Panasonic

PROGRAMMABLE CONTROLLER FP Series

Programming Manual

Table of Contents

Chapter 1 Relays, Memory Areas and Constants

1.1 Table of Relays, Memory Areas and Constants 1-2
1.1.1 FPO/FP-e 1-2
1.1.2 FPOR 1-7
1.1.3 FP 1-9
1.1.4 FP-X 1-13
1.1.5 FP2 1-15
1.1.6 FP2SH 1-17
1.1.7 FP10SH 1-19
1.1.8 Relay Numbers 1-21
1.2 Explanation of Relays 1-24
1.2.1 External Input Relays (X) 1-24
1.2.2 External Output Relays (Y) 1-25
1.2.3 Internal Relays (R) 1-26
1.2.4 Special Internal Relays 1-28
1.2.5 Link Relays (L) for FP Σ, FP-X, FPOR 1-29
1.2.6 Link Relays (L) for FP2/FP2SH/FP10SH 1-31
1.2.7 Timer (T) 1-35
1.2.8 Counter (C) 1-36
1.2.9 Items Shared by the Timer and Counter 1-37
1.2.10 Pulse Relays (P) 1-39
1.2.11 Error Alarm Relays (E) 1-41
1.3 Explanation of Memory Areas 1-44
1.3.1 Data Register (DT) 1-44
1.3.2 Special Data Registers (DT) 1-46
1.3.3 File Registers (FL) 1-48
1.3.4 WX, WY, WR and WL 1-49
1.3.5 Link Data Registers (LD) for FP $5 / F P-X / F P 0 R$ 1-50
1.3.6 Link Data Registers (LD) for FP2/FP2SH/FP10SH 1-52
1.3.7 Set Value Area for Timer/Counter (SV) 1-56
1.3.8 Elapsed Value Area for Timer/Counter (EV) 1-57
1.3.9 Index Registers (IX, IY) (for FPO, FP-e) 1-58
1.3.10 Index Registers (IO to ID) (for FP $/$ /FP-X/FPOR) 1-61
1.3.11 Index Registers (IO to ID) (for FP2, FP2SH and FP10SH) 1-62
1.4 Explanation of Constants 1-72
1.4.1 Integer Type Decimal Constants (K) 1-72
1.4.2 Hexadecimal Constants (H) 1-73
1.4.3 Floating Point Type Real Numbers (f) 1-74
1.4.4 BCD Type Real Numbers (H) (for FP2, FP2SH and FP10SH) 1-79
1.4.5 Character Constants (M) 1-80
1.5 Data Ranges Which can be Handled in the PLC 1-81
1.5.1 Data Ranges Which can be Handled in the PLC 1-81
1.5.2 Overflow and Underflow 1-84
Chapter 2 Basic Instructions
2.1 Composition of Basic Instructions 2-3
2.1.1 Sequence Basic Instructions 2-3
2.1.2 Basic Function Instructions 2-4
2.1.3 Control Instructions 2-4
2.1.4 Data Compare Instructions 2-5
2.2 Number of Steps in the FP2, FP2SH and FP10SH 2-6
Chapter 3 High-level Instructions
3.1 Composition of High-level Instructions 3-3
3.1.1 Composition 3-3
3.1.2 High-level Instruction Numbers and Program Input 3-4
3.1.3 High-level Instruction and Execution Condition (Trigger) 3-5
3.1.4 "F" and "P" Type High-level Instructions 3-6
Chapter 4 Precautions Concerning Programs
4.1 Changing the Set Value of Timer/Counter During RUN 4-3
4.1.1 Method of Rewriting Constant in the Program 4-3
4.1.2 Method of Rewriting a Value in the Set Value Area 4-5
4.2 Use of Duplicated Output 4-8
4.2.1 Duplicated Output 4-8
4.2.2 When Output is Repeated with an OT, KP, SET, or RST Instruction 4-9
4.3 Leading Edge Detection Method 4-10
4.3.1 Instructions of Leading Edge Detection Method 4-10
4.3.2 Operation and Precautions at Run Start Time 4-11
4.3.3 Precautions when Using a Control Instruction 4-13
4.4 Operation Errors 4-15
4.4.1 Operation Errors 4-15
4.4.2 Operation Mode when an Operation Error Occurs 4-16
4.4.3 Dealing with Operation Errors 4-17
4.4.4 Points to Check in Program 4-18
4.5 Handling Index Registers 4-19
4.5.1 Index Registers 4-19
4.5.2 Memory Areas Which can be Modified with Index Registers 4-20
4.5.3 Example of Using an Index Register 4-21
4.6 Handling BCD Data 4-25
4.6.1 BCD Data 4-25
4.6.2 Handling BCD Data in the Programmable Controller 4-25
4.7 Precautions for Programming 4-27
4.8 Rewrite Function During RUN 4-28
4.8.1 Operation of Rewrite During RUN 4-28
4.8.2 Cases Where Rewriting During Run is not Possible 4-29
4.8.3 Procedures and Operation of Rewrite During RUN 4-31
4.9 Processing During Forced Input and Output 4-32
4.9.1 Processing when forced input/output is initiated during RUN 4-32
4.10 Second Program Area (FP2SH, FP10SH) 4-34
Chapter 5 Appendix
5.1 System Registers / Special Internal Relays / Special Data Registers 5-3
5.1.1 Table of System Registers for FP0 5-5
5.1.2 Table of Special Internal Relays for FPO 5-15
5.1.3 Table of Special Data Registers for FP0 5-18
5.1.4 Table of System Registers for FP-e 5-28
5.1.5 Table of Special Internal Relays for FP-e 5-32
5.1.6 Table of Special Data Registers for FP-e 5-36
5.1.7 Table of System Registers for FPOR 5-43
5.1.8 Table of Special Internal Relays for FPOR 5-49
5.1.9 Table of Special Data Registers for FP0R 5-59
5.1.10 Table of System Registers for FP Σ 5-78
5.1.11 Table of Special Internal Relays for FP Σ 5-84
5.1.12 Table of Special Data Registers for FP Σ 5-93
5.1.13 Table of System Registers for FP-X 5-107
5.1.14 Table of Special Internal Relays for FP-X 5-119
5.1.15 Table of Special Data Registers for FP-X 5-130
5.1.16 Table of System Registers for FP2/FP2SH/FP10SH 5-151
5.1.17 Table of Special Internal Relays for
FP1/FP-M/FP2/FP2SH/FP10SH/FP3 5-165
5.1.18 Special Data Registers for FP2/FP2SH/FP3/FP10SH 5-176
5.2 Table of Basic Instructions 5-201
5.3 Table of High-level Instructions 5-209
5.4 Table of Error codes 5-229
5.5 MEWTOCOL-COM Communication Commands 5-242
5.6 Hexadecimal/Binary/BCD 5-243
5.7 ASCII Codes 5-244
Record of changes R-1

Basic Instructions

Sequence basic instructions

ST	Start 2 - 8
ST/	Start Not 2 - 8
OT	Out 2 - 8
1	Not 2 - 10
AN	AND 2 - 11
AN/	AND Not 2 - 11
OR	OR 2 - 12
OR/	OR Not................. . . 2-12
ST \uparrow	Leading edge start 2-14
ST \downarrow	Trailing edge start 2-14
AN \uparrow	Leading edge AND 2-14
AN \downarrow	Trailing edge AND 2-14
OR \uparrow	Leading edge OR....... . 2-14
OR \downarrow	Trailing edge OR 2-14
OT \uparrow	Leading edge out 2-16
OT \downarrow	Trailing edge out 2-16
ALT	Alternative out 2-18
ANS	AND stack 2 - 19
ORS	OR stack 2 - 21
PSHS	Push stack 2-23
RDS	Read stack 2-23
POPS	Pop stack 2 - 23
DF	Leading edge differential 2-26
DF/	Trailing edge differential . 2-26
DFI	Leading edge differential (initial execution type) ... 2-30
SET	Set 2 - 32
RST	Reset 2 - 32
KP	Keep 2 - 34
NOP	No operation 2-35

Basic function instructions

TML On-delay timer TML 2-36
TMR On-delay timer TMR 2-42
TMX On-delay timer TMX 2-42
TMY On-delay timer TMY 2-42
CT Counter 2-48
SR Shift register 2-54
Control instructions
MC Master control relay 2-57
MCE Master control relay end 2-57
JP Jump 2-61
LBL Label 2-61, 2 - 64
LOOP Loop 2-64
BRK Break 2-68
ED End 2-70
CNDE Conditional end 2-71
EJECT Eject 2-73
Step ladder instructions
SSTP Start step 2-75
NSTL Next step 2-75
NSTP Next step 2-75
CSTP Clear step 2-75
STPE Step end 2-75
SCLR Clear multiple processes 2-85
Subroutine instructions
CALL Subroutine call 2-86
FCAL Output off type subroutine call 2-89
SUB Subroutine entry 2-86
RET Subroutine return 2-86
Interrupt instructions
INT Interrupt 2-91. 2-97
IRET Interrupt return 2-91, 2 - 97
ICTL Interrupt control 2-102, 2-110

Special setting instructions

SYS1 Communication conditions
setting 2-119
Password setting 2-123
Interrupt setting 2-125
PLC link time setting ... 2-127
Change high-speed counter operation mode

2-129
MEWTOCOL-COM response control

2-131
SYS2 Change system registers
(No. 40 to No.47,
No. 50 to No.57)
2-133

Data compare instructions
$\mathrm{ST}=16$-bit data compare (Start)

2-136
ST<> 16-bit data compare (Start)

2-136
ST> 16-bit data compare (Start)
$2-136$
ST>= 16-bit data compare (Start)

2-136
ST < 16-bit data compare (Start)
$2-136$
$\mathrm{ST}<=$ 16-bit data compare (Start)
$2-136$
STD $=$ 32-bit data compare (Start)
$2-138$
STD<> 32-bit data compare (Start)

2-138
STD> 32-bit data compare (Start)

2-138
STD>= 32-bit data compare (Start)

2-138
STD< 32-bit data compare (Start)

2-138
STD<= 32-bit data compare (Start)

2-138
STF= Floating point real number data comparison: (Start)

2-140
STF<> Floating point real number data comparison: (Start)

