mathrm{rad} / \mathrm{s})$ value $=\operatorname{Pr} .05-03 ; \frac{R P M \times 2 \pi}{60}=\mathrm{rad} / \mathrm{s}$

[1] The control mode is based on motor rated current as 100% except these 4 modes below: IM: VF, VFPG, SVC / PM: PMSVC modes.

it-己 i Gain Value of Flux Weakening Curve for Motor 1

Factory Setting: 90
Settings 0~200 \%

: $: \mathbf{Z}$ Gain Value of Flux Weakening Curve for Motor 2

Factory Setting: 90
Settings 0~200 \%
Pr. 11-21 and Pr. 11-22 are used to adjust the output voltage of flux weakening curve.
[l] For the spindle application, the adjustment method is as follows:

1. It is used to adjust the output voltage when exceeding rated frequency.
2. Monitor the output voltage.
3. Adjust Pr. 11-21 (motor 1) or Pr. 11-22 (motor 2) setting to make the output voltage reach motor rated voltage.
4. The larger the set value, the greater the output voltage.

: :-23
 Speed Response of Flux Weakening Area

Factory Setting: 65
Settings 0~150 \%
[1] It is used to control the speed in the flux weakening area. The larger the value set in Pr. 11-23, the faster the acceleration / deceleration. In general, it is not necessary to adjust this parameter.

: : - 4 APR Gain

Factory Setting: 10.00
Settings $\quad 0.00 \sim 40.00 \mathrm{~Hz}$ (IM) / 0~100.00 Hz (PM)
[a] Kip gain of internal position $(\mathrm{Mlx}=35)$
N $\mathbf{t} \boldsymbol{1} \boldsymbol{2 5}$ Gain Value of APR Feed Forward
Factory Setting: 30
Settings 0~100
IId It works only for internal position ($\mathrm{Mlx}=35$) and position control pulse command ($\mathrm{MIX}=37$). Setting a larger value in Pr. 11-25 can shorten the pulse differential and speed up the position response. However, it may cause overshoot.

: $1-25$ APR Curve Time

Factory Setting: 3.00
Settings $0.00 \sim 655.35 \mathrm{sec}$.
[a] It is valid when the multi-function input terminal is set to $35(\mathrm{ON})$. The larger the set value, the longer the positioning time.

: : - 7 Max. Torque Command

Factory Setting: 100
Settings 0~500 \%
[1] This parameter determines the upper limit of torque command (motor rated torque is 100%).
\square Calculation equation for motor rated torque:
Motor rated torque: $T(N . M)=\frac{P(W)}{\omega(\mathrm{rad} / \mathrm{s})}$;
$\mathrm{P}(\mathrm{W})$ value $=\operatorname{Pr} .05-02 ; \omega(\mathrm{rad} / \mathrm{s})$ value $=\operatorname{Pr} .05-03 ; \frac{R P M \times 2 \pi}{60}=\mathrm{rad} / \mathrm{s}$

: 1-2 Source of Torque Offset

Factory Setting: 0

Settings 0: Disable

1: Analog signal input
2: RS-485 communication (Pr. 11-29)
3: Control by external terminal (by Pr. 11-30 to Pr. 11-32)
[1] This parameter determines the source of torque offset.
[1] When it is set to 3 , source of torque offset would determine to follow Pr. 11-30, Pr. 11-31 or Pr. 11-32 as command by the combination of MI setting as 31,32 or 33 . Please refer to the following chart:
N.O. normally open contact: $\mathrm{ON}=$ contact closed, $\mathrm{OFF}=$ contact open

Pr. 11-32	Pr. 11-31	Pr. 11-30	Torque Offset
$\mathrm{MI}=33$ (Low)	$\mathrm{MI}=32$ (Mid)	$\mathrm{MI}=31$ (High)	
OFF	OFF	OFF	None
OFF	OFF	ON	$11-30$
OFF	ON	OFF	$11-31$
OFF	ON	ON	$11-30+11-31$
ON	OFF	OFF	$11-32$
ON	OFF	ON	$11-30+11-32$
ON	ON	OFF	$11-31+11-32$
ON	ON	ON	$11-30+11-31+11-32$

i i-3 Torque Offset Setting

Factory Setting: 0.0
Settings 0.0~100.0 \%
Itl This parameter determines torque offset command. The motor rated torque is 100%.
[1] Calculation equation for motor rated torque:
Motor rated torque: $T(N . M)=\frac{P(W)}{\omega(\mathrm{rad} / \mathrm{s})}$;
$\mathrm{P}(\mathrm{W})$ value $=\operatorname{Pr} .05-02 ; \omega(\mathrm{rad} / \mathrm{s})$ value $=\operatorname{Pr} .05-03 ; \frac{R P M \times 2 \pi}{60}=\mathrm{rad} / \mathrm{s}$

: $1-3 \mathrm{H}$ High Torque Command Compensation

Factory Setting: 30.0
Settings 0.0~100.0 \%
; ! 3 ! Middle Torque Command Compensation
Factory Setting: 20.0
Settings 0.0~100.0 \%

Factory Setting: 10.0
Settings $0.0 \sim 100.0 \%$
When Pr. 11-28 is set to 3 , the source of torque offset will regard Pr. 11-30, Pr. 11-31 or Pr. 11-32 by the multi-function input terminals setting (31,32 or 33). The motor rated torque is 100 \%.
[a] Calculation equation for motor rated torque:
Motor rated torque: $T(N . M)=\frac{P(W)}{\omega(\mathrm{rad} / \mathrm{s})}$;
$\mathrm{P}(\mathrm{W})$ value $=\operatorname{Pr} .05-02 ; \omega(\mathrm{rad} / \mathrm{s})$ value $=\operatorname{Pr} .05-03 ; \frac{R P M \times 2 \pi}{60}=\mathrm{rad} / \mathrm{s}$

; : 33 Source of Torque Command

Factory Setting: 0

Settings	$0:$ Digital Keypad
	1: RS-485 communication (Pr. 11-34)
	2: Analog signal input (Pr. 03-00)
	3: CANopen

[1] When Pr. 11-33 is set to 0 or 1, torque command can be set in Pr. 11-34.
[al When Pr. 11-33 is set to 2,3 , or 5 , Pr. 11-34 would only display the torque command.

Factory Setting: 0.0
Settings $\quad-100.0 \sim+100.0 \%$ (Pr. 11-27 set value $=100 \%$)
[a] This parameter is for the torque command. When Pr. 11-27 is set to 250% and Pr. 11-34 is set to 100%, actual torque command $=250 \times 100 \%=250 \%$ motor rated torque.
[l] The drive will save the setting to the record before power turns off.

: : 35 Filter Time of Torque Command

Factory Setting: 0.000
Settings $0.000 \sim 1.000 \mathrm{sec}$.
[1] When the setting is too long, the control will be stable but the control response will be delayed. When the setting is too short, the response will be quick but the control may be unstable. User can adjust the setting according to the stability of control and response situation.

: : 36 Speed Limit Selection

Factory Setting: 0
Settings 0: Set by Pr. 11-37 (Forward speed limit) and Pr. 11-38 (Reverse speed limit)
1: Set by Pr. 11-37,11-38 and Pr. 00-20 (Source of frequency command) 2: Set by Pr. 00-20 (Source of frequency command).
Ind Speed limit function: When using the torque control mode, if the torque command is greater than the load, the motor will accelerate until the motor speed equals the speed limit, at this time, it will switch to speed control mode to stop acceleration.
(1) Pr. $11-36=1$:

When the torque command is positive, the forward speed limit is $\operatorname{Pr} .00-20$ and reverse speed limit is Pr. 11-38.

When the torque command is negative, the forward speed limit is Pr. 11-37 and reverse speed limit is Pr. 00-20.

For example: Unwind application, torque command direction is different from motor operating direction, this indicates that the motor is driven by the load. At this moment, the speed limit must be Pr. 11-37 or Pr. 11-38. Only in normal applications, when the motor drives the load and the torque command is in the same direction as the speed limit, the speed limit can be set according to Pr. 00-20.
Dad About the keypad display, please refer to the "LED function descriptions" in digital keypad instructions. In torque control, F page of keypad display the present speed limit value.

Pr.11-36=0
Forward/reverse running speed are limited by Pr.11-37 and Pr.11-38.

Pr. 11-36=1
When torque is positive, forward running speed is limited by Pr.00-20; reverse running speed is limited by Pr.11-38.

Pr. 11-36=2
Forward/reverse running speed are limited by Pr.00-20.

Pr. 11-36=1
When torque is negative, forward running speed is limited by Pr.11-37; reverse running speed is limited by Pr.00-20.

: : $\mathbf{3 7}$ Forward Speed Limit (Torque Mode)

Factory Setting: 10
Settings 0~120 \%
; : 38 Reverse Speed Limit (Torque Mode)
Factory Setting: 10
Settings 0~120 \%
[1] These parameters define the speed limit in forward and reverse directions in torque mode. (Pr. 01-00 max. output frequency $=100 \%$)

: : 39 Zero Torque Command Mode Selection

Factory Setting: 0

Settings 0: Torque mode
 1: Speed mode

(1) This parameter only works in TQCPG IM and TQCPG PM, and it defines the mode when speed limit is 0% or 0 Hz .
When Pr. 11-39 is set to 0 , and speed limit is 0% or 0 Hz , the motor will generate excitation current, and the torque is limited to the torque command Pr. 11-34
(1) When Pr. 11-39 is set to 1 , and speed limit is 0% or 0 Hz , the AC motor drive can generate output torque through speed controller (at this moment, the torque limit is Pr. 06-12), and the control mode will change from TQC + PG to FOC + PG mode. The motor will have a holding torque. At this moment, if the speed command is not 0 , the drive will change it to 0 automatically.

: : - 19 Command Source of Point-to-Point Position Control

Factory Settings: 0
Settings 0: External terminal
2: RS-485
3: CAN
4: PLC
5: Communication card

: : - ! : PWM Mode Selection

Factory Settings: 2
Settings 0: 2-phase
2: Space vector
When setting is 2-phase mode, it can reduce the drive power components losses effectively and provide better performance in the long wire applications.
When setting is space vector mode, it can reduce the power loss and electromagnetic noise of motor effectively.

: : -

Factory Settings: 0000
Settings 0000~FFFFh

bit No.	Function	Description
0	Reserved	
1	FWD / REV action control	0: FWD / REV cannot be controlled by Pr. 02-12 bit $0 \& 1$ 1: FWD / REV can be controlled by Pr. 02-12 bit $0 \& 1$
$2 \sim 15$	Reserved	

: :- 3 Max. Frequency of Point- to-Point Position Control
Factory Settings: 10.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$

Chapter 12 Description of Parameter Settings | MH300
N \quad : $\mathbf{1}$ - 4 Accel. Time of Point-to Point Position Control
Factory Settings: 1.00
Settings $0.00 \sim 655.35 \mathrm{sec}$.
:
Factory Settings: 3.00
Settings $0.00 \sim 655.35 \mathrm{sec}$.

12 Tension Control

$12-75$

Tension Control Selection
Factory Setting: 0
Settings
0 : Disable
1: Tension closed-loop, speed mode
2: Line speed closed-loop, speed mode
3: Tension closed-loop, torque mode

VF	VFPG	SVG	FOCPG	TQCPG
\bigcirc	\bigcirc	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	
				\bigcirc

(1) When using the tension control mode, regardless of which mode is selected, the status value can be displayed by the digital keypad via the setting value of Pr.0 0-04 (Content of multi-function display).
[1] Tension closed-loop, speed mode The calculation of the master frequency of the tension control:

Chapter 12 Description of Parameter Settings

Line speed closed-loop, speed mode

Tension closed-loop, torque mode
Torque (N-M) $=\frac{F^{*} D}{2}$
F: tension (N)
D: reel diameter (m)

Chapter 12 Description of Parameter Settings

Tension open-loop, torque modeTorque (N-M) $=\frac{F^{*} D}{2}$
F: tension (N)
D: reel diameter (m)

i2-7: Wind Mode
Factory Setting: 0
Settings 0: Rewind
1: Unwind
When it is set to 0 , the reel diameter (D) will increase. When it is set to 1 , the reel diameter will decrease. As shown in the following diagram.

Factory Setting: 100
Settings 1~65535
I2-73 Mechanical Gear B at Motor
Factory Setting: 100
Settings 1~65535
Ild Pr. 12-02 and Pr. 12-03 are only for tension control mode.

12-74 Source of the Tension Command / Line Speed

Factory Setting: 0
Settings 0: Parameter setting (Pr. 12-05)
1: RS-485 communication setting (Pr. 12-05)
2: Analog input (Pr. 03-00~03-01 is set to d17 tension PID target value, 03-00~03-01 is set to d15 line speed)
[1] When Pr. 12-04 is set to 0, Pr. 12-05 (Tension / Line Speed PID Target Value) can be adjusted by digital keypad.
When Pr. 12-04 is set to 1, Pr. 12-05 (Tension / Line Speed PID Target Value) can be adjusted by communication.
[1] When Pr. 12-04 is set to 2, the source of tension command is the external analog input terminals (Pr. 03-00~03-01). When Pr. 03-00~03-02 is set to 17 (PID target value of tension), Pr. 12-05 will display the PID target value of tension.
[1] When Pr. 12-04 is set to 2, the source of tension command is the external analog input terminals (Pr. 03-00~03-01). When Pr. 03-00~03-02 is set to 15 (Line speed), Pr. 12-05 will display the PID target value of line speed.

12-75PID Target Value of Tension / Line Speed

Factory Setting: 50.0
Settings $0.0 \sim 100.0 \%$
The setting range $0.0 \sim 100.0 \%$ corresponds to tension feedback 0~10V / 0~max. line speed (Pr. 08-38).
Example:
In tension mode, when Pr. 12-00 is set to 1 (Tension closed-loop, speed mode), the setting 14 of Pr. 03-00~03-02 (PID target value of tension) corresponds to tension feedback 0~10V.
In tension mode, when Pr. 12-00 is set to 2 (Line speed closed-loop, speed mode), the setting 12 of Pr. 03-00~03-02 (Line speed) corresponds to 0~max. line speed (Pr. 12-07).

$12-75$ Source Selection of Tension / Line Speed PID Feedback

Factory Setting: 0
Settings 0: Analog input (Pr. 03-00~03-01 is set to d14 tension PID feedback signal)
1: Pulse input (Pr. 12-19)
12-77 Selection of Tension PID Auto-tuning
Factory Setting: 0
Settings 0: Disable
1: Reel diameter (Pr. 12-08~12-09 corresponds to Pr. 12-23, Pr. 12-11~12-12 corresponds to Pr. 12-22)
2: Frequency (Pr. 12-08~12-09 corresponds to Pr. 01-07, Pr. 12-11~12-12 corresponds Pr. to 01-00)
When Pr. 12-07 is set to 1 :

[a] When Pr. 12-07 is set to 2:

12-8 Proportional Gain 1 of Tension PID P

Factory Setting: 50.0
Settings 0.0~1000.0
N $12-7$ Integral Time 1 of Tension PID I
Factory Setting: 1.00
Settings $0.00 \sim 500.00 \mathrm{sec}$.
! - ! Proportional Gain 2 of Tension PID P
Factory Setting: 50.0
Settings 0.0~1000.0

ごごこIntegral Time 2 of Tension PID I
Factory Setting： 1.00
Settings $0.00 \sim 500.00 \mathrm{sec}$ ．
： $\mathbf{I}^{3}-1 \boldsymbol{T}$ PID Output Selection
Factory Setting： 0
Settings 0：Positive output
1：Negative output
［1］Please select the applicable method by the different requirements from the following table．
Tension feedback

	$0 \sim 100 \%$ loose tight	$0 \sim 100 \%$ tight \quad loose
Rewind	positive output	negative output
Unwind	negative output	positive output

12－15 Tension／Line Speed PID Output Limit

Factory Setting： 20.00
Settings 0～100．00 \％
（1）Output limit range $=$ Pr．12－15＊Pr．01－00．

：2－15 Source of Line Speed Input Command

Factory Setting： 0
Settings 0：Disable
1：Analog input（Pr．03－00～03－01 is set to d15 line speed）
2：RS－485 communication setting（Pr．12－20）
3：Pulse input（Pr．12－19）
4：DFM－DCM pulse input（Pr．02－21）
（1）When it is set to 1,3 or 4 ，the current line speed will be saved into Pr．12－20 by analog and pulse command．When it is set to 2 ，the setting of Pr．12－20（current line speed）can be changed by communication．
1 When it is set to 3 or 4，pulse signal needs to be connected to PG2（pulse command input）of the PG card and then set the PG type by Pr．10－15．
1 When it is set to 3 ，it needs to use with Pr．12－19．
1 When it is set to 4，Pr．02－21 setting needs to be set to the DFM output value of previous drive（as shown in the following）before setting Pr．12－17．

12-:7Max. Line Speed

Factory Setting: 1000.0

Settings $\quad 0.0 \sim 3000.0 \mathrm{~m} / \mathrm{min}$

1 In tension closed-loop and open-loop mode: setting by the mechanism requirement, the max. line speed is the reel line speed of the pitch roller that corresponds to the max. frequency.
[1] In closed-loop of line speed: setting by the mechanism requirement.

12-9 Min. Line Speed

Factory Setting: 0.0
Settings $\quad 0.0 \sim 3000.0 \mathrm{~m} / \mathrm{min}$
[1] When the line speed setting is lower than Pr. 12-18, the drive will stop calculating the reel diameter.

$12-19$ Pulse Number for each Meter

Factory Setting: 0.0
Settings $\quad 0.0 \sim 6000.0$ pulse / m
When Pr. 12-16 is set to 3 , this parameter is required to be set.

23-27 Current Line Speed

Factory Setting: 0.0

Settings $\quad 0.0 \sim 3000.0 \mathrm{~m} / \mathrm{min}$

[ad The displayed range of this parameter is according to Pr. 12-17 and Pr. 12-18.
When Pr. 12-16 is set to 1,3 , or 4 , the current line speed will be saved into Pr. 12-20 via analog and pulse command. At this time, Pr. 12-20 will be read only.
\square When Pr. 12-16 is set to 2 , the setting of Pr. 12-20 (current line speed) can be changed by communication.

\mathfrak{Z} こ

Factory Setting: 0
Settings 0: Calculated by line speed
1: Calculated by integrating thickness (encoder is on reel shaft) (Pr. 12-28~12-30, Pr. 10-16)
2: Calculated by integrating thickness (encoder is on motor) (Pr. 12-02~12-03, 12-29~12-30, 10-01~10-02)
3: Calculated by analog input (Pr. 03-00~03-01 is set to d16)
\square When it is set to 1 or 2 , it needs to be used with PG card.When it is set to 1 , the reel diameter can be got from the encoder on the reel shaft. At this time, the pulse signal needs to be connected to the PG2 (pulse input command) of PG card and get the reel diameter from the settings of Pr. 10-15, Pr. 12-28, Pr. 12-29 and Pr. 12-30.
1 When it is set to 2 , the reel diameter can be calculated from the motor encoder and gear ratio. At this time, the pulse signal should be connected to the PG1 (pulse feedback) of the PG card and get the reel diameter from the settings of Pr. 12-02, 12-03, Pr. 10-01, Pr. 10-00, Pr. 12-29 and Pr. 12-30.

When it is set to 3 , the reel diameter can be calculated by analog input (Pr. 03-00~03-01 is set to 16) and the corresponding value of 10 V is Pr. 12-22.

[1] Definition of reel diameter

:2-2己 Max. Reel Diameter

Factory Setting: 6000.0
Settings $1.0 \sim 6000.0 \mathrm{~mm}$

Factory Setting: 1.0
Settings $\quad 1.0 \sim 6000.0 \mathrm{~mm}$

12－3

Factory Setting： 0

Settings 0：RS－485 communication setting（Pr．12－25）
1：Analog input（Pr．03－00－Pr．03－01 is set to d16）
\square When it is set to 1 ，the corresponding value of 10 V is Pr．12－22．

12－25 Initial Reel Diameter

Factory Setting： 1.0
Settings $0.0 \sim 6000.0 \mathrm{~mm}$
When Pr． $12-24$ is set to 1 ，Pr． $12-25$ will be read only．

12－36 Initial Reel Diameter 1

Factory Setting： 1.0
Settings $\quad 0.0 \sim 6000.0 \mathrm{~mm}$

こごご Initial Reel Diameter 2

Factory Setting： 1.0

Settings $0.0 \sim 6000.0 \mathrm{~mm}$

［1］If customers choose a variety of different types of reel diameter please set Pr．12－24 to 0 （set by communication）．For example：Pr．12－25 setting can be changed by inputting the digital keypad， HMI page plan or text panel（PLC product：TP series）via communication．
\mathbb{l} When the drive is at stop in tension control mode，3－stage initial reel diameter（Pr．12－25～27）is set by the digital status of multi－function input terminal setting 45 and 46 ，use terminal 44 function after setting the contact status of multi－function input terminal 45 and 46 ，as shown in the following table．

$\mathrm{MI}=46$	$\mathrm{MI}=45$	
OFF	OFF	ON：it will write Pr．12－25into Pr．08－54
OFF	ON	ON：it will write Pr．12－26 into Pr．08－54
ON	OFF	ON：it will write Pr．12－27 into Pr．08－54
ON	ON	ON：it will reset Pr．12－33 to the factory setting

$12-28$ Number of Pulse per Revolution

Factory Setting： 1

Settings 1～10000 ppr

［1］When Pr．12－21 is set to 1 ，this parameter needs to be set．This parameter is the number of pulse per revolution that a reel rotates．

！2］ 3 Coil Number for each Layer

Factory Setting： 1

Settings 1～10000

［1］Set the coil number of turns required for each additional layer of the reel．
$12-39$ Material Thickness
Factory Setting: 0.001
Settings $\quad 0.001 \sim 60.000 \mathrm{~mm}$
[10] It is used to set the thickness of the material.
!2-3 ! Filter Time of Reel Diameter
Factory Setting: 1.00
Settings $0.00 \sim 100.00 \mathrm{sec}$.
[al This parameter can be used to improve instability of the source of reel diameter (Pr. 12-21).

$\mathfrak{Z} \mathbf{Z}$ - \mathbf{Z} Auto Compensation of Reel Diameter

Factory Setting: 0

$$
\begin{array}{ll}
\text { Settings } & 0: \text { Disable } \\
& \text { 1: Enable }
\end{array}
$$

[1] This parameter is only valid when Pr. 12-00 is set to 1 and Pr. 12-16 is not set to 0 . Use this parameter for auto compensation of reel diameter when the mechanical gear ratio or line speed cannot be accurate.

12-33 Current Reel Diameter

Factory Setting: 1.0
Settings $\quad 1.0 \sim 6000.0 \mathrm{~mm}$
When the AC motor drive is not at STOP, this parameter will be read only.

:2-34 Smart Start Function

Factory Setting: 0
Settings 0: Disable
1: Enable
2: In unwind mode, rewind in reverse direction

12-3 Switch Level for Smart Start and PID Function

Factory Setting: 15.0
Settings $\quad 0.0 \sim 100.0$ \% (according to Pr. 12-05)
[4] Example: Assume that the tension feedback 0~100 \% corresponds to loose tension to tight tension, and Pr. 12-05 = 50%, Pr. 12-35 = 10%, then the smart start range will be 0~40 \%.

12-36 Frequency for Smart Start

Factory Setting: 2.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
12-37 Accel. Time for Smart Start
Factory Setting: 3.00
Settings $0.01 \sim 600.00 \mathrm{sec}$.
Mr. 12-34~12-37 are only valid when Pr. 12-00 is set to 1 .
1 Pr. 12-37 is only valid when there is no source of line speed.
[1] When start-up, set Pr. 12-34 to 1 to avoid long tension convergence time (under loose material or out of the range of Pr. 12-35 setting).

Example：The PID control is only valid when adjust the set value of Pr．12－36 and Pr．12－37 to make the tension feedback in the setting range of Pr．12－35．
1 When Pr．12－34 is set to 2 in unwind mode，it allows the motor to operate in opposite direction to tight the material automatically．

12－38 Broken Belt Detection

Factory Setting： 0
Settings 0：Disable
1：Enable
12－39Min．Line Speed of Broken Belt Detection
Factory Setting： 0.0
Settings $\quad 0.0 \sim 3000.0 \mathrm{~m} / \mathrm{min}$
： 2 －
Factory Setting： 100.0
Settings $\quad 1.0 \sim 6000.0 \mathrm{~mm}$

！ 2 －！D Detection Time of Broken Belt

Factory Setting： 1.00
Settings $0.00 \sim 100.00 \mathrm{sec}$ ．
（1）Pr．12－38 is only valid when Pr．12－18 is not set to 0 and Pr．12－21 is set to 0 ．
When the broken belt detection is enabled，line speed is higher than Pr．12－39，allowed difference of reel diameter of broken belt detection exceeds Pr．12－40，and detection time of broken belt exceeds Pr．12－41，the broken belt occurs．When the broken belt occurs，the drive will display＂bEb＂with free running．The multi－function output terminal setting 46 can be used simultaneously for broken belt detection．

Factory Setting： 100
Settings 0～100 \％
1 The corresponding value for 100% of tension feedback is 10 V ．
にコーツ3 Error Detection Time of Tension／Line Speed PID Feedback
Factory Setting： 0.5
Settings $\quad 0.0 \sim 10.0 \mathrm{sec}$ ．

Factory Setting： 0
Settings 0：Warn and keep operation
1：Warn and coast to stop
2：Warn and ramp to stop
10 When the error of tension PID target value and tension PID feedback exceeds Pr．12－42 and the allowed error detection time of tension PID exceeds Pr．12－43，tension PID feedback error occurs．Refer to Pr．12－43 for error treatment of tension PID feedback．The drive will display ＂tdEv＂at this moment．

Factory Setting: 100.0
Settings 0.0~100.0 \%
長 -
Factory Setting: 0
Settings $\quad 0.0 \sim 100.0 \%$
[1] It is valid when Pr. 12-00 is set to 1 .
12-4? DFM Selection
Factory Setting: 0
Settings 0: Output frequency (Hz)
1: Frequency command (Hz)
!2-13 Low-pass Filter Time of Line Speed
Factory Setting: 0.00
Settings $0.00 \sim 100.00 \mathrm{sec}$.
1 It is used to suppress the oscillation of line speed.
Lowest Reel Diameter Calculation Frequency
Factory Setting: 1.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
Factory Setting: 0
Settings 0: RS-485 communication setting (Pr. 12-57)
1: Analog input (Pr. 03-00~03-01 is set to d18 tension setting value) (Pr. 12-57)
(1) Pr. 12-55~12-65 are valid when Pr. 12-00 is set to 4.

When Pr. 12-55 is set to 0 , Pr. 12-57 setting can be changed by the digital keypad, HMI page plan or text panel (PLC product: TP series) inputted via communication.
When Pr. 12-55 is set to 1 and one of Pr. 03-00~03-01 is set to 18 , Pr. 12-57 will display the tension setting.

$12-55$ Max. Tension Value

Factory Setting: 0
Settings 0~30000 N
12-57 Tension Setting Value
Factory Setting: 0
Settings 0~30000 N
(1) Pr. 12-57 will be read only when Pr. 12-55 is set to 1 . The analog input 10 V corresponds to Pr. 12-56.

$12-58$ Source of Zero-speed Tension Setting

Factory Setting: 0

Settings 0: Disable

1: RS-485 communication setting (Pr. 12-59)
2: Analog input (Pr. 03-00~03-01 is set to 19 zero-speed tension) (Pr. 12-59)
[a] When Pr. 12-58 is set to 1, Pr. 12-59 setting can be changed by the digital keypad, HMI page plan, text panel (PLC product: TP series) inputted via communication.
[a] When Pr. 12-58 is set to 2 and one of Pr. 03-00~03-01=19, Pr. 12-59 only displays tension setting.

$12-59$ Setting Value of Zero-Speed Tension

Factory Setting: 0
Settings 0~30000 N
[1] Pr. 12-59 will be read only when Pr. $12-58$ is set to 2 . The analog input 10 V corresponds to Pr. 12-56.

$12-6.1$ Source of Tension Taper

Factory Setting: 0
Settings 0: RS-485 communication setting (Pr. 12-61)
1: Analog input (Pr. 03-00~03-01 is set to d20 tension taper) (Pr. 12-61)

!2-5:Tension Taper

Factory Setting: 0
Settings 0~100 \%
When Pr. 12-60 is set to 0 , Pr. 12-61 setting can be changed by digital keypad, HMI page plan, text panel (PLC product: TP series) inputted via communication.
[a] When Pr. 12-60 is set to 1 and one of Pr.03-00~03-01 is set to 20 , Pr. 12-61 is used to display the tension taper only.
1 During the rewind process, the tension setting should be decreased by the increased reel to rewind the material successfully.

[a] The reel control is shown as follows.

$12-62$ Friction Compensation

Factory Setting: 0.0
Settings 0.0~100.0 \%
[1] It is used for the compensation of dynamic friction and 100% corresponds to motor rated torque.
[a] The compensation coefficient of the friction torque can be got from the inertia estimation in speed mode. The user can also make adjustments as required.

12-63Compensation Coefficient of Material Inertial

Factory Setting: 0
Settings 0~30000
[1] Compensation coefficient of material inertia = material density*material width. Unit for density is $\mathrm{kg} / \mathrm{m}^{3}$ and for width is m . The material inertia on the reel varies with the change of reel diameter.

$12-64$ Torque Feed Forward Gain

Factory Setting: 50.0
Settings 0.0~100.0 \%
12-65 Low Pass Filter Time of Torque Feed Forward
Factory Setting: 5.00
Settings $0.00 \sim 100.00$
[1] Pr. 12-64~12-65 are used to adjust the torque that needed by the mechanical rotation inertia during acceleration / deceleration.

13 Macro / User Define Macro

13-9 Application Selection

Factory Setting: 00

Settings	00: Disabled
01: User Parameter	
02: Compressor	
03: Fan	
04: Pump	
05: Conveyor	
06: Machine tool	
07: Packing	
08: Textiles	

\square Note: After selecting the macro, some of default values will be adjusted automatically according to the application selection.
[1] Group setting 02: Compressor
The following table of contents is the relevant application parameters used for compressor settings.

Pr.	Explanation	Settings
00-11	Control of speed mode	0 (V/F control mode)
00-16	Load selection	0 (Normal load)
00-17	Carrier frequency	Factory default setting
00-20	Source of the master frequency command (AUTO)	2 (External analog input)
00-21	Source of the operation command (AUTO)	1 (External terminals)
00-22	Stop method	0 (Ramp to stop)
00-23	Control of motor direction	1 (Disable reverse)
01-00	Max. operation frequency of motor 1	Factory default setting
01-01	Output frequency of motor 1	Factory default setting
01-02	Output voltage of motor 1	Factory default setting
01-03	Mid-point frequency 1 of motor 1	Factory default setting
01-04	Mid-point voltage 1 of motor 1	Factory default setting
01-05	Mid-point frequency 2 of motor 1	Factory default setting
01-06	Mid-point voltage 2 of motor 1	Factory default setting
01-07	Min. output frequency of motor 1	Factory default setting
01-08	Min. output voltage of motor 1	Factory default setting
01-11	Output frequency lower limit	20 (Hz)
01-12	Accel. time 1	20 (s)
01-13	Decel. time 1	20 (s)
03-00	Analog input selection (AVI)	0 (No function)
03-01	Analog input selection (ACI)	1 (Frequency command)
05-01	Full-load current of induction motor 1 (A)	Factory default setting
05-03	Rated speed of induction motor 1 (rpm)	Factory default setting
05-04	Pole number of induction motor 1	Factory default setting

(1) Group setting 03: Fan

The following table of contents is the relevant application parameters used for fan settings.

Pr.	Explanation	Settings
00-11	Control of speed mode	0 (VF)
00-16	Load selection	0 (Normal load)
00-17	Carrier frequency	Factory default setting
00-20	Source of the master frequency command (AUTO)	2 (External analog input)
00-21	Source of the operation command (AUTO)	1 (External terminals)
00-22	Stop method	1 (Coast to stop)
00-23	Control of motor direction	1 (Disable reverse)
00-30	Source of the master frequency command (HAND)	0 (Digital keypad)
00-31	Source of the operation command (HAND)	0 (Digital keypad)
01-00	Max. operation frequency of motor 1	Factory default setting
01-01	Output frequency of motor 1	Factory default setting
01-02	Output voltage of motor 1	Factory default setting
01-03	Mid-point frequency 1 of motor 1	Factory default setting
01-04	Mid-point voltage 1 of motor 1	Factory default setting
01-05	Mid-point frequency 2 of motor 1	Factory default setting
01-06	Mid-point voltage 2 of motor 1	Factory default setting
01-07	Min. output frequency of motor 1	Factory default setting
01-08	Min. output voltage of motor 1	Factory default setting
01-10	Output frequency upper limit	50 (Hz)
01-11	Output frequency lower limit	35 (Hz)
01-12	Accel. time 1	15 (s)
01-13	Decel. time 1	15 (s)
01-43	V/F curve selection	2 (2 ${ }^{\text {nd }} \mathrm{V} / \mathrm{F}$ curve)
02-05	Multi-function input command 5 (MI5)	16 (Rotating speed command from ACl)
02-16	Multi-function output 2 (MO1)	11 (Malfunction indication)
02-17	Multi-function output 3 (MO2)	1 (Indication during RUN)
03-00	Analog input selection (AVI)	1 (Frequency command)
03-01	Analog input selection (ACI)	1 (Frequency command)
03-28	AVI terminal input selection	0 (0~10V)
03-29	ACI terminal input selection	1 (0~10V)
03-31	AFM output selection	0 (0~10V)
03-50	Analog input curve selection	1 (3 point curve of AVI)
07-06	Restart after momentary power loss	2 (Speed tracking by minimum output frequency)
07-11	Restart times after fault	5 (times)
07-33	Return time of fault restart	60 (s)

[al Group setting 04: Pump
The following table of contents is the relevant application parameters used for pump settings.

Pr.	Explanation	Settings
00-11	Control of speed mode	0 (VF)
00-16	Load selection	0 (Normal load)
00-20	Source of the master frequency command (AUTO)	2 (External analog input)
00-21	Source of the operation command (AUTO)	1 (External terminals)
00-23	Control of motor direction	1 (Disable reverse)
01-00	Max. operation frequency of motor 1	Factory default setting
01-01	Output frequency of motor 1	Factory default setting
01-02	Output voltage of motor 1	Factory default setting
01-03	Mid-point frequency 1 of motor 1	Factory default setting
01-04	Mid-point voltage 1 of motor 1	Factory default setting
01-05	Mid-point frequency 2 of motor 1	Factory default setting
01-06	Mid-point voltage 2 of motor 1	Factory default setting
01-07	Min. output frequency of motor 1	Factory default setting
01-08	Min. output voltage of motor 1	Factory default setting
01-10	Output frequency upper limit	50 (Hz)
01-11	Output frequency lower limit	35 (Hz)
01-12	Accel. time 1	15 (s)
01-13	Decel. time 1	15 (s)
01-43	V/F curve selection	2 (2 ${ }^{\text {nd }}$ V/F curve)
07-06	Restart after momentary power loss	2 (Speed tracking by minimum output frequency)
07-11	Restart times after fault	5 (times)
07-33	Return Time of Fault Restart	60 (s)

(1) Group setting 05: Conveyor

The following table of contents is the relevant application parameters used for conveyor settings.

Pr.	Explanation	Settings
$00-11$	Control of speed mode	0 (VF)
$00-16$	Load selection	0 (Normal load)
$00-20$	Source of the master frequency command (AUTO)	2 (External analog input)
$00-21$	Source of the operation command (AUTO)	1 (External terminals)
$01-00$	Max. operation frequency of motor 1	Factory default setting
$01-01$	Output frequency of motor 1	Factory default setting
$01-02$	Output voltage of motor 1	Factory default setting
$01-03$	Mid-point frequency 1 of motor 1	Factory default setting

Pr.	Explanation	Settings
$01-04$	Mid-point voltage 1 of motor 1	Factory default setting
$01-05$	Mid-point frequency 2 of motor 1	Factory default setting
$01-06$	Mid-point voltage 2 of motor 1	Factory default setting
$01-07$	Min. output frequency of motor 1	Factory default setting
$01-08$	Min. output voltage of motor 1	Factory default setting
$01-12$	Accel. time 1	$10(\mathrm{~s})$
$01-13$	Decel. time 1	$10(\mathrm{~s})$

[1] Group setting 06: Machine tool
The following table of contents is the relevant application parameters used for machine tool settings.

Pr.	Explanation	
$00-11$	Control of speed mode	0 (VF)
$00-17$	Carrier frequency	Factory default setting
$00-20$	Source of the master frequency command (AUTO)	2 (External analog input)
$00-21$	Source of the operation command (AUTO)	1 (External terminals)
$01-00$	Max. operation frequency of motor 1	Factory default setting
$01-01$	Output frequency of motor 1	Factory default setting
$01-02$	Output voltage of motor 1	Factory default setting
$01-03$	Mid-point frequency 1 of motor 1	0
$01-04$	Mid-point voltage 1 of motor 1	0
$01-05$	Mid-point frequency 2 of motor 1	0
$01-06$	Mid-point voltage 2 of motor 1	0
$01-07$	Min. output frequency of motor 1	Factory default setting
$01-08$	Min. output voltage of motor 1	Factory default setting
$01-12$	Accel. time 1	5 (s)
$01-13$	Decel. time 1	5 (s)
$01-24$	S-curve acceleration begin time 1	0
$01-25$	S-curve acceleration arrival time 2	0
$01-26$	S-curve deceleration begin time 1	0
$01-27$	S-curve deceleration arrival time 2	0
$02-03$	Multi-function input command 3 (MI3)	1 (Multi-stage speed command 1)
$02-04$	Multi-function input command 4 (MI4)	2 (Multi-stage speed command 2)
$02-13$	Multi-function output 1 RY1	11 (Malfunction indication)
$02-16$	Multi-function output 2 (MO1)	1 (Indication during RUN)
$02-17$	Multi-function output 3 (MO2)	2 (Operation speed attained)
$03-00$	Analog input selection (AVI)	1 (Frequency command)
$06-01$	Over-voltage stall prevention	0 (Disabled)

Chapter 12 Description of Parameter Settings | MH300

Pr.	Explanation	Settings
$06-03$	Over-current stall prevention during acceleration	0 (Disabled)
$06-04$	Over-current stall prevention during operation	0 (Disabled)
$06-05$	Accel. / Decel. time selection of stall prevention at constant speed	0 (By current accel. / decel. time)
$07-01$	DC brake current level	$20(\%)$
$07-03$	DC brake time at stop	$0.3(\mathrm{~s})$
$07-04$	DC brake start frequency	$0(\mathrm{~Hz})$
$07-23$	Auto voltage regulation (AVR) function	1 (Disable AVR)

[a] Group setting 07: Packing
The following table of contents is the relevant application parameters used for packing settings.

Pr.	Explanation	Settings
00-11	Control of speed mode	0 (VF)
00-20	Source of the master frequency command (AUTO)	0 (Digital keypad)
00-21	Source of the operation command (AUTO)	2 (Communication RS-485 input)
02-00	2-wire / 3-wire operation control	1 (2-wire mode 1, power on for operation control (M1: FWD / STOP, M2: REV / STOP))
01-00	Max. operation frequency of motor 1	Factory default setting
01-01	Output frequency of motor 1	Factory default setting
01-02	Output voltage of motor 1	Factory default setting
01-03	Mid-point frequency 1 of motor 1	Factory default setting
01-04	Mid-point voltage 1 of motor 1	Factory default setting
01-05	Mid-point frequency 2 of motor 1	Factory default setting
01-06	Mid-point voltage 2 of motor 1	Factory default setting
01-07	Min. output frequency of motor 1	Factory default setting
01-08	Min. output voltage of motor 1	Factory default setting
01-12	Accel. time 1	10 (s)
01-13	Decel. time 1	10 (s)
01-24	S-curve acceleration begin time 1	Factory default setting
01-25	S-curve acceleration arrival time 2	Factory default setting
01-26	S-curve deceleration begin time 1	Factory default setting
01-27	S-curve deceleration arrival time 2	Factory default setting
03-00	Analog input selection (AVI)	1 (Frequency command)
03-28	AVI terminal input selection	Factory default setting

[a] Group setting 08: Textiles
The following table of contents is the relevant application parameters used for textiles setting.

Pr.	Explanation	Settings
$00-11$	Control of speed mode	0 (VF)
$00-20$	Source of the master frequency command (AUTO)	1 (Communication RS-485 input)
$00-21$	Source of the operation command (AUTO)	1 (External terminals)
$01-00$	Max. operation frequency of motor 1	Factory default setting
$01-01$	Output frequency of motor 1	Factory default setting
$01-02$	Output voltage of motor 1	Factory default setting
$01-03$	Mid-point frequency 1 of motor 1	Factory default setting
$01-04$	Mid-point voltage 1 of motor 1	Factory default setting
$01-05$	Mid-point frequency 2 of motor 1	Factory default setting
$01-06$	Mid-point voltage 2 of motor 1	Factory default setting
$01-07$	Min. output frequency of motor 1	Factory default setting
$01-08$	Min. output voltage of motor 1	Factory default setting
$01-12$	Accel. time 1	10 (s)
$01-13$	Decel. time 1	10 (s)
$01-24$	S-curve acceleration begin time 1	0.2 (s)
$01-25$	S-curve acceleration arrival time 2	0.2 (s)
$01-26$	S-curve deceleration begin time 1	0.2 (s)
$01-27$	S-curve deceleration arrival time 2	0.2 (s)
$06-03$	Over-current stall prevention during acceleration	180 (\%)
$06-04$	Over-current stall prevention during operation	180 (\%)
$06-07$	Over-torque detection level (motor 1)	200 (\%)
		2 (When the AC motor drive runs, the
$07-19$	Fan cooling control is ON. When the AC motor	
drive stops, the fan is OFF)		

13-7:

~ Application Parameters (User Defined)

:3-54

14 Analog Input / Output Extension Card / Protection Parameters (2)

N This parameter can be set during operation.

; 48 Input Terminal Selection of Extension Card (Al10)
 ; 4 - 7 I Input Terminal Selection of Extension Card (AI11)

Factory Setting: 0
Settings
0 : No function
1: Frequency command (in MH300 series, this function can be the torque limit in torque control mode)
2: Torque command (torque limit in speed mode)
3: Torque compensation command
4: PID target value
5: PID feedback signal
6: PTC thermistor input value
7: Positive torque limit
8: Negative torque limit
9: Regenerative torque limit
10: Positive / negative torque limit
11: PT100 thermistor input value
13: PID compensation value
14: Tension PID feedback signal
15: Line speed
16: Reel diameter
17: Tension PID target value
18: Tension setting value
19: Zero-speed tension
20: Tension taper
1 Setting value $=1$, this function can be the torque limit in torque control mode.
1 When using analog input as PID reference value, Pr. 00-20 must set 2 (analog input).
Setting method 1: Pr. 14-00~14-01 set 1 as PID reference input
Setting method 2: Pr. 14-00~14-01 set 4 as PID reference input
If the setting value 1 and set value 4 exist at the same time, Al10 input has highest priority to become PID reference input.
1 When using analog input as PID compensation value, Pr. 08-16 must set 1 (Source of PID compensation is analog input). The compensation value can be observed via Pr. 08-17.
1 When it is frequency command, the corresponding value for $0 \sim \pm 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is $0 \sim$ max. output frequency (Pr. 01-00).
1 When it is torque command, the corresponding value for $0 \sim \pm 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is $0 \sim$ max. output torque (Pr. 11-27).
When it is torque compensation, the corresponding value for $0 \sim \pm 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ is $0 \sim$ rated torque.

$10]$ When the setting of Pr. 14-00~Pr. 14-01 is the same, the Al10 will be selected first.

14-723 Analog Input Bias (AI10)

Factory Setting: 0.0
Settings -100.0~100.0 \%
1 It is used to set the corresponding Al10 voltage of the external analog input 0 .

14-93Analog Input Bias (Al11)

Factory Setting: 0.0
Settings -100.0~100.0 \%
10 It is used to set the corresponding Al11 voltage of the external analog input 0 .

Factory Setting: 0
Settings 0: No bias
1: Lower than or equal to bias
2: Higher than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
10 In a noisy environment, it is advantageous to use negative bias to provide a noise margin. It is recommended NOT to use less than 1 V to set the operation frequency.

In the diagram below: Black line: Curve with no bias. Gray line: curve with bias

Diagram 01

Pr. 14-02 = 10\%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr. 14-06 Analog Input Gain (AI10) $=100 \%$

Diagram 02

Pr. 14-02 = 10\%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr. 14-06 Analog Input Gain (AI10) $=100 \%$

Diagram 03

Pr. $14-02=10 \%$
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr. 14-06 Analog Input Gain (Al10) $=100 \%$

Diagram 04

Diagram 05

Diagram 06

Pr. 14-02 = 10\%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center

4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr. 14-06 Analog Input Gain $(\mathrm{Al} 10)=100 \%$

Pr. $14-02=10 \%$
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr. 14-06 Analog Input Gain $(\mathrm{Al} 10)=100 \%$

Pr. 14-02 = 10\%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
 0 : Negative frequency is not valid Forward and reverse run is controlled by digital keypad or external terminal.
 1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr. 14-06 Analog Input Gain $(\mathrm{Al} 10)=100 \%$

Diagram 07

Diagram 08

Diagram 09

Pr. 14-02 = 10\%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr. 14-06 Analog Input Gain $(\mathrm{Al} 10)=100 \%$
Pr. 14-02 = 10\%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr. 14-06 Analog Input Gain $(\mathrm{Al} 10)=100 \%$

Pr. 14-02 = 10\%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr. 14-06 Analog Input Gain $(\mathrm{Al} 10)=100 \%$

Diagram 10

Diagram 11

Diagram 12

Pr. 14-02 = -10\%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr. 14-06 Analog Input Gain $(\mathrm{Al} 10)=100 \%$

Pr. 14-02 = -10\%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr. 14-06 Analog Input Gain (Al10) $=100 \%$

Pr. 14-02 = - 10%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr. 14-06 Analog Input Gain $(\mathrm{Al} 10)=100 \%$

Diagram 13

Pr. 14-02 = -10\%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr. 14-06 Analog Input Gain $(\mathrm{Al} 10)=100 \%$

Pr. 14-02 = -10\%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control

Pr. 14-06 Analog Input Gain $(\mathrm{Al} 10)=100 \%$

Diagram 15

Diagram 16

Pr. 14-02 = -10\%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr. 14-06 Analog Input Gain (AI10) $=100 \%$

Diagram 17

Pr. 14-02 = 10\%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr. 14-06 Analog Input Gain $(\mathrm{Al} 10)=111.1 \%$

$$
10 / 9=111.1 \%
$$

Diagram 18

Diagram 19

Pr. 14-02 = 10%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr. 14-06 Analog Input Gain (AI10) $=111.1 \%$
$10 / 9=111.1 \%$

Diagram 20

Pr. $14-02=10 \%$
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency $=$ forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr. 14-06 Analog Input Gain (AI10) $=111.1 \%$ $10 / 9=111.1 \%$

Pr. $14-02=10 \%$
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency $=$ forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control. Pr. 14-06 Analog Input Gain (AI10) $=111.1 \%$

10/9 = 111.1\%

Diagram 22

Diagram 23

Diagram 24

Pr. $14-02=10 \%$
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency $=$ forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr. 14-06 Analog Input Gain (Al10) $=111.1 \%$
$10 / 9=111.1 \%$

Pr. $14-02=10 \%$
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control
Pr. 14-06 Analog Input Gain (AI10) $=111.1 \%$ $10 / 9=111.1 \%$

Pr. 14-02 = 10\%
Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr. 14-06 Analog Input Gain $(\mathrm{Al} 10)=111.1 \%$
$10 / 9=111.1 \%$

Diagram 25

Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

$$
\begin{aligned}
& \text { Calculate the bias: } \frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \mathrm{XV}=\frac{10}{-9}=-1.11 \mathrm{~V} \\
& \qquad \text { Pr. } 14-02=\frac{-1.11}{10} \times 100 \%=-11.1 \%
\end{aligned} \text { Calculate the gain: Pr. } 14-06=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \% \mathrm{l}
$$

Diagram 26

Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Diagram 27

Pr. 14-04~14-05 (Positive/Negative Bias Mode)
U: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad \mathrm{XV}=\frac{10}{-9}=-1.11 \mathrm{~V}$

$$
\operatorname{Pr} .14-02=\frac{-1.11}{10} \times 100 \%=-11.1 \%
$$

Calculate the gain: Pr. $14-06=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Diagram 28

Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center

4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency $=$ reverse run. Direction can not be switched by digital keypad or external teriminal control
Calculate the bias: $\begin{aligned} & \frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-\mathrm{OHz}}{(0-\mathrm{XV})} \quad \mathrm{VV}=\frac{10}{-9}=-1.11 \mathrm{~V} \\ & \text { Pr. } 14-02=: \frac{-1.11}{10} \times 100 \%=-11.1 \%\end{aligned}$
Calculate the gain: Pr. $14-06=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lowerthanorequaltobias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (AnalogF requency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency $=$ reverse run.
Direction can not be switched by digital keypad or external terminal control.

Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad \mathrm{XV}=\frac{10}{-9}=-1.11 \mathrm{~V}$
Pr. $14-02=: \frac{-1.11}{10} \times 100 \%=-11.1 \%$
Calculate the gain: $\operatorname{Pr} .14-06=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

Diagram 30

Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Diagram 31

Pr. 14-04~14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr. 03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Neagative frequency is valid.
Positive frequency $=$ forward run;
negative frequency $=$ reverse run.
Direction can not be switched by digital keypad or
external terminal control.
Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \times \mathrm{VV}=\frac{10}{-9}=-1.11 \mathrm{~V}$
Pr. $14-02=\frac{-1.11}{10} \times 100 \%=-11.1 \%$

Diagram 32

[^1]Factory Setting: 100.0
Settings -500.0~500.0 \%Pr. 14-06~14-07 are used when the source of frequency command is the analog voltage / current signal.

Factory Setting: 0.01
Settings 0.00~20.00 sec.
@l These input delays can be used to filter noisy analog signal.
[10. When the setting of the time constant is too large, the control will be stable but the control response will be slow. When the setting of time constant is too small, the control response will be faster but the control may be unstable. To find the optimal setting, please adjust the setting according to the control stable or response status.

N $14-19$ Signal Loss Selection of Analog Input 4~20 mA (ACI10)
 Signal Loss Selection of Analog Input 4~20 mA (ACI11)

Factory Setting: 0

Settings 0: Disable
1: Continue operation at the last frequency
2: Decelerate to 0 Hz
3: Stop immediately and display EF

[1] This parameter determines the treatment when $4 \sim 20 \mathrm{~mA}$ signal is loss, when ACIc (03-29 = 0).
(c) When Pr. $03-29 \neq 0$, it means the voltage input to ACI terminal is $0-10 \mathrm{~V}$ or $0 \sim 20 \mathrm{~mA}$. At this moment, Pr. 14-10, 14-11 will be invalid.

When setting is 1 or 2 , it will display warning code "ANL" on the keypad. It will be blinking until the loss of the ACl signal is recovered.
When the motor drive stops, the condition of warning does not exist, then the warning will disappear.

Factory Setting: 0
Settings 0~23
Function Chart

Settings	Functions	Descriptions
0	Output frequency (Hz)	Max. frequency Pr. 01-00 is regarded as 100%.
1	Frequency command (Hz)	Max. frequency Pr. 01-00 is regarded as 100%.
2	Motor speed (Hz)	Max. frequency Pr. 01-00 is regarded as 100%
3	Output current (rms)	$(2.5 \mathrm{X}$ rated current) is regarded as 100%
4	Output voltage	$(2 \mathrm{X}$ rated voltage $)$ is regarded as 100%
5	DC BUS voltage	$450 \mathrm{~V}(900 \mathrm{~V})=100 \%$
6	Power factor	$-1.000 \sim 1.000=100 \%$
7	Power	$(2 \mathrm{X}$ rated power) is regarded as 100%
8	Output torque	Full load torque $=100 \%$
9	AVI	$0 \sim 10 \mathrm{~V}=0 \sim 100 \%$
10	ACI	$4 \sim 20 \mathrm{~mA}=0 \sim 100 \%$
12	Iq current command	$(2.5 \mathrm{X}$ rated current) is regarded as 100%
13	Iq feedback value	$(2.5 \mathrm{X}$ rated current) is regarded as 100%
14	Id current command	$(2.5 \mathrm{X}$ rated current) is regarded as 100%
15	Id feedback value	$(2.5 \mathrm{X}$ rated current) is regarded as 100%

Settings	Functions	Descriptions
16	Vq-axis voltage command	$250 \mathrm{~V}(500 \mathrm{~V})=100 \%$
17	Vd-axis voltage command	$250 \mathrm{~V}(500 \mathrm{~V})=100 \%$
18	Torque command	Rated current of motor $=100 \%$
19	PG2 frequency command	Max. frequency Pr. 01-00 is regarded as 100%.
20	CANopen analog output	For CANopen communication analog output
21	RS-485 analog output	For InnerCOM analog output
22	Communication card analog output	For communication analog output (CMM-MOD01, CMM-EIP01, CMM-PN01, CMM-DN01)
23	Constant voltage output	Pr. 03-32 controls voltage output level $0 \sim 100 \%$ of Pr. 03-32 corresponds to 0~10V of AFM

| N | $14-14$ | Gain of Analog Output 1 (AO10) |
| :---: | :---: | :---: | :---: |
| N | $14-15$ | Gain of Analog Output 1 (AO11) |

Factory Setting: 100.0
Settings $0.0 \sim 500.0 \%$
[a] This function is used to adjust the voltage level outputted to analog meter head from analog signal (Pr. 14-12, 14-13) output terminal AFM of drive.

Factory Setting: 0

Settings 0: Absolute value of output voltage

1: Reverse output 0 V ; Positive output $0 \sim 10 \mathrm{~V}$
2: Reverse output 5-0 V; Positive output 5~10 V

Analog output direction selection

N $14-18$ Input Selection of Extension Card (Al10)
 Input Selection of Extension Card (AI11)

Factory Setting: 0

> | | $0: 0 \sim 10 \mathrm{~V}(\mathrm{AVI} 10)$ |
| :--- | :--- |
| Settings | $1: 0 \sim 20 \mathrm{~mA}(\mathrm{ACI} 10)$ |
| | $2: 4 \sim 20 \mathrm{~mA}(\mathrm{ACI} 10)$ |

[1] When changing the input mode, please check if the switch position of external terminal (Al10, Al1) is correct or not.

Factory Setting: 0.00
Settings $0.00 \sim 100.00 \%$

14-2 2 AVO10 Filter Output Time
 AVO11 Filter Output Time

Factory Setting: 0.01
Settings $0.00 \sim 20.00 \mathrm{sec}$.
14-2
Factory Setting: 4.00
Settings $\quad 14-18=0,0.00 \sim 10.00 \mathrm{~V}$
$14-18 \neq 0,0.00 \sim 20.00 \mathrm{~mA}$ or $4 \sim 20 \mathrm{~mA}$
14-25 Proportional Low Point of Extension Card (AI10)
Factory Setting: 0.00
Settings 0.00~100.00 \%
14-3 Mid-point of Extension Card (AI10)
Factory Setting: 12.00
Settings $\quad 14-18=0,0.00 \sim 10.00 \mathrm{~V}$
$14-18 \neq 0,0.00 \sim 20.00 \mathrm{~mA}$ or $4 \sim 20 \mathrm{~mA}$
14-2
Factory Setting: 50.00
Settings $0.00 \sim 100.00 \%$
N $14-3$ High Point of Extension Card (AI10)
Factory Setting: 20.00
Settings $\quad 14-18=0,0.00 \sim 10.00 \mathrm{~V}$
$14-18 \neq 0,0.00 \sim 20.00 \mathrm{~mA}$ or $4 \sim 20 \mathrm{~mA}$
1\%-3 Proportional High Point of Extension Card (AI10)
Factory Setting: 100.00
Settings $0.00 \sim 100.00 \%$
(1) Pr. 14-18 $=0$ is the voltage type $0 \sim 10 \mathrm{~V}$ analog input, and the unit is in voltage (V).
(1) Pr. $14-18 \neq 0$ is the current type $0 \sim 20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$, and the unit is in current (mA).

When setting analog input Al10 to frequency command, it 100 \% corresponds to Fmax (Pr. 01-00 Max. operation frequency).
[a] The 3 parameters (Pr.14-24, Pr. 14-26 and Pr. 14-28) must meet the following argument:
Pr. 14-24 < Pr. 14-26 < 14-28. The corresponding percentage is unlimited. Between two points is a linear calculation.
[a] The output \% will become 0% when the Al10 input value is lower than low point setting. For example:
If Pr. $14-24=2 \mathrm{~mA}$; Pr. $14-25=10 \%$, then the output will become 0% when the value is $\leq 2 \mathrm{~mA}$.
If the Al10 input is swing between 2 mA and 2.1 mA , drive's output frequency will beats between 0 \% and 10 \%.

14-39 Low Point of Extension Card (Al11)

Factory Setting: 4.00
Settings $\quad 14-19=0,0.00 \sim 10.00 \mathrm{~V}$
$14-19 \neq 0,0.00 \sim 20.00 \mathrm{~mA}$ or $4 \sim 20 \mathrm{~mA}$

\{-7-3 \} Proportional Low Point of Extension Card (Al11)

Factory Setting: 0.00
Settings $0.00 \sim 100.00 \%$

- リ-3

Factory Setting: 12.00
Settings $\quad 14-19=0,0.00 \sim 10.00 \mathrm{~V}$
$14-19 \neq 0,0.00 \sim 20.00 \mathrm{~mA}$ or $4 \sim 20 \mathrm{~mA}$
:
Factory Setting: 50.00
Settings 0.00~100.00 \%

: $4-3$ High Point of Extension Card (AI11)

Factory Setting: 20.00
Settings $\quad 14-19=0,0.00 \sim 10.00 \mathrm{~V}$ $14-19 \neq 0,0.00 \sim 20.00 \mathrm{~mA}$ or $4 \sim 20 \mathrm{~mA}$
14-35 Proportional High Point of Extension Card (Al11)
Factory Setting: 100.00
Settings $0.00 \sim 100.00 \%$
Pr. 14-19 $=0$ is the voltage type $0 \sim 10 \mathrm{~V}$ analog input, and the unit is in voltage (V).
$\operatorname{Pr} .14-19 \neq 0$ is the current type $0 \sim 20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$, and the unit is in current (mA).
When setting analog input Al11 to frequency command, it 100 \% corresponds to Fmax (Pr. 01-00 Max. operation frequency).
[1] The 3 parameters (Pr.14-30, Pr. 14-32 and Pr. 14-34) must meet the following argument: Pr. 14-30 < Pr. 14-32 < 14-34. The corresponding percentage is unlimited. Between two points is a linear calculation.
1 The output \% will become 0% when the Al11 input value is lower than low point setting. For example:
If Pr. 14-30 = 2 mA ; $\operatorname{Pr} .14-31=10 \%$, then the output will become 0% when the value is $\leq 2 \mathrm{~mA}$. If the Al11 input is swing between 2 mA and 2.1 mA , drive's output frequency will beats between 0% and 10%.

AO10 Terminal Analog Signal Mode
AO11 Terminal Analog Signal Mode
Factory Setting: 0

Settings	$0:$ AVO10 (analog voltage signal $0 \sim 10.00 \mathrm{~V}$)
	1: ACO10 (analog current signal $0.0 \sim 20.0 \mathrm{~mA}$)
	2: ACO10 (analog current signal $4.0 \sim 20.0 \mathrm{~mA}$)

Output Frequency at Malfunction 3

Output Frequency at Malfunction 4
Output Frequency at Malfunction 5
Output Frequency at Malfunction 6
Factory Setting: Read only
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
[1] When error occurs, user can check output frequency at malfunction. If the error happens again, this parameter will cover previous record.

Factory Setting: Read only
Settings $0.0 \sim 6553.5 \mathrm{~V}$
[a] When error occurs, user can check DC voltage at malfunction. If the error happens again, this parameter will cover previous record.

Output Current at Malfunction 2
Output Current at Malfunction 3
Output Current at Malfunction 4
Output Current at Malfunction 5
Output Current at Malfunction 6
Factory Setting: Read only
Settings $\quad 0.00 \sim 655.35 \mathrm{Amp}$
1 When error occurs, user can check output current at malfunction. If the error happens again, this parameter will cover previous record.

14-7.7 Fault Record 7

; \% - 7 ; Fault Record 8

! \% - 7 Fault Record 9
 1\%-73Fault Record 10

Factory Setting: 0
Settings 0: No fault record
1: Over-current during acceleration (ocA)
2: Over-current during deceleration (ocd)
3: Over-current during constant speed (ocn)
4: Ground fault (GFF)
6: Over-current at stop (ocS)
7: Over-voltage during acceleration (ovA)
8: Over-voltage during deceleration (ovd)
9: Over-voltage during constant speed (ovn)
10: Over-voltage at stop (ovS)
11: Low-voltage during acceleration (LvA)
12: Low-voltage during deceleration (Lvd)
13: Low-voltage during constant speed (Lvn)
14: Low-voltage at stop (LvS)
15: Phase loss protection (orP)
16: IGBT over-heat (oH1)
18: TH1 open: IGBT over-heat protection error(tH1o)
21: Drive over-load (oL)
22: Electronics thermal relay protection 1 (EoL1)
23: Electronics thermal relay protection 2 (EoL2)
24: Motor PTC overheat (oH3)
26: Over-torque 1 (ot1)
27: Over-torque 2 (ot2)
28: Low current (uC)
29: Home limit error (Lit)
31: Memory read-out error (cF2)
33: U-phase current detection error (cd1)
34: V-phase current detection error (cd2)
35: W-phase current detection error (cd3)
36: Clamp current detection error (Hd0)
37: Over-current detection error (Hd1)
40: Auto tuning error (AUE)
41: PID feedback loss (AFE)
42: PG feedback error (PGF1)
43: PG feedback loss (PGF2)
44: PG feedback stall (PGF3)

45: PG slip error (PGF4)
48: Analog current input loss (ACE)
49: External fault input (EF)
50: Emergency stop (EF1)
51: External Base Block (bb)
52: Password error (Pcod)
54: Communication error (CE1)
55: Communication error (CE2)
56: Communication error (CE3)
57: Communication error (CE4)
58: Communication Time-out (CE10)
59: PU panel time out (CP10) (for MH LCD keypad and CC01 keypad)
61: Y-connection / \triangle-connection switch error (ydc)
62: Decel. Energy Backup Error (dEb)
63: Slip error (oSL)
65: PG card error (PGF5)
72: Channel 1 (S1~DCM) safety loop error (STL1)
76: Safety torque off (STo)
77: Channel 2 (S2~DCM) safety loop error (STL2)
78: Internal loop error (STL3)
79: U phase Over current before run (Uoc)
80: V phase Over current before run (Voc)
81: W phase Over current before run (Woc)
82: U phase output phase loss (OPHL)
83: V phase output phase loss (OPHL)
84: W phase output phase loss (OPHL)
87: Drive over load in low frequency (oL3)
89: Initial rotor position detection error (RoPd)
101: CANopen software disconnect 1 (CGdE)
102: CANopen software disconnect 2 (CHbE)
104: CANopen hardware disconnect (CbFE)
105: CANopen index setting error (CIdE)
106: CANopen station number setting error (CAdE)
107: CANopen memory error (CFrE)
111: Internal communication overtime error (ictE)
121: Internal communication error (CP20)
123: Internal communication error (CP22)
124: Internal communication error (CP30)
126: Internal communication error (CP32)
127: Software version error (CP33)
128: Over-torque 3 (ot3)

129: Over-torque 4 (ot4)
130: Over-torque 5 (ot5)
131: Over-torque 6 (ot6)
132: Over-torque 7 (ot7)
133: Over-torque 8 (ot8)
134: Electronics thermal relay 3 protection (EoL3)
135: Electronics thermal relay 4 protection (EoL4)
136: Electronics thermal relay 5 protection (EoL5)
137: Electronics thermal relay 6 protection (EoL6)
138: Electronics thermal relay 7 protection (EoL7)
139: Electronics thermal relay 8 protection (EoL8)
140: GFF detected when power on (Hd6)
141: GFF before run (BGFF)
142: Auto tuning error 1 (DC test stage) (AUE1)
143: Auto tuning error 2 (High frequency test stage) (AUE2)
144: Auto tuning error 3 (Rotary test stage) (AUE3)
146: Tension belt broken (TBB)
147: Tension PID error (TPD)
[1] As long as the fault is forced to stop, it will be recorded.
[1] Low voltage (Lv) when stopped (LvS warning, no record). Low voltage (Lv) when operation (LvA, Lvd, Lvn error, it will be recorded).
\square When dEb function is effective and enable, drive will start the dEb function and also record the error code 62 to Pr. 06-17~06-22, Pr. 14-70~14-73 at same time.

14-74 Over-torque Detection Selection (Motor 3)

; \% - $\mathbf{7} 7$ Over-torque Detection Selection (Motor 4)

Factory Setting: 0

Settings 0: No function

1: Continue operation after Over-torque detection during constant speed operation

2: Stop after Over-torque detection during constant speed operation
3: Continue operation after Over-torque detection during RUN
4: Stop after Over-torque detection during RUN
When Pr. 14-74 and Pr. 14-77 setting are 1 or 3, there will have a warning message but no error record.

When Pr. 14-74 and Pr. 14-77 setting are 2 or 4, there will have an error message and error record.