2-140

STF> Floating point real number data comparison: (Start) 2-140
STF>= Floating point real number data comparison: (Start) 2-140
STF < Floating point real number data comparison: (Start) 2-140
STF<= Floating point real number data comparison: (Start) 2-140
AN $=$ 16-bit data compare (AND) 2-142
AN<> 16-bit data compare (AND) 2-142
AN> 16-bit data compare (AND) 2-142
AN $>=$ 16-bit data compare (AND) 2-142
$\mathrm{AN}<\quad \begin{aligned} & \text { 16-bit data compare } \\ & \\ & (\text { AND }) \ldots .2-142 ~\end{aligned}$
AN<= 16-bit data compare (AND) 2-142
AND $=$ 32-bit data compare (AND)

$$
2-144
$$

AND<> 32-bit data compare (AND) 2-144
AND> $\begin{aligned} & \text { 32-bit data compare } \\ & \\ & \text { (AND) 2-144 }\end{aligned}$
AND>= 32-bit data compare (AND)

2-144

AND $<=$ 32-bit data compare (AND)

2-144
ANF $=$ Floating point real number data comparison: (AND) 2-146
ANF<> Floating point real number data comparison: (AND) 2-146
ANF> Floating point real number data comparison: (AND) 2-146

ANF>= Floating point real number data comparison: (AND) 2-146
ANF $<$ Floating point real number data comparison: (AND) 2-146
ANF<= Floating point real number data comparison: (AND) 2-146
$\mathrm{OR}=16$-bit data compare (OR)

2-148

OR<> 16-bit data compare
(OR) 2-148
OR> 16-bit data compare
(OR)
2-148
OR>= 16-bit data compare
(OR)
2-148
OR< 16-bit data compare
(OR) 2-148
OR<= 16-bit data compare (OR) 2-148
ORD= 32-bit data compare
(OR) 2-150
ORD<> 32-bit data compare (OR)

2-150
ORD> 32-bit data compare (OR)

2-150
ORD>= 32-bit data compare (OR) 2-150
ORD< 32-bit data compare (OR) 2-150
ORD<= 32-bit data compare
(OR)
2-150
$O R F=$ Floating point real number data comparison: (OR) 2-152

ORF<> Floating point real number data comparison: (OR) 2-152

ORF> Floating point real number data comparison: (OR) 2-152
ORF>= Floating point real number data comparison: (OR)

2-152
ORF < Floating point real number data comparison: (OR) 2-152
ORF<= Floating point real number data comparison: (OR) 2-152

High-level Instructions

Data transfer instructions

$\begin{aligned} & \text { F0 } \\ & \text { P0 } \end{aligned}$	MV PMV	16-bit data move	3-8
$\begin{aligned} & \text { F1 } \\ & \text { P1 } \end{aligned}$	DMV PDMV	32-bit data move	3-10
F2	MV/	16-bit data invert and move	3-12
P2	PMV/		
$\begin{aligned} & \text { F3 } \\ & \text { P3 } \end{aligned}$	DMV/ PDMV/	32-bit data invert and move	3-14
$\begin{aligned} & \text { F4 } \\ & \text { P4 } \end{aligned}$	$\begin{aligned} & \text { GETS } \\ & \text { PGETS } \end{aligned}$	Reading of head word No. of the specified slot.	3-16
$\begin{aligned} & \text { F5 } \\ & \text { P5 } \end{aligned}$	BTM PBTM	Bit data move	3-17
$\begin{aligned} & \text { F6 } \\ & \text { P6 } \end{aligned}$	$\begin{aligned} & \text { DGT } \\ & \text { PDGT } \end{aligned}$	Hexadecimal digit data move	3-21
$\begin{aligned} & \text { F7 } \\ & \text { P7 } \end{aligned}$	MV2 PMV2	Two 16-bit data move	3-25
$\begin{aligned} & \text { F8 } \\ & \text { P8 } \end{aligned}$	DMV2 PDMV2	Two 32-bit data move	3-27
$\begin{aligned} & \text { F10 } \\ & \text { P10 } \end{aligned}$	BKMV PBKMV	Block move	3-29
$\begin{aligned} & \text { F11 } \\ & \text { P11 } \end{aligned}$	$\begin{aligned} & \text { COPY } \\ & \text { PCOPY } \end{aligned}$	Block copy	3-31
F12	ICRD	Data read from EEPROM Data read from F-ROM .	$\begin{aligned} & 3-33 \\ & 3-35 \end{aligned}$
$\begin{aligned} & \text { F12 } \\ & \text { P12 } \end{aligned}$	ICRD PICRD	Data read from IC card	3-37
P13	PICWT	Data write to EEPROM Data write to F-ROM .	$\begin{aligned} & 3-39 \\ & 3-41 \end{aligned}$
$\begin{aligned} & \text { F13 } \\ & \text { P13 } \end{aligned}$	ICWT PICWT	Data write to IC card	3-43
$\begin{aligned} & \text { F14 } \\ & \text { P14 } \end{aligned}$	$\begin{aligned} & \text { PGRD } \\ & \text { PPGRD } \end{aligned}$	Program read from IC card	3-45
$\begin{aligned} & \text { F15 } \\ & \text { P15 } \end{aligned}$	$\begin{aligned} & \text { XCH } \\ & \text { PXCH } \end{aligned}$	16-bit data exchange	3-49
$\begin{aligned} & \text { F16 } \\ & \text { P16 } \end{aligned}$	$\begin{aligned} & \text { DXCH } \\ & \text { PDXCH } \end{aligned}$	32-bit data exchange	3-51
$\begin{aligned} & \text { F17 } \\ & \text { P17 } \end{aligned}$	SWAP PSWAP	Higher/ lower byte in 16-bit data exchange	3-53
$\begin{aligned} & \text { F18 } \\ & \text { P18 } \end{aligned}$	$\begin{aligned} & \mathrm{BXCH} \\ & \mathrm{PBXCH} \end{aligned}$	16-bit blocked data exchange	3-55

Control instruction

F19 SJP
Auxiliary jump
3-57
LBL

Binary arithmetic instructions

F20	+	16-bit data addition	3-59
P20	P+		

F21 D+ 32-bit data addition .. 3-61
P21 PD+

F22	+	16-bit data addition	3-63
P22	P+		
F23	D+	32-bit data addition	3-65

P23 PD+
F25 - 16-bit data subtraction ... 3-67
P25 P-
F26 D- 32-bit data subtraction ... 3-69
P26 PD-
F27 - 16-bit data subtraction .. 3-71
P27 P-

$\begin{aligned} & \text { F28 } \\ & \text { P28 } \end{aligned}$	$\begin{aligned} & \mathrm{D}- \\ & \text { PD- } \end{aligned}$	32-bit data subtraction	3-73
F30	*	16-bit data multiplication	3-75

\qquad
F33 D\% 32-bit data division .. 3-81*W 16-bit data multiplication (result in 16 bits)3-83
F35 +1 16-bit data increment .. 3-85

P35 P+1
F36 D+1 32-bit data increment... 3-87
P36 PD+1
F37 -1 16-bit data decrement ... 3-89

P37 P-1
F38 D-1 32-bit data decrement .. 3-91
P38 PD-1
F39 D*D 32-bit data multiplication (result in 32 bits) 3-93
P39 PD*D

$B C D$ arithmetic instructions

F40
B+
4-digit BCD data addition
3-95
P40 PB+

$\begin{aligned} & \text { F41 } \\ & \text { P41 } \end{aligned}$	$\begin{aligned} & \mathrm{DB}+ \\ & \text { PDB+ } \end{aligned}$	8-digit BCD data addition	3-97
$\begin{aligned} & \text { F42 } \\ & \text { P42 } \end{aligned}$	$\begin{aligned} & \mathrm{B}+ \\ & \mathrm{PB}+ \end{aligned}$	4-digit BCD data addition	3-99
$\begin{aligned} & \text { F43 } \\ & \text { P43 } \end{aligned}$	$\begin{aligned} & \text { DB+ } \\ & \text { PDB+ } \end{aligned}$	8-digit BCD data addition	3-101
$\begin{aligned} & \text { F45 } \\ & \text { P45 } \end{aligned}$	$\begin{aligned} & \text { B- } \\ & \text { PB- } \end{aligned}$	4-digit BCD data subtraction	3-103
$\begin{aligned} & \text { F46 } \\ & \text { P46 } \end{aligned}$	$\begin{aligned} & \text { DB- } \\ & \text { PDB- } \end{aligned}$	8-digit BCD data subtraction	3-105
$\begin{aligned} & \text { F47 } \\ & \text { P47 } \end{aligned}$	$\begin{aligned} & \mathrm{B}- \\ & \mathrm{PB}- \end{aligned}$	4-digit BCD data subtraction	3-107
$\begin{aligned} & \text { F48 } \\ & \text { P48 } \end{aligned}$	$\begin{aligned} & \text { DB- } \\ & \text { PDB- } \end{aligned}$	8-digit BCD data subtraction	3-109
$\begin{aligned} & \text { F50 } \\ & \text { P50 } \end{aligned}$	$\begin{aligned} & \mathrm{B}^{*} \\ & \mathrm{~PB}^{*} \end{aligned}$	4-digit BCD data multiplication	3-111
$\begin{aligned} & \text { F51 } \\ & \text { P51 } \end{aligned}$	$\begin{aligned} & \text { DB* } \\ & \text { PDB* } \end{aligned}$	8-digit BCD data multiplication	3-113
$\begin{aligned} & \text { F52 } \\ & \text { P52 } \end{aligned}$	$\begin{aligned} & \text { B\% } \\ & \text { PB\% } \end{aligned}$	4-digit BCD data division	3-115
$\begin{aligned} & \text { F53 } \\ & \text { P53 } \end{aligned}$	$\begin{aligned} & \text { DB\% } \\ & \text { PDB\% } \end{aligned}$	8-digit BCD data division	3-117
$\begin{aligned} & \text { F55 } \\ & \text { P55 } \end{aligned}$	$\begin{aligned} & \mathrm{B}+1 \\ & \mathrm{~PB}+1 \end{aligned}$	4-digit BCD data increment	3-119
$\begin{aligned} & \text { F56 } \\ & \text { P56 } \end{aligned}$	$\begin{aligned} & \mathrm{DB}+1 \\ & \mathrm{PDB}+1 \end{aligned}$	8-digit BCD data increment	3-121
$\begin{aligned} & \text { F57 } \\ & \text { P57 } \end{aligned}$	$\begin{aligned} & \mathrm{B}-1 \\ & \mathrm{~PB}-1 \end{aligned}$	4-digit BCD data decrement	3-123
$\begin{aligned} & \text { F58 } \\ & \text { P58 } \end{aligned}$	$\begin{aligned} & \text { DB-1 } \\ & \text { PDB-1 } \end{aligned}$	8-digit BCD data decrement	3-125
Data compare instructions			
$\begin{aligned} & \text { F60 } \\ & \text { P60 } \end{aligned}$	$\begin{aligned} & \text { CMP } \\ & \text { PCMP } \end{aligned}$	16-bit data comparison	3-127
$\begin{aligned} & \text { F61 } \\ & \text { P61 } \end{aligned}$	DCMP PDCMP	32-bit data comparison	3-131
$\begin{aligned} & \text { F62 } \\ & \text { P62 } \end{aligned}$	WIN PWIN	16-bit data band comparison	3-135
$\begin{aligned} & \text { F63 } \\ & \text { P63 } \end{aligned}$	DWIN PDWIN	32-bit data band comparison	3-137
$\begin{aligned} & \text { F64 } \\ & \text { P64 } \end{aligned}$	$\begin{aligned} & \text { BCMP } \\ & \text { PBCMP } \end{aligned}$	Block data comparison	3-139
Logic operation instructions			
$\begin{aligned} & \text { F65 } \\ & \text { P65 } \end{aligned}$	WAN PWAN	16-bit data AND	3-143