N| $14-75$ |
| :---: |
| N |
| $N$$14-78$
 14 |

Factory Setting: 120
Settings 10~250 \% (100 \% corresponds to the rated current of the drive)

Factory Setting: 0.1
Settings $0.0 \sim 60.0 \mathrm{sec}$.
When the output current exceeds over-torque detection level (Pr. 14-75 / Pr.14-78) and overtorque detection time (Pr. 14-76 / Pr. 14-79), the over-torque detection will follow Pr. 14-74 or Pr. 14-77 setting.
[1] When Pr. 14-74 or Pr. 14-77 setting is 1 or 3 , drive will display ot 3 / ot 4 warning when over-torque detection but drive is still continuous operation, until the output current is less than 5% of over-torque detection, the warning message will be relieved.

When Pr. 14-74 or Pr. 14-77 setting is 2 or 4, drive will display ot3 / ot 4 error when over-torque detection and drive will stop operation, it will operate by manual reset.

14-8.7 Electronic Thermal Relay Selection 3 (Motor 3)
 14-8日 Electronic Thermal Relay Selection 4 (Motor 4)

Factory Setting: 2

$$
\begin{aligned}
\text { Settings } & 0: \text { Inverter motor (with external forced cooling) } \\
& \text { 1: Standard motor (motor with fan on the shaft) } \\
& \text { 2: Disabled }
\end{aligned}
$$

\mathbb{M} To prevent the self-cooling motor occurs motor overheating during low speed operation, users can set the electronic thermal relay to limit the allowed output power of drive.
The setting 0 is suitable for inverter motor (with external forced cooling). There is no obvious correlation between the heat dissipation capability and speed of motor, therefore, the low speed electronic thermal relay remains fixed to ensure the load capacity of the motor at low speed.
The setting 1 is suitable for standard motor (motor with fan on the shaft). The cooling capacity of motor is poor at low speed, therefore, the electronic thermal relay action time will be reduced appropriately to ensure the life of the motor.
When power ON / OFF is used frequently, the thermal relay protection will be reset when power OFF, therefore, if the setting is 0 or 1 , it may not be protected. If there are several motors connected to a drive, please install the electronic thermal relay in each of motors.

; 1-8 - : Electronic Thermal Relay Action Time 3 (Motor 3)
 14-83 Electronic Thermal Relay Action Time 4 (Motor 4)

Factory Setting: 60.0
Settings $30.0 \sim 600.0 \mathrm{sec}$.
Electronic thermal relay is according to the motor 150 \% rated current value and with Pr. 14-81 settings, the settings of Pr. 14-83 is to protect the motor to avoid burned due to motor overheating. When it reaches the setting time, the drive will display "EoL3 / EoL4", and the motor will be free run to stop.
This parameter sets the action time of electronic thermal relay, and the function is based on the operating characteristic curve of electronic thermal relay I 2 t , it is according to the drive output frequency, current and running time to protect the motor and prevent the overheating of motor.

[10] The electronic thermal relay action condition should be follow the settings of Pr. 14-80 /

Pr. 14-82:

1. Pr. 14-80 / Pr. 14-82 set to 0 : Inverter motor (with external forced cooling):

When drive output current is higher than the rated current 150% of motor (please refer to the motor independent cooling curve figure as above), drive starts to accumulate time, if the accumulation time exceeds the settings of Pr. 14-81 / Pr. 14-83, electronic thermal relay will be actuated.
2. Pr. 14-80 / Pr. 14-82 set to 1 :Standard motor (motor with fan on the shaft) :

When drive output current is higher than the rated current 150% of motor (please refer to the motor coaxial cooling curve figure as above), drive starts to accumulate time if the accumulation time exceeds the settings of Pr. 14-81 / Pr. 14-83, electronic thermal relay will be actuated. The electronic thermal relay action time will depend on the drive output current (load rate of motor \%) to make appropriate adjustments, the short action time when the current is high, the long action time when the current is low, please see the figure showing as below:

12-2 Adjustment \& Application

Standard PM Motor Adjustment Procedure

- Pr. 00-11 = 2 SVC (Pr. 05-33 = 1 or 2)

Flow chart of adjustment when starting up WITHOUT load

Flow chart of adjustment when starting up WITH load

PMSVC control diagram

Adjustment procedure

1. Select PM motor control

Pr. 05-33 =1 or 2
2. Set up motor parameter according to the nameplate on the motor

Pr. 01-01 Rated frequency
Pr. 01-02 Rated voltage
Pr. 05-34 Rated current
Pr. 05-35 Rated Power
Pr. 05-36 Rated speed
Pr. 05-37 Pole number of motor
3. Execute PM Auto-tuning (static)

Set Pr. 05-00 =13 and press Run. When the tuning is done, the following parameters will be obtained.

Pr. 05-39 Stator resistance
Pr. 05-40 Permanent magnet motor Ld
Pr. 05-41 Permanent magnet motor Iq
Pr. 05-43 (V / 1000 rpm), the Ke parameter of PM motor (this can be calculated automatically according to power, current and speed of motor).
Pr. 10-52 The amplitude of the high frequency signal injected during angle detection

Factory Setting: 15.0 / 30.0
Settings $0.0 \sim 200.0 \mathrm{~V}$
[1] Increasing the parameter can get more accurate estimated value of angle. But the noise of electromagnetic might be louder if the setting value is too high.
\square This parameter will be received when motor's parameter is "Auto". And this parameter will influence the accuracy of angel's estimation.
[1] When the ratio of salient pole ($\mathrm{Lq} / \mathrm{Ld}$) is lower, increase Pr. 10-52 to make angle detection be accurate.
(1) Pr. 10-52 is valid only when Pr. 10-53 = 2 .
4. Set the speed control mode: Pr. $00-10=0, \operatorname{Pr} \cdot 00-11=2$ SVC.
5. It is suggested that cutting off the power after finishing tuning, and then re-power on.
6. The ration of PMSVC control mode is $1: 20$.
7. When PMSVC control mode is under 1 / 20 rated speed, load bearing capacity $=100 \%$ motor rated torque.
8. PMSVC control mode is not applicable for zero speed control.
9. Start-up with load and forward / reverse load bearing capacity of PMSVC control mode = 100% rated torque of motor.
10. Set up the speed estimators related parameters.

19-3 : I/F Mode Current Command

Factory Setting: 40
Settings 0~150 \% of motor's rated current
[la The parameter is the current command of the drive in low-speed area (low-speed area: frequency command < Pr. 10-39). When it is stalling on heavy duty start-up or forward / reverse with load, adjust the parameter (increase). If inrush current is too high to cause oc stall, then decrease it.

1193 PM FOC Sensorless Speed Estimator Bandwidth

Factory Setting: 5.00

Settings $\quad 0.00 \sim 600.00 \mathrm{~Hz}$

[1] The parameter is speed estimator bandwidth. Adjust the parameter will influence the stability and the accuracy of speed for motor.
1 If there is low frequency vibrates (the waveform is similar to sin wave) during the process, then increase the bandwidth. If there is high frequency vibrates (the waveform vibrates extremely and is like spur), then decrease the bandwidth.

17-34PM Sensorless Speed Estimator Low-pass Filter Gain

Factory Setting: 1.00
Settings 0.00~655.35
[I] Adjust the parameter will influence the response speed of speed estimator.
1 If there is low frequency vibrates (the waveform is similar to sin wave) during the process, then increase the gain. If there is high frequency vibrates (the waveform vibrates extremely and is like spur), then decrease the gain.

18-39 Frequency Point when Switch from I/F Mode to PM Sensorless Mode

Factory Setting: 20.00
Settings $\quad 0.00 \sim 599.00 \mathrm{~Hz}$
\square The parameter is the switch point which is from low frequency to high frequency. It will influence the switch point of speed observer in high / low frequency area.
[a] If the switch point is too low, motor will generate not enough back emf to let the speed estimator measure the right rotator's position and speed, and cause stall and oc when the frequency of switch point is running.
Ild If the switch point is too high, the active area of I/F will be too wide, which will generate larger current and cannot save energy. (The reason is that if the current of Pr. 10-31 sets too high, and the high switch point will make the drive keeps outputting with the setting value of Pr. 10-31)

$17-42$ Initial Angle Detection Pulse Value

Factory Setting: 1.0

Settings $0.0 \sim 3.0$

[1] The angle detection is fixed to 3: Use the pulse injection method to start. The parameter influences the value of pulse during the angle detection. The larger the pulse is, the higher of the accuracy of rotator's position. But larger pulse might cause oc easily.
1 Increase the parameter when the running direction and the command are opposite while start-up. If oc occurs in the start-up moment, then decrease the parameter.
[1] Please refer to Chapter 12-2 Adjustment \& Application for detailed motor adjustment procedure.

19-49 Zero Voltage Time While Start Up

Factory Setting: 00.000
Settings 00.000~60.000 sec.
[1] This parameter is valid only when the setting of Pr. 07-12 (Speed tracking during start-up) $=0$.
[ad When the motor is in static status at the startup, the accuracy to estimate angles will be increased. In order to make the motor in "static status", 3 phase of drive output 0 V to motor to reach this goal. The Pr. 10-49 setting time is the length of time when 3 phase output 0 V .
[1] It is possible that even when this parameter is being applied but the motor at the installation site cannot go in to the "static status" caused by the inertia or by any external force. So, if the motor doesn't go into a completer "static status" in 0.2 sec, increase this setting value appropriately.
[4] If Pr. 10-49 sets too high, the start-up time will be longer obviously. If is too low, then the braking performance will be weak.

Factory Setting: 500
Settings $0 \sim 1200 \mathrm{~Hz}$
[al This parameter is a high frequency injection command in PM SVC control mode and it doesn't often need to be adjusted. But, if a motor's rated frequency (i.e. 400 Hz) is too close to the frequency setting of this parameter (i.e. factory setting 500 Hz), the accuracy of angles detected will be affected. Therefore, refer to the setting of Pr. 01-01 before adjusting this parameter.
[1] If the setting value of Pr. 00-17 is lower than Pr. 10-51*10, then increase the frequency of carrier wave.
[】] Pr. 10-51 is valid only when $\operatorname{Pr} \cdot 10-53=2$.

19-52 Injection Magnitude

Factory Setting: 15.0 / 30.0
Settings $0.0 \sim 200.0 \mathrm{~V}$
[a] The parameter is magnitude command of high frequency injection signal in PM SVC control mode.
[1] Increasing the parameter can get more accurate estimated value of angle. But the noise of electromagnetic might be louder if the setting value is too high.
This parameter will be received when motor's parameter is "Auto". And this parameter will influence the accuracy of angel's estimation.
[a] When the ratio of salient pole ($\mathrm{Lq} / \mathrm{Ld}$) is lower, increase Pr. 10-52 to make angle detection be accurate.

Pr. $10-52$ is valid only when Pr. $10-53=2$.

19-53 Position Detection Method

Factory Setting: 0

Settings	$0:$ Disabled
	1: Internal 1/4 rated current attracting the rotor to zero degrees
	2: High frequency injection
	3: Pulse injection

[D] It is suggested to set as " 2 " if it's IPM; set as " 3 " if it's SPM. If there is bad effect when set as " 2 " or " 3 ", then set as " 1 ".
11. Parameters for speed adjustment

17-26 Torque Compensation Gain

Factory Setting: 1
Settings IM: 0~10 (when Pr. 05-33 = 0)
PM: 0~5000 (when Pr. 05-33 = 1 or 2)
[1] The parameter influences the output current during operation. There will be less effect on low speed area.
[1] Increase the setting value if the current with no-load is too high. However, it might also cause the motor to vibrate. If the motor vibrates during operation, decrease the setting value.
[This page intentionally left blank]

Chapter 13 Warning Codes

Model name of digital keypad: KPMH-LC01

ID	Display	Descriptions

$\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$	Display	Descriptions
9	1	IGBT is over-heated than protection level 1~10 HP: $90^{\circ} \mathrm{C}$ Corrective Actions - Ensure that the ambient temperature falls within the specified temperature range. ■ Make sure that the ventilation holes are not obstructed. ■ Remove any foreign objects from the heat sink and check for possible dirty in heat sink. - Check the fan and clean it. ■ Provide enough spacing for adequate ventilation.
11	$\left[\begin{array}{ll}\square 17 \\ \hline 1\end{array}\right.$	PID feedback loss
12	FП!	ACI signal loss When Pr. 03-19 is set to 1 or 2 .
13	-15-	Low current
14	Fill	Motor parameters auto-tunning error Corrective Actions Check if motor wiring correct or not Check if motor capacity and parameters are correct or not Retry.
15	[ofor	PG feedback error
16	Firal	PG feedback loss
17	1-1)	Over-speed warning
18	-	Over speed deviation warning
19	F--11	Input phase loss
20	-1	When the output current exceeds the over-torque detection level (Pr. 06-07 or Pr. 06-10) and also exceeds Pr. 06-08 or Pr. 06-11, when Pr. 06-06 or Pr. 06-09 is set as 1 or 3 , it will display warning without abnormal record; when Pr. 06-06 or 06-09 is set as 2 or 4 , it will display error, stop running and there will be an abnormal record.
21	- - -	Corrective Actions - Check if motor is overloaded. - Check Pr. 05-01 motor rated current is correct or not. ■ Increase motor capacity.

$\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$	Display	Descriptions
22	-	Motor over-heating
24		Over slip
25	-1!	Auto tuning processing
28	[1]	Output phase loss
30	-	Keypad COPY error 3 Keypad copy between different power range drive
31	-1-	Over torque warning of motor 3
32	\|-1.1.	Over torque warning of motor 4
36	- ¢	CANopen guarding time-out 1
37	¢	CANopen heartbeat time-out 2
39	[-6\%	CANopen bus off
40		CANopen index error
41		CANopen station address error
42	「5\%「	CANopen memory error
43	¢	CANopen SDO transmission time-out
44	¢	CANopen SDO received register overflow
45	-	CANopen boot up fault
46	¢	CANopen protocol format error
50	-	PLC download error, opposite data defect
51	F-]	PLC download and save error

$\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$	Display	Descriptions
52	F－7	Data error during PLC operation
53	F\％	PLC download Function code error
54	「－1．01	PLC register overflow
55	F－\％	PLC operation Function code error
56	－7\％	PLC checksum error
57	F－	PLC end command is missing
58	「－T	PLC MCR command error
59	F－	PLC download fail
60	F－5	PLC scan time fail
70		Duplicate MAC ID check failed or Node－ID setting error
71		Low voltage of communication card
72	Eratic	Communication card in test mode
73	［「\％	Bus－off detected
74	［－M	No network power
75	EFFM	Factory default setting error
76	EM F－	Serious internal error
78	［10	Profibus parameter data error
79	［－5－5	Profibus configuration data error
80	E－5\％	Ethernet link fail

$\begin{gathered} \text { ID } \\ \text { No. } \end{gathered}$	Display	Descriptions
81		Communication time-out for communication card and drive
82	[-5	Check sum error for communication card and drive
83	E-5\%	Communication card returns to default setting
84	$\left[\begin{array}{lll}-1 & \square \\ \hline 0.0]\end{array}\right]$	Modbus TCP exceed maximum communication value
85		EtherNet/IP exceed maximum communication value
86	Era	IP fail
87	[-GF-	Mail fail
88	[-5	Communication card busy
89	E Cob	EtherCAT card is not installed well
90	[-7	Copy PLC: password error
91	[-7. $\square_{\square}^{\square}$	Copy PLC: read mode error
92	[-71	Copy PLC: write mode error
93	[-7.	Copy PLC: version error
94	$\left[\begin{array}{c} \square \\ \hline \end{array}\right.$	Copy PLC: capacity size error
95	「-5	Copy PLC: must disable PLC function
96	[-	Copy PLC: time out
101	ict	InnerCOM Time Out Fail

Chapter 13 Warning Codes | MH300
[This page intentionally left blank]

Chapter 14 Error Codes

Model name of digital keypad: KPMH-LC01

*Follow the settings of Pr. 06-17 ~ Pr. 06-22 and Pr. 14-70 ~ Pr. 14-73

| ID No. | Display | Descriptions |
| :--- | :--- | :--- | :--- |

ID No.	Display	Descriptions
4	[5\%	When (one of) the output terminal(s) is grounded, short circuit current is more than 50% of AC motor drive rated current, the AC motor drive power module may be damaged. NOTE: The short circuit protection is provided for AC motor drive protection, not for protecting the user. Corrective Actions Check the wiring connections between the AC motor drive and motor for possible short circuits, also to ground. - Check whether the IGBT power module is damaged. - Check for possible poor insulation at the output.
6	-	Over-current during stop. Hardware failure in current detection. Corrective Actions Return to the factory.
7	-	DC BUS over-voltage at constant speed (230V: $450 \mathrm{Vdc} ; 460 \mathrm{~V}: 900 \mathrm{Vdc})$ Corrective Actions Check if the input voltage spike without the rated AC motor drive input voltage range. ■ Check for possible voltage transients. - If DC BUS over-voltage due to regenerative voltage, please increase the acceleration time or add an optional brake resistor.
8	-	DC BUS over-voltage during deceleration (230V: $450 \mathrm{Vdc} ; 460 \mathrm{~V}: 900 \mathrm{Vdc}$) Corrective Actions ■ Check if the input voltage spike without the rated AC motor drive input voltage range. ■ Check for possible voltage transients. - If DC BUS is over-voltage due to regenerative voltage, please increase the deceleration time or add an optional brake resistor.
9		DC BUS over-voltage at constant speed (230V: $450 \mathrm{Vdc} ; 460 \mathrm{~V}: 900 \mathrm{Vdc}$) Corrective Actions Check if the input voltage spike without the rated AC motor drive input voltage range. ■ Check for possible voltage transients. - If DC BUS is over-voltage due to regenerative voltage, please increase the deceleration time or add an optional brake resistor.
10	I-	DC BUS over-voltage at stop. Hardware failure in voltage detection. Corrective Actions Check if the input voltage spike without the rated AC motor drive input voltage range. Check for possible voltage transients.

ID No.	Display	Descriptions
11	1.	DC BUS voltage is less than Pr. 06-00 during acceleration. Corrective Actions - Check if the input voltage is normal. ■ Check for possible sudden load. ■ Check the setting of Pr. 06-00.
12	1-1	DC BUS voltage is less than Pr. 06-00 during deceleration. Corrective Actions - Check if the input voltage is normal. ■ Check for possible sudden load. ■ Check the setting of Pr. 06-00.
13		DC BUS voltage is less than Pr. 06-00 in constant speed. Corrective Actions - Check if the input voltage is normal. ■ Check for possible sudden load. ■ Check the setting of Pr. 06-00.
14	1-5 --	DC BUS voltage is less than Pr. 06-00 at stop. Corrective Actions - Check if the input voltage is normal. ■ Check for possible sudden load. ■ Check the setting of Pr. 06-00.
15	-1\%	Phase Loss. Corrective Actions Check if there is any phase loss in 3-phase model or in 1-phase input application.
16	1	IGBT is over-heated than protection level. Corrective Actions - Ensure that the ambient temperature falls within the specified temperature range. - Make sure that the ventilation holes are not obstructed. - Remove any foreign objects from the heat sink and check for possible dirty in heat sink. - Check the fan and clean it. - Provide enough spacing for adequate ventilation.
18	E-H100	IGBT Hardware Error. Corrective Actions - Return to the factory.
21	0	Overload. The AC motor drive detects excessive drive output current. Corrective Actions ■ Check if the motor is overloaded. - Take the next higher power AC motor drive model.

| ID No. | Display | Descriptions |
| :--- | :--- | :--- | :--- |

ID No.	Display	Descriptions
34	-80	V-phase current error. Corrective Actions - Reboots the power. - If fault code is still displayed on the keypad please return to the factory.
35]-9	W-phase current error. Corrective Actions - Reboots the power. ■ If fault code is still displayed on the keypad please return to the factory
36]	CC (current clamp) hardware error. Corrective Actions - Reboots the power. - If fault code is still displayed on the keypad please return to the factory.
37	H1	OC hardware error. Corrective Actions - Reboots the power. ■ If fault code is still displayed on the keypad please return to the factory.
40	Filic	Motor parameters auto tuning error. Corrective Actions ■ Check if motor wiring is correct or not. - Check if motor capacity and parameters are correct or not. - Try again.
41	F	PID loss (ACI). Corrective Actions ■ Check the wiring of the PID feedback. ■ Check the setting of the PID parameters.
42	FIFI	PG feedback error. Corrective Actions Check if the setting of encoder parameter is correct when drive is in PG feedback close-loop control.
43	F-\%	PG feedback loss. Corrective Actions ■ Check the wiring of the PG feedback.
44	-	PG feedback stall. Corrective Actions ■ Check the wiring of the PG feedback. ■ Check if the setting of PI gain and acceleration or deceleration is suitable. - Return to the factory.

ID No.	Display	Descriptions

ID No.	Display	Descriptions
58	$\left[\begin{array}{lll}{[-0} & 1 \\ \square & 10\end{array}\right.$	Modbus transmission time-out Corrective Actions ■ Check if the host controller transmits the communication command within setting time (Pr. 09-03). ■ Check the communication wiring and grounding. 90 degrees wiring layout or separation from main circuit is suggested to prevent interference. - Check the setting of Pr. 09-02 is the same as the host controller. ■ Check the status of communication cable or change new cable.
59	$\left[\begin{array}{lll}\square-7 & 1 \\ \hline-7 & 1\end{array}\right]$	Keypad transmission time-out
61	-	Y-connection / Δ-connection switch error Corrective Actions ■ Check the wiring of the Y -connection / Δ-connection. - Check the parameters settings.
62	-15000	When Pr. 07-13 is not set to 0 and momentary power off or power cut, it will display dEb during accel. / decel. stop. Corrective Actions ■ Set Pr. 07-13 to 0 . ■ Check if input power is stable.
63	.	When motor slip exceeds Pr. 07-29 setting and exceeds Pr. 07-30 time setting, it will show the fault. Corrective Actions ■ Check if motor parameter is correct, please decrease the load if overload. ■ Check the settings of Pr. 07-29 and Pr. 07-30.
65	[-15	PG Hardware Error (for PM motor only)
72	\square \square 7 1	S1~DCM internal hardware detect error Corrective Actions - Check wiring of S1 terminal. - Reset emergency switch (ON: activated) and re-power - Check the input voltage to maintain at least 11V. - Check the wiring of S1 and +24 V terminal. - After make sure the wiring is correct, if STL1 fault still exists after re-power, please contact Delta.

ID No．	Display	Descriptions
76	I-	Safety torque off function active Corrective Actions －Check wiring of S1 and S2 terminal． ■ Reset emergency switch（ON：activated）and re－power． －Check the input voltage to maintain at least 11V． －Check the wiring of S1／S2 and＋24V terminal． －After make sure the wiring is correct，if STO fault still exists after re－power，please contact Delta．
77	－	S2～DCM internal hardware detect error． Corrective Actions －Check wiring of S2 terminal． ■ Reset emergency switch（ON：activated）and re－power． －Check the input voltage to maintain at least 11 V ． －Check the wiring of S2 and +24 V terminal． －After make sure the wiring is correct，if STL2 fault still exists after re－power，please contact Delta．
78	－	S1～DCM \＆S2～DCM internal hardware detect error． Corrective Actions ■ After make sure the wiring is correct，if STL3 fault still exists after re－power，please contact Delta．
79	Пロー	U－phase short circuit
80	－	V－phase short circuit
81	－ 0	W－phase short circuit
82	［炜1	Output phase loss 1 （Phase U） Output phase loss 2 （Phase V） Output phase loss 3 （Phase W） Corrective Actions
83	－	－Check the motor internal wiring，change the motor if there is still error． －Check the cable status． －Choose three phases motor，and make sure the capacity of drive and motor match．
84	［－7］	－Check the cable of control board． ■ Check three phases current is balanced or not．If it is balanced and OPHL fault still exists，please return to the factory．
87	－18	Over load protection at low frequency

ID No.	Display	Descriptions
89	-	Initial rotor position detection error. Corrective Actions ■ Verify if the UVW output cable are loss. - Verify if the motor internal coil is broken. ■ Verify if the drive UVW output are normal.
101	-	CANopen guarding error. Corrective Actions - Increase guarding time (Index 100C). - Check the communication wiring and grounding. 90 degrees wiring layout or separation from main circuit is suggested to prevent interference. - Make sure the communication wiring is serial. ■ Use dedicated CANopen cable and install terminating resistor. ■ Check the status of communication cable or change new cable.
102	- \%	CANopen heartbeat error. Corrective Actions ■ Increase Heart beat time (Index 1016). - Check the communication wiring and grounding. 90 degrees wiring layout or separation from main circuit is suggested to prevent interference. - Make sure the communication wiring is serial. - Use dedicated CANopen cable and install terminating resistor. - Check the status of communication cable or change new cable.
104	K \%	CANopen bus off error. Corrective Actions - Re-install CANopen card. ■ Check the communication wiring and grounding. 90 degrees wiring layout or separation from main circuit is suggested to prevent interference. ■ Make sure the communication wiring is serial. - Use dedicated CANopen cable and install terminating resistor. ■ Check the status of communication cable or change new cable.
105	L-	CANopen index error. Corrective Actions ■ Reset CANopen index (Pr. 00-02 = 7).
106	- \%	CANopen station address error. Corrective Actions - Disable CANopen (Pr. 09-36 = 0). - Reset CANopen setting (Pr. 00-02 = 7). ■ Reset the station address (Pr. 09-36).

ID No.	Display	Descriptions
107	EF\%	CANopen memory error. Corrective Actions - Disable CANopen (Pr. 09-36 = 0). - Reset CANopen setting (Pr. 00-02 = 7). ■ Reset the station address (Pr. 09-36).
111	; E K	InnerCOM Time Out Fail
121	[-70]	Internal communication error. Corrective Actions If the fault still appears after reset, please return to the factory.
123		Internal communication error. Corrective Actions If the fault still appears after reset, please return to the factory.
124	[-]	Internal communication error. Corrective Actions If the fault still appears after reset, please return to the factory.
126	-	Internal communication error. Corrective Actions If the fault still appears after reset, please return to the factory.
127	-1	Software version error
128	1-9 - -	Over torque fault 3
129	-1.	Over torque fault 4
130]-5	Over torque fault 5
131	-	Over torque fault 6
132	-	Over torque fault 7
133	-	Over torque fault 8
134		Electronics thermal relay 3 protection
135		Electronics thermal relay 4 protection
136	[0]	Electronics thermal relay 5 protection

ID No.	Display	Descriptions
137	Enlor	Electronics thermal relay 6 protection
138	[-7 \square_{0}	Electronics thermal relay 7 protection
139	[Electronics thermal relay 8 protection
140		GFF detected when power on
141	-	GFF occurs before run
142	Find	Auto tune error 1 (In DC test stage)
143	F-I_	Auto tune error 2 (High frequency test stage)
144	Finlor	Auto tune error 3 (Rotary test stage)
146	T0 70	Tension Belt broken
147	\%	Tension control PID deviation

[This page intentionally left blank]

Chapter 15 CANopen Overview

15-1 CANopen Overview
15-2 Wiring for CANopen
15-3 CANopen Communication Interface Description
15-4 CANopen Supporting Index
15-5 CANopen Fault Codes
15-6 CANopen LED Function

The built-in CANopen function is a kind of remote control. Master can control the AC motor drive by using CANopen protocol. CANopen is a CAN-based higher layer protocol. It provides standardized communication objects, including real-time data (Process Data Objects, PDO), configuration data (Service Data Objects, SDO), and special functions (Time Stamp, Sync message, and Emergency message). And it also has network management data, including Boot-up message, NMT message, and Error Control message. Refer to CiA website http://www.can-cia.org/ for details. The content of this instruction sheet may be revised without prior notice. Please consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation

Delta CANopen supporting functions:

- Support CAN2.0A Protocol
- Support CANopen DS301 V4. 02
- Support DSP-402 V2.0

Delta CANopen supporting services:

- PDO (Process Data Objects): PDO1~ PDO4
- SDO (Service Data Object):

Initiate SDO Download;
Initiate SDO Upload;
Abort SDO;
SDO message can be used to configure the slave node and access the Object Dictionary in every node.

- SOP (Special Object Protocol):

Support default COB-ID in Predefined Master/Slave Connection Set in DS301 V4.02;
Support SYNC service;
Support Emergency service.

- NMT (Network Management):

Support NMT module control;
Support NMT Error control;
Support Boot-up.

Delta CANopen not supporting service:

- Time Stamp service

15-1 CANopen Overview

- CANopen Protocol

CANopen is a CAN-based higher layer protocol, and was designed for motion-oriented machine control networks, such as handling systems. Version 4.02 of CANopen (CiA DS301) is standardized as EN50325-4. The CANopen specifications cover application layer and communication profile (CiA DS301), as well as a framework for programmable devices (CiA 302), recommendations for cables and connectors ($\mathrm{CiA} 303-1$) and SI units and prefix representations ($\mathrm{CiA} 303-2$).

RJ-45 Pin Definition

PIN	Signal	Description
1	CAN_H	CAN_H bus line (dominant high)
2	CAN_L	CAN_L bus line (dominant low)
3	CAN_GND	Ground $/ 0 \mathrm{~V} / \mathrm{N}-$
6	CAN_GND	Ground $/ 0 \mathrm{~V} / \mathrm{V}-$

- CANopen Communication Protocol

It has services as follows:

- NMT (Network Management Object)
- SDO (Service Data Objects)
- PDO (Process Data Object)
- EMCY (Emergency Object)

Chapter 15 CANopen Overview | MH300

NMT (Network Management Object)

The Network Management (NMT) follows a Master/Slave structure for executing NMT service. Only one NMT master is in a network, and other nodes are regarded as slaves. All CANopen nodes have a present NMT state, and NMT master can control the state of the slave nodes. The state diagram of a node is shown as follows:

(1) After power is applied, it is auto in initialization state
(2) Enter pre-operational state automatically

B: Node Guard
(3) (6) Start remote node

C: SDO
(4) (7) Enter pre-operational state

D: Emergency
(5) (8) Stop remote node

E: PDO
(9) (10) (11) Reset node

F: Boot-up
(12) (13) (14) Reset communication
(15) Enter reset application state automatically
(16) Enter reset communication state automatically

	Initializing	Pre-Operational	Operational	Stopped
PDO			\bigcirc	
SDO		O	O	
SYNC		O	O	
Time Stamp		O	O	
EMCY		O	O	
Boot-up	O			
NMT		O	O	O

SDO (Service Data Objects)

SDO is used to access the Object Dictionary in every CANopen node by Client/Server model. One SDO has two COB-ID (request SDO and response SDO) to upload or download data between two nodes. No data limit for SDOs to transfer data. But it needs to transfer by segment when data exceeds 4 bytes with an end signal in the last segment. The MH300 series does not support segment transmission currently.

The Object Dictionary (OD) is a group of objects in CANopen node. Every node has an OD in the system, and OD contains all parameters describing the device and its network behavior. The access path of $O D$ is the index and sub-index, each object has a unique index in OD, and has sub-index if necessary. The request and response frame structure of SDO communication is shown as follows:

PDO (Process Data Object)

PDO communication can be described by the producer/consumer model. Each node of the network will listen to the messages of the transmission node and distinguish if the message has to be processed or not after receiving the message. PDO can be transmitted from one device to one another device or to many other devices. Every PDO has two PDO services: a TxPDO and a RxPDO. PDOs are transmitted in a non-confirmed mode. All transmission types are listed in the following table:

Type Number	PDO				
	Cyclic	Acyclic	Synchronous	Asynchronous	RTR only
0		0	0		
$1-240$	0		0		
$241-251$	Reserved				
252			0		0
253				0	0
254				0	
255				0	

Type number 0 indicates the synchronous aperiodic message between two PDO transmissions. Type number 1-240 indicates the number of SYNC message between two PDO transmissions.
Type number 252 indicates the data is updated (but not sent) immediately after receiving SYNC.
Type number 253 indicates the data is updated immediately after receiving RTR.
Type number 254: Delta CANopen doesn't support this transmission format.
Type number 255 indicates the data is asynchronous aperiodic transmission.
All PDO transmission data must be mapped to index via Object Dictionary.

EMCY (Emergency Object)

When errors occurred inside the hardware, an emergency object will be triggered an emergency object will only be sent when an error is occurred. As long as there is nothing wrong with the hardware, there will be no emergency object to be served as a warning of an error message.

Chapter 15 CANopen Overview | MH300

15-2 Wiring for CANopen

An external CANopen communication splitter box: MKCB-HUB01 is used for built-in CANopen wiring to connect CANopen to MH300. The link is enabled by using RJ45 cable. The two farthest ends must be terminated with 120Ω terminating resistors.

15-3 CANopen Communication Interface Descriptions

15-3-1 CANopen Control Mode Selection

There are two control modes for CANopen; Pr. 09-40 set to 1 is the factory setting mode DS402 standard and Pr.09-40 set to 0 is Delta's standard setting mode. Actually, there are two control modes according to Delta's standard, one is the old control mode (Pr. 09-30=0). This control mode can only control the motor drive under frequency control. Another mode is a new standard (Pr. 09-30=1) This new control mode allows the motor drive to be controlled under all sorts of mode. MH300 supports speed and torque mode currently. The definition of relating control mode is as follows:

CANopen control mode	Control mode			
	Speed			
DS402	Index	Description	Index	Description
Pr. 09-40=1	-----	Target rotating speed (RPM)	$6071-00$	Target torque (\%)
Delta Standard (OId definition) Pr. 09-40=0, Pr. 09-30=0	$2020-02$	Target rotating speed (Hz)	-----	$6072-00$
Max. torque limit (\%)				
Delta Standard (New definition) Pr. 09-40=0, Pr. 09-30=1	$2060-03$	Target rotating speed (Hz)	$2060-07$	Target torque (\%)
	$2060-04$	Torque limit (\%)	$2060-08$	Speed limit (Hz)

CANopen control mode	Operation control	
	Index	Description
Delta Standard (Old definition) Pr. 09-40=0, Pr. 09-30=0	-----	Operation Command

Delta Standard (New definition) Pr. 09-40=0, Pr. 09-30=1	$2020-01$	Operation Command
		Operation Command

CANopen control mode	Other	
	Index	Description
$\begin{gathered} \text { DS402 } \\ \text { Pr. } 09-40=1 \end{gathered}$	605A-00	Quick stop processing mode
	605C-00	Disable operation processing mode
$\begin{gathered} \text { Delta Standard } \\ \text { (Old definition) } \\ \text { Pr. } 09-40=0 \text {, Pr. } 09-30=0 \end{gathered}$	-----	-----
$\begin{gathered} \text { Delta Standard } \\ \text { (New definition) } \\ \text { Pr. } 09-40=0 \text {, Pr. } 09-30=1 \end{gathered}$	--	--
	-----	-----

However, you can use some index regardless DS402 or Delta's standard. For example:

1. Index which are defined as RO attributes.
2. The corresponding index of available parameter groups: (2000-00~200E-XX)
3. Accelerating/Decelerating Index: 604F 6050

15-3-2 DS402 Standard Control Mode

15-3-2-1 Related set up of ac motor drive (by following DS402 standard)

If you want to use DS402 standard to control the motor drive, please follow the steps below:

1. Wiring for hardware (refer to chapter 15-2 Wiring for CANopen)
2. Operation source setting: set Pr. 00-21 to 3 for CANopen communication card control.
3. Frequency source setting: set Pr. 00-20 to 6. (Choose source of frequency commend from CANopen setting.)
4. Set DS402 as control mode: Pr. 09-40=1
5. CANopen station setting: The CANopen station (range 1-127, 0 is the Disable CANopen slave function) can be set via Pr. 09-36. (Note: Set Pr. 00-02 = 7 to reset if the station number error CAdE or CANopen memory error CFrE appears).
6. CANopen baud rate setting: set Pr. 09.37 (CANBUS Baud Rate: 1M(0), 500K(1), 250K(2), 125K(3), 100K(4) and50K(5))
7. Set multiple input functions to Quick Stop (it can also be enabled or disable, default setting is disabled). If it is necessary to enable the function, set MI terminal to 53 in one of the following parameter: Pr. 02-01 ~Pr. 02-07 or Pr. 02-26 ~ Pr. 02-28. (Note: This function is available in DS402 only.)

15-3-2-2 The status of the motor drive (by following DS402 standard)
According to the DS402 definition, the motor drive is divided into 3 blocks and 9 statuses as described below.

3 blocks

1. Power Disable: That means without PWM output
2. Power Enable: That means with PWM output
3. Fault: One or more than one error has occurred.

9 status

1. Start: Power On
2. Not ready to switch on: The motor drive is initiating.
3. Switch On Disable: When the motor drive finishes the initiation, it will be at this mode.
4. Ready to switch on: Warming up before running.
5. Switch On: The motor derive has the PWM output now, but the reference commend is not effective.
6. Operate Enable: Able to control normally.
7. Quick Stop Active: When there is a Quick Stop request, you have to stop running the motor drive.
8. Fault Reaction Active: The motor drive detects conditions which might trigger error(s).
9. Fault: One or more than errors has occurred to the motor drive.

Therefore, when the motor drive is turned on and finishes the initiation, it will remain at Ready to Switch on status. To control the operation of the motor drive, you need to change this status to Operate Enable status. The way to change it is to commend the control word's bit0 ~ bit3 and bit7 of the Index 6040H and to pair with Index Status Word (Status Word 0X6041). The control steps and index definition are described as below:

Index 6040

$15 \sim 9$	8	7	$6 \sim 4$	3	2	1	0
Reserved	Halt	Fault Reset	Operation	Enable operation	Quick Stop	Enable Voltage	Switch On

Index 6041

$15 \sim 14$	$13 \sim 12$	11	10	9	8	7	6	5	4	3	2	1	0
Reserved Operation	Internal limit active	Target reached	Remote Reserved Warning	Switch on onsabled	Quick stop	Voltage enabled	Fault	Operation enable	Switch on	Ready to switch on			

Set command $6040=0 x E$, then set another command $6040=0 x F$. Then the motor drive can be switched to Operation Enable. The Index 605A decides the dashed line of Operation Enable when the control mode changes from Quick Stop Active. (When the setting value is $5 \sim 7$, this dashed line is active. But when the setting value of 605A is not 5~7, once he motor derive is switched to Quick Stop Active, it will not be able to switch back to Operation Enable.)

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	$\begin{aligned} & \text { PDO } \\ & \text { Map } \end{aligned}$	Mode	note
605Ah	0	Quick stop option code	2	RW	S16		No		0 : disable drive function
									1 :slow down on slow down ramp
									2: slow down on quick stop ramp
									5 slow down on slow down ramp and stay in QUICK STOP
									6 slow down on quick stop ramp and stay in QUICK STOP
									7 slow down on the current limit and stay in Quick stop

Besides, when the control section switches from Power Enable to Power Disable, 605C can be used to define parking method.

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	PDO Map	Mode	note
605 Ch	0	Disable operation option code	1	RW	S16		No	0: Disable drive function 1: Slow down with slow down ramp; disable of the drive function	

15-3-2-3 Various mode control method (by following DS402 standard)

Speed mode

1. Let MH300 in the speed control mode: Set Index6060 to 2 .
2. Switch to Operation Enable mode: Set $6040=0 x E$, then set $6040=0 x F$.
3. To set target frequency: Set target frequency of 6042, since the operation unit of 6042 is rpm, there is a transformation:

$$
\begin{array}{ll}
\mathrm{n}=\mathrm{f} \times \frac{120}{\mathrm{p}} \quad \mathrm{n}: \text { rotation speed }(\mathrm{rpm}) \text { (rounds/minute) } \quad P: \text { motor's pole number (Pole) } \\
& \text { f: rotation frequency }(\mathrm{Hz})
\end{array}
$$

For example:
Set $6042 \mathrm{H}=1500$ (rpm), if the motor drive's pole number is 4 (Pr. 05-04 or Pr. 05-16), then the motor drive's operation frequency is $1500(120 / 4)=50 \mathrm{~Hz}$. Besides, the 6042 is defined as a signed operation. The plus or minus sign means to rotate clockwise or counter clockwise
4. To set acceleration and deceleration: Use 604F (Acceleration) and 6050 (Deceleration).
5. Trigger an ACK signal: In the speed control mode, the bit $6 \sim 4$ of Index 6040 needs to be controlled. It is defined as below:

Speed mode (Index $6060=2$)	Index 6040			SUM
	Bit 6	Bit 5	Bit	Locked at the current signal.
	1	0	1	Run to reach targeting signal.
	Other			
Decelerate to 0Hz.				

NOTE 01: To know the current rotation speed, read 6043. (unit: rpm)
NOTE 02: To know if the rotation speed can reach the targeting value; read bit 10 of 6041.
(0: Not reached; 1: Reached)

Torque mode:

1. Let MH300 in the speed control mode: set index 6060 to 4 .
2. Switch to Operation Enable mode: set $6040=0 x E$, then set $6040=0 x F$.
3. XXX
4. XXX
5. There is no maximum speed limit in standard DS402, but MH300 defines 6042 as speed limit. There is no speed limit when $6042=0$.

15-3-3 By using Delta Standard (Old definition)

15-3-3-1 Various mode control method (Delta Old Standard)
Please follow the steps below:

1. Wiring for hardware (Refer to chapter 15-2 Wiring for CANopen)
2. Operation source setting: set Pr.00-21 to 3 for CANopen communication card control.
3. Frequency source setting: set Pr.00.20 to 6. (Choose source of frequency commend from CANopen setting.)
4. Set Delta Standard (Old definition, only support speed mode) as control mode: Pr. 09-40 = 0 and Pr. 09-30 $=0$.
5. CANopen station setting: set Pr. 09-36 (Range of setting is $1 \sim 127$. When Pr.09-36=0, CANopen slave function is disabled.) (Note: If error appears (CAdE or CANopen memory error) as station setting is completed, press Pr. 00-02=7 for reset.)
6. CANopen baud rate setting: set Pr. 09.37 (CANBUS Baud Rate: 1M(0), 500K(1), 250K(2), 125K(3), 100K(4) and50K(5))

15-3-3-2 By speed mode

1. Set the target frequency: Set 2020-02, the unit is Hz , with a number of 2 decimal places. For example 1000 is 10.00 .
2. Operation control: Set 2020-01 $=0002 \mathrm{H}$ for Running, and set $2020-01=0001 \mathrm{H}$ for Stopping.

$2020-01$ bit $3 \sim 0=0010 b$

15-3-4 By using Delta Standard (New definition)
15-3-4-1 Related set up of ac motor drive (Delta New Standard)
Please follow the steps below:

1. Wiring for hardware (Refer to chapter 15-2 Wiring for CANopen)
2. Operation source setting: set Pr. 00-21 to 3 for CANopen communication card control.
3. Frequency source setting: set Pr. 00-20 to 6. (Choose source of frequency commend from CANopen setting.)
4. Set Delta Standard (New definition) as control mode: Pr. 09-40 $=0$ and 09-30 $=1$.
5. CANopen station setting: set Pr. 09-36 (Range of setting is 1~127. When Pr.09-36=0, CANopen slave function is disabled.) (Note: If error appears (CAdE or CANopen memory error) as station setting is completed, press Pr. 00-02=7 for reset.)
6. CANopen baud rate setting: set Pr. 09-37 (CANBUS Baud Rate: 1M(0), 500K(1), 250K(2), 125K(3), 100K (4) and50K(5))

15-3-4-2 Various mode control method (Delta New Standard)

Speed Mode

1. Let MH300 in the speed control mode: Set index $6060=2$ or index 2060-02 $=0$.
2. Set the target frequency: set 2060-03, unit is Hz , with a number of 2 decimal places. For example 1000 is 10.00 Hz .
3. Operation control: set $2060-01=008 \mathrm{H}$ for Server on, and set $2060-01=0081 \mathrm{H}$ for Running.

$2060-01$ bit $4=0$

Torque mode:

1. Let MH300 in the speed control mode: set index 6060 to 4 .
2. Set target torque: set 2060-07 unit as \%, the value is one decimal place. E.g. 100 represents 10.0\%
3. Operation: set $2060-01=0080 \mathrm{H}$ represents excitation, the drive will immediately run to the target torque.

P.S.1: To know the current torque, read 2061-07. (Unit: 0.1\%)
P.S.2: To know if the torque can reach the set value; read bit 10 of 2061-01.
(0: Not reached; 1: Reached)
Note: If the speed of the drive reaches to speed limit when torque outputs, the output torque may be reduced in order to ensure that the speed within the limits.

15-3-5 DI/DO AI AO are controlled via CANopen

To control the DO AO of the motor drive through CANopen, follow the steps below:

1. To set the $D O$ to be controlled, define this $D O$ to be controlled by CANopen. For example, set Pr. 02-13=50 to control RY1.
2. To set the $A O$ to be controlled, define this $A O$ to be controlled by CANopen. For example, set Pr. $03-20=20$ to control AFM.
3. If you want to control DO, then you will need to control Index 2026-41. If you want to control AO, then you will need to control 2026-AX. If you want to set RY1 as ON, set the bit 0 of Index $2026-41=1$, then RY1 will output 1. If you want to control AFM output $=50.00 \%$, then you will need to set Index 2026-A1 $=5000$, then AFM will output 50%.

Mapping table of CANopen DI DO AI AO:
DI:

Terminal	Related Parameters	R/W	Mapping Index
MI 1	Pr. 02-01	RO	2026-01 bit 2
MI 2	Pr. 02-02	RO	2026-01 bit 3
MI 3	Pr. 02-03	RO	2026-01 bit 4
MI 4	Pr. 02-04	RO	2026-01 bit 5
MI 5	Pr. 02-05	RO	2026-01 bit 6
MI 6	Pr. 02-06	RO	2026-01 bit 7
MI 7	Pr. 02-07	RO	2026-01 bit 8
MI 10	Pr. 02-26	RO	2026-01 bit 10
MI 11	Pr. 02-27	RO	2026-01 bit 11
MI 12	Pr. 02-28	RO	2026-01 bit 12

DO:

Terminal	Related Parameters	R/W	Mapping Index
RY1	Pr. 02-13 $=50$	RW	$2026-41$ bit 0
MO1	Pr. 02-16 $=50$	RW	$2026-41$ bit 3
MO2	Pr. 02-17 $=50$	RW	$2026-41$ bit 4
MO10 (RY10)		RW	$2026-41$ bit 5
MO11 (RY11)		RW	$2026-41$ bit 6
MO12 (RY12)		RW	$2026-41$ bit 7

AI:

Terminal	Related Parameters	R/W	Mapping Index
AVI	$==$	RO	Value of 2026-61
ACl	$==$	RO	Value of 2026-62
$\mathrm{Al10}$	$==$	RO	Value of 2026-64
Al11	$==$	RO	Value of 2026-65

AO:

Terminal	Related Parameters	R/W	Mapping Index
AFM	Pr. 03-20 $=20$	RW	Value of 2026-A1
AO10	Pr. 14-12 $=20$	RW	Value of 2026-A3
AO11	Pr. 14-13 $=20$	RW	Value of 2026-A4

15-4 CANopen Supporting Index

MH300 Index:
Parameter index corresponds to each other as following:

Index

2000H + Group
sub-Index
member+1

For example:
Pr. 10-15 (Encoder Slip Error Treatment)

Group
10(0 $\bar{A} \mathrm{H}) \quad-\quad 15(0 \mathrm{FH})$

Index $=2000 \mathrm{H}+0 \mathrm{AH}=200 \mathrm{~A}$
Sub Index $=0 \mathrm{FH}+1 \mathrm{H}=10 \mathrm{H}$
MH300 Control Index:
Delta Standard Mode (Old definition)

Index	Sub	Definition	Factory Setting	R/W	Size		Note
	2	Freq. command (XXX.XXHz)	0	RW	U16		
	3	Other trigger	0	RW	U16	Bit0	1: E.F. ON
						Bit1	1: Reset
						Bit15~2	Reserved
2021H	0	Number	DH	R	U8		
	1	Error code	0	R	U16		
	2	AC motor drive status	0	R	U16	Bit 1~0	00B: stop
							01B: decelerate to stop
							10B: waiting for operation command
							11B: in operation
						Bit 2	1: JOG command
						Bit 4~3	00B: forward running
							01B: switch from reverse running to forward running
							10B: switch from forward running to reverse running
							11B: reverse running
						Bit 7~5	Reserved
						Bit 8	1: master frequency command controlled by communication interface
						Bit 9	1: master frequency command controlled by analog / external terminal signal input
						Bit 10	1: operation command controlled by communication interface
						Bit 11	1: parameter lock
						Bit 12	1: the digital keypad copy parameter function is enabled
						Bit 15~13	Reserved
	3	Freq. command (XXX.XXHz)	0	R	U16		
	4	Output freq. (XXX. XXHz)	0	R	U16		
	5	Output current (XXX.XXA)	0	R	U16	When the current is greater than 655.35, automatically become a decimal point (XXX.XA). Decimal places can refer to the high byte of 2021-20.	
	6	DC bus voltage (XXX.XV)	0	R	U16		
	7	Output voltage (XXX.XV)	0	R	U16		
	8	the current segment run by the multi-segment speed commend	0	R	U16		
	9	Reserved	0	R	U16		
	A	Display counter value (c)	0	R	U16		
	B	Display output power angle $\left(X X X . X^{\circ}\right)$	0	R	U16		
	C	Display output torque (XXX.X\%)	0	R	U16		
	D	Display actual motor speed (XXXXX rpm)	0	R	U16		
	E	Number of PG feed back pulses (0~65535)	0	R	U16		
	F	Number of PG2 pulse commands (0~65535)	0	R	U16		
	10	power output (XX.XXXKW)	0	R	U16		

Index	Sub	Definition	Factory Setting	R/W	Size	Note
	17	Pulse input frequency (PG2 of PG card) (XXX.XXHz)	0	R	U16	
	18	Pulse input position (PG card PG2), maximum setting is 65535 .	0	R	U16	
	1A	Display times of counter overload (0.00~100.00\%)	0	R	U16	
	1B	Display GFF in \% (XXX.XX\%)	0	R	U16	
	1 C	Display DCbus voltage ripples (XXX.XVdc) (r.)	0	R	U16	
	1D	Display PLC register D1043 data	0	R	U16	
	1E	Display Pole of Permanent Magnet Motor	0	R	U16	
	1F	User page displays the value in physical measure	0	R	U16	
	20	Output Value of Pr.00-05	0	R	U16	
	21	Number of motor turns when drive operates (Z-phase)	0	R	U16	
	22	Operation position of motor	0	R	U16	
	25	Carrier frequency of the drive (XXKHz)	0	R	U16	
	26	Reserved				
	27	Status of the drive bit1~0 00b: No direction 01b: Forward 10b: Reverse bit3~2 01b: Driver ready 10b: Error bit4 Ob: No drive output 1b: The drive with output bit5 Ob: No warning 01 b : There is a warning				
	28	The estimated positive and negative output torque of the drive				
	29	Torque command (XXX.X\%)				
	2A	KWH display (XXXX.X)				
	2B	PG2 pulse input in low word				
	2C	PG2 pulse input in high word				
	2D	Motor actual position in low word				
	2E	Motor actual position in high word				
	2F	PID reference target (XXX.XX\%)				
	30	PID offset (XXX.XX\%)				
	31	PID output frequency (XXX.XXHz)				

Chapter 15 CANopen Overview | MH300

CANopen Remote IO mapping

Index	Sub	R/W	Definition
2026H	01h	R	Each bit corresponds to the different input terminals
	02h	R	Each bit corresponds to the different input terminals
	03h~40h	R	Reserved
	41h	RW	Each bit corresponds to the different output terminals
	42h~60h	R	Reserved
	61h	R	AVI (\%)
	62h	R	ACI (\%)
	63h	R	Reserved
	64h		Al10 (\%)
	65h		Al11 (\%)
	66h~A0h	R	Reserved
	A1h	RW	AFM (\%)
	A3h	RW	AO10 (\%)
	A4h	RW	AO11 (\%)

Index 2026-01	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit8	Bit9	Bit10	Bit11	Bit12	Bit13	Bit14	Bit15
1	MI1	MI2	MI3	MI4	MI5	MI6	MI7									
2											MI10	MI11	MI12	MI13	MI14	MI15

1: Control broad I/O
2: Add external card, EMM-D33A (D1022=10)

Index $2026-41$	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit8	Bit9	Bit10	Bit11	Bit12	Bit13	Bit14	Bit15
1	RY1			MO1	MO2											
2						MO10	MO11	MO12								
3						RY10	RY11									
4						RY10	RY11	RY12								

1: Control broad I/O
2: Add external card, EMM-D33A (D1022=10)
3: Add external card, EMM-R2CA (D1022=12)
4: Add external card, EMM-R3AA (D1022=13)

Delta Standard Mode (New definition)

Index	sub	R/W	Size	Descriptions			Speed Mode
				bit	Definition	Priority	
2060h	00h	R	U8				
	01h	RW	U16	0	Ack	4	$\begin{aligned} & \text { 0:fcmd }=0 \\ & \text { 1:fcmd = Fset(Fpid) } \end{aligned}$
				1	Dir	4	0 : FWD run command 1: REV run command
				2			
				3	Halt		0 : drive run till target speed is attained 1: drive stop by declaration setting
				4	Hold		0 : drive run till target speed is attained 1: frequency stop at current frequency
				5	JOG		0:JOG OFF Pulse 1:JOG RUN
				6	QStop		Quick Stop
				7	Power		0:Power OFF 1:Power ON
				14~8	Cmd SW		Multi-step frequency switching
				15			Pulse 1: Fault code cleared
	02h	RW	U16				
	03h	RW	U16				Speed command (unsigned decimal)
	04h	RW	U16				
	05h	RW	S32				
	06h	RW					
	07h	RW	U16				
	08h	RW	U16				
2061h	01h	R	U16	0	Arrive		Frequency attained
				1	Dir		0: Motor FWD run 1: Motor REV run
				2	Warn		Warning
				3	Error		Error detected
				4			
				5	JOG		JOG
				6	QStop		Quick stop
				7	Power On		Switch ON
				15~8			
	02h	R					
	03h	R	U16				Actual output frequency
	04h	R					
	05h	R	S32				Actual position (absolute)
	06h	R					
	07h	R	S16				Actual torque

Chapter 15 CANopen Overview | MH300

DS402 Standard

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	PDO Map	Mode	Note

15-5 CANopen Fault Codes

(1) Display error signal
(2) Abbreviate error code

The code is displayed as shown on KPMH-LC01
(3) Display error description

* Refer to setting of Pr. 06-17~Pr. 06~22 and Pr. 14-70~Pr. 14-73

Setting*	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
1	Fault ocA Oc at accel	0001H	Over-current during acceleration	1	2213H
2	FaultHaND ocd Oc at decel	0002H	Over-current during deceleration	1	2213H
3	Fault \quad ocn Oc at normal SPD	0003H	Over-current during steady status operation	1	2214H
4		0004H	Ground fault. When (one of) the output terminal(s) is grounded, short circuit current is more than 50% of AC motor drive rated current. NOTE: The short circuit protection is provided for AC motor drive protection, not for protection of the user.	1	2240 H
6		0006H	Over-current at stop. Hardware failure in current detection	1	2214H
7	ovA Ov at accel	0007H	Over-current during acceleration. Hardware failure in current detection	2	3210 H

Chapter 15 CANopen Overview | MH300

Setting*	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
8	Fault ovd Ov at decel	0008H	Over-current during deceleration. Hardware failure in current detection.	2	3210 H
9	Fault ovn Ov at normal SPD	009H	Over-current during steady speed. Hardware failure in current detection.	2	3210 H
10	Fault ovS Ov at stop	000AH	Over-voltage at stop. Hardware failure in current detection	2	3210 H
11	Fault LvA Lv at accel	000BH	DC BUS voltage is less than Pr. 06.00 during acceleration.	2	3220 H
12	Fault Lvd Lv at decel	000CH	DC BUS voltage is less than Pr. 06.00 during deceleration.	2	3220 H
13	Fault Lvn Lv at normal SPD	000DH	DC BUS voltage is less than Pr.06.00 in constant speed.	2	3220 H
14	Fault LvS Lv at stop	000EH	DC BUS voltage is less than Pr.06-00 at stop	2	3220 H
15	Fault OrP Phase Lacked	000FH	Phase Loss Protection	2	3130 H
16	Fault oH1 IGBT over heat	0010H	IGBT overheat IGBT temperature exceeds protection level.	3	4310H

Setting*	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
18	Faultthano th1o Thermo 1 open	0012H	IGBT over-heat protection error	3	FFOOH
21		0015H	Overload. The AC motor drive detects excessive drive output current.	1	2310H
22	Fault ${ }^{\text {HaNo }}$ EoL1 Thermal relay 1	0016H	Electronics thermal relay 1 protection	1	2310H
23		0017H	Electronics thermal relay 2 protection	1	2310H
24	FaultoH3ND Motor over heat	0018H	Motor PTC overheat	3	FF20H
26	Fault \quad HaNo ot1 Over torque 1	001AH	When the output current exceeds the over-torque detection level (Pr. 06-07 or Pr. 06-10) and also exceeds Pr. 06-08 or Pr. 06-11, when Pr. 06-06 or	3	8311H
27	Fault \quad Hand ot2 Over torque 2	001BH	Pr. 06-09 is set as 1 or 3 , it will display warning without abnormal record; when Pr. 06-06 or 06-09 is set as 2 or 4 , it will display error, stop running and there will be an abnormal record.	3	8311H
28	Fault uC Under torque 1	001CH	Low current	1	8321H
29	Fault LMIT Limit Error	001DH	Home limit error	1	7320H

Chapter 15 CANopen Overview | MH300

Setting*	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
31	Fault \quad cF2 EEPROM read Err	001FH	Internal EEPROM cannot be programmed.	5	5530H
33	Fault cd1 las sensor Err	0021H	U-phase error	1	FF04H
34	Fault \quad hano cd2 Ibs sensor Err	0022H	V-phase error	1	FF05H
35		0023H	W-phase error	1	FF06H
36		0024H	cc (current clamp) hardware error	5	FF07H
37		0025H	oc hardware error	5	FF08H
40	Fault AUE Auto tuning Err	0028H	Auto tuning error	1	FF21H
41	Fault \quad HaNo AFE PID Fbk Error	0029H	PID loss (ACI)	7	FF22H
42	\qquad	002AH	PG feedback error	7	7301H

Setting*	Display	Fault code	Description	```CANopen fault register (bit 0~7)```	CANopen fault code
43	Fault ${ }^{\text {PGF2 }}$ PG Fbk Loss	002BH	PG feedback loss	7	7301H
44	Fault PGF3 PG Fbk Over SPD	002CH	PG feedback stall	7	7301H
45	HAND Fault PGF4 PG Fbk deviate	002DH	PG slip error	7	7301H
48	Fault ACE ACI ACI loss	0030H	ACI loss	1	FF25H
49	Fault EF Exano External Fault	0031H	External Fault. When the multi-function input terminal (EF) is active, the AC motor drive will stop output.	5	9000H
50	Fault EF1 EmaND Emergency stop	0032H	Emergency stop. When the multi-function input terminal (EF1) is active, the AC motor drive will stop output.	5	9000H
51	Fault hano bb Base block	0033H	External Base Block. When the multi-function input terminal (B.B) is active, the AC motor drive will stop output.	5	9000H
52	Fault \quad HaND Pcod Password Error	0034H	Keypad is locked after enter wrong password three times.	5	FF26H
54	Fault cE1 Modbus Mand err	0036H	Modbus function code error (Illegal function code)	4	7500H

Chapter 15 CANopen Overview | MH300

Setting*	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
55	Fault cE2 Modbus ADDR err	0037H	Modbus data address is error [Illegal data address $(00 \mathrm{H}$ to 254 H$)$]	4	7500H
56	Fault \quad hano cE3 Modbus DATA err	0038H	Modbus data error (Illegal data value)	4	7500H
57	Fault cE4 Modbus slave FLT	0039H	Modbus communication error (Data is written to read-only address)	4	7500H
58		003AH	Modbus transmission time-out	4	7500H
59		003BH	Keypad transmission time-out	4	7500H
61	Fault $y d c$ Y-delta connect	003DH	Y-connection / Δ-connection switch error	2	3330H
62	Fault dEb Dec. Energy back	003EH	Energy regeneration when decelerating	2	FF27H
63	Fault oSL Over slip Error	003FH	When motor slip exceeds Pr. 07-29 setting and exceeds Pr. 07-30 time setting, it will show the fault.	7	FF28H
72		0048H	S1~DCM internal hardware detect error	5	FF30H

Setting*	Display	Fault code	Description	```CANopen fault register (bit 0~7)```	CANopen fault code
76		004CH	Safety torque off function active	5	FF31H
77	 Fault STL2 2 STO Loss 2	004DH	S2~DCM internal hardware detect error.	5	FF32H
78		004EH	S1~DCM \& S2~DCM internal hardware detect error.	5	FF33H
79	Fault \quad Hoc UaNo Uhase oc	0050H	U-phase short circuit	1	FF2BH
80	Fault \quad hand boc V phase oc	0051H	V-phase short circuit	1	FF2CH
81	Fault \quad coc Wand Whase oc	0050H	W-phase short circuit	1	FF2DH
82		0052H	Output phase loss 1 (Phase U)	2	2331H
83	FaultoPL2 hano phase lacked	0053H	Output phase loss 2 (Phase V)	2	2332H
84	FaultoPL3 Wphase lackedW	0054H	Output phase loss 3 (Phase W)	2	2333H

Chapter 15 CANopen Overview | MH300

Setting*	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
87	Fault oL3 Derating Error	0057H	Over load protection at low frequency	0	8A00H
89	FaultRoPd RoPd Rotor Pro. Error	0059H	Initial rotor position detection error	0	8A00H
101		0065H	CANopen guarding error	4	8130H
102	Fault ${ }^{\text {CHbE }}$ Heartbeat T-out	0066H	CANopen heartbeat error	4	8130H
104	Fault \quad HaNo CbFE CAN/S bus off	0068H	CANopen bus off error	4	8140H
105	Fault CIdE CAN/S Idx exceed	0069H	CANopen index error	4	8100H
106		006AH	CANopen station address error	4	8100H
107	Fault CFrE CAN/S FRAM fail	006BH	CANopen memory error	4	8100H
121		007AH	Internal communication error	7	FF36H

Setting*	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
123	\qquad	007CH	Internal communication error	7	FF38H
124	Fault \quad HaNo CP30 CP	007DH	Internal communication error	7	FF39H
126	\qquad	0080H	Internal communication error	7	FF3BH
127	\qquad	0081H	Software version error	7	FF3CH
128	Fault \quad ot3 Onand Over torque 3	0082H	Over torque fault 3	1	2310H
129	Fault ot4 Over torque 4	0083H	Over torque fault 4	1	2310H
134	Fault ${ }^{\text {EaND }}$ EoL3 Thermal relay 3	0088H	Electronics thermal relay 3 protection	1	2310H
135	Fault EoL4 Thermal relay 4	0089H	Electronics thermal relay 4 protection	1	2310H
140	Fault ${ }^{\text {Hd6 }}$ GFF HW error	008EH	GFF detected when power on	1	2240 H

Chapter 15 CANopen Overview | MH300

Setting*	Display	Fault code	Description	CANopen fault register (bit 0~7)	CANopen fault code
141	Fault BG FF BeforeRUN GFF	0090H	GFF occurs before run	1	2240H
142	Fault AUE1 Auto tuning Err1	0091H	Auto tune error 1 (In DC test stage)	1	FF3DH
143	Fault AUE2 Auto tuning Err2	0092H	Auto tune error 2 (High frequency test stage)	1	FF3EH
144	Fault AUE3 Auto tuning Err3	0093H	Auto tune error 3 (Rotary test stage)	1	FF3FH

15-6 CANopen LED Function

There are two CANopen flash signs: RUN and ERR.

RUN LED:

LED status		Condition	CANopen State
OFF	Keep lighting off		Initial
Blinking			Pre-Operation
Single flash			Stopped
ON	Keep lighting on		Operation

ERR LED:

LED status	Condition/ State
OFF	No Error
Single flash	One Message fail
Double flash	Guarding fail or heartbeat fail
Triple flash	SYNC fail
ON	Bus off

Chapter 15 CANopen Overview | MH300
[This page intentionally left blank]

Chapter 16 PLC Function Applications

16-1 PLC Summary
16-2 Notes before PLC Use
16-3 Turn on
16-4 Basic Principles of PLC Ladder Diagrams

16-5 Various PLC Device Functions

16-6 Introduction to the Command Window
16-7 Error Display and Handling
16-8 Explanation of each PLC Mode Control (Speed, Torque)
16-9 Count Function Using Pulse Input

Chapter 16 PLC Function Applications | MH300

16-1 PLC Summary

16-1-1 Introduction

The commands provided by the MH300's built-in PLC functions, including the ladder diagram editing tool WPLSoft, as well as the usage of basic commands and applications commands, chiefly retain the operating methods of Delta's PLC DVP series.

16-1-2 WPLSoft ladder diagram editing tool

WPLSoft is Delta's program editing software for the DVP and MH300 programmable controllers in the Windows operating system environment. Apart from general PLC program design general Windows editing functions (such as cut, paste, copy, multiple windows, etc.), WPLSoft also provides many Chinese/English annotation editing and other convenience functions (such as registry editing, settings, file reading, saving, and contact graphic monitoring and settings, etc.).

The following basic requirements that need to install WPLSoft editing software:

Item	System requirements
Operating system	Windows 95/98/2000/NT/ME/XP/Win 7
CPU	At least Pentium 90
Memory	At least 16MB (we recommend at least 32MB)
Hard drive	Hard drive capacity: at least 100MB free space One optical drive (for use in installing this software)
Display	Resolution: 640×480, at least 16 colors; it is recommended that the screen area be set at 800×600 pixels
Mouse	Ordinary mouse or Windows-compatible device
Printer	Printer with a Windows drive program
RS-485 port	Must have at least an RS-485 port to link to the PLC
USB port	The USB port on the drive can be connected to the PLC

16-2 Notes before PLC Use

1. The MH300 provides 2 communications serial ports that can be used to download PLC programs (see figure below).
2. Channel 1 (USB port) communications format is the same as channel 2.
3. Channel 2 has a preset communications format of $7, \mathrm{~N}, 2,9600$, ASCII can be changed in Pr. 09-01 (transmission speed) and Pr. 09-04 (communication protocol).
4. The PLC preset is node 2; the PLC node can be changed in Pr. 09-35, but this address may not be the same as the drive's address setting of Pr. 09-00.