$\begin{aligned} & \text { F66 } \\ & \text { P66 } \end{aligned}$	WOR PWOR	16-bit data OR	3-145
$\begin{aligned} & \text { F67 } \\ & \text { P67 } \end{aligned}$	$\begin{aligned} & \text { XOR } \\ & \text { PXOR } \end{aligned}$	16-bit data exclusive OR	3-147
$\begin{aligned} & \text { F68 } \\ & \text { P68 } \end{aligned}$	$\begin{aligned} & \text { XNR } \\ & \text { PXNR } \end{aligned}$	16-bit data exclusive NOR	3-149
$\begin{aligned} & \text { F69 } \\ & \text { P69 } \end{aligned}$	WUNI PWUNI	16-bit data unite	3-151

Data conversion instructions

$\begin{aligned} & \text { F70 } \\ & \text { P70 } \end{aligned}$	$\begin{aligned} & \mathrm{BCC} \\ & \mathrm{PBCC} \end{aligned}$	Block check code calculation	3-153
$\begin{aligned} & \text { F71 } \\ & \text { P71 } \end{aligned}$	$\begin{aligned} & \text { HEXA } \\ & \text { PHEXA } \end{aligned}$	Hexadecimal data \rightarrow ASCII code	3-158
$\begin{aligned} & \text { F72 } \\ & \text { P72 } \end{aligned}$	AHEX PAHEX	ASCII code \rightarrow Hexadecimal data	3-161
$\begin{aligned} & \text { F73 } \\ & \text { P73 } \end{aligned}$	$\begin{aligned} & \text { BCDA } \\ & \text { PBCDA } \end{aligned}$	BCD data \rightarrow ASCII code	3-165
$\begin{aligned} & \text { F74 } \\ & \text { P74 } \end{aligned}$	$\begin{aligned} & \text { ABCD } \\ & \text { PABCD } \end{aligned}$	ASCII code \rightarrow BCD data	3-169
$\begin{aligned} & \text { F75 } \\ & \text { P75 } \end{aligned}$	BINA PBINA	16-bit binary data \rightarrow ASCII code	3-173
$\begin{aligned} & \text { F76 } \\ & \text { P76 } \end{aligned}$	ABIN PABIN	ASCII code \rightarrow 16-bit binary data	3-177
$\begin{aligned} & \text { F77 } \\ & \text { P77 } \end{aligned}$	DBIA PDBIA	32-bit binary data \rightarrow ASCII code	3-180
$\begin{aligned} & \text { F78 } \\ & \text { P78 } \end{aligned}$	DABI PDABI	ASCII code \rightarrow 32-bit binary data	3-183
$\begin{aligned} & \text { F80 } \\ & \text { P80 } \end{aligned}$	$\begin{aligned} & \mathrm{BCD} \\ & \mathrm{PBCD} \end{aligned}$	16-bit binary data \rightarrow 4-digit BCD data	3-186
$\begin{aligned} & \text { F81 } \\ & \text { P81 } \end{aligned}$	BIN PBIN	4-digit BCD data \rightarrow 16-bit binary data	3-188
$\begin{aligned} & \text { F82 } \\ & \text { P82 } \end{aligned}$	$\begin{aligned} & \text { DBCD } \\ & \text { PDBCD } \end{aligned}$	32-bit binary data $\rightarrow 8$-digit BCD data	3-190
$\begin{aligned} & \text { F83 } \\ & \text { P83 } \end{aligned}$	DBIN PDBIN	8-digit BCD data \rightarrow 32-bit binary data	3-192
$\begin{aligned} & \text { F84 } \\ & \text { P84 } \end{aligned}$	INV PINV	16-bit data invert	3-193
$\begin{aligned} & \text { F85 } \\ & \text { P85 } \end{aligned}$	NEG PNEG	16-bit data complement of 2	3-194
$\begin{aligned} & \text { F86 } \\ & \text { P86 } \end{aligned}$	DNEG PDNEG	32-bit data complement of 2	3-196
$\begin{aligned} & \text { F87 } \\ & \text { P87 } \end{aligned}$	$\begin{aligned} & \text { ABS } \\ & \text { PABS } \end{aligned}$	16-bit data absolute value	3-198
$\begin{aligned} & \text { F88 } \\ & \text { P88 } \end{aligned}$	DABS PDABS	32-bit data absolute value	3-199

$\begin{aligned} & \text { F89 } \\ & \text { P89 } \end{aligned}$	$\begin{aligned} & \text { EXT } \\ & \text { PEXT } \end{aligned}$	16-bit data sign extension . 3-200
$\begin{aligned} & \text { F90 } \\ & \text { P90 } \end{aligned}$	$\begin{aligned} & \text { DECO } \\ & \text { PDECO } \end{aligned}$	Decode .. 3 - 202
$\begin{aligned} & \text { F91 } \\ & \text { P91 } \end{aligned}$	$\begin{aligned} & \text { SEGT } \\ & \text { PSEGT } \end{aligned}$	7-segment decode . 3-206
$\begin{aligned} & \text { F92 } \\ & \text { P92 } \end{aligned}$	$\begin{aligned} & \text { ENCO } \\ & \text { PENCO } \end{aligned}$	Encode . 3-208
$\begin{aligned} & \text { F93 } \\ & \text { P93 } \end{aligned}$	UNIT PUNIT	16-bit data combine . 3-212
$\begin{aligned} & \text { F94 } \\ & \text { P94 } \end{aligned}$	$\begin{aligned} & \text { DIST } \\ & \text { PDIST } \end{aligned}$	16-bit data distribute 3-214
$\begin{aligned} & \text { F95 } \\ & \text { P95 } \end{aligned}$	$\begin{aligned} & \text { ASC } \\ & \text { PASC } \end{aligned}$	Character \rightarrow ASCII code 3-216
$\begin{aligned} & \text { F96 } \\ & \text { P96 } \end{aligned}$	$\begin{aligned} & \text { SRC } \\ & \text { PSRC } \end{aligned}$	16-bit data search ... 3 - 220
$\begin{aligned} & \text { F97 } \\ & \text { P97 } \end{aligned}$	DSRC PDSRC	32-bit data search 3 - 222
Data shift instructions		
$\begin{aligned} & \text { F98 } \\ & \text { P98 } \end{aligned}$	CMPR PCMPR	Data table shift-out and compress 3-224
$\begin{aligned} & \text { F99 } \\ & \text { P99 } \end{aligned}$	CMPW PCMPW	Data table shift-in and compress 3-227
$\begin{aligned} & \text { F100 } \\ & \text { P100 } \end{aligned}$	$\begin{aligned} & \text { SHR } \\ & \text { PSHR } \end{aligned}$	Right shift of multiple bits (n bits) in a 16-bit data 3-230
$\begin{aligned} & \text { F101 } \\ & \text { P101 } \end{aligned}$	SHL PSHL	Left shift of multiple bits (n bits) in a 16-bit data 3-232
$\begin{aligned} & \text { F102 } \\ & \text { P102 } \end{aligned}$	$\begin{aligned} & \text { DSHR } \\ & \text { PDSHR } \end{aligned}$	Right shift of n bits in a 32-bit data 3-234
$\begin{aligned} & \text { F103 } \\ & \text { P103 } \end{aligned}$	$\begin{aligned} & \text { DSHL } \\ & \text { PDSHL } \end{aligned}$	Left shift of n bits in a 32-bit data . 3-236
$\begin{aligned} & \text { F105 } \\ & \text { P105 } \end{aligned}$	$\begin{aligned} & \text { BSR } \\ & \text { PBSR } \end{aligned}$	Right shift of one hexadecimal digit (4 bits) 3-238
$\begin{aligned} & \text { F106 } \\ & \text { P106 } \end{aligned}$	$\begin{aligned} & \text { BSL } \\ & \text { PBSL } \end{aligned}$	Left shift of one hexadecimal digit (4 bits) 3-240
$\begin{aligned} & \text { F108 } \\ & \text { P108 } \end{aligned}$	BITR PBITR	Right shift of multiple bits of 16-bit data range 3-242
$\begin{aligned} & \text { F109 } \\ & \text { P109 } \end{aligned}$	BITL PBITL	Left shift of multiple bits of 16-bit data range 3-244
$\begin{aligned} & \text { F110 } \\ & \text { P110 } \end{aligned}$	WSHR PWSHR	Right shift of one word (16 bits) of 16-bit data range 3-246
$\begin{aligned} & \text { F111 } \\ & \text { P111 } \end{aligned}$	WSHL PWSHL	Left shift of one word (16 bits) of 16-bit data range 3-248
$\begin{aligned} & \text { F112 } \\ & \text { P112 } \end{aligned}$	WBSR PWBSR	Right shift of one hexadecimal digit (4-bit) of 16-bit data range 3-250

F113	WBSL	Left shift of one hexadecimal digit (4-bit) of 16-bit data range
P113	PWBSL	

FIFO instructions

$\begin{aligned} & \text { F115 } \\ & \text { P115 } \end{aligned}$	$\begin{aligned} & \text { FIFT } \\ & \text { PFIFT } \end{aligned}$	FIFO buffer definition	3-254
$\begin{aligned} & \text { F116 } \\ & \text { P116 } \end{aligned}$	$\begin{aligned} & \text { FIFR } \\ & \text { PFIFR } \end{aligned}$	Data read from FIFO buffer	3-256
$\begin{aligned} & \text { F117 } \\ & \text { P117 } \end{aligned}$	$\begin{aligned} & \text { FIFW } \\ & \text { PFIFW } \end{aligned}$	Data write to FIFO buffer	3-260