5. The client can simultaneously access data from the drive and internal PLC, which is performed through identification of the node. For instance, if the drive node is 1 and the internal PLC node is 2 , then the client command will be

- 01 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in drive Pr. 04-00
- 02 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in internal PLC X0

6. The PLC program will be disabled when uploading/downloading programs.
7. Please note when using WPR commands to write in parameters, values may be modified up to a maximum of 10^{9} times, otherwise a memory write error will occur. The calculation of modifications is based on whether the entered value has been changed. If the entered value is left unchanged, the modifications will not increase afterwards. But if the entered value is different from before, the number of modifications will increase by one.
8. When Pr. 00-04 is set as 28 , the displayed value will be the value of PLC register D1043 (see figure below):

9. In the PLC Run and PLC Stop mode, the content 9 and 10 of Pr. 00-02 cannot be set and cannot be reset to the default value.
10. The PLC can be reset to the default value when Pr. 00-02 is set as 6 .
11. The corresponding MI function will be disabled when the PLC writes to input contact X.
12. When the PLC controls drive operation, control commands will be entirely controlled by the PLC and will not be affected by the setting of Pr. 00-21.
13. When the PLC controls drive frequency commands (FREQ commands), frequency commands will be entirely controlled by the PLC, and will not be affected by the setting of Pr. 00-20 or the Hand ON/OFF configuration.
14. When the PLC controls drive operation, if the keypad Stop setting is valid, this will trigger an FStP error and cause stoppage.

16-3 Turn on

16-3-1 Connect to PC

Start operation of PLC functions in accordance with the following four steps
After pressing the Menu key and selecting 4: PLC on the KPC-CC01 digital keypad (optional), press the Enter key (see figure below).

1. Wiring: Connect the drive's RJ-45 communications interface to a PC via the RS485

2. PLC function usage

■ When the external multifunctional input terminals (MI1 to MI7) are in PLC Mode select bit 0 (51) or PLC Mode select bit1 (52), and the terminal contact is closed or open, it will compulsorily switch to the PLC mode, and keypad switching will be ineffective.
Corresponding actions are as follows:

PLC mode		PLC Mode select bit1 (52)	PLC Mode select bit0 (51)
Using KPC-CC01	MH300		OFF
Disable	PLC 0	OFF	ON
PLC Run	PLC 1	ON	OFF
PLC Stop	PLC 2	ON	ON
Maintain previous state	Maintain previous state		

Use of MH300 digital keypad to implement PLC functions
\boxtimes When the PLC screen switches to the PLC1 screen, this will trigger one PLC action, and the PLC program start/stop can be controlled by communications via the WPL.
$\boxtimes \quad$ When the PLC screen switches to the PLC2 screen, this will trigger one PLC stop, and the PLC program start/stop can be controlled by communications via the WPL.
$\boxtimes \quad$ The external terminal control method is the same as shown in the table above.

\Rightarrow NOTE

- When input/output terminals (MI1 to MI7 Relay MO) are included in the PLC program, these input/output terminals will only be used by the PLC. As an example, when the PLC program controls Y0 during PLC operation (PLC1 or PLC2), the corresponding output terminal Relay (RA/RB/RC) will operate in accordance with the program. At this time, the multifunctional input/output terminal setting will be ineffective. Because these terminal functions are already being used by the PLC, the DI / DO / AO in use by the PLC can be determined by looking at Pr. 02-52, 02-53, and 03-30.
- When the PLC's procedures use special register D1040, the corresponding AO contact AFM will be occupied,
- Pr. 03-30 monitors the state of action of the PLC function analog output terminal; Bit 0 corresponds to the AFM action state.

16-3-2 I/O device explanation
Input devices:

Serial No.	X 0	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 10	X 11	X 12	X 13	X 14	X 15	X 16	X 17
$\mathbf{1}$	MI 1	MI 2	MI 3	$\mathrm{MI4}$	$\mathrm{MI5}$	$\mathrm{MI6}$	$\mathrm{MI7}$									
$\mathbf{2}$											MI 10	MI 11	MI 12			

1: Control I/O
2: Expansion card EMM-D33A (D1022=10)

Output devices:

Serial No.	Y 0	Y 1	Y 2	Y 3	Y 4	Y 5	Y 6	Y 7	Y 10	Y 11	Y 12	Y 13	Y 14	Y 15	Y 16	Y 17
$\mathbf{1}$	RY 1			MO 1	MO 2											
$\mathbf{2}$						MO 10	MO 11	MO 12								
$\mathbf{3}$						RY10	RY11									
$\mathbf{4}$						RY10	RY11	RY 12								

1: Control I/O |
2: Expansion card EMM-D33A (D1022=10)
3: Expansion card EMM-R2CA (D1022=12)
4: Expansion card EMM-R3AA (D1022=13)

RY1 / RY2 / RY3

RY10 / RY11 / RY12

(RA10, RA11, RA12)

RC (RA10, RA11, RA12)

16-3-3 Installation WPLSoft

See Delta's website for WPLSoft editing software:
http://www.delta.com.tw/product/em/download/download main.asp?act=3\&pid=3\&cid=1\&tpid=3

16-3-4 Program writing

After completing installation, the WPLSoft program will be installed in the designated subfolder "C:IProgram Files\Delta Industrial Automation\WPLSoft x.xx." The editing software can now be run by clicking on the WPL icon using the mouse.

The WPL editing window will appear after 3 seconds (see figure below). When running WPLSoft for the first time, before "New file" has been used, only the "File (F)," "Communications (C)," View (V)," "Options (O)," and "Help (H)" columns will appear on the function toolbar.

After running WPLSoft for the second time, the last file edited will open and be displayed in the editing window. The following figure provides an explanation of the WPLSoft editing software window:

Click on the \quad icon on the toolbar in the upper left part of the screen: opens new file ($\mathrm{Ctrl}+\mathrm{N}$)

You can also use "File (F)"=> New file (N) (Ctrl+N)

File Edit	Compiler Comme
\square New	Ctrl +N
[Open	$\mathrm{Ctrl}+\mathrm{O}$
\square Save	Ctril S
1 , Save As	Ctrl+Alt + S

The "Device settings" window will appear after clicking. You can now enter the project title and filename, and select the device and communication settings to be used

Communications settings: Perform settings in accordance with the desired communications method

Press Confirm after completing settings and begin program editing. There are two program editing methods; you can choose whether to perform editing in the command mode or the ladder diagram mode.

In ladder diagram mode, you can perform program editing using the buttons on the function icon row

Chapter 16 PLC Function Applications | MH300

Basic Operation

Example: Input the ladder diagram in the following figure

Mouse operation and keyboard function key (F1 to F12) operation

1. The following screen will appear after a new file has been established:

2. Use the mouse to click on the always-open switch icon F F or press the function key F1:

3. After the name of the input device and the comment dialog box have appeared, the device name (such as "M"), device number (such as "10"), and input comments (such as "auxiliary contact") can be selected; press the Confirm button when finished.

4. Click on the output coil icon ${ }^{\mathrm{F}} \mathrm{F}^{3}$ or press function key F7. After the name of the input device and the comment dialog box have appeared, the device name (such as " Y "), device number (such as " 0 "), and input comments (such as "output coil") can be selected; press the Confirm button when finished.

5. Click on application command icon $\stackrel{\text { 隺 }}{ }$ or press function key F6. Click on "All application commands" in the function classification field, and click on the End command in the application command pull-down menu, or use the keyboard to key in "END" in that field, and press the confirm button.

6. Click on the 喜 icon, which will compile the edited ladder diagram as a command program. After compiling, the number of steps will appear on the left side of the busbar.

16-3-5 Program download

After inputting a program using WPLSoft, select compile cive . After completing compilation, select the 돈 to download a program. WPLSoft will perform program download with the online PLC in the communications format specified in communications settings.

16-3-6 Program monitoring

While confirming that the PLC is in the Run mode, after downloading a program, click on communications menu and select start ladder diagram control (see figure below)

16-4 Basic Principles of PLC Ladder Diagrams

16-4-1 Schematic diagram of PLC ladder diagram program scanning

Repeated implementation

16-4-2 Introduction to ladder diagrams

Ladder diagrams comprise a graphic language widely applied in automatic control, and employs common electrical control circuit symbols. After a ladder diagram editor has been used to create a ladder pattern, PLC program designed is completed. The use of a graphic format to control processes is very intuitive, and is readily accepted by personnel who are familiar with electrical control circuit technology. Many of the basic symbols and actions in a ladder diagram comprise commonly-seen electrical devices in conventional automatic control power distribution panels, such as buttons, switches, relays, timers, and counters.

Internal PLC devices: The types and quantities of internal PLC devices vary in different brands of products. Although these internal devices use the same names as conventional electrical control circuit elements such as relays, coils, and contacts, a PLC does not actually contain these physical devices, and they instead correspond to basic elements in the PLC's internal memory (bits). For instance, if a bit is 1 , this may indicate that a coil is electrified, and if that bit is 0 , it will indicate that the coil is not electrified. An NO contact (Normal Open, or contact a) can be used to directly read the value of the corresponding bit, and an NC contact (Normal Close, or contact b) can be used to obtain the inverse of the bit's value. Multiple relays occupy multiple bits, and 8 bits comprise one byte; two bytes comprise one word, and two words comprise a double word. When multiple relays are processing at the same time (such as addition/subtraction or displacement, etc.), a byte, word, or double word can be used. Furthermore, a PLC contains two types of internal devices: a timer and a counter. It not only has a coil, but can count time and numerical values. Because of this, when it is necessary to process some numerical values, these values are usually in the form of bytes, words, or double words.

The various internal devices in a PLC all account for a certain quantity of storage units in the PLC's storage area. When these devices are used, the content of the corresponding storage area is red in the form of bits, bytes, or words.
Introduction to the basic internal devices in a PLC

Device type	\quadDescription of Function
	An input relay constitutes the basic unit of storage in a PLC's internal memory corresponding to an external input point (which serves as a terminal connecting with an external input switch and receiving external input signals). It is driven by external input signals, to which it assigns values of 0 or 1. A program design method cannot change the input relay status, and therefore cannot rewrite the corresponding basic units of an input relay, and WPLSoft cannot be used to perform compulsory On/Off actions. A relay's contacts (contacts a and b) can be used an unlimited number of times. An input relay with no input signal must be left idle and cannot be used for some other purpose. R \quad Device indicated as: X0, X1, X7, X10, X11, etc. This device is expressed with the symbol "X," and a device's order is indicated with an octal number. Input point
numbers are indicated in the main computer and in expansion devices.	

Ladder diagram images and their explanation

| Ladder diagram |
| :---: | :---: | :---: | :---: |
| structures | Explanation of commands | Command |
| :---: | Using Device

Chapter 16 PLC Function Applications | MH300

16-4-3 Overview of PLC ladder diagram editing

The program editing method begins from the left busbar and proceeds to the right busbar (the right busbar is omitted when editing using WPLSoft). Continue to the next row after completing each row; there is a maximum of 11 contacts on each row. If this is not sufficient, a continuous line will be will be generated to indicate the continued connection and more devices can be added. A continuous series of numbers will be generated automatically and identical input points can be used repeatedly. See figure below:

The ladder diagram programming method involves scanning from the upper left corner to the lower right corner. The coils and applications command computing box are handled in the output, and the ladder diagram is placed on the farthest right. Taking the figure below as an example, we can gradually analyze the procedural sequence of the ladder diagram. The number in the upper right corner gives the sequential order.
Explanation of command sequence

1	LD	X0	
2	OR	M0	
3	AND	X1	
4	LD	X3	
	AND	M1	
	ORB		
5	LD	Y1	
	AND	X4	
6	LD	T0	
	AND	M3	
	ORB		
7	ANB		
8	OUT	Y1	
	TMR	T0	K10

Explanation of basic structure of ladder diagrams
LD (LDI) command: An LD or LDI command is given at the start of a block.

LDP and LDF have this command structure, but there are differences in their action state. LDP, LDF only act at the rising or falling edge of a conducting contact. (See figure below):

AND (ANI) command: A series configuration in which a single device is connected with one device or a block.

ANDP, ANDF also have structures like this, but their action occurs at the rising and falling edge.
OR (ORI) command: A single device is connected with one device or a block.

ORP, ORF also have identical structures, but their action occurs at the rising and falling edge.
ANB command: A configuration in which one block is in series with one device or block.

ORB command: A configuration in which one block is in parallel with one device or block.

In the case of ANB and ORB operations, if a number of blocks are connected, they should be combined to form a block or network from the top down or from left to right.

MPS, MRD, MPP commands: Branching point memory for multiple outputs, enabling multiple, different outputs. The MPS command begins at a branching point, where the so-called branching point refers to the intersection of horizontal and vertical lines. We have to rely on the contact status along a single vertical line to determine whether the next contact can give a memory command. While each contact is basically able to give memory commands, in view of convenience and the PLC's capacity restrictions, this can be omitted from some places when converting a ladder diagram. The structure of the ladder diagram can be used to judge what kinds of contact memory commands are used.

Chapter 16 PLC Function Applications
 MH300

MPS can be distinguished by use of the " \rceil " symbol; this command can be used consecutively for up to 8 times. The MRD command is read from branching point memory; because logic states along any one vertical line must be the same, in order to continue analysis of other ladder diagrams, the original contact status must be read.
MRD can be distinguished by use of the "ト" symbol. The MPP command is read from the starting state of the uppermost branching point, and it is read from the stack (pop); because it is the final command along a vertical line, it indicates that the state of the vertical line can be concluded.
MPP can be distinguished by use of the " L" symbol. Although there should basically be no errors when using the foregoing analytical approach, the compiling program may sometimes omit identical state output, as shown in the following figure:

16-4-4 Commonly-used basic program design examples

Start, stop, and protection

Some applications may require a brief close or brief break using the buttons to start and stop equipment. A protective circuit must therefore be designed to maintain continued operation in these situations; this protective circuit may employ one of the following methods:

Example 1: Priority stop protective circuit
When the start NO contact $\mathrm{X} 1=\mathrm{On}$, and the stop NC contact $\mathrm{X} 2=\mathrm{Off}, \mathrm{Y} 1=\mathrm{On}$; if $\mathrm{X} 2=\mathrm{On}$ at this time, coil Y 1 will no longer be electrified, and this is therefore referred to as priority stop.

Example 2: Priority start protective circuit

When start NO contact $\mathrm{X} 1=\mathrm{On}$, and the stop NC contact $\mathrm{X} 2=\mathrm{Off}, \mathrm{Y} 1=\mathrm{On}$, and coil Y 1 will be electrified and protected. At this time, if $\mathrm{X} 2=0$ n, coil Y 1 will still protect the contact and continue to be electrified, and this is therefore priority start.

Example 3: Setting (SET) and reset (RST) command protective circuit
The following figure shows a protective circuit composed of RST and SET commands. Priority stop occurs when the RST command is placed after the SET command. Because the PLC executes programs from the top down, at the end of the program, the state of Y1 will indicate whether coil Y 1 is electrified. When X 1 and X 2 are both actuated, Y 1 will lose power, and this is therefore priority stop.
Priority start occurs when the SET command is placed after the RST command. When X1 and X 2 are both actuated, Y 1 will be electrified, and this is therefore priority start.

Top priority of stop

Top priority of start

Commonly-used control circuits

Example 4: Conditional control

$\mathrm{X} 1, \mathrm{X} 3$ are respectively start/stop Y 1 , and X 2 , X 4 are respectively start/stop Y 2 ; all have protective circuits. Because Y1's NO contact is in series with Y2's circuit, it becomes an AND condition for the actuation of Y 2 . The action of Y 1 is therefore a condition for the action of Y 2 , and Y 1 must be actuated before Y 2 can be actuated.

Example 5: Interlocking control
The figure below shows an interlocking control circuit. Depending on which of the start contacts $\mathrm{X} 1, \mathrm{X} 2$ is valid first, the corresponding output Y 1 or Y 2 will be actuated, and when one is actuated, the other will not be actuated. This implies that Y 1 and Y 2 cannot be actuated at the same time (interlocking effect). Even if both X 1 and X 2 are valid at the same time, because the ladder diagram program is scanned from the top down, it is impossible for Y 1 and Y 2 to be actuated at same time. This ladder diagram assigns priority only to Y1.

Example 6: Sequence control

If the NC contact of $Y 2$ in the interlocking control configuration of example 5 is put in series with the Y 1 circuit, so that it is an AND condition for actuation of Y 1 (see figure below), not only is Y 1 a condition for the actuation of Y 2 in this circuit, the actuation of Y 2 will also stop the actuation of Y 1 . This configuration confirms the actuation order of Y 1 and Y 2 .

Example 7: Oscillating circuit
Oscillating circuit with a period of $\Delta T+\Delta T$
The figure below shows a very simple ladder diagram. When starting to scan the Y1 NC contact, because the Y1 coil has lost power, the Y1 NC contact will be closed. When the Y1 coil is then scanned, it will be electrified, and the output will be 1. When the Y1 NC contact is scanned in the scanning cycle, because Y1 coil is electrified, the Y1 NC contact will be open, the Y 1 coil will then lose power, and the output will be 0 . Following repeated scanning, the output of Y1 coil will have an oscillating waveform with a period of $\Delta T(\mathrm{On})+\Delta \mathrm{T}(\mathrm{Off})$.

Oscillating circuit with a period of $n T+\Delta T$
The program of the ladder diagram shown below uses timer T0 to control coil Y 1's electrified time. After Y 1 is electrified, it causes timer T0 to close during the next scanning cycle, which will cause the output from Y1 to have the oscillating waveform shown in the figure below. Here n is the timer's decimal setting value, and T is the clock cycle of the timer.

Example 8: Flashing circuit

The following figure shows an oscillating circuit of a type commonly used to cause an indicator light to flash or a buzzers to buzz. It uses two timers to control the On and Off time of Y 1 coil. Here $\mathrm{n} 1, \mathrm{n} 2$ are the timing set values of T 1 and T 2 , and T is the clock cycle of the timer.

Example 9: Triggering circuit

In the figure below, a command consisting of the differential of the rising edge of $\mathrm{X0}$ causes coil MO to generate a single pulse for ΔT (length of one scanning cycle), and coil Y 1 is electrified during this scanning cycle. Coil M0 loses power during the next scanning cycle, and NC contact M0 and NC contact Y1 are both closed. This causes coil Y1 to stay in an electrified state until there is another rising edge in input $X 0$, which again causes the electrification of coil M0 and the start of another scanning cycle, while also causing coil Y1 to lose power, etc. The sequence of these actions can be seen in the figure below. This type of circuit is commonly used to enable one input to perform two actions in alternation. It can be seen from the time sequence in the figure below that when input X0 is a square wave signal with a period of T , the output of coil Y 1 will be a square wave signal with a period of 2T.

Example 10: Delay circuit
When input X0 is On, because the corresponding NC contact will be Off, the timer T10 will be in no power status, and output coil Y1 will be electrified. T10 will receive power and begin timing only after input X 0 is Off , and output coil Y 1 will be delayed for 100 sec . (K1000*0.1 sec. $=100 \mathrm{sec}$.) before losing power; please refer to the sequence of actions in the figure below.

Example 11: The open/close delay circuit is composed of two timers; output Y 4 will have a delay whether input XO is On or Off.

Example 12: Extended timing circuit
In the circuit in the figure on the left, the total delay time from the moment input X 0 closes to the time output Y 1 is electrified is $(n 1+n 2)^{*} \mathrm{~T}$, where T is the clock cycle. Timers: T11, T12; clock cycle: T.

16-5 Various PLC Device Functions

Item	Specifications	Notes
Algorithmic control method	Program stored internally, alternating back-and-forth scanning method	
Input/output control method	When it starts again after ending (after execution to the END command), the input/output has an immediate refresh command	
Algorithmic processing speed	Basic commands (several us);	Applications command (1-several tens of us)
Programming language	Command + ladder diagram	
Program capacity	5000 steps	
Input/output terminal	Digital input (X): 7, digital output (Y): 3 Analog input AI: 2, analog output AO: 1	

Type	Device	Item		Range		Function
	X	External input relay		X0~X17, 16 points, octal number	Total 32 points	Corresponds to external input point
	Y	External output relay		Y0~Y17, 16 points, octal number		Corresponds to external output point
		Auxiliary Relay	General Use	M0~M799, 800 points	Total 1080 points	Contact can switch On/Off within the program
	M		Special purpose	M1000~M1279, 280 points		
	T	Timer	100ms timer	T0~T59, 160 points	Total 160 points	Timers referred to by the TMR command; contact of the T with the same number will go On when the time is reached
	C	Counter	16-bit counter, general use	C0~C79, 80 points	Total 80 points	Counter referred to by the CNT command; contact of the C with the same number will go On when the count is reached
	T	Current timer value		T0~T159, 160 points		The contact will be On when the time is reached
	C	Current counter value		C0~C79, 16-bit counter 80 points		The counter contact will come On when the count is reached
	D	Data Register	Used to maintain power Off	D0~D99, 100 points	Total 1020 points	Used as data storage memory area
			Special purpose	$\begin{aligned} & \text { D100~D399, } 300 \text { points } \\ & \text { D1000~D1619, } 620 \\ & \text { points } \end{aligned}$		
Constant	K	Decimal	Single-byte	Setting Range: K-32,768 ~ K32,767		
			Double-byte	Setting Range: K-2,147,4	3,648~K	2,147,483,647
	H	Hexadecimal	Single-byte	Setting Range:H0000 ~ HFFFF		
			Double-byte	Setting Range: H00000000 ~ HFFFFFFFF		
Serial communications port (program write/read)				RS-485/USB/keypad port		
Input/output				Built-in two analog inputs and one analog outputs		
High-speed counting				Built-in a (M17 or M16+MI7) 32-bit high-speed counter		
Function expansion module			Optional Accessories	EMM-D33A; EMM-R2CA; EMM-R3AA;EMM-A22A		
Communication expansion module			Built-in	CANopen (Slave)		
			Optional Accessories			

16-5-1 Introduction to device functions

Input/output contact functions

Input contact X functions: Input contact X is connected with an input device, and reads input signals entering the PLC. The number of times that contact A or B of input contact X is used in the program is not subject to restrictions. The On/Off state of input contact X will change as the input device switches On and Off; a peripheral device (WPLSoft) cannot be used to force contact X On or Off.

Output contact Y functions

The job of output contact Y is to send an On/Off signal to drive the load connected with output contact Y. Output contacts consist of two types: relays and transistors. While number of times that contact a or b of each output contact Y is used in the program is not subject to restrictions, it is recommended that the number of output coil Y be used only once in a program, otherwise the right to determine the output state when the PLC performs program scanning will be assigned to the program's final output Y circuit.

The output of Y 0 will be decided by circuit (2), i.e. decided by On/Off of X10.

Numerical value, constant $[\mathrm{K}] /[\mathrm{H}]$

Constant	Single-byte	K	Decimal	K-32,768 ~ K32,767
	Double-byte			K-2,147,483,648~K2,147,483,647
	Single-byte	H	Hexadecimal	H0000 ~ HFFFF
	Double-byte			H00000000 ~ HFFFFFFFF

The PLC can use five types of numerical values to implement calculations based on its control tasks; the following is an explanation of the missions and functions of different numerical values.

Binary Number, BIN

The PLC's numerical operations and memory employ binary numbers. Binary nibbles and relevant terms are explained as follows:

Bit	Bits are the fundamental units of binary values, and have a state of either 1 or 0
Nibble	Comprised of a series of 4 bits (such as b3-b0); can be used to express a one-nibble decimal number 0-9 or hexadecimal number: 0-F.
Byte	Comprised of a series of two nibbles (i.e. 8 bits, b7-b0); can express a hexadecimal number: 00-FF.
Word	Comprised of a series of two bytes (i.e. 16 bits, b15-b0); can express a hexadecimal number with four nibbles: 0000 -FFFF.
Double Word	Comprised of a series of two words (i.e. 32 bits, b31-b0); can express a hexadecimal number with eight nibbles: 0000000-FFFFFFFF

Relationship between bits, digits, nibbles, words, and double words in a binary system (see figure below):

Octal Number, OCT
The external input and output terminals of a DVP-PLC are numbered using octal numbers
Example: External input: $\mathrm{X} 0 \sim \mathrm{X7}, \mathrm{X} 10 \sim \mathrm{X} 17 \ldots$...(Device number table);
External output: Y0~Y7, Y10~Y17...(Device number table)

Decimal Number, DEC

Decimal numbers are used for the following purposes in a PLC system:
\square The setting values of timer T or counter C , such as TMR CO K50. (K constant)
$\square \quad$ The numbers of devices including $\mathrm{M}, \mathrm{T}, \mathrm{C}$, or D , such as M 10 or T 30 . (device number)
$\boxtimes \quad$ Used as a operand in an application command, such as MOV K123 D0. (K constant)

Binary Code Decimal, BCD

Uses one nibble or 4 bits to express the data in a decimal number; a series of 16 bits can therefore express a decimal number with 4 nibbles. Chiefly used to read the input value of a fingerwheel numerical switch input or output a numerical value to a seven-segment display drive.

Hexadecimal Number, HEX

Applications of hexadecimal numbers in a PLC system: Used as operands in application commands, such as MOV H1A2B D0. (H constant)

Constant K

Decimal numbers are usually prefixed with a "K" in a PLC system, such as K100. This indicates that it is a decimal number with a numerical value of 100 .
Exceptions: K can be combined with bit device $\mathrm{X}, \mathrm{Y}, \mathrm{M}$, or S to produce data in the form of a nibble, byte, word, or double word, such as in the case of K2Y10 or K4M100. Here K1 represents a 4-bit combination, and K2-K4 variously represent 8-, 12-, and 16-bit combinations.

Constant H

Hexadecimal numbers are usually prefixed with the letter " H " in a PLC system, such as in the case of H 100 , which indicates a hexadecimal number with a numerical value of 100 .

Functions of auxiliary relays

Like an output relay Y , an auxiliary relay M has an output coil and contacts A and B , and the number of times they can be used in a program is unrestricted. Users can use an auxiliary relay M to configure the control circuit, but cannot use it to directly drive an external load. Auxiliary relays have the following two types of characteristics:
Ordinary auxiliary relays: Ordinary auxiliary relays will all revert to the Off state if a power outage occurs while the PLC is running, and will remain in the Off state if power is again turned down.

Special purpose auxiliary relays: Each special purpose auxiliary relay has its own specific use. Do not use any undefined special purpose auxiliary relays.

Timer functions

Timers take 100 ms as their timing units. When the timing method is an upper time limit, when the current timer value $=$ set value, power will be sent to the output coil. Timer setting values consist of decimal K values, and the data register D can also serve as a setting value.

Actual timer setting time = timing units * set value

Counter features

Item				
Type	General Type			
CT Direction:	Score:	\quad	Setting	$0 \sim 32,767$
:---:	:---			
Designation of set value	Constant K or data register D			
Change in current value	When the count reaches the set value, there is no longer a count			
Output contact	When the count reaches the set value, the contact comes On and stays On			
Reset	The current value reverts to 0 when an RST command is executed, and the contact reverts to Off			
Contact actuation	All are actuated after the end of scanning			

Counter functions

When a counter's counting pulse input signal goes Off \rightarrow On, if the counter's current value is equal to the set value, the output coil will come On. The setting value will be a decimal K values, and the data register D can also serve as a setting value.

16-bit counter:

- 16-bit counter setting range: K0-K32,767. (when K0 and K1 are identical, the output contact will immediately be On during the first count.)
$\square \quad$ The current counter value will be cleared from an ordinary counter when power is shut off to the PLC.
च If the MOV command or WPLSoft is used to transmit a value greater than the set value to the C 0 current value register, when the next X1 goes from Off \rightarrow On, the C0 counter contact will change to On, and the current value will change to the set value.
$\boxtimes \quad$ A counter's setting value may be directly set using a constant K or indirectly set using the value in register D (not including special data registers D1000- D1199 or D2000~D2799).
\square If the set value employs a constant K , it may only be a positive number; the set value may be either a positive or negative number if the value in data register D is used. The current counter value will change from 32,767 to $-32,768$ as the count continues to accumulate.

Example

1. When $X O=O n$ and the RST command is executed, the current value of CO will revert to 0 , and the output contact will revert to Off.
2. When X1 changes from Off \rightarrow On, the current value of the counter will execute an increase (add one).
3. When the count of counter CO reaches the
 set value K 5 , the contact CO will come On, and the current value of $\mathrm{CO}=$ set value $=K 5$. Afterwards, signal C0 triggered by X1 cannot be received, and the current value of C 0 will remain K 5 .