Basic function instructions

F118 UDC UP/DOWN counter... 3-267
F119 LRSR Left/right shift register ... 3-270

Data rotate instructions
F120 ROR 16-bit data right rotation ... 3-274

P120 PROR
F121 ROL 16-bit data left rotation ... 3-276
P121 PROL
F122 RCR 16-bit data right rotation with carry flag data $\ldots \ldots \ldots \ldots \ldots$. . 3 - 278
P122 PRCR
F123 RCL 16-bit data left rotation with carry flag data 3-280
P123 PRCL
F125 DROR 32-bit data right rotation .. 3-282
P125 PDROR
F126 DROL 32-bit data left rotation ... 3-284
P126 PDROL
F127 DRCR 32-bit data right rotation with carry flag data 3-286
P127 PDRCR
F128 DRCL 32-bit data left rotation with carry flag data $\ldots \ldots . \ldots \ldots .$. 3-288 P128 PDRCL

Bit manipulation instructions

$\begin{aligned} & \text { F130 } \\ & \text { P130 } \end{aligned}$	BTS PBTS	16-bit data bit set	3-290
$\begin{aligned} & \text { F131 } \\ & \text { P131 } \end{aligned}$	BTR PBTR	16-bit data bit reset	3-292
$\begin{aligned} & \text { F132 } \\ & \text { P132 } \end{aligned}$	$\begin{aligned} & \text { BTI } \\ & \text { PBTI } \end{aligned}$	16-bit data bit invert	3-294
$\begin{aligned} & \text { F133 } \\ & \text { P133 } \end{aligned}$	$\begin{aligned} & \text { BTT } \\ & \text { PBTT } \end{aligned}$	16-bit data bit test	3-296
F135 P135	BCU PBCU	Number of on (1) bits in 16-bit data	3-298

F136 DBCU Number of on (1) bits in 32-bit data 3-300

Basic function instruction

F137 STMR Auxiliary timer (16-bit) . 3-302

Special instructions

F138 HMSS Hours, minutes, and seconds data to seconds data 3-305
P138 PHMSS
F139 SHMS
P139 PSHMS
F140 STC Carry flag (R9009) set 3-310
P140 PSTC
F141 CLC Carry flag (R9009) reset .. . 3 - 311
P141 PCLC
F142 WDT Watching dog timer update 3-312
P142 PWDT
F143 IORF Partial I/O update for FP0/FP0R/FP-e/FPL/FP-X 3-314
F143 IORF
P143 PIORF
F144 TRNS $\begin{array}{r}\text { Serial data communication } \\ \text { for FPO/FP-e ... } 3-318\end{array}$
for FP2/FP2SH/FP10SH . 3-325
F145 SEND Data send (For MEWTOCOL master mode) 3-335
P145 PSEND Data send (For MODBUS master/MODBUS master II mode) 3-339
Data send (MEWNET link) .. 3-350 3 -
F146 RECV Data receive (For MEWTOCOL master mode) 3-360
P146 PRECV Data receive (For MODBUS master/MODBUS master II mode) 3-364
Data receive (MEWNET link) 3-376
F147 PR Printout .. 3-386
F148 ERR Self-diagnostic error set ... 3-390
P148 PERR
F149 MSG Message display ... 3-392
P149 PMSG
F150 READ Data read from intelligent unit 3-395
P150 PREAD
F151 WRT Data write into intelligent unit 3-398
P151 PWRT
F152 RMRD
Data read from MEWNET-F slave station 3-401
P152 PRMRD
F153 RMWT Data write into MEWNET-F slave station 3-405
P153 PRMWT
F155 SMPL
Sampling start
$3-409$
P155 PSMPL
F156 STRG Sampling stop
3-411

P156 PSTRG

$\begin{aligned} & \text { F157 } \\ & \text { P157 } \end{aligned}$	$\begin{aligned} & \text { CADD } \\ & \text { PCADD } \end{aligned}$	Time addition	3-413
$\begin{aligned} & \text { F158 } \\ & \text { P158 } \end{aligned}$	$\begin{aligned} & \text { CSUB } \\ & \text { PCSUB } \end{aligned}$	Time substruction	3-416
$\begin{aligned} & \text { F159 } \\ & \text { P159 } \end{aligned}$	MTRN PMTRN	Serial data communication for FPI/FP-X/FP0R for FP2/FP2SH	$\begin{aligned} & 3-420 \\ & 3-428 \end{aligned}$
$\begin{aligned} & \text { F161 } \\ & \text { P161 } \end{aligned}$	MRCV PMRCV	Serial data reception	3-432

BIN arithmetic instructions

| F160 | DSQR |
| :--- | :--- | :--- |
| P160 | PDSQR |

Special instructions (High-speed counter instructions)

F0	MV	High-speed counter control for FP0/FPOR/FPE/FP-X 3-437 Pulse output control for FP0/FP0R/FP-e/FPइ/FP-X 3-443
F1	DMV	Writing and reading the high-speed counter and pulse output elapsed value for FPO/FPOR/FP-e/FPE/FP-X 3-449
F165	CAMO	Cam control . 3-454
F166	HC1S	Target value match on (with channel specification) 3-461
F166	HC1S	Target value match on (High-speed counter control) 3-464
F166	HC1S	Target value match on (Pulse output control) 3-467
F167	HC1R	Target value match off (with channel specification) 3-470
F167	HC1R	Target value match off (High-speed counter control) 3-473
F167	HC1R	Target value match off (Pulse output control) 3-476
F168	SPD1	Positioning control (trapezoidal control) 3-479 Positioning control (home position return) 3-483
F169	PLS	Pulse output (with channel specification)(JOG operation) 3-488
F170	PWM	PWM output (with channel specification) 3-491
F171	SPDH	Pulse output (with channel specification) (trapezoidal control) . 3-493 (home position return) . 3-498
F171	SPDH	
F172	PLSH	Pulse output (with channel specification)(JOG operation) 3-521
F172	PLSH	Double word compare: Start equal Pulse output (JOG operation type 0 and 1) $3-525$
F173	PWMH	PWM output (with channel specification) 3-529
F174	SPOH	Pulse output (with channel specification) (Selectable data table control operation) 3-533
F174	SPOH	Pulse output (Arbitrary data table control operation) 3-538

F175	SPSH	Pulse output (Linear interpolation)	3-542
F175	SPSH	Pulse output (Linear interpolation)	3-548
F176	SPCH	Pulse output (Circular interpolation)	3-553

Screen display instructions

F177 HOME Pulse output (Home return) 3-557

F178 PLSM Input pulse measurement ... 3-561
F180 SCR FP-e screen display registration 3-565
F181 DSP FP-e screen display switching 3-568
F182 FILTR Time constant processing .. 3-569

Basic function instruction
F183 DSTM Auxiliary timer (32-bit) .. 3-571

Data transfer instructions
F190 MV3 Three 16-bit data move ... 3-575
P190 PMV3
F191 DMV3 Three 32-bit data move ... 3-577
P191 PDMV3

Logic operation instructions
F215 DAND 32-bit data AND .. 3-579
P215 PDAND
F216 DOR 32-bit data OR ... 3-581
P216 PDOR
F217 DXOR 32-bit data XOR ... 3-583
P217 PDXOR
F218 DXNR 32-bit data XNR .. 3-5 585
P218 PDXNR
F219 DUNI 32-bit data unites .. 3-587
P219 PDUNI
F230 TMSEC Time data \rightarrow Second conversion 3-589
P230 PTMSEC
F231 SECTM Second \rightarrow Time data conversion 3-591
P231 PSECTM

Data conversion instructions

$\begin{aligned} & \text { F235 } \\ & \text { P235 } \end{aligned}$	GRY PGRY	16-bit data \rightarrow Gray code	3-593
$\begin{aligned} & \text { F236 } \\ & \text { P236 } \end{aligned}$	DGRY PDGRY	32-bit data \rightarrow Gray code	3-594
F237	GBIN	16-bit Gray code \rightarrow 16-bit binary data	3-595

$\begin{aligned} & \text { F238 } \\ & \text { P238 } \end{aligned}$	DGBIN PDGBIN	32-bit Gray code \rightarrow 32-bit binary data	3-596
$\begin{aligned} & \text { F240 } \\ & \text { P240 } \end{aligned}$	COLM PCOLM	Bit line to bit column conversion	3-599
$\begin{aligned} & \text { F241 } \\ & \text { P241 } \end{aligned}$	LINE PLINE	Bit column to bit line conversion	3-601
F250	BTOA	Binary \rightarrow ASCII conversion	3-603
F251	ATOB	ASCII \rightarrow Binary conversion	3-608
F252	ACHK	ASCII data check	3-613

Character string instructions

F257 SCMP Comparing character strings 3-617

P258 PSADD

F259 LEN Number of characters in a character string 3-621
F260 SSRC Search for character string 3-623
F261 RIGHT Retrieving data from character strings (right side) 3-625

| P261 PRIGHT | |
| :--- | :--- | :--- |
| F262 | LEFT Retrieving data from character strings (left side) 3-627 |

| P262 PLEFT | |
| :--- | :--- | :--- |
| F263 | MIDR \quad Retrieving a character string from a character string 3-629 |

P263	PMIDR
F264	MIDW Writing a character string to a character string $\ldots \ldots3-631$

F265 SREP Replacing character strings 3-633

Integer type data processing instructions

$\begin{aligned} & \text { F270 } \\ & \text { P270 } \end{aligned}$	MAX PMAX	Maximum value search in 16-bit data table 3-635
$\begin{aligned} & \text { F271 } \\ & \text { P271 } \end{aligned}$	DMAX PDMAX	Maximum value search in 32-bit data table 3-637
$\begin{aligned} & \text { F272 } \\ & \text { P272 } \end{aligned}$	MIN PMIN	Minimum value search in 16-bit data table 3-639
$\begin{aligned} & \text { F273 } \\ & \text { P273 } \end{aligned}$	DMIN PDMIN	Minimum value search in 32-bit data table 3-641
$\begin{aligned} & \text { F275 } \\ & \text { P275 } \end{aligned}$	MEAN PMEAN	Total and mean numbers calculation in 16-bit data table 3-643
$\begin{aligned} & \text { F276 } \\ & \text { P276 } \end{aligned}$	DMEAN PDMEAN	Total and mean numbers calculation in 32-bit data table 3-645
$\begin{aligned} & \text { F277 } \end{aligned}$	SORT PSORT	Sort data in 16-bit data table 3-647

$\begin{aligned} & \text { F278 } \\ & \text { P278 } \end{aligned}$	$\begin{aligned} & \text { DSORT } \\ & \text { PDSORT } \end{aligned}$	Sort data in 32-bit data table	3-649
$\begin{aligned} & \text { F282 } \\ & \text { P282 } \end{aligned}$	SCAL PSCAL	Scaling of 16-bit data	3-651
$\begin{aligned} & \text { F283 } \\ & \text { P283 } \end{aligned}$	$\begin{aligned} & \text { DSCAL } \\ & \text { PDSCAL } \end{aligned}$	Scaling of 32-bit data	3-653
F284	RAMP	Inclination output of 16-bit data	3-655
Integer type non-linear function instructions			
$\begin{aligned} & \text { F285 } \\ & \text { P285 } \end{aligned}$	LIMT PLIMT	16-bit data upper and lower limit control	3-657
$\begin{aligned} & \text { F286 } \\ & \text { P286 } \end{aligned}$	DLIMT PDLIMT	32-bit data upper and lower limit control	3-659
$\begin{aligned} & \text { F287 } \\ & \text { P287 } \end{aligned}$	$\begin{aligned} & \text { BAND } \\ & \text { PBAND } \end{aligned}$	16-bit data deadband control	3-661
$\begin{aligned} & \text { F288 } \\ & \text { P288 } \end{aligned}$	DBAND PDBAND	32-bit data deadband control	3-663
$\begin{aligned} & \text { F289 } \\ & \text { P289 } \end{aligned}$	$\begin{aligned} & \text { ZONE } \\ & \text { PZONE } \end{aligned}$	16-bit data zone control.	3-665
$\begin{aligned} & \text { F290 } \\ & \text { P290 } \end{aligned}$	$\begin{aligned} & \text { DZONE } \\ & \text { PDZONE } \end{aligned}$	32-bit data zone control.	3-667

$B C D$ type real number operation instructions
F300 BSIN BCD type Sine operation ... 3-669
P300 PBSIN
F301 BCOS BCD type Cosine operation 3-671

P301 PBCOS
F302 BTAN BCD type Tangent operation 3-673
P302 PBTAN
F303 BASIN BCD type Arcsine operation 3-675
P303 PBASIN
F304 BACOS BCD type Arccosine operation 3-677
P304 PBACOS
F305 BATAN BCD type Arctangent operation
$3-679$
P305 PBATAN

Floating point type real number operation instructions (for FP2/FP2SH/FP10SH)

$\begin{aligned} & \text { F309 } \\ & \text { P309 } \end{aligned}$	$\begin{aligned} & \text { FMV } \\ & \text { PFMV } \end{aligned}$	Floating point data move	3-681
$\begin{aligned} & \text { F310 } \\ & \text { P310 } \end{aligned}$	$\begin{aligned} & \mathrm{F}_{+} \\ & \mathrm{PF}+ \end{aligned}$	Floating point data addition	3-683
$\begin{aligned} & \text { F311 } \\ & \text { P311 } \end{aligned}$	$\begin{aligned} & \mathrm{F}- \\ & \mathrm{PF}- \end{aligned}$	Floating point data subtraction	3-685
F312 P312	F^{*}	Floating point data multiplication	3-687

$\begin{aligned} & \text { F313 } \\ & \text { P313 } \end{aligned}$	$\begin{aligned} & \text { F\% } \\ & \text { PF\% } \end{aligned}$	Floating point data division	3-689
$\begin{aligned} & \text { F314 } \\ & \text { P314 } \end{aligned}$	$\begin{aligned} & \text { SIN } \\ & \text { PSIN } \end{aligned}$	Floating point data Sine operation	3-691
$\begin{aligned} & \text { F315 } \\ & \text { P315 } \end{aligned}$	$\begin{aligned} & \text { cos } \\ & \text { PCOS } \end{aligned}$	Floating point data Cosine operation	3-693
$\begin{aligned} & \text { F316 } \\ & \text { P316 } \end{aligned}$	TAN PTAN	Floating point data Tangent operation	3-695
$\begin{aligned} & \text { F317 } \\ & \text { P317 } \end{aligned}$	$\begin{aligned} & \text { ASIN } \\ & \text { PASIN } \end{aligned}$	Floating point data Arcsine operation	3-697
$\begin{aligned} & \text { F318 } \\ & \text { P318 } \end{aligned}$	ACOS PACOS	Floating point data Arccosine operation	3-699
$\begin{aligned} & \text { F319 } \\ & \text { P319 } \end{aligned}$	ATAN PATAN	Floating point data Arctangent operation	3-701
$\begin{aligned} & \text { F320 } \\ & \text { P320 } \end{aligned}$	$\begin{aligned} & \text { LN } \\ & \text { PLN } \end{aligned}$	Floating point data natural logarithm	3-703
$\begin{aligned} & \text { F321 } \\ & \text { P321 } \end{aligned}$	$\begin{aligned} & \text { EXP } \\ & \text { PEXP } \end{aligned}$	Floating point data exponent	3-705
$\begin{aligned} & \text { F322 } \\ & \text { P322 } \end{aligned}$	$\begin{aligned} & \text { LOG } \\ & \text { PLOG } \end{aligned}$	Floating point data logarithm	3-707
$\begin{aligned} & \text { F323 } \\ & \text { P323 } \end{aligned}$	PWR PPWR	Floating point data power	3-709
$\begin{aligned} & \text { F324 } \\ & \text { P324 } \end{aligned}$	$\begin{aligned} & \text { FSQR } \\ & \text { PFSQR } \end{aligned}$	Floating point data square root	3-711
$\begin{aligned} & \text { F325 } \\ & \text { P325 } \end{aligned}$	$\begin{aligned} & \text { FLT } \\ & \text { PFLT } \end{aligned}$	16-bit integer data \rightarrow Floating point real number data	3-713
$\begin{aligned} & \text { F326 } \\ & \text { P326 } \end{aligned}$	$\begin{aligned} & \text { DFLT } \\ & \text { PDFLT } \end{aligned}$	32-bit integer data \rightarrow Floating point real number data	3-715
$\begin{aligned} & \text { F327 } \\ & \text { P327 } \end{aligned}$	$\begin{aligned} & \text { INT } \\ & \text { PINT } \end{aligned}$	Floating point real number data $\rightarrow 16$-bit integer data (largest integer not exceeding the floating point real number data) . .	3-717
$\begin{aligned} & \text { F328 } \\ & \text { P328 } \end{aligned}$	DINT PDINT	Floating point real number data \rightarrow 32-bit integer data (largest integer not exceeding the floating point real number data) ..	3-719
$\begin{aligned} & \text { F329 } \\ & \text { P329 } \end{aligned}$	$\begin{aligned} & \text { FIX } \\ & \text { PFIX } \end{aligned}$	Floating point real number data $\rightarrow 16$-bit integer data (rounding the first decimal point down to integer)	3-721
$\begin{aligned} & \text { F330 } \\ & \text { P330 } \end{aligned}$	$\begin{aligned} & \text { DFIX } \\ & \text { PDFIX } \end{aligned}$	Floating point real number data $\rightarrow 32$-bit integer data (rounding the first decimal point down to integer) .	3-723
$\begin{aligned} & \text { F331 } \\ & \text { P331 } \end{aligned}$	ROFF PROFF	Floating point real number data $\rightarrow 16$-bit integer data (rounding the first decimal point off to integer)	3-725
$\begin{aligned} & \text { F332 } \\ & \text { P332 } \end{aligned}$	DROFF PDROFF	Floating point real number data $\rightarrow 32$-bit integer data (rounding the first decimal point off to integer)	3-727
$\begin{aligned} & \text { F333 } \\ & \text { P333 } \end{aligned}$	$\begin{aligned} & \text { FINT } \\ & \text { PFINT } \end{aligned}$	Floating point real number data rounding the first decimal point down	3-729
$\begin{aligned} & \text { F334 } \\ & \text { P334 } \end{aligned}$	FRINT PFRINT	Floating point real number data rounding the first decimal point off	3-731
$\begin{aligned} & \text { F335 } \\ & \text { P335 } \end{aligned}$	$\begin{aligned} & \mathrm{F}+/- \\ & \mathrm{PF}+/- \end{aligned}$	Floating point real number data sign changes	3-733

$\begin{aligned} & \text { F336 } \\ & \text { P336 } \end{aligned}$	FABS PFABS	Floating point real number data absolute 3-735
$\begin{aligned} & \text { F337 } \\ & \text { P337 } \end{aligned}$	RAD PRAD	Floating point real number data conversion of angle units (Degrees \rightarrow Radians) $3-737$
$\begin{aligned} & \text { F338 } \\ & \text { P338 } \end{aligned}$	$\begin{aligned} & \text { DEG } \\ & \text { PDEG } \end{aligned}$	Floating point real number data conversion of angle units (Radians \rightarrow Degrees)

Floating point type real number data processing instructions

F345 FCMP Floating point real number data comparison 3-741
P345 PFCMP
F346 FWIN Floating point real number data band comparison 3-743
P346 PFWIN
$\begin{array}{lll}\text { F347 } & \text { FLIMT } & \text { Floating point data upper and lower limit control } \\ \text { P347 } & \text { PFLIMT } & \ldots . ~\end{array}$ - 745
F348 FBAND Floating point real number data deadband control 3-747
P348 PFBAND
F349 FZONE Floating point real number data zone control 3-749
P349 PFZONE
F350 FMAX Maximum value search in floating point real number data
P350 PFMAX table
3-751
F351 FMIN Minimum value search in floating point real number data
P351 PFMIN table $3-753$
$\begin{array}{lll}\text { F352 } & \text { FMEAN } & \text { Total and mean numbers calculation in floating point real } \\ \text { P352 } & \text { PFMEAN } & \text { number data table ... } 3-755\end{array}$
F353 FSORT Sort data in real number floating point data table 3-757
P353 PFSORT
F354 FSCAL Scaling of real number data 3-759
P354 PFSCAL

Time series processing instruction
F355 PID PID processing ... 3-761

F356 EZPID Easy PID ... 3-768

Compare instructions

P374 PDDTR

Index register bank processing instructions
F410 SETB Setting the index register bank number 3-780
P410 PSETB
F411 CHGB
Changing the index register bank number
3-782
P411 PCHGB