Chapter 16 PLC Function Applications | MH300

16-5-2 Introduction to special relay functions (special M)

R/W items: RO: read only function; RW: read and write function

Special M	Description of Function	R/W *
M1000	Operates monitor NO contact (contact a). NO while RUN, contact a. This contact is On while in the RUN state.	RO
M1001	Operates monitor NC contact (contact b). NC while RUN, contact b. This contact is Off while in the RUN state.	RO
M1002	Initiates a forward (the instant RUN is On) pulse. Initial pulse, contact a. Produces a forward pulse the moment RUN begins; its width = scan cycle	RO
M1003	Initiates a reverse (the instant RUN is Off) pulse. Initial pulse, contact a. Produces a reverse pulse the moment RUN ends; the pulse width = scan cycle	RO
M1004	--	RO
M1005	Drive malfunction instructions	RO
M1006	Drive has no output	RO
M1007	Drive direction FWD (0) / REV (1)	RO
$\begin{aligned} & \text { M1008 } \\ & \text { M1010 } \end{aligned}$	--	--
M1011	10 ms clock pulse , $5 \mathrm{~ms} \mathrm{On} / 5 \mathrm{~ms}$ Off	RO
M1012	100 ms clock pulse, 50 ms On / 50 ms Off	RO
M1013	1 sec . clock pulse , 0.5 s On $/ 0.5 \mathrm{~s}$ Off	RO
M1014	1 min. clock pulse , 30s On / 30s Off	RO
M1015	Frequency attained (when used together with M1025)	RO
M1016	Parameter read/write error	RO
M1017	Parameter write successful	RO
M1018	--	--
M1019	--	--
M1020	Zero flag	RO
M1021	Borrow flag	RO
M1022	Carry flag	RO
M1023	Divisor is 0	RO
M1024	--	--
M1025	Drive frequency = set frequency (ON) Drive frequency $=0$ (OFF)	RW
M1026	Drive operating direction FWD(OFF)/REV(ON)	RW
M1027	Drive Reset	RW
M1028	--	--
M1029	--	--
M1030	--	--
M1031	--	--
M1032	--	--
M1033	--	--
M1034	--	--
M1035	--	--
M1036	--	--
M1037	--	--
M1038	MI7 single-phase or M16+MI7 AB-phase count begins	RW
M1039	Reset M17 single-phase or M16+M17 AB-phase count value	RW
M1040	Hardware power (Servo On)	RW
M1041	--	--
M1042	Quick stop	RW
M1043	--	--
M1044	Pause (Halt)	RW

Special M	Description of Function	R/W *
$\begin{gathered} \text { M1045 } \\ \underset{\text { M1047 }}{\sim} \end{gathered}$	--	--
M1048	--	--
M1049	--	--
M1050	--	--
M1051	--	--
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW
M1053	--	--
M1054	--	--
M1055	--	--
M1056	Hardware already has power (Servo On Ready)	RO
M1057	--	--
M1058	On Quick Stopping	RO
$\begin{aligned} & \text { M1059 } \\ & \text { M1062 } \end{aligned}$	--	--
M1063	Torque attained	RO
$\begin{gathered} \text { M1064 } \\ \tilde{\sim} \\ \text { M1076 } \end{gathered}$	--	--
M1077	485 read/write completed	RO
M1078	485 read/write error	RO
M1079	485 communication timed out	RO

16-5-3 Introduction to special register functions (special D)

$\begin{array}{\|c} \hline \text { Special } \\ \text { D } \end{array}$	Description of Function	R/W *
D1000	--	--
D1001	Device system program version	RO
D1002	Program capacity	RO
D1003	Total program memory content	RO
$\begin{gathered} \text { D1004 } \\ \text { D1009 } \end{gathered}$	--	--
D1010	Current scan time (units: 0.1 ms)	RO
D1011	Minimum scan time (units: 0.1 ms)	RO
D1012	Maximum scan time (units: 0.1 ms)	RO
$\begin{gathered} \text { D1013 } \\ \tilde{\sim} \\ \text { D1017 } \end{gathered}$	--	--
D1018	Current integral value	RO
D1019	Compulsory setting of PID I integral	RW
D1020	Output frequency ($0.000 \sim 600.00 \mathrm{~Hz}$)	RO
D1021	Output current (\#\#\#\#.\#A)	RO
D1022	AI AO DI DO expansion card number 0 : No expansion card 10: EMM-D33A 11: EMM-A22A 12: EMM-R2CA 13: EMM-R3AA--	--

Special D	Description of Function	R/W *
D1023	Communication expansion card number 0: No expansion card 1: DeviceNet Slave 2: Profibus-DP Slave 3: CANopen Slave 4: Modbus-TCP Slave 5: EtherNet/IP Slave	RO
$\begin{gathered} \text { D1024 } \\ \underset{\sim}{\mathrm{D} 1026} \end{gathered}$	--	--
D1027	PID calculation frequency command (frequency command after PID calculation)	RO
D1028	AVI value (0.00~100.00\%)	RO
D1029	ACI value (0.0~100.00\%)	RO
D1030	--	--
D1031	Al10 value (0.00~100.00\%)	RO
D1032	Al11 value (0.00~100.00\%)	RO
$\begin{gathered} \text { D1033 } \\ \underset{\sim}{\text { D1034 }} \end{gathered}$	--	--
D1035	--	--
D1036	Servo error bit	RO
D1037	Drive output frequency	RO
D1038	DC BUS voltage	RO
D1039	Output voltage	RO
D1040	Analog output value AFM (-100.00~100.00\%)	RW
D1041	Analog output value AO10 (0.00~100.00\%)	RW
D1042	Analog output value AO11 (0.00~100.00\%)	RW
D1043	Can be user-defined (will be displayed on panel when Pr. 00-04 is set as 28 ; display method is C xxx)	RW
D1044	--	-
D1045	--	--
$\begin{aligned} & \text { D1046 } \\ & \text { D1049 } \end{aligned}$	--	--
D1050	Actual operation mode 0 : Speed 2: Torque	RO
D1051	--	--
D1052	--	--
D1053	Actual torque	RO
D1054	MI7 current calculated count value (Low Word)	RO
D1055	M17 current calculated count value (High Word)	RO
D1056	Rotational speed corresponding to M17	RO
D1057	MI7's rotational speed ratio	RW
D1058	MI7 refresh rate (ms) corresponding to rotational speed	RW
D1059	Number of nibbles of rotational speed corresponding to MI7 (0-3)	RW
D1060	Operation mode setting 0 : Speed 2: Torque	RW
D1061	485 COM1 communications time out time (ms)	RW
D1062	Torque command (torque limit in speed mode)	RW
D1063	--	--
D1064	--	--
D1065	--	--
D1066	--	--
D1067	--	--

Special D	Description of Function	R/W *
D1068	--	--
D1069	--	--
D1100	Target frequency	RO
D1101	Target frequency (must be operating)	RO
D1102	Reference frequency	RO
D1103	--	--
D1104	--	--
D1105	Target torque	RO
D1106	--	--
D1107	$\pi($ Pi) Low word	RO
D1108	$\pi($ Pi) High word	RO
D1109	Random number	RO
D1111	Encoder pulse number L	RO
D1112	Encoder pulse number H	RO

16-5-4 PLC Communication address

Device	Range	Type	Address (Hex)
X	$00 \sim 17$ (Octal)	bit	$0400 \sim 040 \mathrm{FF}$
Y	$00 \sim 17$ (Octal)	bit	$0500 \sim 050 \mathrm{~F}$
T	$00 \sim 159$	bit/word	$0600 \sim 069 \mathrm{~F}$
M	$000 \sim 799$	bit	$0800 \sim 0 \mathrm{B1F}$
M	$1000 \sim 1279$	bit	$0 B E 8 \sim 0 \mathrm{CFF}$
C	$0 \sim 79$	bit/word	$0 E 00 \sim 0 \mathrm{E} 4 \mathrm{~F}$
D	$00 \sim 399$	word	$1000 \sim 118 \mathrm{~F}$
D	$1000 \sim 1619$	word	$13 E 8 \sim 1653$

Command code that can be used

Function Code	Description of Function	Function target
H1	Coil status read	Y,M,T,C
H2	Input status read	X,Y,M,T,C
H3	Read single unit of data	T,C,D
H5	Compulsory single coil status change	Y,M,T,C
H6	Write single unit of data	T,C,D
HF	Compulsory multiple coil status change	Y,M,T,C
H10	Write multiple units of data	T,C,D

NOTE

When PLC functions have been activated, the MH300 can match PLC and drive parameters; this method employs different addresses, drives (default station number is 1, PLC sets station number as 2)

16-6 Introduction to the Command Window

16-6-1 Overview of basic commands

- Ordinary commands

Command code	Function	OPERAND	Execution speed (us)
LD	Load contact A	$\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{M} \cdot \mathrm{T}, \mathrm{C}$	0.8
LDI	Load contact B	$\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{M} \cdot \mathrm{T}, \mathrm{C}$	0.8
AND	Connect contact A in series	$\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{M} \cdot \mathrm{T}, \mathrm{C}$	0.8
ANI	Connect contact B in series	$\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{M} \cdot \mathrm{T}, \mathrm{C}$	0.8
OR	Connect contact A in parallel	$\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{M} \cdot \mathrm{T}, \mathrm{C}$	0.8
ORI	Connect contact B in parallel	$\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{M} \cdot \mathrm{T} \cdot \mathrm{C}$	0.8
ANB	Series circuit block	N/A	0.3
ORB	Parallel circuit block	N/A	0.3
MPS	Save to stack	N/A	0.3
MRD	Stack read (pointer does not change)	N/A	0.3
MPP	Read stack	N/A	0.3

- Output command

Command code	Function	OPERAND	Execution speed (us)
OUT	Drive coil	Y \cdot M	1
SET	Action continues (ON)	Y \cdot M	1
RST	Clear contact or register	Y $M \cdot T \cdot C \cdot D$	1.2

- Timer, counter

Command code	Function	OPERAND	Execution speed (us)
TMR	16-bit timer	T-K or T-D commands	1.1
CNT	16-bit counter	C-K or C-D (16-bit)	0.5

- Main control command

Command code	Function	OPERAND	Execution speed (us)
MC	Common series contact connection	N0~N7	0.4
MCR	Common series contact release	N0~N7	0.4

- Contact rising edge/falling edge detection command

Command code	Function	OPERAND	Execution speed (us)
LDP	Start of forward edge detection action	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$	1.1
LDF	Start of reverse edge detection action	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$	1.1
ANDP	Forward edge detection series connection	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$	1.1
ANDF	Reverse edge detection series connection	$\mathrm{X}, \mathrm{Y}, \mathrm{M} \cdot \mathrm{T}, \mathrm{C}$	1.1
ORP	Forward edge detection parallel connection	$\mathrm{X}, \mathrm{Y}, \mathrm{M}, \mathrm{T}, \mathrm{C}$	1.1
ORF	Reverse edge detection parallel connection	$\mathrm{X} \cdot \mathrm{Y}, \mathrm{M} \cdot \mathrm{T}, \mathrm{C}$	1.1

- Upper/lower differential output commands

Command code	Function	OPERAND	Execution speed (us)
PLS	Upper differential output	$\mathrm{Y} \cdot \mathrm{M}$	1.2
PLF	Lower differential output	$\mathrm{Y} \cdot \mathrm{M}$	1.2

- Stop command

Command code	Function	OPERAND	Execution speed (us)
END	Program conclusion	N/A	0.2

- Other commands

Command code	Function	OPERAND	Execution speed (us)
NOP	No action	N/A	0.2
INV	Inverse of operation results	N/A	0.2
P	Index	P	0.3

16-6-2 Detailed explanation of basic commands

Command	Function					
LD	Load contact A					
Operand	$\mathrm{X} 0 \sim \mathrm{X17}$	$\mathrm{Y} 0 \sim \mathrm{Y} 17$	$\mathrm{M} 0 \sim \mathrm{M} 799$	$\mathrm{~T} 0 \sim 159$	$\mathrm{C} 0 \sim \mathrm{C} 79$	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

The LD command is used for contact A starting at the left busbar or contact A starting
at a contact circuit block; its function is to save current content and save the acquired
contact status in the cumulative register.

Command	Function						
LDI	Load contact B						
Operand	X0~X17	$\mathrm{Y} 0 \sim Y 17$	M0~M799	T0~15		C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	-
Explanation	The LDI command is used for contact B starting at the left busbar or contact B starting at a contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register.						
Example	Ladder diagram:			Command code:		Description:	
				LDI	X0	Load C	act B of X0
				AND	X1	Create connec of X1	series to contact A
				OUT	Y1	Drive Y	

Command	Function						
AND	Connect contact A in series						
Operand	X0~X17	$\mathrm{Y} 0 \sim \mathrm{Y} 17$	M0~M799	T0~159		C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	-
Explanation	The AND command is used to create a series connection to contact A; first reads current status of the designated series contact and logical operation results before contact in order to perform "AND" operation; saves results in cumulative register.						
Example	Ladder diagram:			Command code: LDI X1		Description: Load Contact B of X1	
				AND	x0	Create connec of X0	series to contact A
				OUT	Y1	Drive Y	

Command	Function					
ANI	Connect contact B in series	C0~M799	T0~159	C0~C79	D0~D399	
Operand	X0~X17	Y0~Y17	M0~M	\checkmark	\checkmark	\checkmark
		\checkmark	\checkmark	\checkmark	-	

The ANI command is used to create a series connection to contact B; its function is to

Explanation

Command code: Description:

LD	X1	Load Contact A of X1
ANI	X0	Create connection to contact B of X0
OUT	Y1	Drive Y1 coil

Command	Function					
OR	Connect contact A in parallel	M0~M799	T0~159	C0~C79	D0~D399	
Operand	X0~X17	Y0~Y17	\checkmark	\checkmark	\checkmark	\checkmark
	\checkmark	\checkmark				

The OR command is used to establish a parallel connection to contact a; its function is
 to first read current status of the designated series contact and logical operation results before contact in order to perform "OR" operation; saves results in cumulative register.

Command code: Description:

LD	X0	Load Contact A of X0
OR	X1	Create connection to contact A of X1
OUT	Y1	Drive Y1 coil

Command	Function						
ORI	Connect contact B in parallel						
Operand	X0~X17	$\mathrm{Y} 0 \sim \mathrm{Y} 17$	M0~M799	T0~159		C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	-
	The ORI command is used to establish a parallel connection to contact B ; its function is to first read current status of the designated series contact and logical operation results before contact in order to perform "OR" operation; saves results in cumulative register.						
Explanation							
Example	Ladder diagram:$\times 0$			Command code:		Description:	
				LD		Load C	act A of X0
	X1			ORI		Create connect of X 1	series to contact
				OUT	Y1	Drive Y	

Chapter 16 PLC Function Applications | MH300

Command	Function			
ORB	Parallel circuit block			
Operand	N/A			
Explanation	ORB performs an "OR" operation on the previously saved logic results and the current cumulative register content.			
Example	Ladder diagram:	LD X0		Description: Load Contact A of X0 Establish parallel connection to contact B of X1 Load Contact B of X2 Establish parallel connection to contact A of X3
		ANI		
		LDI		
		AND	X3	
		ORB		Parallel circuit block
		OUT	Y1	Drive Y1 coil
Command	Function			
MPS	Save to stack			
Operand	N/A			
Explanation	Save current content of cumulative register to the stack. (Add one to stack pointer)			
Command	Function			
MRD	Read stack (pointer does not change)			
Operand	N/A			
Explanation	Reads stack content and saves to cumulative register. (Stack pointer does not change)			

When the CNT command is executed from Off \rightarrow On, this indicates that the designated counter coil goes from no power \rightarrow electrified, and 1 will be added to the counter's count value; when the count reaches the designated value (count value $=$ set value), the contact will have the following action:

NO (Normally Open) contact	Closed
NC (Normally Close) contact	Open

After the count value has been reached, the contact and count value will both remain unchanged even if there is continued count pulse input. Please use the RST command if you wish to restart or clear the count.

Ladder diagram:

Command code: Description:

LD	X0	Load Contact A of X0 CNT
C2 2 K100		
C2counter		
Set value as K100		

MC/MCR Connect/release a common series contact
Operand N0~N7
Explanation
$M C$ is the main control initiation command, and any commands between MC and MCR will be executed normally. When the MC command is Off, any commands between MC and MCR will act as follows:

Determination of commands
Ordinary timer
Counter
Coil driven by OUT command Elements driven by SET, RST commands
Applications commands None are actuated
MCR is the main control stop command, and is placed at the end of the main control program. There may not be any contact commands before the MCR command.
The MC-MCR main control program commands support a nested program structure with a maximum only 8 levels; use in the order N0-N7, please refer to the following program:

Command code:	Description:	
LD	X0	Load Contact A of X0
MC	N0	Connection of N0 common series contact
LD	X1	Load Contact A of X1
OUT	Y0	Drive Y0 coil
$:$		
LD	X2	Load Contact A of X2
MC	N1	Connection of N1 common series contact
LD	X3	Load Contact A of X3
OUT	Y1	Drive Y1 coil
$:$		
MCR	N1	Release N1 common series contact
$:$		
MCR	N0	Release N0 common series contact
$:$		
LD	X10	Load Contact A of X10
MC	N0	Connection of N0 common series contact
LD	X11	Load Contact A of X11
OUT	Y10	Drive Y10 coil
$:$		
MCR	N0	Release N0 common series contact

Chapter 16 PLC Function Applications | MH300

Command	Function					
LDP	Start of forward edge detection action					
Operand	$\mathrm{XO} \mathrm{\sim X17}$	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanation
The LDP command has the same usage as LD, but its action is different; its function is to save current content, while also saving the detected state of the rising edge of the contact to the cumulative register.

Ladder diagram:

Command Description: code:

LDP X0 | Start of X0 forward edge detection |
| :--- |
| action | action

Create series connection to contact A of X 1
OUT Y1 Drive Y1 coil

Please refer to the function specifications table for each device in series for the scope of usage of each operand.
A rising edge contact will be TRUE after power is turned on if the rising edge contact is On before power is turned on to the PLC.

Command	Function						
LDF	Start of reverse edge detection action						
	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399	
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	

Explanation to save current content while also saving the detected state of the falling edge of the contact to the cumulative register.

Example	Command code:	Description:	
Ladder diagram:	LDF	X0	Start of X0 reverse edge detection action
AND	X 1	Create series connection to contact A of X 1	
AN1			

Command	Function					
ANDP	Forward edge detection series connection					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
Explanation	The ANDP command used for a contact rising edge detection series connection.					
Example	Ladder diagram:			Command code: LD X0	Description: Load Contact A of X0	
				ANDP	X1 For detectio conne	d edge series
				OUT	Drive Y	

Command	Function					
PLS	Upper differential output					
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399
	-	\checkmark	\checkmark	-	-	-

Upper differential output commands. When $\mathrm{X} 0=\mathrm{Off} \rightarrow$ On (positive edge-triggered), the Explanation PLS command will be executed, and MO will send one pulse, with a pulse length consisting of one scanning period.

Command	Function	
END	Program conclusion	N/A
Operand		

An END command must be added to the end of a ladder diagram program or
Explanation command program. The PLC will scan from address 0 to the END command, and will return to address 0 and begins scanning again after execution.

| Command |
| :---: | :--- | :--- | :--- | :--- |
| NOP | No action \quad Function

Command	Function			
INV	Inverse of operation results			
Operand	N/A			
Explanation	Saves the result of the logic inversion operation prior to the INV command in the cumulative register.			
Example	Ladder diagram:	Comm	code	Description:
		LD	X0	Load Contact A of X0
		INV		Inverse of operation results
		OUT	Y1	Drive Y1 coil

16-6-3 Overview of application commands

Classification	API	Command code		Pcommand	Function	STEPS	
		16 bit	32 bit			16bit	32bit
Circuit control	01	CALL	-	\checkmark	Call subprogram	3	-
	2	SRET	-	-	Conclusion of subprogram	1	-
	06	FEND	-	-	Conclusion a main program	1	-
Send comparison	10	CMP	DCMP	\checkmark	Compares set output	7	13
	11	ZCP	DZCP	\checkmark	Range comparison		17
	12	MOV	DMOV	\checkmark	Data movement	5	9
	15	BMOV	-	\checkmark	Send all	7	-
Four logical operations	20	ADD	DADD	\checkmark	BIN addition	7	13
	21	SUB	DSUB	\checkmark	BIN subtraction	7	13
	22	MUL	DMUL	\checkmark	BIN multiplication	7	13
	23	DIV	DDIV	\checkmark	BIN division	7	13
	24	INC	DINC	\checkmark	BIN add one	3	5
	25	DEC	DDEC	\checkmark	BIN subtract one	3	5
Rotational displacement	30	ROR	DROR	\checkmark	Right rotation	5	-
	31	ROL	DROL	\checkmark	Left rotation	5	-
Data Process	40	ZRST	-	\checkmark	Clear range	5	-
	49	-	DFLT	\checkmark	BIN whole number \rightarrow binary floating point number transformation	-	9
communication	150	MODRW	-	\checkmark	MODBUS read/write	7	-
Floating point operation	110	-	DECMP	\checkmark	Comparison of binary floating point numbers	-	13
	111	-	DEZCP	\checkmark	Comparison of binary floating point number range	-	17
	116	-	DRAD	\checkmark	Angle \rightarrow Diameter	-	9
	117	-	DDEG	\checkmark	Diameter \rightarrow angle	-	9
	120	-	DEADD	\checkmark	Binary floating point number addition	_	13
	121	-	DESUB	\checkmark	Binary floating point number subtraction	-	13
	122	-	DEMUL	\checkmark	Binary floating point number multiplication	-	13
	123	-	DEDIV	\checkmark	Binary floating point number division	-	13
	124	-	DEXP	\checkmark	Binary floating point number obtain exponent	-	9
	125	-	DLN	\checkmark	Binary floating point number obtain logarithm	-	9
	127	-	DESQR	\checkmark	Binary floating point number find square root	-	9
	129	-	DINT	\checkmark	Binary floating point number \rightarrow BIN whole number transformation	-	9
	130	-	DSIN	\checkmark	Binary floating point number SIN operation	-	9
	131	-	DCOS	\checkmark	Binary floating point number COS operation	-	9
	132	-	DTAN	\checkmark	Binary floating point number TAN operation	-	9
	133	-	DASIN	\checkmark	Binary floating point number ASIN operation	-	9
	134	-	DACOS	\checkmark	Binary floating point number ACOS operation	-	9
	135	-	DATAN	\checkmark	Binary floating point number ATAN operation	-	9

Classification	API	Command code		Pcommand	Function	STEPS	
		16 bit	32 bit			16bit	32bit
Floating point operation	136	-	DSINH	\checkmark	Binary floating point number SINH operation	-	9
	137	-	DCOSH	\checkmark	Binary floating point number COSH operation	-	9
	138	-	DTANH	\checkmark	Binary floating point number TANH operation	-	9
Calendar	160	TCMP	-	\checkmark	Compare calendar data	11	-
	161	TZCP	-	\checkmark	Compare calendar data range	9	-
	162	TADD	-	\checkmark	Calendar data addition	7	-
	163	TSUB	-	\checkmark	Calendar data subtraction	7	-
	166	TRD	-	\checkmark	Calendar data read	3	-
GRAY code	170	GRY	DGRY	\checkmark	BIN \rightarrow GRY code transformation	5	9
	171	GBIN	DGBIN	\checkmark	GRY code \rightarrow BIN transformation	5	9
Contact form logical operation	215	LD\&	DLD\&	-	Contact form logical operation LD\#	5	9
	216	LD\|	DLD\|	-	Contact form logical operation LD\#	5	9
	217	LD^	DLD^	-	Contact form logical operation LD\#	5	9
	218	AND\&	DAND\&	-	Contact form logical operation AND\#	5	9
	219	ANDI	DANDI	-	Contact form logical operation AND\#	5	9
	220	AND^	DAND^	-	Contact form logical operation AND\#	5	9
	221	OR\&	DOR\&	-	Contact form logical operation OR\#	5	9
	222	OR\|	DOR\|	-	Contact form logical operation OR\#	5	9
	223	OR^	DOR^	-	Contact form logical operation OR\#	5	9
Contact form compare command	224	LD $=$	DLD $=$	-	Contact form compare LD*	5	9
	225	LD >	DLD>	-	Contact form compare LD*	5	9
	226	LD<	DLD<	-	Contact form compare LD*	5	9
	228	LD<>	DLD $<>$	-	Contact form compare LD*	5	9
	229	LD $<=$	DLD $<=$	-	Contact form compare LD*	5	9
	230	LD $>=$	DLD $>=$	-	Contact form compare LD*	5	9
	232	AND $=$	DAND $=$	-	Contact form compare AND*	5	9
	233	AND >	DAND>	-	Contact form compare AND*	5	9
	234	AND $<$	DAND $<$	-	Contact form compare AND*	5	9
	236	AND $<>$	DAND<>	-	Contact form compare AND*	5	9
	237	AND $<=$	DAND $<=$	-	Contact form compare AND*	5	9
	238	AND $>=$	DAND $>=$	-	Contact form compare AND*	5	9
	240	$\mathrm{OR}=$	DOR=	-	Contact form compare OR*	5	9
	241	OR>	DOR >	-	Contact form compare OR*	5	9
	242	OR<	DOR<	-	Contact form compare OR*	5	9
	244	OR<>	DOR<>	-	Contact form compare OR*	5	9
	245	$\mathrm{OR}<=$	DOR $<=$	-	Contact form compare OR*	5	9
	246	OR $>=$	DOR $>=$	-	Contact form compare OR*	5	9

Classification	API	Command code		$\begin{gathered} \mathrm{P} \\ \text { command } \end{gathered}$	Function	STEPS	
		16 bit	32 bit			16bit	32bit
Floating point contact form	275	-	FLD $=$	-	Floating point number contact form compare LD*	-	9
	276	-	FLD >	-	Floating point number contact form compare LD*	-	9
	277	-	FLD $<$	-	Floating point number contact form compare LD*	-	9
Compare command	278	-	FLD $<>$	-	Floating point number contact form compare LD*	-	9
	279	-	FLD $<=$	-	Floating point number contact form compare LD*	-	9
	280	-	FLD $>=$	-	Floating point number contact form compare LD*	-	9
	281	-	FAND $=$	-	Floating point number contact form compare AND*	-	9
	282	-	FAND >	-	Floating point number contact form compare AND*	-	9
	283	-	FAND $<$	-	Floating point number contact form compare AND*	-	9
	284	-	FAND $<>$	-	Floating point number contact form compare AND*	-	9
	285	-	FAND $<=$	-	Floating point number contact form compare AND*	-	9
	286	-	FAND $>=$	-	Floating point number contact form compare AND*	-	9
	287	-	$\mathrm{FOR}=$	-	Floating point number contact form compare OR*	-	9
	288	-	FOR >	-	Floating point number contact form compare OR*	-	9
	289	-	FOR<	-	Floating point number contact form compare OR*	-	9
	290	-	FOR $<>$	-	Floating point number contact form compare OR*	-	9
	291	-	FOR $<=$	-	Floating point number contact form compare OR*	-	9
	292	-	FOR $>=$	-	Floating point number contact form compare OR*	-	9
Drive special command	139	RPR	-	\checkmark	Read servo parameter	5	-
	140	WPR	-	\checkmark	Write servo parameter	5	-
	141	FPID	-	\checkmark	Drive PID control mode	9	-
	142	FREQ	-	\checkmark	Drive torque control mode	7	-
	262	-	DPOS	\checkmark	Set target	-	5
	263	TORQ	-	\checkmark	Set target torque	5	-

16-6-4 Detailed explanation of applications commands

| API | \square CALL | \mathbf{P} | S |
| :---: | :--- | :--- | :--- | Call subprogram

Explanation \mathbf{S} : Call subprogram pointer.

- Write the subprogram after the FEND command.

■ The subprogram must end after the SRET command.

- Refer to the FEND command explanation and sample content for detailed command functions.

API	\square	SRET	\mathbf{P}	-
02		Conclusion of subprogram		

	Bit device		Word device								16 -bit co	mand (1 ST		
X	Y	M	K	H	KnX	KnY	KnM	T	c	D	FEND	Continuous execution type	-	-
Notes on operand usage: No operand											32-bit co	mand		
											-	-	-	-
A contact-driven command is not needed											Flag signal: none			

Explanation

- A contact-driven command is not needed. Automatically returns next command after CALL command
- Indicates end of subprogram. After end of subprogram, SRET returns to main program, and executes next command after the original call subprogram CALL command.
- Refer to the FEND command explanation and sample content for detailed command functions.

Explanation

CALL command process

This command indicates the end of the main program. It is the same as the END command when the PLC executes this command.

- The CALL command program must be written after the FEND command, and the SRET command added to the end of the subprogram.
- When using the FEND command, an END command is also needed. However, the END command must be placed at the end, after the main program and subprogram.

$\begin{gathered} \text { API } \\ 10 \end{gathered}$		CMP		P	(S1) S2 D					Compares set output					
Bit device				Word device								16-bit command (7 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	CMP	Continuous	CMPP	Pulse
S1				*	*	*	*	*	*	*	*		execution type		execution type
S2				*	*	*	*	*	*	*	*	32-bit	mmand (13 ST		
D		*	*									DCMP	Continuous	DCMPP	Pulse
Notes on operand usage:The operand D occupies three consecutive points													execution type		execution type
												Flag sign	al: none		

Explanation (S1): Compare value 1. S2: Compare value 2. D: Results of comparison.

- Compares the size of the content of operand S1 and S2; the results of comparison are expressed in D.
- Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16 -bit command, when b15 is 1 , this indicates a negative number.

■ When the designated device is Y 0 , it automatically occupies $\mathrm{Y} 0, \mathrm{Y} 1$ and Y 2 .

- When $\mathrm{X} 10=\mathrm{On}$, the CMP command executes, and $\mathrm{Y} 0, \mathrm{Y} 1$ or Y 2 will be On. When $\mathrm{X} 10=$ Off, the CMP command will not execute, and the state of $\mathrm{Y} 0, \mathrm{Y} 1$ and Y 2 will remain in the state prior to $\mathrm{X10}=\mathrm{Off}$.
- If \geq, \leq, or \neq results are needed, they can be obtained via series/parallel connections of $\mathrm{YO}-\mathrm{Y} 2$.

■ To clear results of comparison, use the RST or ZRST command.

	Bit device			Word device								16-bit command (9 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ZCP	Continuous	ZCPP	Pulse
S1				*	*	*	*	*	*	*	*		execution type		execution type
S2				*	*	*	*	*	*	*	*	32-bit co	mand (17 ST		
S				*	*	*	*	*	*	*	*	DZCP	Continuous	DZCPP	
D		*	*										execution type		execution type

Notes on operand usage:
The content value of operand S1 is less than the content value of Flag signal: none S2 operand
The operand D occupies three consecutive points
Explanation (S1): Lower limit of range comparison. (S2): Upper limit of range comparison. (S) : Comparative value. D: Results of comparison.

- When the comparative value S is compared with the lower limit S1 and upper limit S2, the results of comparison are expressed in D.
- When lower limit S1 > upper limit S2, the command will use the lower limit (S1) to perform comparison with the upper and lower limit.
- Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16-bit command, when b15 is 1 , this indicates a negative number.

Example

- When the designated device is M0, it automatically occupies M0, M1 and M2.
- When $\mathrm{X} 0=$ On, the ZCP command executes, and M0, M1 or M2 will be On. When X0=Off, the ZCP command will not execute, and the state of M0, M1 or M2 will remain in the state prior to $\mathrm{X} 0=\mathrm{Off}$.
- If \geq, \leq, or \neq results are needed, they can be obtained via series/parallel connections of M0-M2.

To clear results of comparison, use the RST or ZRST command.

API	\mathbf{D}	MOV	\mathbf{P}	S (D)	Data movement
12	\mathbf{D}	\mathbf{P}			

	Bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	MOV	Continuous	MOVP	Pulse
S				*	*	*	*	*	*	*	*		execution type		execution type
D							*	*	*	*	*	32-bit command (9 STEP)			
	on	per	nd	age								DMOV	Continuous execution type	DMOVP	Pulse execution type

Flag signal:
Explanation ■ : Data source. D: Destination of data movement.

- When this command is executed, the content of S content will be directly moved to D. When the command is not executed, the content of D will not change.

Example

- When $\mathrm{X} 0=\mathrm{Off}$, the content of D 10 will not change; if $\mathrm{X} 0=\mathrm{On}$, the value K 10 will be sent to data register D10.
- When $\mathrm{X}_{1}=\mathrm{Off}$, the content of D10 will not change; if $\mathrm{X} 1=\mathrm{On}$, the current value of T0 will be sent to data register D10.

$\frac{\mathrm{API}}{15}$		BMOV		P	(D D					Send all			
	Bit device			Word device								16-bit command (7 STEP)	
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	BMOV : Continuous : BMOVP	Pulse
S						*	*	*	*	*	*	execution type:	execution type
D							*	*	*	*	*		
n				*	*				*	*		32-bit command	
Notes on operand usage: n operand scope $\mathrm{n}=1$ to 512												Flag signal: none	

Explanation ■ : Initiate source device. (D) Initiate destination device. n : Send block length.

- The content of n registers starting from the initial number of the device designated by will be sent to the n registers starting from the initial number of the device designated by n; if the number of points referred to by n exceeds the range used by that device, only points within the valid range will be sent.

Example 1

- When $\mathrm{X} 10=$ On, the content of registers D0-D3 will be sent to the four registers D20 to D23.

Example 2

- If the designated bit devices $\mathrm{KnX}, \mathrm{KnY}$, and KnM are sent, S and D must have the same number of nibbles, which implies that n must be identical.

M 0
M 1
M 2
M 3
:---:
Y 1

- In order to prevent overlap between the transmission addresses of two operands, which would cause confusion, make sure that the addresses designated by the two operands have different sizes, as shown below:
When $S>$, send in the order (1) \rightarrow (2) \rightarrow (3).

API	\square	ADD	\mathbf{P}	S1 S2 S	D	BIN addition
20	D					

Explanation (S1: Augend. S2): Addend. D: Sum.

■ Using two data sources: The result of adding method will be stored in D.

- The highest bit of any data is symbolized as bit 0 indicating (positive) 1 indicating (negative), enabling the use of algebraic addition operations. (for instance: $3+(-9)=-6)$
- Flag changes connected with the addition.

1. When calculation results are 0 , the zero flag M1020 will be On.
2. When calculation results are less than $-32,768$, the borrow flag M1021 will be On.
3. When calculation results are greater than 32,767 , the carry flag M1022 will be On.

Example

- 16-bit BIN addition: When $\mathrm{X} 0=\mathrm{On}$, the result of the content of addend D 0 plus the content of augend D10 will exist in the content of D20.

Remark

- Relationship between flag actions and negative/positive numbers:
16 bit: Zero flag Zero flag Zero flag

AP 21			SUB	P	(S1) S2 D					BIN subtraction					
	Bit device			Word device								16-bit command (7 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	SUB	: Continuous	SUBP	Pulse
S1				*	*	*	*	*	*	*	*		execution type		execution type
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)			
Notes on operand usage: none												边			
												DSUB	execution type	DSUBP	execution type
												Flag signal: M1020 Zero flag M1021 Borrow flag M1022 Carry flag Please refer to the following supplementary explanation			

Explanation (S1): Minuend. S2: Subtrahend. D: Difference.

- Using two data sources: The result of subtraction of S1 and S2 using the BIN method is stored in D.
- The highest bit of any data is symbolized as bit 0 indicating (positive) 1 indicating (negative), enabling the use of algebraic subtraction operations.
- Flag changes connected with subtraction.

1. When calculation results are 0 , the zero flag M 1020 will be On.
2. When calculation results are less than $-32,768$, the borrow flag M1021 will be On.
3. When calculation results are greater than 32,767 , the carry flag M1022 will be On.

Example

- 16-bit BIN subtraction: When $\mathrm{X} 0=\mathrm{On}$, the content of D 10 is subtracted from the content of D0, and the difference is stored in D20.

Explanation (S1): Multiplicand. (S2): Multiplier. D: Product.

- Using two data sources: When S1 and S2 are multiplied using the BIN method, the product is stored in D.

16-bit BIN multiplication operation:

Symbol bit $=0$ refers to a positive value .
Symbol bit = 1 refers to a negative value.
When D is a bit device, K1-K4 can be designated as a hexadecimal number, which will occupy 2 consecutive units.

Example

- When 16 -bit DO is multiplied by 16 -bit D10, the result will be a 32 -bit product; the upper 16 bits will be stored in D21, and the lower 16 bits will be stored in D20. Whether the bit at the farthest left is Off or On will indicate the sign of the result.

API	D	DIV	\mathbf{P}	S1 (S2	D	BIN division

		dev					Vord	devic				16-bit c	mmand (7 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	DIV	Continuous	DIVP	Pulse
S1				*	*	*	*	*	*	*	*		execution type		execution type
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)			
Notes on operand usage:															

Explanation (S1): Dividend. S2: Divisor. D: Quotient and remainder.
Using two data sources: The quotient and remainder will be stored in \qquad S1 and S2 are subjected to division using the BIN method. The sign bit for (S1), S2 and (D) must be kept in mind when performing a 16-bit operation.

16-bit BIN division:
Quotient Remainder

If D is a bit device, K1-K4 can be designated 16 bits, which will occupy 2 consecutive units and yield the quotient and remainder.