F412 POPB Restoring the index register bank number 3-784
P412 PPOPB

File register bank processing instructions

F414 SBFL Setting the file register bank number 3-785
P414 PSBFL
F415 CBFL Changing the file register bank number 3-786
P415 PCBFL
F416 PBFL Restoring the file register bank number 3-787

Chapter 1

Relays, Memory Areas and Constants

1.1 Table of Relays, Memory Areas and Constants

1.1.1 FPO/FP-e

FPO

Item		Numbering			Function
		$\begin{array}{\|l\|} \hline \text { C10/C14 } \\ \text { /C16 } \end{array}$	C32/SL1	T32C	
Relay	External input relay	208 points (X0 to X12F)			Turns on/off based on external input.
	External output (Y) relay	208 points (Y0 to Y12F)			Externally outputs on/off state.
	Internal relay (* Note 2)	1,008 points (R0 to R62F)			Relay which turns on/off only within program.
	Timer (* Note 2)	144 points (T0 to T99/C100 to C143) (* Note 1)			If a TM instruction has timed out, the contact with the same number turns on.
	Counter (* Note 2)				If a CT instruction has counted up, the contact with the same number turns on.
	Special internal relay	64 points (R9000 to R903F)			Relay which turns on/off based on specific conditions and is used as a flag.
Memory area	External input (WX) relay	13 words (WX0 to WX12)			Code for specifying 16 external input points as one word (16 bits) of data.
	External output (WY) relay	13 words (WY0 to WY12)			Code for specifying 16 external output points as one word (16 bits) of data.
	Internal relay (* Note 2) \quad (WR)	63 words (WR0 to WR62)			Code for specifying 16 internal relay points as one word (16 bits) of data.
	Data register (* Note 2) (DT)	1,660 words (DT0 to DT1659)	6,144 words (DT0 to DT6143)	16,384 words (DT0 to DT16383)	Data memory used in program. Data is handled in 16-bit units (one word).
	Timer/Counter (SV) set value area (* Note 2)	144 words (SV0 to SV143)			Data memory for storing a target value of a timer and an initial value of a counter. Stores by timer/counter number.
	$\begin{array}{\|l\|} \hline \text { Timer/Counter } \\ \text { elapsed value area } \\ \text { (* Note 2) } \end{array}$	144 words (EV0 to EV143)			Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/counter number.
	Special data register	112 words (DT9000 to DT9111)		112 words (DT90000 to DT90111)	Data memory for storing specific data. Various settings and error codes are stored.
	Index register (I)	2 words (IX, IY)			Register can be used as an address of memory area and constants modifier.
Control instruction point	Master control relay points (MCR)	32 points			
	Number of labels (JP and LOOP)	64 labels		$\begin{aligned} & 255 \\ & \text { labels } \end{aligned}$	
	Number of step ladders	128 stages		704 stages (* Note 1)	
	Number of subroutines	16 subrout	tines	100 subroutines	
	Number of interrupt programs	7 programs (external 6 points, internal 1 point) SL1: 1 program (internal 1 point)			

Item			Numbering			Function
			$\begin{aligned} & \text { C10/C14 } \\ & \text { /C16 } \end{aligned}$	C32/SL1	T32C	
Constant	Decimal constants\quad (K)		K-32768 to K32767 (for 16-bit operation)			
			K-2147483648 to K2147483647 (for 32-bit operation)			
	Hexadecimal constants	(H)	H0 to HFFFF (for 16-bit operation)			
			H0 to HFFFFFFFF (for 32-bit operation)			
	Floating point type	(F)	F-1.175494 $\times 10^{-38}$ to F-3.402823 $\times 10^{38}$			
			F1.175494 $\times 10^{-38}$ to F3.402823 $\times 10^{38}$			

Notes

1) The points for the timer and counter can be changed by the setting of system register 5 . The numbers given in the table are the numbers when system register 5 is at its default setting.
2) There are two unit types, the hold type that saves the conditions that exist just before turning the power off or changing form the RUN mode to PROG. mode, and the non-hold type that resets them. For the FP0 T32C, the selection of hold type and non-hold type can be changed by the setting of system register. These areas can be specified as hold type or non-hold type by setting system register. For the FP0 C10/C14/C16/C32/SL1, that area is fixed and allotted the numbers as shown below.

Hold type and Non-hold type areas

Item		C10/C14/C16	C32/SL1
Timer		Non-hold type: All points	
Counter	Non-hold type	From the set value to C139	From the set value to C127
	Hold type	4 points (elapsed values) (C140 to C143)	16 points (elapsed values) C128 to C143
Internal relay	Non-hold type	976 points (R0 to R60F)	880 points (R0 to R54F)
		61 words (WR0 to WR60)	55 words (WR0 to WR54)
	Hold type	32 points (R610 to R62F) 2 words (WR61 to WR62)	128 points (R550 to R62F) 8 words (WR55 to WR62)
Data register	Non-hold type	1652 words (DT0 to DT1651)	6112 words (DT0 to DT6111)
	Hold type	8 words (DT1652 to DT1659)	32 words (DT6112 to DT6143)

FP-e

Item		Number of points	Memory area available for use Matsushita IEC		Function
	External input relay (see note 3)	208	X0-X12F	$\begin{aligned} & \text { \%IXX.0- } \\ & \text { \%IX12.15 } \end{aligned}$	Turns on or off based on external input.
	External output relay (see note 3)	208	Y0-Y12F	$\begin{aligned} & \text { \%QX0.0- } \\ & \text { \%QX12.15 } \end{aligned}$	Outputs on or off state externally.
	Internal relay (see note 2)	1008	R0-R62F	$\begin{aligned} & \text { \%MX0.0- } \\ & \text { \%MX0.62.15 } \end{aligned}$	Turns on or off only within a program.
	Timer (see notes 1 and 2)	100	$\begin{array}{\|l\|} \hline \text { T0-T99/ } \\ \text { C100-C143 } \end{array}$	\%MX1.0- \%MX1.99/ \%MX2.100- \%MX2.143	Turns on when the timer reaches the specified time. Corresponds to the timer number.
	Counter (see notes 1 and 2)	44	$\begin{aligned} & \hline \text { C100-C143/ } \\ & \text { T0-T99 } \end{aligned}$	$\begin{aligned} & \text { \%MX2.100- } \\ & \text { \%MX2.143/ } \\ & \text { \%MX1.0- } \\ & \text { \%MX1. } 99 \end{aligned}$	Turns on when the counter increments. Corresponds to the counter number.
	Special internal relay	64	R9000-R903F	$\begin{aligned} & \text { \%MX0.900.0- } \\ & \text { \%MX0.903.15 } \end{aligned}$	Turns on or off based on specific conditions. Used as a flag.
	External input relay (see note 3)	13 words	WX0-WX12	$\begin{aligned} & \text { \%IW0- } \\ & \text { \%IW12 } \end{aligned}$	Code for specifying 16 external input points as one word (16 bits) of data.
	External output relay (see note 3)	13 words	WY0-WY12	$\begin{aligned} & \hline \text { \%QW0- } \\ & \text { \%QW12 } \end{aligned}$	Code for specifying 16 external output points as one word (16 bits) of data.
	Internal relay (see note 2)	63 words	WR0-WR62	\%MW0.0\%MW0. 62	Code for specifying 16 internal relay points as one word (16 bits) of data.
	Data register (see note 2)	1660 words	DT0-DT1659	\%MW5.0- \%MW5. 1659	Data memory used in a program. Data is handled in 16-bit units (one word).
	Timer/counter set value area	144 words	SV0-SV143	$\begin{aligned} & \text { \%MW3.0- } \\ & \text { \%MW3.143 } \end{aligned}$	Data memory for storing a target value of a timer and an initial value of a counter. Stores by timer/counter number.
	Timer/counter elapsed value area (see note 2)	144 words	EV0-EV143	\%MW4.0- \%MW4.143	Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/counter number.
	Special data register	112 words	DT9000DT9111	\%MW5.9000\%MW5.9111	Data memory for storing specific data. Various settings and error codes are stored.
	Index register	2 words	IX-IY	\%MW6.0\%MW6. 1	Used as an address of memory area and constants modifier.

	Item	Number of points	Memory area available for use Matsushita IEC		Function
	External input relay (see note 3)	6 double words	DWX0-DWX11	$\begin{aligned} & \hline \text { \%ID0- } \\ & \text { \%ID11 } \end{aligned}$	Code for specifying 32 external input points as a double word (32 bits) of data.
	External output relay (see note 3)	6 double words	DWY0-DWY11	$\begin{array}{\|l\|} \hline \text { \%QD0- } \\ \text { \%QD11 } \end{array}$	Code for specifying 32 external output points as double word (32 bits) of data.
	Internal relay (see note 2)	31 double words	DWR0-DWR61	$\begin{aligned} & \hline \text { \%MD0.0- } \\ & \text { \%MD0.61 } \end{aligned}$	Code for specifying 32 internal relay points as double word (32 bits) of data.
	Data register (see note 2)	830 double words	$\begin{array}{\|l\|} \hline \text { DDT0- } \\ \text { DDT1658 } \end{array}$	$\begin{aligned} & \hline \text { \%MD5.0- } \\ & \text { \%MD5. } 1658 \end{aligned}$	Data memory used in a program. Data is handled in 32-bit units (double word).
$\begin{aligned} & 5 \\ & \frac{0}{0} \\ & \frac{3}{3} \\ & \frac{0}{0} \end{aligned}$	Timer/counter set value area	72 double words	DSV0-DSV142	$\begin{aligned} & \text { \%MD3.0- } \\ & \text { \%MD3.142 } \end{aligned}$	Data memory for storing a target value of a timer and an initial value of a counter. Stores by timer/counter number.
	Timer/counter elapsed value area (see note 2)	72 double words	DEV0-DEV142	$\begin{aligned} & \hline \text { \%MD4.0- } \\ & \text { \%MD4. } 142 \end{aligned}$	Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/counter number.
Σ	Special data register	56 double words	DDT9000- DDT9110	$\begin{aligned} & \text { \%MD5.9000- } \\ & \text { \%MD5.9110 } \end{aligned}$	Data memory for storing specific data. Various settings and error codes are stored.
	Index register	1 double words	DIO	\%MD6.0	Used as an address of memory area and constants modifier.

Item		Number of points
	Master control relay points (MCR)	32 points
	Number of labels (JP and LOOP)	64 labels
	Number of step ladders	128 stages
	Number of subroutines	16 subroutines
	Number of interrupt programs	7 programs (external: 6, internal: 1)

Item		Range available for use	
		Matsushita	IEC
	Decimal constants	K-32768 to K32767 (for 16-bit operation)	-32768 to 32767 (for 16-bit operation)
		K-2147483648 to K2147483647 (for 32-bit operation)	-2147483648 to 2147483647 (for 32-bit operation)
	Hexadecimal constants	H0 to HFFFF (for 16-bit operation)	16\#0 to 16\#FFFF (for 16-bit operation)
		H0 to HFFFFFFFF (for 32-bit operation)	16\#0 to 16\#FFFFFFFFF (for 32-bit operation)
	Floating point type	F-1.175494 $\times 10^{-38}$ to F-3.402823 $\times 10^{38}$	-1.17549410E-38 to -3.402823E38
		F1.175494 $\times 10^{-38}$ to F3.402823 $\times 10^{38}$	1.17549410E-38 to 3.402823E38

1) The points for the timer and counter can be changed by the setting of System register No. 5. The number given in the table above are the numbers when System register No. 5 is at its default setting.
2) There are two unit types;
the hold type that saves the conditions that exist just before turning the power off or changing from the RUN mode to PROG. mode, and the non-hold type that resets them. These areas can be specified as hold type or non-hold type by setting system register.
For the FP-e, that area is fixed and allotted the numbers as shown in the table below. For the FP-e with clock/calendar function type, the selection of hold type and non-hold type can be changed by the setting of system register.
3) The number of points noted above is the number reserved in the system. For the actual number of points available for use, refer to "I/O Allocation" in Appendix A.
4) Double words cannot be specified with FPWIN GR.

Hold type and non-hold type areas*1

Model	AFPE224300 (Standard type)	AFPE224305 (Calendar timer type)	AFPE214325 (Thermocouple input type)
Timer	Non-hold type: all points		
	Non-hold type	From the set value to C139	
	Hold type	C140 to C143, EV140 to EV143 (elapsed value)	
		SV: non-hold *2	SV: hold
Internal relay	Non-hold type	976 points (R0 to R60F) 61 words (WR0 to WR60)	
	Hold type	32 points (R610 to R62F) 2 words (WR61 to WR62)	
	Non-hold type	1652 words (DT0 to DT1651)	
	Hold type	8 words (DT1652 to DT1659)	

*1 When a battery is installed in a calendar timer type FP-e, the areas above can be changed using the system register. If a battery is not installed, the data cannot be stored even when the settings are changed using the system register.
*2 Use the following methods for holding the SV data:

- Set the transfer instruction for the special data register (DT) to hold the data. Then, perform the setting so that the data can be transferred from DT to SV after the RUN mode starts.
- Use the FP-e model with a battery.

1.1.2 FPOR

Item		Number of points and range of memory area available for use		Function
		C10, C14, C16	C32, T32, F32	
Relay	External input (X) Note1)	1760 points (X0 to X109F)		Turns on or off based on external input.
	External output (Y) Note1)	1760 points (Y0 to Y109F)		Externally outputs on or off state
	Internal relay (R) Note2)	4096 points (R0 to R255F)		Relay which turns on or off only within program.
	$\begin{array}{\|l} \hline \text { Link relay (L) } \\ \text { Note2) } \end{array}$	2048 points (L0 to L127F)		This relay is a shared relay used for PLC link.
	$\begin{array}{\|l\|} \hline \text { Timer (T) } \\ \text { Note2) } \end{array}$	1024 points (T0 to T1007/C1008 to C1023) Note3		This goes on when the timer reaches the specified time. It corresponds to the timer number.
	$\begin{array}{\|l\|} \hline \text { Counter (C) } \\ \text { Note2) } \end{array}$			This goes on when the counter increments. It corresponds to the counter number.
	Special internal relay (R)	224 points (from R9000)		Relay which turns on or off based on specific conditions and is used as a flag.
Memory area	External input (WX) Note1)	110 words (WX0 to WX109)		Code for specifying 16 external input points as one word (16 bits) of data.
	External output (WY) Note1)	110 words (WY0 to WY109)		Code for specifying 16 external output points as one word (16 bits) of data.
	Internal relay (WR) Note2)	256 words (WR0 to WR255)		Code for specifying 16 internal relay points as one word (16 bits) of data.
	Link relay (WL)	128 words (WL0 to WL127)		Code for specifying 16 link relay points as one word (16 bits) of data.
	Data register (DT) Note2)	$\begin{aligned} & 12315 \text { words } \\ & \text { (DT0 to DT12314) } \end{aligned}$	32765 words (DT0 to DT32764)	Data memory used in program. Data is handled in 16-bit units (one word).
	Link register (LD) Note2)	256 words (LD0 to LD255)		This is a shared data memory which is used within the PLC link. Data is handled in 16-bit units (one word).
	Timer/Counter set value area (SV) Note2)	1024 words (SV0 to SV1023)		Data memory for storing a target value of a timer and setting value of a counter. Stores by timer/counter number.
	Timer/Counter elapsed value area (EV) Note2)	1024 words (EV0 to EV1023)		Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/counter number.
	Special data register (DT)	440 words (DT90000 to DT90439)		Data memory for storing specific data. Various settings and error codes are stored.
	Index register (I)	14 words (10 to ID)		Register can be used as an address of memory area and constants modifier.

Item		Number of points and range of memory area available for use	
Function			
	C10, C14, C16		C32, T32, F32

1) The number of points noted above is the number reserved as the calculation memory. The actual number of points available for use is determined by the hardware configuration.
2) There are two types, one is the hold type that the last state is stored even if the power supply turns off or the mode is changed to PROG. mode from RUN mode, and the other is the non-hold type that the state is reset.
For C10/C14/C16/C32: The hold type areas and non-hold type areas are fixed. For information on the sections of each area, refer to the performance specifications.
For T32/F32: The settings of the hold type areas and non-hold type areas can be changed using the system registers.
On T32, if the battery has run out, the data in the hold area may be indefinite (Not cleared to 0)
3) The points for the timer and counter can be changed by the setting of system register 5 . The number given in the table are the numbers when system register 5 is at its default setting.

1.1.3 FP Σ

12k type

Item	Number of points	Memory area available for use	Function
	External input relay (see note 1) FPG-C32T/C32TTM	512	X0-X31F

Item		Number of points	Memory area available for use	Function
	Data register (see note 2)	32765 words	DT0-DT32764	Data memory used in a program. Data is handled in 16-bit units (one word).
	Link data register (see note 2)	128 words	LD0-LD127	A shared data memory which is used within the PLC link. Data is handled in 16-bit units (one word).
	Timer/counter set value area (see note 2)	1024 words	SV0-SV1023	Data memory for storing a target value of a timer and an initial value of a counter. Stores by timer/counter number.
	Timer/counter elapsed value area (see note 2)	1024 words	EV0-EV1023	Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/counter number.
	Special data register	260 words	DT90000-DT90259	Data memory for storing specific data. Various settings and error codes are stored.
	Index register	14 words	I0-ID	Can be used as an address of memory area and constants modifier.

Item		Number of points
	Master control relay points (MCR)	256
	Number of labels (JP and LOOP)	256
	Number of step ladders	1,000 stages
	Number of subroutines	100 subroutines
	Number of interrupt programs	9 programs (8 external input points "X0 to X7", 1 periodical interrupt point " 0.5 ms to 30 s ")

Item		Range available for use
	Decimal constants (integer type)	K-32768 to K32767 (for 16-bit operation)
		K-2147483648 to K2147483647 (for 32-bit operation)
	Hexadecimal constants	H0 to HFFFF (for 16-bit operation)
		H0 to HFFFFFFFF (for 32-bit operation)
	Floating point type	F-1.175494 $\times 10^{-38}$ to F-3.402823 $\times 10^{38}$
		F1.175494 $\times 10^{-38}$ to F3.402823 $\times 10^{38}$

1) The number of points noted above is the number reserved as the calculation memory. The actual number of points available for use is determined by the hardware configuration.
2) If no battery is used, only the fixed area is backed up (counters 16 points: C1008 to C1023, internal relays 128 points: R900 to R97F, data registers: DT32710 to DT32764). When the optional battery is used, data can be backed up. Areas to be held and not held can be specified using the system registers.
3) The points for the timer and counter can be changed by the setting of system register 5 . The number given in the table are the numbers when system register 5 is at its default setting.

32k type

Item		Number of points and range of memory area available for use	Function
		32TH/C32THTM C32T2H/C32T2HTM C24R2H/C24R2HTM C28P2H/C28P2HTM	
$\begin{aligned} & \underset{\text { त }}{\mathbf{\sigma}} \\ & \underset{\sim}{2} \end{aligned}$	External input (see note 1) (X)	1184 points (X0 to X73F)	Turns on or off based on external input.
	External output (see note 1) (Y)	1184 points (Y0 to Y73F)	Externally outputs on or off state.
	Internal relay (see note 2) (R)	4096 points (R0 to R255F)	Relay which turns on or off only within program.
	Link relay (see note 2) (L)	2048 points (L0 to R127F)	This relay is a shared relay used for PLC link.
	Timer (see note 2) (T)	1024 points(T0 to T1007/C1008 to C1023)(see note 3)	This goes on when the timer reaches the specified time. It corresponds to the timer number.
	Counter (see note 2) (C)		This goes on when the counter increments. It corresponds to the counter number.
	Special internal relay (R)	176 points (R9000 to R910F)	Relay which turns on or off based on specific conditions and is used as a flag.
	External input (see note 1) (WX)	74 words (WX0 to WX73)	Code for specifying 16 external input points as one word (16 bits) of data.
	External output (see note 1) (WY)	74 words (WY0 to WY73)	Code for specifying 16 external output points as one word (16 bits) of data.
	Internal relay (see note 2) (WR)	256 words (WR0 to WR255)	Code for specifying 16 internal relay points as one word (16 bits) of data.
	Link relay (WL)	128 words (WL0 to WL127)	Code for specifying 16 link relay points as one word (16 bits) of data.
	Data register (see note 2) (DT)	32765 words (DT0 to DT32764)	Data memory used in program. Data is handled in 16-bit units (one word).
	Link register (see note 2) (LD)	256 words (LD0 to LD255)	This is a shared data memory which is used within the PLC link. Data is handled in 16-bit units (one word).
	Timer/Counter set value area (see note 2) (SV)	1024 words (SV0 to SV1023)	Data memory for storing a target value of a timer and setting value of a counter. Stores by timer/counter number.
	Timer/Counter elapsed value area (see note 2) (EV)	1024 words (EV0 to EV1023)	Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/counter number.
	Special data register (DT)	260 words (DT90000 to DT90259)	Data memory for storing specific data. Various settings and error codes are stored.
	Index register (l)	14 words (I0 to ID)	Register can be used as an address of memory area and constants modifier.