Example

- When $\mathrm{X} 0=\mathrm{On}$, the quotient resulting from division of dividend D0 by divisor D10 will be placed in D20, and the remainder will be placed in D21. Whether the highest bit is Off or On will indicate the sign of the result.

API		INC		P	(D)					BIN add one					
	Bit device			Word device								16-bit command (3 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	INC	Continuous	INCP	Pulse
D							*	*	*	*	*		execution type		execution type
Notes on operand usage: none \quad - ${ }^{\text {a }}$ - bit command (STEP)															
												DINC	Continuous execution type	DINCP	Pulse execution type
												Flag signal: none			

Explanation (D: Destination device. program will add 1 to the content of device (D) for each scanning cycle.

- This command is ordinarily used as a pulse execution type command (INCP).

■ During 16 -bit operation, $32,767+1$ will change the value to $-32,768$. During 32 bit operation, $2,147,483,647+1$ will change the value to $-2,147,483,648$.

Example

- When $\mathrm{X} 0=\mathrm{Off} \rightarrow \mathrm{On}, 1$ is automatically added to the content of DO .

API		DEC		P	(D)					BIN subtract one			
	Bit device			Word device								16-bit command (3 STEP)	
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	DEC ! Continuous \ DECP	Pulse
D				*	*	*	*	*				execution type	execution type
Notes on operand usage: none												32-bit command (5 STEP)	
												DDEC : Continuous DDECP	Pulse execution type
												Flag signal: none	

Explanation \square : Destination device.
If a command is not the pulse execution type, when the command is executed, the program will add 1 to the content of device D for each scanning cycle.

- This command is ordinarily used as a pulse execution type command (DECP).

■ During 16-bit operation, $-32,768-1$ will change the value to 32,767 . During 32 bit operation, $-2,147,483,648-1$ will change the value to $-2,147,483,647$.

Example

- When $\mathrm{XO}=\mathrm{Off} \rightarrow \mathrm{On}, 1$ is automatically subtracted from the content of D 0 .

$\begin{array}{\|c\|} \hline \text { API } \\ \hline 30 \end{array}$		ROR		P	(D) n					Right rotation					
	Bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ROR	Continuous	RORP	Pulse
D							*	*	*	*	*		execution type		execution type
n				*	*							32-bit command (9 STEP)			
Notes on operand usage: Only K4 (16-bit) will be valid if the operand D is designated as KnY or KnM. n operand $\mathrm{n}=\mathrm{K} 1-\mathrm{K} 16$ (16-bit)												DROR Flag signa	Continuous execution type I: M1022 C	DRORP rry flag	Pulse execution type

Explanation ■ Device to be rotated. n : Number of bits for one rotation.

- Rotates the device designated by D to the right n bits.
- This command is ordinarily used as a pulse execution type command (RORP).

Example

- When $\mathrm{X} 0=\mathrm{Off} \rightarrow \mathrm{On}, 4$ of the 16 bits in D10 specify a right rotation; the content of the bit indicated with * (see figure below) will be sent to the carry flag signal M1022.

	Bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
D							*	*	*	*	*
n				*	*						

Notes on operand usage:
Only K4 (16-bit) will be valid if the operand D is designated as KnY or KnM.
n operand $\mathrm{n}=1$ to 16 (16-bit)

16-bit command (5 STEP)			
ROL	Continuous execution type	ROLP	Pulse execution type
32 -bit command (9 STEP)			
DROL	Continuous execution type	DROLP	Pulse execution type
Flag sign	al: M1022	ry flag	

Explanation (D) Device to be rotated. n : Number of bits for one rotation.
$\begin{aligned} & \text { Explanation } \\ & \square D \text { : Device to be rotated. } n \text { : Number of bits for one rotation } \\ & n \text { to the left } n \text { bits. }\end{aligned}$

- This command is ordinarily used as a pulse execution type command (ROLP).

Example

- When $\mathrm{X} 0=\mathrm{Off} \rightarrow \mathrm{On}, 4$ of the 16 bits in D10 specify a left rotation; the content of the bit indicated with * (see figure below) will be sent to the carry flag signal M1022.

AP		ZRST		P	(D1) D2					Clear range					
	Bit device			Word device								16-bit	mand (5 Si		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ZRST	Continuous	ZRSTP	Pulse
D1		*	*						*	*	*		execution type		execution type
D2		*	*						*	*	*	32-bit command			
Notes on operand usage: Number of operand D_{1} operand \leq number of operand D_{2} Operands D_{1}, D_{2} must designate the same type of device Please refer to the function specifications table for each device in series for the scope of device usage															
												-..---	-	-	-
												Flag sign	l: none		

Explanation \mathbf{D}_{1} : Clear range's initial device. \mathbf{D}_{2} : Clear range's final device.

- When the number of operand $D_{1}>$ number of operand D_{2}, only the operand designated by D_{2} will be cleared.

Example

- When X0 is On, auxiliary relays M300-M399 will be cleared and changed to Off.
- When X 1 is On, 16-bit counters C0-C127 will all be cleared. (Writes 0 , and clears and changes contact and coil to Off).
- When X10 is On, timer T0 - T127 will all be cleared. (Writes 0, and clears and changes contact and coil to Off).
- When X 3 is On, the data in data registers D0-D100 will be cleared and set as 0 .

Remark
■ Devices can independently use the clear command (RST), such as bit device Y, M and word device T, C, D.

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D		-		-
S		*	*						*	*	*				
D		*	*						*	*	*	32-bit co	mand (9steps)		
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage The operand D will occupy 2 consecutive points												DFLT	Continuous execution type l: none		$\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$

Explanation
S: Transformation source device.
D: Device storing transformation results.
■ Transforms BIN whole number into a binary decimal value.

Example

- When X11 is On, converts the whole number of values corresponding to D0 and D1 into floating point numbers, which are placed in D20 and D21.

| API | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 110 | D ECMP | \mathbf{P} | $\boldsymbol{\mathbf { S } _ { 1 }} \boldsymbol{\mathbf { S } _ { 2 }}$ (D) | Comparison of binary floating point numbers |

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S1				*	*						*				
S2				*	*						*	32-bit com	mand (13ST		
D				*	*						*	DECMP	Continuous	DECMPP	Pulse
Notes on operand usage: $:$.-. .-.....execution type															
The operand D occupies three consecutive points Please refer to the function specifications table for each device in series for the scope of device usage												Flag signa	: none		

Explanation \mathbf{S}_{1} : Comparison of binary floating point numbers value 1. $\mathbf{S}_{\mathbf{2}}$: Comparison of binary floating point numbers value 2. D: Results of comparison, occupies 3 consecutive points.

■ When binary floating point number 1 is compared with comparative binary floating point number 2 , the result of comparison (>, $=,<$) will be expressed in \mathbf{D}.

- If the source operand \mathbf{S}_{1} or \mathbf{S}_{2} designates a constant K or H , the command will transform the constant to a binary floating-point number for the purpose of comparison.

Example

- When the designated device is M10, it will automatically occupy M10-M12.

■ When $\mathrm{X} 0=$ On, the DECMP command executes, and one of M10-M12 will be On. When X0=Off, the DECMP command will not execute, and M10-M12 will remain in the $\mathrm{XO}=\mathrm{Off}$ state.

- If results in the form of \geq, \leq, or \neq are needed, they can be obtained by series and parallel connection of M10-M12.

■ Please use the RST or ZRST command to clear the result.

Notes on operand usage:
The operand D occupies three consecutive points Please refer to the function specifications table for each device in series for the scope of device usage

16-bit command

SEZCP $\begin{gathered}\text { Continuous } \\ \text { execution type }\end{gathered}$
Flag signal: none

Explanation $\quad \mathbf{S}_{1}$: Lower limit of binary floating point number in range comparison. \mathbf{S}_{2} : Upper limit of binary floating point number in range comparison. S: Comparison of binary floating point numerical values. D: Results of comparison, occupies 3 consecutive points.

- Comparison of binary floating point numerical value \mathbf{S} with binary floating point number lower limit value $\mathbf{S}_{\mathbf{1}}$ and binary floating point number upper limit value $\mathbf{S}_{\mathbf{2}}$; the results of comparison are expressed in \mathbf{D}.

■ If the source operand \mathbf{S}_{1} or $\mathbf{S}_{\mathbf{2}}$ designates a constant K or H , the command will transform the constant to a binary floating-point number for the purpose of comparison.

- When the lower limit binary floating point number \mathbf{S}_{1} is greater than the upper limit binary floating point number \mathbf{S}_{2}, a command will be issued to perform comparison with the upper and lower limits using the binary floating point number lower limit value \mathbf{S}_{1}.

Example

- When the designated device is M0, it will automatically occupy M0- M2.
- When $\mathrm{X} 0=$ On, the DEZCP command will be executed, and one of MO-M2 will be On. When X0=Off, the EZCP command will not execute, and M0-M2 will continue in the $\mathrm{XO}=\mathrm{Off}$ state.

■ Please use the RST or ZRST command to clear the result.

$\begin{aligned} & \text { API } \\ & 116 \end{aligned}$		RAD		P	（S）D					Angle \rightarrow Diameter			
	Bit device			Word device								16－bit command	
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	－：－	
S				＊	＊						＊		
D												32－bit command（9 STEP）	
Notes on operand usage： Please refer to the function specifications table for each device in series for the scope of device usage												DRADContinuous D DRAD execution type	脈波執行型

Explanation
S：data source（angle）．
D：result of transformation（diameter）．
－Uses the following formula to convert angles to radians．
－\quad Diameter $=$ Angle $\times(\pi / 180)$

Example
－When $\mathrm{X} 0=$ On，the angle of the designated binary floating point number（D1，D0） will be converted to radians and stored in（D11，D10），with the content consisting of a binary floating point number．

$\begin{array}{\|l\|} \hline \text { API } \\ \hline 117 \\ \hline \end{array}$		DEG		P	(S) D					Diameter \rightarrow angle				
	Bit device			Word device								16-bit command		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	- : -	-	-
S				*	*						*			
D											*	32-bit command (9 STE		
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DDEG: Continuous DDEGP:Pulse execution type Flag signal: none		

Explanation
S: data source (diameter).
D: results of transformation (angle).

- Uses the following formula to convert radians to an angle.
- \quad Angle $=$ Diameter $\times(180 / \pi)$

Example

When $\mathrm{X} 0=\mathrm{On}$, angle of the designated binary floating point number (D1, D0) in radians will be converted to an angle and stored in (D11, D10), with the content consisting of a binary floating point number.

RAD value
binary floating point

Angle value (RAD value $\times 180 / \pi$)
binary floating point

$\begin{aligned} & \text { AP } \\ & 120 \end{aligned}$		EADD		P	(S1) D					Adding binary floating point numbers					
	Bit device			Word device								16-bit com	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S1				*	*						*				
S2				*	*						*	32-bit com	mand (9 STE		
D											*	DEADD: Continuous DEADDP:ccer Pulse			
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage															
												Flag signa	: none		

- \mathbf{S}_{1} : addend. \mathbf{S}_{2} : augend. D: sum.
- When the content of the register designated by \mathbf{S}_{2} is added to the content of the register designated by $\mathbf{S}_{\mathbf{1}}$, and the result is stored in the register designated by \mathbf{D}. Addition is performed entirely using binary floating-point numbers.
- If the source operand \mathbf{S}_{1} or \mathbf{S}_{2} designates a constant K or H , the command will transform that constant into a binary floating point number for use in addition.
- In the situation when S_{1} and $\mathbf{S}_{\mathbf{2}}$ designate identical register numbers, if a "continuous execution" command is employed, when conditional contact is On, the register will perform addition once during each scan. Pulse execution type commands (DEADDP) are generally used under ordinary circumstances.

Example

- When $\mathrm{X} 0=\mathrm{On}$, a binary floating point number (D1, D0) will be added to a binary floating point number (D3, D2), and the results stored in (D11, D10).

X0	DEADD	D0	D2	D10

- When $\mathrm{X} 2=$ On, a binary floating point number (D11, D10) will be added to K1234 (which has been automatically converted to a binary floating-point number), and the results stored in (D21, D20).

X2	DEADD	D10	K1234	D20

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S1				*	*						*				
S2				*	*						*	32-bit command (13 STEP)			
D											*	DESUB : Continuousexecution type\quad PSUBP:Pulse execution type Flag signal: none			
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage															

Explanation $\quad \mathbf{S}_{1}$: minuend. \mathbf{S}_{2} : subtrahend. D: difference.

- When the content of the register designated by $\mathbf{S}_{\mathbf{2}}$ is subtracted from the content of the register designated by \mathbf{S}_{1}, the difference will be stored in the register designated by \mathbf{D}; subtraction is performed entirely using binary floating-point numbers.
- If the source operand \mathbf{S}_{1} or \mathbf{S}_{2} designates a constant K or H , the command will transform that constant into a binary floating point number for use in subtraction.
- In the situation when S_{1} and $\mathbf{S}_{\mathbf{2}}$ designate identical register numbers, if a "continuous execution" command is employed, when conditional contact is On, the register will perform addition once during each scan. Pulse execution type commands (DESUBP) are generally used under ordinary circumstances.

Example
When $\mathrm{XO}=$ On, a binary floating point number (D1, D0) will be subtracted to a binary floating point number (D3, D2), and the results stored in (D11, D10).

$\mathrm{X0}$	DESUB	D0	D2	D10

- When $\mathrm{X} 2=$ On, the binary floating point number (D1, D0) will be subtracted from K1234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).

X 2	DESUB	K 1234	D 0	D 10

- \mathbf{S}_{1} : multiplicand. \mathbf{S}_{2} : multiplier.

D: product.

- When the content of the register designated by \mathbf{S}_{1} is multiplied by the content of the register designated by \mathbf{S}_{2}, the product will be stored in the register designated by \mathbf{D}; multiplication is performed entirely using binary floating-point numbers.
- If the source operand \mathbf{S}_{1} or \mathbf{S}_{2} designates a constant K or H , the command will transform that constant into a binary floating point number for use in multiplication.
- In the situation when $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ designate identical register numbers, if a "continuous execution" command is employed, when conditional contact is On, the register will perform multiplication once during each scan. Pulse execution type commands (DEMULP) are generally used under ordinary circumstances.

Example

- When $\mathrm{X} 1=$ On, the binary floating point number (D1, D0) will be multiplied by the binary floating point number (D11, D10), and the product will be stored in the register designated by (D21, D20).

- When $\mathrm{X} 2=$ On, the binary floating point number (D1, D0) will be multiplied from K1234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).

X2	DEMUL	K1234	D0	D10

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S1				*	*						*				
S2				*	*						*	32-bit com	mand (13 STE		
D											*	DEDIV	Continuous	DEDIVP	Pulse
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												Flag sign	execution type		execution type

- \mathbf{S}_{1} : dividend. \mathbf{S}_{2} : divisor. D: quotient and remainder.
- When the content of the register designated by \mathbf{S}_{1} is divided by the content of the register designated by \mathbf{S}_{2}, the quotient will be stored in the register designated by \mathbf{D}; division is performed entirely using binary floating-point numbers.

■ If the source operand \mathbf{S}_{1} or \mathbf{S}_{2} designates a constant K or H , the command will transform that constant into a binary floating point number for use in division.

- When $\mathrm{X} 1=O n$, the binary floating point number (D1, D0) will be divided by the binary floating point number (D11, D10), and the quotient stored in the register designated by (D21, D20).

- When X2 $=$ On, the binary floating point number (D1, D0) will be divided by K1,234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).

$\times 2$	DEDIV	D0	K1234	D10

$\begin{aligned} & \text { API } \\ & \hline 124 \end{aligned}$		EXP		P	(S) D					Binary floating point number obtain exponent					
	Bit device			Word device								16-bit co	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DEXP Flag sign	Continuous execution type : none	DEXPP	Pulse execution type

Explanation \quad S: operation source device. D: operation results device.

- Taking e $=2.71828$ as a base, \mathbf{S} is the exponent in the EXP operation.
- $[\mathbf{D}+1, \mathbf{D}]=\operatorname{EXP}^{[} \mathbf{S}+\mathbf{1}, \mathbf{s}{ }^{\text {] }}$
- Valid regardless of whether the content of \mathbf{S} has a positive or negative value. The designated register D must have a 32 -bit data format. This operation is performed using floating-point numbers, and \mathbf{S} must therefore be converted to a floating point number.
- Content of operand $\mathbf{D}=e^{s} ; e=2.71828, \mathbf{S}$ is the designated source data

Example ■ When M0 is On, the value of (D1, D0) will be converted to a binary floating point number, which will be stored in register (D11, D10).

- When M1 is On, the EXP operation is performed on the exponent of (D11, D10); its value is a binary floating point number stored in register (D21, D20).

$\begin{array}{\|l\|} \hline \text { API } \\ \hline 125 \\ \hline \end{array}$		LN		P	(S) D					Binary floating point number obtain logarithm					
	Bit device			Word device								16-bit co	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit co	mand (9 STEP)		
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DLN $\begin{gathered}\text { Continuous } \\ \text { execution type }\end{gathered}$		DLNP	Pulse execution type

Explanation
S: operation source device. D: operation results device.

- Taking e $=2.71828$ as a base, \mathbf{S} is the exponent in the EXP operation.
- $[\mathbf{D}+1, \mathbf{D}]=\operatorname{EXP}^{[} \mathbf{S}+\mathbf{1}, \mathbf{s}{ }^{\text {] }}$
- Valid regardless of whether the content of \mathbf{S} has a positive or negative value. The designated register D must have a 32 -bit data format. This operation is performed using floating-point numbers, and \mathbf{S} must therefore be converted to a floating point number.

■ Content of operand $\mathbf{D}=e^{s} ; e=2.71828$, \mathbf{S} is the designated source data

Example ■ When M0 is On, the value of (D1, D0) will be converted to a binary floating point number, which will be stored in register (D11, D10).

- When M1 is On, the EXP operation is performed on the exponent of (D11, D10); its value is a binary floating point number stored in register (D21, D20).

$\begin{aligned} & \text { API } \\ & 127 \end{aligned}$		ESQR		P	(S) D					Binary floating point number find square root					
Bit device				Word device								16-bit com	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S				*	*						*				
D											*	32-bit com	mand (9 STEP)		
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DESQR: Continuous execution type		$\begin{gathered} \text { DESQR } \\ \hline \text { P } \end{gathered}$	Pulse execution type

Explanation
 S: source device for which square root is desired \mathbf{D} : result of finding square root.

- When the square root is taken of the content of the register designated by \mathbf{S}, the result is temporarily stored in the register designated by D. Taking square roots is performed entirely using binary floating-point numbers.
- If the source operand S refers to a constant K or H , the command will transform that constant into a binary floating point number for use in the operation.

Example

- When $\mathrm{X} 0=\mathrm{On}$, the square root is taken of the binary floating point number (D1, D0), and the result is stored in the register designated by (D11, D10).

- When $\mathrm{X} 2=\mathrm{On}$, the square root is taken of $\mathrm{K} 1,234$ (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).

| API | D INT | \mathbf{P} | S (D) | Binary floating point number
 number transformation | BIN whole |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 129 | \mathbf{D} | | D | | |

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S											*				
D											*	32-bit	mand (9 STE		
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DINT $\vdots \begin{gathered}\text { Continuous } \\ \text { execution type }\end{gathered}$		DINTP	Pulse execution type

Explanation

S: the source device to be transformed. D: results of transformation.

- The content of the register designated by \mathbf{S} is transformed from a binary floating point number format into a BIN whole number, and is temporarily stored in D. The BIN whole number floating point number will be discarded.
- The action of this command is the opposite of that of command API 49 (FLT).

Example
When $\mathrm{X} 0=\mathrm{On}$, the binary floating point number (D1, D0) is transformed into a BIN whole number, and the result is stored in (D10); the BIN whole number floating point number will be discarded.

		evi					ord	devic				16-bit co	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S				*	*						*				
D											*	32 -bit command (9 STEP)			
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DSIN Flag sign	Continuous execution type none	DSINP	Pulse execution type

Explanation $\quad \mathbf{S}$: the designated source value. \mathbf{D} : the SIN value result.

- $\quad S$ is the designated source in radians.
- The value in radians (RAD) is equal to (angle $\times \pi / 180$).
- The SIN obtained from the source value designated by \mathbf{S} is stored in \mathbf{D}. The following figure displays the relationship between the arc and SIN results:

Example

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S				*	*						*	32-bit command (9 STEP)			
D											*				
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DCOS : Continuous execution type		DCOSP	Pulse execution type

- \quad : the designated source value. \mathbf{D} : the COS value result.
- The source designated by S can be given as radians or an angle; this is decided by flag M1018.
- When M1018=Off, the operation is in radians mode, where the radians (RAD) value is equal to (angle $\times \pi / 180$).
- When $\mathrm{M} 1018=\mathrm{On}$, the operation is in the angle mode, where the angular range is $0^{\circ} \leq$ angle $<360^{\circ}$.
- When calculation results yield 0, M1020=On.
- The COS obtained from the source value designated by \mathbf{S} is stored in \mathbf{D}.

The following figure displays the relationship between the arc and SIN results:

Example ■ When $\mathrm{X} 0=\mathrm{On}$, the COS value of the designated binary floating point number (D1, D0) in radians will be stored in (D11, D10), with the content consisting of a binary floating point number.

(D)
 Cos value binary floating point

| API | | TAN | | P | (D) |
| :--- | :--- | :--- | :--- | :--- | :--- | Binary floating point number TAN operation

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				
S				*	*						*	32-bit command (9 STEP)			
D											*				
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DTAN	$\begin{aligned} & \text { Continuous } \\ & \text { execution type } \end{aligned}$	DTANP	$\begin{gathered} \text { Pulse } \\ \text { execution type } \end{gathered}$
												Flag signal: none			

- S: the designated source value. D: the TAN value result.
- The source designated by \mathbf{S} can be given as radians or an angle; this is decided by flag M1018.
- When M1018=Off, the operation is in radians mode, where the radians (RAD) value is equal to (angle $\times \pi / 180$).
- When M1018=On, the operation is in the angle mode, where the angular range is $0^{\circ} \leq$ angle $<360^{\circ}$.
- When calculation results yield $0, \mathrm{M} 1020=O n$.
- The TAN obtained from the source value designated by \mathbf{S} is stored in \mathbf{D}.

The following figure displays the relationship between the arc and SIN results:

Example When $\mathrm{X} 0=\mathrm{On}$, the TAN value of the designated binary floating point number (D1, D0) in radians (RAD) will be stored in (D11, D10), with the content consisting of a binary floating point number.

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D				-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DASIN : Continuous		DASINP	Pulse execution type

- S: the designated source (binary floating point number). D: the ASIN value result.
- ASIN value $=\sin ^{-1}$

The figure below shows the relationship between input data and result:

Example When $\mathrm{XO}=\mathrm{On}$, the ASIN value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

| API | | ACOS | P | S D D |
| :--- | :--- | :--- | :--- | :--- |\quad Binary floating point number ACOS operation

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	- \quad	-	-	-
S				*	*						*				
D											*	32-bit com	mand (9 STEP)		
					sp	cifica age	ons		ea	de	e in	DACOS Flag signa	Continuous execution type : none	$\begin{aligned} & \text { DACOS } \\ & \text { P } \end{aligned}$	Pulse execution type

Explanation
S: the designated source (binary floating point number).
D: the ACOS value result.

- ACOS value $=\cos ^{-1}$

The figure below shows the relationship between input data and result:

Example When $\mathrm{XO}=$ On, the ACOS value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

- S: the designated source (binary floating point number). D: the ATAN value result.
- ATAN value $=\tan ^{-1}$

The figure below shows the relationship between input data and result:

Example When $\mathrm{XO}=\mathrm{On}$, the TAN value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

$\begin{aligned} & \text { API } \\ & \hline 136 \end{aligned}$		SINH		P	(S) D					Binary floating point number SINH operation					
	Bit device			Word device								16-bit com	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D												32-bit command (9 STEP)			
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DSINH Flag signa	Continuous execution type : none	DSINHP:	Pulse execution type

Explanation S: the designated source (binary floating point number). D: the SINH value result.
■ SINH value $=\left(e^{s}-e^{-s}\right) / 2$

Example - When $\mathrm{XO}=$ On, the SINH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

	Bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	- -	-	-	-
S				*	*						*				
D											*	32-bit com	mand (9 STE		
			the		sp	cifica age	ions	able f		de	e in	DCOSH Flag sign	Continuous execution typ : none	DCOSHP	Pulse execution type

Explanation \quad S: the designated source (binary floating point number). D: the COSH value result.

- COSH value $=\left(e^{s}+e^{-s}\right) / 2$

Example ■ When $\mathrm{X} 0=\mathrm{On}$, the COSH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

$\begin{array}{\|l\|} \hline \text { API } \\ \hline 138 \\ \hline \end{array}$		TANH		P	(S) D					Binary floating point number TANH operation					
	Bit device			Word device								16-bit co	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-		
S				*	*						*				
D											*	32-bit co	mand (9 STEP)		
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DTANH: Continuous		DTANHP:	Pulse execution type

Explanation S: the designated source (binary floating point number). D: the TANH value result.

- \tanh value $=\left(e^{s}-e^{-s}\right) /\left(e^{s}+e^{-s}\right)$

Example ■ When $\mathrm{X} 0=\mathrm{On}$, the TANH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.

Explanation S: source device. D: device storing GRAY code.

- Transforms the content value (BIN value) of the device designated by \mathbf{S} to GRAY code, which is stored in the device designated by \mathbf{D}.

■ The valid range of \mathbf{S} is as shown below; if this range is exceeded, it will be considered an error, and the command will not execute.

16-bit command: 0~32,767
■ 32-bit command: 0~2,147,483,647

Example

- When X0=On, the constant K6513 will be transformed to GRAY code and stored in D0.

	Bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S				*	*	*	*	*	*	*	*
D							*	*	*	*	*

16-bit command (5 STEP)			
GBIN	Continuous execution type	GBINP	Pulse execution type
32-bit command (9 STEP)			
DGBIN	Continuous execution type	DGBINP:	Pulse execution type

Explanation

- S: source device used to store GRAY code. D: device used to store BIN value after transformation.
- The GRAY code corresponding to the value of the device designated by \mathbf{S} is transformed into a BIN value, which is stored in the device designated by \mathbf{D}.
- This command will transform the value of the absolute position encoder connected with the PLC's input and (this encoder usually has an output value in the form of GRAY code) into a BIN value, which is stored in the designated register.
- The valid range of \boldsymbol{S} is as shown below; if this range is exceeded, it will be considered an error, and the command will not execute.

16-bit command: 0~32,767

- 32-bit command: 0~2,147,483,647
- When X20=On, the GRAY code of the absolute position encoder connected with input points X 0 to X 17 will be transformed into BIN value and stored in D10.

	Bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	LD\#	Continuous	-	-
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: \#: \& , \|, ^ Please refer to the function specifications table for each device in series for the range of device usage												DLD\# Flag sign	Continuous execution type none	-	-

Explanation \mathbf{S}_{1} : data source device 1. \mathbf{S}_{2} : data source device 2.

- This command performs comparison of the content of \mathbf{S}_{1} and \mathbf{S}_{2}; when the result of comparison is not 0 , this command will be activated, but this command will not be activated when the result of comparison is 0 .
- The LD\#This command can be used while directly connected with the busbar

API No.	16-bit commands	32-bit commands	Conditions for activation				Conditions for inactivation			
215	LD\&	DLD\&	\mathbf{S}_{1}	$\&$	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	$\&$	$\mathbf{S}_{\mathbf{2}}$	$=0$
216	LD\|	DLD	\mathbf{S}_{1}	\mid	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	\mid	\mathbf{S}_{2}	$=0$
217	LD^^ $^{\wedge}$	DLD^ $^{\wedge}$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$=0$

\&: logical AND operation.
|: logical OR operation.
^: logical XOR operation.

- When the content of C0 and C10 is subjected to the logical AND operation, and the result is not equal to $0, \mathrm{Y} 10=\mathrm{On}$.
■ When the content of D200 and D300 is subjected to the logical OR operation, and the result is not equal to 0 , and $\mathrm{X} 1=\mathrm{On}, \mathrm{Y} 11=\mathrm{On}$ and remains in that state.

Notes on operand usage:
Please refer to the function specifications table for each device in

16-bit command (5 STEP)			
AND\#	Continuous execution type	-	-
32-bit command (9 STEP)			
DAND\#	Continuous execution type	-	-

Flag signal: none
Explanation $\quad \mathbf{S}_{1}$: data source device 1. $\mathbf{S}_{\mathbf{2}}$: data source device 2.

- This command performs comparison of the content of \mathbf{S}_{1} and \mathbf{S}_{2}; when the result of comparison is not 0 , this command will be activated, but this command will not be activated when the result of comparison is 0 .
- The AND\# command is an operation command in series with the contact.

API No.	16-bit commands	32-bit commands	Conditions for activation				Conditions for inactivation			
218	AND\&	DAND\&	\mathbf{S}_{1}	$\&$	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	$\&$	$\mathbf{S}_{\mathbf{2}}$	$=0$
219	AND	DAND	\mathbf{S}_{1}	\mid	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	\mid	\mathbf{S}_{2}	$=0$
220	AND^ $^{\wedge}$	DAND $^{\wedge}$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$=0$

\&: logical AND operation.
|: logical OR operation.
^: logical XOR operation.

Example

- When $\mathrm{X0}=\mathrm{On}$ and the content of $\mathrm{C0}$ and C 10 is subjected to the logical AND operation, and the result is not equal to $0, \mathrm{Y} 10=0 \mathrm{n}$.
- When $\mathrm{X} 1=$ Off and D10 and D0 is subjected to the logical OR operation, and the result is not equal to $0, \mathrm{Y} 11=O n$ and remains in that state.
- When $\mathrm{X} 2=\mathrm{On}$ and the content of the 32-bit register D200(D201) and 32-bit register D100(D101) is subjected to the logical XOR operation, and the result is not equal to 0 or M3=On, M50=On.

	Bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	OR\#	Continuous	-	-
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: \#: \& , \|, ^ Please refer to the function specifications table for each device in series for the scope of device usage												DOR\# : Continuous			-

Flag signal: none

Explanation

\mathbf{S}_{1} : data source device 1. \mathbf{S}_{2} : data source device 2.

- This command performs comparison of the content of \mathbf{S}_{1} and \mathbf{S}_{2}; when the result of comparison is not 0 , this command will be activated, but this command will not be activated when the result of comparison is 0 .
- The OR\# command is an operation command in series with the contact.

API No.	16 -bit commands	32 -bit commands	Conditions for activation				Conditions for inactivation			
221	OR\&	DOR\&	\mathbf{S}_{1}	$\&$	$\mathbf{S}_{\mathbf{2}}$	$\neq 0$	\mathbf{S}_{1}	$\&$	$\mathbf{S}_{\mathbf{2}}$	$=0$
222	OR\|	DOR	\mathbf{S}_{1}	I	$\mathbf{S}_{\mathbf{2}}$	$\neq 0$	\mathbf{S}_{1}	I	$\mathbf{S}_{\mathbf{2}}$	$=0$
223	OR^ $^{\wedge}$	DOR^ $^{\wedge}$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$\neq 0$	\mathbf{S}_{1}	\wedge	\mathbf{S}_{2}	$=0$

\&: logical AND operation.
|: logical OR operation.
\wedge : logical XOR operation.

- When $\mathrm{X} 1=\mathrm{On}$ or the content of C 0 and C 10 is subjected to the logical AND operation, and the result is not equal to $0, Y 0=O n$.
■ When X2 and M30 are both equal to On, or the content of 32-bit register D10 (D11) and 32-bit register D20 (D21) is subjected to the logical OR operation, and the result is not equal to 0 , or the content of the 32-bit counter C235 and the 32-bit register D200 (D201) is subjected to the logical XOR operation, and the result is not equal to $0, \mathrm{M} 60=\mathrm{On}$.

API $224 \sim$ 230	D LD			S1 S2	Contact form compare LD*

	Bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	LD※	Continuous	-	-
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DLD\% Flag sign	Continuous execution type : none	-	-

Explanation $\quad \mathrm{S}_{1}$: data source device $1 . \mathrm{S}_{2}$: data source device 2 .

- This command compares the content of S_{1} and S_{2}. Taking API 224 (LD=) as an example, this command will be activated when the result of comparison is "equal," and will not be activated when the result is "unequal."
- The LD* can be used while directly connected with the busbar

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
224	$\mathrm{LD}=$	$\mathrm{DLD}=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
225	$\mathrm{LD}>$	$\mathrm{DLD}>$	$\mathbf{S}_{1}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
226	$\mathrm{LD}<$	$\mathrm{DLD}<$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$
228	$\mathrm{LD}<>$	$\mathrm{DLD}<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
229	$\mathrm{LD}<=$	$\mathrm{DLD}<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
230	$\mathrm{LD}>=$	$\mathrm{DLD}>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

Example

- When the content of C 10 is equal to $\mathrm{K} 200, \mathrm{Y} 10=\mathrm{On}$.
- When the content of D200 is greater than $\mathrm{K}-30$, and $\mathrm{X} 1=\mathrm{On}, \mathrm{Y} 11=\mathrm{On}$ and remains in that state.

		dev					Vord	devic				16-bit command (5 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	AND※ : Continuous	-	-
S1				*	*	*	*	*	*	*	*	execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)		
Notes on operand usage: Please refer to the function specifications table for each device in series for the scope of device usage												DAND※: Continuous execution type Flag signal: none	-	-

Explanation

\mathbf{S}_{1} : data source device 1. \mathbf{S}_{2} : data source device 2.
■ This command compares the content of \mathbf{S}_{1} and \mathbf{S}_{2}. Taking API 232 (AND=) as an example, when the result of comparison is equal, this command will be activated; when the result of comparison is unequal, this command will not be activated.

- The AND* command is a comparison command in series with a contact.

API No.	16-bit commands 32-bit commands		Conditions for activation	Conditions for inactivation
232	AND $=$	DAND $=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
233	AND $>$	DAND $>$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
234	AND $<$	DAND $<$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$
236	AND $<>$	DAND $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
237	AND $<=$	DAND $<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
238	AND $>=$	DAND $>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

- When $\mathrm{X} 0=$ On and the current value of C 10 is also equal to $\mathrm{K} 200, \mathrm{Y} 10=\mathrm{On}$.
- When $\mathrm{X} 1=$ Off and the content of register D 0 is not equal to $\mathrm{K}-10, \mathrm{Y} 11=\mathrm{On}$ and remains in that state.
■ When $\mathrm{X} 2=$ On and the content of the 32-bit register D0(D11)is less than 678,493, or M3=On, M50=On.

| API
 $240 \sim$
 246 | D OR※ | | S1 S2 | Contact form compare OR* |
| :--- | :--- | :--- | :--- | :--- | :--- |

	Bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S1				*	*	*	*	*	*	*	*
S2				*	*	*	*	*	*	*	*

Notes on operand usage:
Please refer to the function specifications table for each device in

16-bit command (5 STEP)
OR $\%$ Continuous execution type
32-bit command (9 STEP)

DOR※: Continuous : execution type
series for the scope of device usage
Flag signal: none
Explanation $\quad \mathbf{S}_{1}$: data source device 1. \mathbf{S}_{2} : data source device 2 .

- This command compares the content of \mathbf{S}_{1} and \mathbf{S}_{2}. Taking API 240 (OR=) as an example, when the result of comparison is equal, this command will be activated; when the result of comparison is unequal, this command will not be activated.
- The OR* command is a compare command in parallel with a contact.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
240	OR=	DOR =	$\mathbf{S}_{1}=\mathbf{S}_{\mathbf{2}}$	$\mathrm{S}_{1} \neq \mathrm{S}_{2}$
241	OR >	DOR >	$\mathrm{S}_{1}>\mathrm{S}_{\mathbf{2}}$	$\mathrm{S}_{1} \leqq \mathrm{~S}_{2}$
242	OR<	DOR <	$\mathbf{S}_{1}<\mathbf{S}_{2}$	$\mathrm{S}_{1} \geqq \mathrm{~S}_{2}$
244	OR $<>$	DOR $<>$	$\mathrm{S}_{1} \neq \mathrm{S}_{2}$	$\mathrm{S}_{1}=\mathrm{S}_{2}$
245	OR $<=$	DOR $<=$	$\mathrm{S}_{1} \leqq \mathrm{~S}_{2}$	$\mathrm{S}_{1}>\mathrm{S}_{\mathbf{2}}$
246	$\mathrm{OR}>=$	DOR $>=$	$\mathrm{S}_{1} \geqq \mathrm{~S}_{2}$	$\mathbf{S}_{1}<\mathbf{S}_{\mathbf{2}}$

Example

- When $\mathrm{X0}=\mathrm{On}$ and the current value of C 10 is also equal to $\mathrm{K} 200, \mathrm{Y} 10=\mathrm{On}$.
- When $\mathrm{X} 1=\mathrm{Off}$ and the content of register D 0 is not equal to $\mathrm{K}-10, \mathrm{Y} 11=\mathrm{On}$ and remains in that state.
- When $\mathrm{X} 2=$ On and the content of the 32-bit register $\mathrm{D} 0(\mathrm{D} 11$)is less than 678,493 , or M3=On, M50=On.

Explanation

- S_{1} : data source device $1 . S_{2}$: data source device 2.
- This command compares the content of \mathbf{S}_{1} and \mathbf{S}_{2}. Taking "FLD=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FLD* command can directly input floating point numerical values (for instance: F1.2) to the $\mathbf{S}_{1}, \mathbf{S}_{\mathbf{2}}$ operands, or store floating-point numbers in register D for use in operations.
- This command can be used while directly connected with the busbar

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
275	FLD $=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
276	FLD $>$	$\mathbf{S}_{1}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
277	FLD $<$	$\mathbf{S}_{1}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$
278	FLD $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
279	FLD $<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
280	FLD $>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

Example

- When the floating point number of register D200 (D201) is less than or equal to F1.2, and X1 activated, contact Y21 will be activated and remain in that state.

- \mathbf{S}_{1} : data source device 1. \mathbf{S}_{2} : data source device 2.
- This command compares the content of \mathbf{S}_{1} and \mathbf{S}_{2}. Taking "FAND=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FAND* command can directly input floating point numerical values (for instance: F1.2) to the $\mathbf{S}_{1}, \mathbf{S}_{\mathbf{2}}$ operands, or store floating-point numbers in register D for use in operations.
- This command can be used while directly connected with the busbar

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
281	FAND	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
282	FAND $>$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
283	FAND $<$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$
284	FAND $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
285	FAND $<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
286	FAND $>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

Example

When X1=Off, and the floating point number in register D100 (D101) is not equal to F1.2, Y21=On and remains in that state.

Explanation
S_{1} : data source device 1. S_{2} : data source device 2.

- This command compares the content of \mathbf{S}_{1} and \mathbf{S}_{2}. Taking "FOR=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FOR* command can directly input floating point numerical values (for instance: F1.2) to the $\mathbf{S}_{1}, \mathbf{S}_{\mathbf{2}}$ operands, or store floating-point numbers in register D for use in operations.
- This command can be used while directly connected with the busbar

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
287	FOR $=$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
288	FOR $>$	$\mathbf{S}_{1}>\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$
289	FOR $<$	$\mathbf{S}_{1}<\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$
290	FOR $<>$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}$
291	FOR $<=$	$\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}$
292	FOR $>=$	$\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}$

Example

- When X2 and M30 are both equal to "On," or the floating point number in register D100 (D101) is greater than or equal to $\mathrm{F} 1.234, \mathrm{M} 60=\mathrm{On}$.

16-6-5 Detailed explanation of drive special applications commands

| API | \square | WPR | \mathbf{P} | S1 S2 |
| :--- | :--- | :--- | :--- | :--- | Write servo parameter | S1 |
| :--- |
| 140 |

	Bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	WPR	Continuous	WPRP	Pulse
S1				*	*						*		execution type		execution type
S2				*	*						*	32-bit command			
Notes on operand usage: none															
												FFag signal: none			

Ex	(S1): Data to write to specified page. S2): Parameter address of data to be written.
Example	When the data in the MH300 drive's parameter H01.00 is read and written to D0, data from H 01.01 will be read and written to D1.

■ When M0=On, the content of D10 will be written to the MH300 drive Pr. 04.00 (first speed of multiple speed levels).

- When the parameter has been written successfully, M1017=On.

■ The MH300's WPR command does not support writing to the 20XX address, but the RPR command supports reading of 21XX, 22XX.

Recommendation Take care when using the WPR command. When writing parameters, because most parameters are recorded as they are written, these parameters may only be revised 109 times; a memory write error may occur if parameters are written more than (MS) 10^{6} or (MH) 10^{9} times.

Calculation of the number of times written is based on whether the written value is modified. For instance, writing the same value 100 times at the same time counts as writing only once.

		dev					Vord	devic				16-bit co	mand (9 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	FPID	Continuous	FPIDP	Pulse
S1				*	*						*		execution type		execution type
S2				*	*						*	32-bit command			
S3				*	*						*				
S4				*	*						*	Flag signal: none			
Notes on operand usage: none															

Explanation

- S1: PID reference target value input terminal select. proportional gain P. S3: PID function integral time I. S4: PID function differential time D.
- The FPID command can directly control the drive's feedback control of PID Pr. 08-00 PID reference target value input terminal selection, 08-01 proposal gain P, 08-02 integral time I, and 08-03 differential time D.

Example

- When $\mathrm{M} 0=\mathrm{On}$, the set PID reference target value input terminal selection is 0 (no PID function), the PID function proportional gain P is 0 , the PID function integral time I is 1 (units: 0.01 sec.), and the PID function differential time D is 1 (units: 0.01 sec. .).
- When M1=On, the set PID reference target value input terminal selection is 0 (no PID function), the PID function proportional gain P is 1 (units: 0.01), the PID function integral time I is 0 , and the PID function differential time D is 0 .
- When $\mathrm{M} 2=\mathrm{On}$, the set PID reference target value input terminal selection is 1 (target frequency input is controlled from the digital keypad), the PID function proportional gain P is 1 (units: 0.01), the PID function integral time I is 0 , and the PID function differential time D is 0 .
- D1027: Frequency command after PID operation.

Explanation (S1: Frequency command. S2: Acceleration time. S3: Deceleration time

- S2,S3: In acceleration/deceleration time settings, the number of decimal places is determined by the definitions of Pr01-45.
Example
When $01-45=0$: units of 0.01 sec .
The setting of 50 for S 2 (acceleration time) in the ladder diagram below implies 0.5 sec ,
and the S 3 (deceleration time) setting of 60 implies 0.6 sec
- The FREQ command can control drive frequency commands, and acceleration and deceleration time; it also uses special register control actions, such as:
M1025: Control drive RUN(On)/STOP(Off) (RUN requires Servo On (M1040 On) to be effective)

M1026: Control drive operating direction FWD(Off)/REV(On)
M1040: Control Servo On/Servo Off.
M1042: Trigger quick stop (ON)/does not trigger quick stop (Off).
M1044: Pause (On)/release pause (Off)
M1052: Lock frequency (On)/release lock frequency (Off)

Example

- M1025: Drive RUN(On)/STOP(Off), M1026: drive operating direction FWD(Off)/REV(On). M1015: frequency reached.
- When $\mathrm{M} 10=O n$, sets the drive frequency command $\mathrm{K} 300(3.00 \mathrm{~Hz})$, with an acceleration/deceleration time of 0 .
When M11=On, sets the drive frequency command K3000 $(30.00 \mathrm{~Hz})$, with an
acceleration time of 50 (0.5 sec .) and deceleration time of 60 (0.6 sec .). (When $01-45=0$)
- When M11=Off, the drive frequency command will now change to 0

- Pr. 09-33 are defined on the basis of whether reference commands have been cleared before PLC operation
Bit 0 : Prior to PLC scanning procedures, whether the target frequency has been cleared is 0 . (This will be written to the FREQ command when the PLC is On)
Bit 1: Prior to PLC scanning procedures, whether the target torque has been cleared is 0 . (This will be written to the TORQ command when the PLC is On)
Bit 2 : Prior to PLC scanning procedures, whether speed limits in the torque mode have been cleared is 0 . (This will be written to the TORQ command when the PLC is On)
Example: When using r to write a program,

if we force M 0 to be 1, the frequency command will be 20.00 Hz ; but when M 0 is set as 0 , there will be a different situation.
Case 1: When the $09-33$ bit 0 is 0 , and $M 0$ is set as 0 , the frequency command will remain at 20.00 Hz .
Case 2: When the $09-33$ bit 0 is 1 , and $M 0$ is set as 0 , the frequency command will change to 0.00 Hz
The reason for this is that when the $09-33$ bit 0 is 1 prior to PLC scanning procedures, the frequency will first revert to 0 .
When the $09-33$ bit 0 is 0 , the frequency will not revert to 0 .

| API | | TORQ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 263 | | \mathbf{P} | Drive torque control mode | |

16-7 Error Display and Handling

Code	ID	Descript	Recommended handling approach
PLod	50	Data writing memory error	Check whether the program has an error and download the program again
PLSv	51	Data write memory error during program execution	Restart power and download the program again
PLdA	52	Program transmission error	Try uploading again; if the error persists, sent to the manufacturer for service
PLFn	53	Command error while downloading program	Check whether the program has an error and download the program again
PLor	54	Program exceeds memory capacity or no program	Restart power and download the program again
PLFF	55	Command error during program execution	Check whether the program has an error and download the program again
PLSn	56	Check code error	
PLEd	57	Program has no END stop command	Check whether the program has an error and download the program again
PLCr	58	MC command has been used continuously more than nine times	Check whether the program has an error and download the program again
PLdF	59	Download program error	Check whether the program has an error and download again
PLSF	60	PLC scan time excessively long	Check whether the program code has a writing error and download again

*ID: Warning code

16-8 Explanation of each PLC Mode Control (Speed, Torque)

Torque mode must be based on FOC vector control, and speed mode can also support FOC vector control, so for torque mode or FOC-based speed mode, the motor parameter auto tuning must be completed in advance, otherwise the control cannot be completed.

In addition, there are two types of motors: IM and PM, the IM motor only needs to perform motor parameter auto tuning, and it is necessary for PM motor to complete the auto tuning of the motor origin offset angle after motor parameter auto tuning is completed. Please refer to Pr. 05-00 for details.
※ If the PM motor is Delta ECMA series, the motor parameters can be directly inputted according to the servo motor catalog, there is no need to perform motor parameter auto tuning.

The control mode and setting are described as follows:
Register table for speed mode:
Control special M

Special M	Description of Function	Attributes
M1025	Drive frequency = set frequency (ON)/drive frequency =0 (OFF)	RW
M1026	Drive operating direction FWD(OFF)/REV(ON)	RW
M1040	Hardware power (Servo On)	RW
M1042	Quick stop	RW
M1044	Pause (Halt)	RW
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW

Status special M

Special M	Description of Function	Attributes
M1015	Frequency attained (when used together with M1025)	RO
M1056	Servo On Ready	RO
M1058	On Quick Stopping	RO

Control special D

Special D	Description of Function	Attributes
D1060	Mode setting (speed mode is 0)	RW

Status special D

Special D	Description of Function	Attributes
D1037	Drive output frequency $(0.00 \sim 600.00)$	RO
D1050	Actual operating mode (speed mode is 0)	RO

Speed mode control commands:
FREQ(P) S1

Target speed The first acceleration time setting The first deceleration time setting Example of speed mode control:

Before performing speed control, if the FOC (magnetic field orientation) control method is used, setting of electromechanical parameters must first be completed.

1. Setting D1060 $=0$ will shift the drive to the speed mode (default).
2. Use the FREQ command to control frequency, acceleration time, and deceleration time.
3. Set $\mathrm{M} 1040=1$, the drive will now be excited, but the frequency will be 0 .
4. Set $\mathrm{M} 1025=1$, the drive frequency command will now jump to the frequency designated by FREQ, and acceleration/deceleration will be controlled on the basis of the acceleration time and deceleration time specified by FREQ.
5. M1052 can be used to lock the current operating frequency.
6. M1044 can be used to temporarily pause operation, and the deceleration method will comply with deceleration settings.
7. M1042 can be used to perform quick stop, and deceleration will be as quick as possible without giving rise to an error. (There may still be a jump error if the load is too large.)
8. Control user rights: M1040(Servo ON) $>$ M1042(Quick Stop) $>$ M1044(Halt) $>$ M1052(LOCK)

Chapter 16 PLC Function Applications
 MH300

Torque control:
Register table for torque mode:
Control special M

| Special M | Description of Function | Attributes |
| :---: | :---: | :---: | :---: |
| M1040 | Servo On | RW |

Status special M

Special M	Description of Function	Attributes
M1056	Servo On Ready	RO
M1063	Torque attained	RO

Control special D

Special D	Description of Function	Attributes
D1060	Operating mode setting (torque mode is 2)	RW

Status special D

Special D	Description of Function	Attributes
D1050	Actual operating mode (speed mode is 0)	RO
D1053	Actual torque	RO

Torque mode control commands:

TORQ(P)
S1
Target torque (with numbers)

S2
Frequency restrictions

Example of torque mode control:
The setting of electromechanical parameters involved in torque control must be completed before implementing torque control.

1. Set D1060 $=2$ to change the converted to the torque mode.
2. Use the TORQ command to implement torque control and speed limits.
3. Set $\mathrm{M} 1040=1$; the driver will now be excited, and immediately jump to the target torque or speed limit. D1053 can be used to find out the current torque.

16-9 Count Function Using Pulse Input

16-9-1 High-speed count function

The MH300's MI7 supports one-way pulse counting, or use MI6+MI7 to support AB-phase two-way pulse counting, and the maximum speed is 33 K . The starting method is very simple, and only requires setting M1038 to begin counting. The 32 bit count value is stored on D1054 and D1055 in non-numerical form. M1039 can reset the count value to 0 .

Take MI7 one-way pulse input as an example:

※ When the PLC program defines MI7 for use as a high-speed counter, and also for use in PLC procedures, it must be written to M1038 or M1039, and the original MI8 functions will be disabled.

16-9-2 Frequency calculation function

Apart from high-speed counting, the MH300's MI7 (one-way pulse counting) or MI6+MI7 (AB-phase two-way pulse counting) can also convert a received pulse to frequency. The following figure shows that there is no conflict between frequency conversion and count calculations, which can be performed simultaneously.

PLC speed calculation formula
D1057 Speed
D1058 Interval between calculations
D1059 Decimal places
Assuming that there are 5 input pulses each second, (see figure below) we set D1058=1000ms=1.0 sec . as the calculation interval. This enables five pulses to be sent to the drive each second.

Assuming that each 5 pulses correspond to 1 Hz , we set D1057=5.
Assuming that we wish to display numbers to two decimal places, we set D1059=2, which is also 1.00 Hz . The numerical value displayed at D1056 is 100. For simplicity, the D1059 conversion formula can be expressed as in the following table:

Chapter 16 PLC Function Applications | MH300
[This page intentionally left blank]

Chapter 17 Safe Torque Off Function

17-1 Basic Function Description

17-2 Safe Torque Off Terminal Function Description

17-3 Wiring Diagram

17-4 Failure Rate of the Drive Safety Function

17-5 Reset the Parameter Settings

17-6 Timing Diagram Description

17-7 Error Code and Troubleshooting Instructions

17-8 Test and Fault Confirmation

17-1 Basic Function Description

MH300 series provides a Safe Torque Off (STO, Safe Torque Off) function.
Through the dual-channel S1 and S2 signal input to turn off IGBT switching, thereby preventing the generation of motor torque in order to achieve safe stop. Please refer to Figure 1 for the circuit diagram of Safe Torque Off function.

MH300 Safe Torque Off function meets the following international specifications:

ISO 13849-1: 2015 Category 3 PL d
IEC 61508 SIL2
EN 62061 SIL CL 2
EN 60204-1 Category 0

Figure 1: The circuit diagram of Safe Torque Off function

17-2 Safe Torque Off Terminal Function Description

As mentioned earlier STO (Safe torque off) related terminal functions are described in Table 1 below.

Terminals	Terminal Function	Specifications
+24V	When the STO function is not used, the STO function can be disabled by shorting S1 and S2 with +24 V	Output voltage range: +24 V $\pm 10 \%$ Output voltage capacity: 100 mA
S1	Signal input of STO function channel 1	S1~DCM / S2~DCM $\begin{gathered} \text { Rated input voltage: }+24 \mathrm{VDC} \pm 10 \% \text {; Max. input voltage: }+30 \\ \text { VDC } \pm 10 \% \end{gathered}$
S2	Signal input of STO function channel 2	Rated input current: $6.67 \mathrm{~mA} \pm 10 \%$ STO activation mode Input voltage level: 0 VDC < S1~DCM and S2~DCM < 5 VDC STO response time: $\leq 20 \mathrm{~ms}$ (time required for S1 / S2 operate
DCM	Reference ground of S1 and S2 signal	till the drive stop outputting) STO cut-off mode Input voltage level: 11 VDC < S1~DCM and S2~DCM < 30 VDC

Table 1: Terminal function description

Action logic and keypad display after S1 / S2 signal input are described in Table 2 below.

Signal	Status			
S1~DCM	ON	ON	OFF	OFF
S2~DCM	ON	OFF	ON	OFF
Drive output	Ready to output	STL2 mode (Torque output off)	STL1 mode (Torque output off)	STO mode (Torque output off)
Error displayed on keypad	No error displayed	STL2	STL1	STO

Table 2: Description of action logic and keypad display
[a] STO means channel 1 and 2 operate simultaneously and enter Safe Torque Off.
[1] STL1 means channel 1 operates.
[a] STL2 means channel 2 operates.
[1] STL3 means there is error detected in the internal circuit of channel 1 or channel 2.
[1 S1~DCM / S2~DCM ON: means S1~DCM / S2~DCM inputs a power supply > 11 VDC.
\square S1~DCM / S2~DCM OFF: means S1~DCM / S2~DCM inputs a power supply < 5 VDC.

17-3 Wiring Diagram

17-3-1. Internal circuit diagram of safe control loop is shown in Figure2.
17-3-2. Terminals of the safe control loop +24 V -S1-S2 are short-circuited together with jumper wire at the factory, as shown in Figure 2.
17-3-3. The safe control loop wiring diagram is as follows:

1. Remove the jumper wire of $+24 \mathrm{~V}-\mathrm{S} 1-\mathrm{S} 2$.
2. The wiring as shown in Figure 3 below. Normally, the switch ESTOP contact must be closed, thereby the drive can output without error displayed.
3. In STO mode, the switch ESTOP is turned on. The drive stops outputting and keypad displays STO.

Figure 2

Figure 3

NOTE

*1 is factory jumper wire of $+24 \mathrm{~V}-\mathrm{S} 1-\mathrm{S} 2$. To use the Safety function, please remove this jumper wire. Conversely, if the Safety function is disabled, then $+24 \mathrm{~V}-\mathrm{S} 1-\mathrm{S} 2$ should be short-circuit with jumper wire.

17-4 Failure Rate of the Drive Safety Function

Please refer to Table 3 below for relevant safe parameters of safe loop:

Item	Definition	Standard	Performance
SFF	Safe failure fraction	IEC61508	$\begin{aligned} & \text { S1-DCM }=88.35 \% \\ & \text { S2-DCM }=88.2 \% \end{aligned}$
HFT (Type A subsystem)	Hardware fault tolerance	IEC61508	1
SIL	Safety integrity level	IEC61508	SIL 2
		IEC62061	SILCL 2
PFH	Average frequency of dangerous failure [$\mathrm{h}-1$]	IEC61508	1.36×10^{-9}
PFD ${ }_{\text {av }}$	Probability of dangerous failure on demand	IEC61508	5.99×10^{-6}
PTI	Proof test interval	IEC61508	1 year
Category	Category	ISO13849-1	Category 3
PL	Performance level	ISO13849-1	d
MTTF ${ }_{\text {d }}$	Mean time to dangerous failure	ISO13849-1	High
DC	Diagnostic coverage	ISO13849-1	Low

Table 3: Relevant safe parameters of safe loop

17-5 Reset the Parameter Settings

Pr. 06-44 can be used to set the reset method when an STO alarm occurs.

N $95-4$ STO Latch Selection

Factory setting: 0

Settings 0: STO Alarm latch
 1: STO Alarm no latch

[1] Pr. 06-44 = 0 STO Alarm Latch: after the reason of STO Alarm is cleared, a Reset command is needed to clear STO Alarm.
1 Pr. 06-44 = 1 STO Alarm no Latch: after the reason of STO Alarm is cleared, the STO Alarm will be cleared automatically.

All of STL1~STL3 error are "Alarm latch" mode (in STL1~STL3 mode, the Pr. 06-44 function is not effective).

17-6 Timing Diagram Description

The following timing diagram shows the status of relevant signals under different conditions:

17-6-1 Normal operation status

As shown in Figure 4: When S1~DCM and S2~DCM is ON (STO function is not required), the drive will execute "Operating" or "Output Stop" according to RUN command.

RUN command	RUN	STOP
$\begin{aligned} & \text { S1~DCM } \\ & \text { input status } \end{aligned}$	ON (STO function	is not required, Pr. 06-44=0)
S2~DCM input status	ON (STO function	is not required, Pr. 06-44=0)
Drive output	Operating	Outputstop

Figure 4
17-6-2-1 STO, Pr. 06-44=0, Pr. 02-35=0 (Selection of external control operation after reset / power on, $0=$ not valid)
As shown in Figure 5: When both of S1~DCM and S2~DCM are OFF during operation (STO function is required), the drive will stop outputting when enter safe mode regardless of Run command is ON or OFF status.

Figure 5
17-6-2-2 STO, Pr. 06-44=0, Pr. 02-35=1 (Selection of external control operation after reset / power on, 1= the drive will execute RUN if command exists after reset)
As shown in Figure 6, the action is the same as in Figure 5. However, because Pr. 02-35=1, if RUN command still exists after reset, the drive will execute run command again immediately.

Figure 6

17-6-3 STO, Pr. 06-44=1

As shown in Figure 7: When both of S1~DCM and S2~DCM are OFF during operation (STO function is required), the drive will stop outputting. When the S1 / S2 status is restored (ON), the STO automatic alarm is automatically cleared. The drive can output when RUN command is released again.

Figure 7

17-6-4 STL1, Pr. 06-44=0 or 1

As shown in Figure 8: When S1~DCM is OFF during operation (STO function is required) and S2~DCM is ON (STO function is not required), the drive will stop outputting and keypad will show STL1 error. However, STL1 error cannot be reset even if the S1 status is restored (ON) regardless of the parameter setting. Turn the power on after power off to reset, thereby the drive can restore to normal standby state.

Figure 8

17-6-5 STL2, Pr. 06-44=0 or 1

As shown in Figure 9: When S1~DCM is ON during operation (STO function is not required) and S2~DCM is OFF (STO function is required), the drive will stop outputting and keypad will show STL2 error. However, STL2 error cannot be reset even if the S 2 status is restored (ON) regardless of the parameter setting. Turn the power on after power off to reset, thereby the drive can restore to normal standby state.

Figure 9

17-7 Error Code and Troubleshooting Instructions

17-7-1 Error Code Description

Refer to Pr. 06-17 ~ Pr. 06-22 for fault record, wherein STO relevant error code is 72/76/77/78, the definition is as follows and Table 4:
B6-: 7 Fault Record 1

56-9 Fault Record 2
56-95 Fault Record 3
55-3 9 Fault Record 4

76-2 : Fault Record 5

15-3 Fault Record 6

Settings

72: Channel 1 (S1~DCM) safety loop error (STL1)
76: Safe torque off (STo)
77: Channel 2 (S2~DCM) safety loop error (STL2)
78: Internal loop error (STL3)

Error code	Name	Description
76 (STO)	Safe torque off	Safe torque off function active
72 (STL1)	Channel 1 (S1~DCM) safety loop error	S1~DCM internal loop detected error
77 (STL2)	Channel 2 (S2~DCM) safety loop error	S2~DCM internal loop detected error
78 (STL3)	Internal loop error	S1~DCM and S2~DCM internal loop detected error

Table 4: Error code description

17-7-2 Troubleshooting Instructions

Refer to the following instructions for troubleshooting when STO / STL1 / STL2 / STL3 shows on keypad. (Refer to Chapter 14 Error Codes)

ID No.	KPMH-LC01 Display	Descriptions
72		S1~DCM internal loop detected error Corrective Actions - Check wiring of S1 terminal. - Reset emergency switch (ON: activated) and re-power - Check the input voltage to maintain at least 11 V . - Check the wiring of S 1 and +24 V terminal. - After make sure all the wiring is correct, if STL1 fault still exists after re-power, please contact Delta.
76	-1]	Safe torque off function active Corrective Actions - Check wiring of S1 and S2 terminal. ■ Reset emergency switch (ON: activated) and re-power. - Check the input voltage to maintain at least 11 V . - Check the wiring of S1 / S2 and +24 V terminal. - After make sure all the wiring is correct, if STO fault still exists after re-power, please contact Delta.
77	-17	S2~DCM internal loop detected error. Corrective Actions ■ Check wiring of S2 terminal. - Reset emergency switch (ON: activated) and re-power. - Check the input voltage to maintain at least 11 V . - Check the wiring of $S 2$ and +24 V terminal. - After make sure all the wiring is correct, if STL2 fault still exists after re-power, please contact Delta.
78	[-]	Internal loop detected error. Corrective Actions ■ After make sure the wiring is correct, if STL3 fault still exists after re-power, please contact Delta.

17-8 Test and Fault Confirmation

After wiring in accordance with Section 17-3 Wiring Diagram, please follow the steps below to check whether STO and related detection function are normal.

1. When the drive is powered on, make sure that S1~DCM and S2~DCM voltage falls between 11 VDC ~ 30 VDC, at this time, the drive should enter standby mode and waits for RUN command. There is no error displayed on keypad.
2. Press RUN command on the drive, use the emergency button or other methods to make S1~DCM and S2~DCM voltage falls between 0 VDC~5 VDC simultaneously after the output frequency is reached, at this time, the drive should enter torque stop mode STO and stop outputting voltage. Keypad displays STO error, and the response time of S1 and S2 signals to the drive stops outputting voltage should be $\leq 20 \mathrm{~ms}$. Then restore S1~DCM and S2~DCM voltage to 11 VDC~30 VDC, press RESET button on keypad and STO error will be cleared. The drive should enter standby mode and waits for RUN command.
3. Press RUN command on the drive, use the emergency button or other methods to make S1~DCM voltage fall between 0 VDC~5 VDC, and S2~DCM voltage maintain between 11 VDC~30 VDC after the output frequency is reached, at this time, the drive should enter torque stop mode STL1 and stop outputting voltage. Keypad displays ST1 error, and the response time of S 1 signals to the drive stops outputting voltage should be $\leq 20 \mathrm{~ms}$. Then restore S1~DCM voltage to 11 VDC~30 VDC, however press RESET button on keypad cannot clear STL1 error, the drive needs to be re-powered. Make sure that S1~DCM and S2~DCM voltage falls between 11 VDC~30 VDC and then re-power the drive, thus STL1 error will be cleared. The drive should enter standby mode and waits for RUN command.
4. Press RUN command on the drive, please use the emergency button or other methods to make S2~DCM voltage fall between 0 VDC~5 VDC, and S1~DCM voltage maintain between 11 VDC~30 VDC after the output frequency is reached, at this time, the drive should enter torque stop mode STL2 and stop outputting voltage. Keypad displays ST2 error, and the response time of $S 2$ signals to the drive stops outputting voltage should be $\leq 20 \mathrm{~ms}$. Then restore S2~DCM voltage to 11 VDC~30 VDC, however press RESET button on keypad cannot clear STL1 error, the drive needs to be re-powered. Make sure S1~DCM and S2~DCM voltage falls between 11 VDC~30 VDC and then re-power the drive, thus STL2 error will be cleared. The drive should enter standby mode and waits for RUN command.
5. If the above four steps can be conducted normally in sequence with no other error, then the safe torque off function loop is normal, as shown in Table 5 below. However, if there are situations differ from the above four steps or if STL3 occurs, the safe torque off function loop is abnormal. Please refer to 17-7 Error Code and Troubleshooting Instructions.

Signal	Status			
S1~DCM	ON	ON	OFF	OFF
S2~DCM	ON	OFF	ON	OFF
Drive output	Ready to output	STL2 mode (Torque output off)	STL1 mode (Torque output off)	STO mode (Torque output off)
Error displayed on keypad	No error displayed	STL2	STL1	STO
Response time	N.A	ST2 ms		
RESET mechanism	N.A	Re-power the drive	Re-power the drive	Can be RESET directly

Table 5

STO means channel 1 and 2 operate simultaneously and enter Safe Torque Off.
[al STL1 means channel 1 operates.
[a] STL2 means channel 2 operates.
STL3 means there is error detected in the internal circuit of channel 1 or channel 2.
(1) S1~DCM / S2~DCM ON: means S1~DCM / S2~DCM inputs a power supply > 11 VDC.
[1] S1~DCM / S2~DCM OFF: means S1~DCM / S2~DCM inputs a power supply < 5 VDC.

[^0]: Time

[^1]: Pr. 14-04~14-05 (Positive/Negative Bias Mode)
 0 : No bias
 1: Lower than or equal to bias
 2: Greater than or equal to bias
 3: The absolute value of the bias voltage while serving as the center
 4: Serve bias as the center
 Pr.03-10 (Analog Frequency Command for Reverse Run)
 0 : Negative frequency is not valid.
 Forward and reverse run is controlled by digital keypad or external terminal.
 1: Neagative frequency is valid.
 Positive frequency = forward run;
 negative frequency $=$ reverse run.
 Direction can not be switched by digital keypad or external terminal control.

 Calculate the bias: $\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad \mathrm{XV}=\frac{10}{-9}=-1.11 \mathrm{~V}$
 Pr. $14-02=: \frac{-1.11}{10} \times 100 \%=-11.1 \%$
 Calculate the gain:Pr. 14-06= : $\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%$