1) The number of points noted above is the number reserved as the calculation memory. The actual number of points available for use is determined by the hardware configuration.
2) If no battery is used, only the fixed area is backed up. (counters 16 points: C1008 to C1023, internal relays 128 points: R2480 to R255F, data registers 55 words: DT32710 to DT32764).
Writing is available up to 10000 times. Then the optional battery is used, all area can be backed up. Areas to be held and not held can be specified using the system registers. If an area is held when the battery is not installed, the value of data may be indefinite as it is not cleared to 0 when the power is turned on. When the battery ran out of the power, the data at the hold area will be indefinite.
3) Note3)The points for the timer and counter can be changed by the setting of system register 5 . The number given in the table are the numbers when system register 5 is at its default setting.

1.1.4 FP-X

Item		Number of points and range of memory area available for use		Function
		C14	C30, C60	
Relay	External input (X) Note1)	1760 points (X0 to X109F)		Turns on or off based on external input.
	External output (Y) Note1)	1760 points (Y0 to Y109F)		Externally outputs on or off state
	Internal relay (R) Note2)	4096 points (R0 to R255F)		Relay which turns on or off only within program.
	$\begin{array}{\|l} \hline \text { Link relay (L) } \\ \text { Note2) } \end{array}$	2048 points (L0 to L127F)		This relay is a shared relay used for PLC link.
	$\begin{array}{\|l\|} \hline \text { Timer (T) } \\ \text { Note2) } \end{array}$	1024 points (T0 to T1007/C1008 to C1023) Note3)		This goes on when the timer reaches the specified time. It corresponds to the timer number.
	$\begin{array}{\|l\|} \hline \text { Counter (C) } \\ \text { Note2) } \end{array}$			This goes on when the counter increments. It corresponds to the counter number.
	Special internal relay (R)	192 points (R9000 to R911F)		Relay which turns on or off based on specific conditions and is used as a flag.
Memory area	External input (WX) Note1)	110 words (WX0 to WX109)		Code for specifying 16 external input points as one word (16 bits) of data.
	External output (WY) Note1)	110 words (WY0 to WY109)		Code for specifying 16 external output points as one word (16 bits) of data.
	Internal relay (WR) Note2)	256 words (WR0 to WR255)		Code for specifying 16 internal relay points as one word (16 bits) of data.
	Link relay (WL)	128 words (WLO to WL127)		Code for specifying 16 link relay points as one word (16 bits) of data.
	Data register (DT) Note2)	12285 words (DT0 to DT12284)	32765 words (DT0 to DT32764)	Data memory used in program. Data is handled in 16-bit units (one word).
	Link register (LD) Note2)	256 words (LD0 to LD255)		This is a shared data memory which is used within the PLC link. Data is handled in 16-bit units (one word).
	Timer/Counter set value area (SV) Note2)	1024 words (SV0 to SV1023)		Data memory for storing a target value of a timer and setting value of a counter. Stores by timer/counter number.
	Timer/Counter elapsed value area (EV) Note2)	1024 words (EV0 to EV1023)		Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/counter number.
	Special data register (DT)	374 words (DT90000 to DT90373)		Data memory for storing specific data. Various settings and error codes are stored.
	Index register (I)	14 words (10 to ID)		Register can be used as an address of memory area and constants modifier.

Item		Number of points and range of memory area available for use		Function
		C14	C30, C60	
Control instruc-	Differential points	Unlimited points		
point	Master control relay points (MCR)	256 points		
	Number of labels (JP and LOOP)	256 points		
	Number of step ladders	1000 stages		
	Number of subroutines	500 subroutines		
	Number of interrupt programs	Input 14 programs, periodical interrupt 1 program		
Constant	Decimal	K-32, 768 to K32, 767 (for 16-bit operation)		
	constants (K)	K-2, 147, 483, 648 to K2, 147, 483, 647 (for 32-bit operation)		
	Hexadecimal	H0 to HFFFF (for 16-bit operation)		
	constants (H)	H0 to HFFFFFFFFF (for 32-bit operation)		
	Floating point	F-1.175494 $\times 10^{-38}$ to F-3.402823 $\times 10^{38}$		
	typ	F1.175494 $\times 10^{-38}$ to F3.402823 $\times 10^{38}$		

1) The number of points noted above is the number reserved as the calculation memory. The actual number of points available for use is determined by the hardware configuration.
2) If no battery is used, only the fixed area is backed up. (counters 16 points: C1008 to C1023, internal relays 128 points: R2470 to R255F, data registers 55 words, C14: DT12230 to DT12284, C30/C60: DT32710 to DT32764). Writing is available up to 10000 times. Then the optional battery is used, all area can be backed up.
Areas to be held and not held can be specified using the system registers. If an area is held when the battery is not installed, the value of data may be indefinite as it is not cleared to 0 when the power is turned on. When the battery ran out of the power, the data at the hold area will be indefinite.
3) The points for the timer and counter can be changed by the setting of system register 5 . The number given in the table are the numbers when system register 5 is at its default setting.

1.1.5 FP2

Item		Numbering	Function
Relay	External input relay	$\begin{aligned} & \text { 2,048 points } \\ & \text { (X0 to X127F) } \end{aligned}$	Turn on or off based on external input.
	External output relay	$\begin{aligned} & \text { 2,048 points } \\ & (\mathrm{Y} 0 \text { to } \mathrm{Y} 127 \mathrm{~F}) \end{aligned}$	Externally outputs on or off state.
	Internal relay (* Note 1)	4,048 points (R0 to R252F)	Relay which turns on or off only within program.
	Link relay (* Note 1)	2,048 points (L0 to L127F)	This relay is a shared relay used for MEWNET link system.
	Timer (* Notes 1 and 2)	$\begin{align*} & \text { 1,024 points } \tag{T}\\ & \text { (T0 to T999/ C1000 to C1023) } \end{align*}$	If a TM instruction has timed out, the contact with the same number turns on.
	Counter (* Notes 1 and 2)		If a CT instruction has counted up, the contact with the same number turns on.
	Pulse relay (P)	1,024 points (P0 to P63F)	This relay is used to turn on only for one scan duration programmed with the OT" and OT\# instructions.
	Special internal relay	176 points (R9000 to R910F)	Relay which turns on or off based on specific conditions and is used as a flag.
Memory area	External input (WX) relay	128 words (WX0 to WX127)	Code for specifying 16 external input points as one word (16 bits) of data.
	External output relay (WY)	128 words (WY0 to WY127)	Code for specifying 16 external output points as one word (16 bits) of data.
	Internal relay (WR)	$\begin{aligned} & 253 \text { words } \\ & \text { (WR0 to WR252) } \end{aligned}$	Code for specifying 16 internal relay points as one word (16 bits) of data.
	Link relay (WL)	128 words (WLO to WL127)	Code for specifying 16 link relay points as one word (16 bits) of data.
	Data register (* Note 1) (DT)	6,000 words (DT0 to DT5999)	Data memory used in program. Data is handled in 16-bit units (one word).
	$\begin{array}{\|ll} \hline \text { Link data register } \quad \text { (LD) } \\ \text { (* Note 1) } \end{array}$	$\begin{aligned} & \hline 256 \text { words } \\ & \text { (LDO to LD255) } \end{aligned}$	This is a shared data memory which is used within the MEWNET link system. Data is handled in 16-bit units (one word).
	Timer/Counter set value area (* Note 1)	$\begin{aligned} & \text { 1,024 words } \\ & \text { (SV0 to SV1023) } \end{aligned}$	Data memory for storing a target value of a timer and an initial value of a counter. Stores by timer/counter number.
	Timer/Counter elapsed value area (* Note 1)	$\begin{aligned} & \text { 1,024 words } \\ & \text { (EV0 to EV1023) } \end{aligned}$	Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/ counter number.
	File register (* Notes 1 and 3)	$\begin{aligned} & \text { FP2 (16 K): } \\ & 0 \text { to 14,333 words } \\ & \text { (FL0 to FL14332) } \\ & \text { FP2 (} 32 \text { K) } \\ & \text { (when expanded): } \\ & 0 \text { to } 30,717 \text { words } \\ & \text { (FL0 to FL30716) } \end{aligned}$	Data memory used in program. Data is handled in 16-bit units (one word).
	Special data (DT) register	256 words (DT90000 to DT90255)	Data memory for storing specific data. Various settings and error codes are stored.
	Index register (I)	14 words (I0 to ID)	Register can be used as an address of memory area and constants modifier.

Item		Numbering
Control instruction point	Master control relay points (MCR)	256 points
	Number of labels (JP and LOOP)	Total: 256 points
	Number of step ladder (* Note 4)	1,000 steps
	Number of subroutine	100 subroutines
	Number of interrupt program	1 program (periodical interrupt: allows setting of the time interval within the range from 0.5 ms to 1.5 s)
Constant	Decimal constants (K)	K-32768 to K32767 (for 16-bit operation)
		K-2147483648 to K2147483647 (for 32-bit operation)
	Hexadecimal (H) constants	H0 to HFFFF (for 16-bit operation)
		H0 to HFFFFFFFF (for 32-bit operation)
	Floating point type (f)	$\begin{aligned} & \mathrm{f}-1.175494 \times 10^{-38} \text { to } \mathrm{f}-3.402823 \times 10^{38} \\ & \mathrm{f} 1.175494 \times 10^{-38} \text { to } \mathrm{f} 3.402823 \times 10^{38} \end{aligned}$

1) There are two unit types, the hold type that saves the conditions that exist just before turning the power off or changing from the RUN mode to PROG. mode, and the non-hold type that resets them. The selection of hold type and non-hold type can be changed by the setting of system register.
2) The points for the timer and counter can be changed by the setting of system register 5 . The numbers given in the table are numbers when system register 5 is at its default setting.
3) The size of the file register varies depending on the settings of system registers 0,1 and 2.
4) Hold or non-hold type can be set using the system registers.

1.1.6 FP2SH

Item		Numbering	Function
Relay	External input (X) relay	8,192 points (X0 to X511F)	Turn on or off based on external input.
	External output relay	8,192 points (Y0 to Y511F)	Externally outputs on or off state.
	Internal relay	14.192 points (R0 to R886F)	Relay which turns on or off only within program.
	Link relay (* Note 1)	10,240 points (L0 to L639F)	This relay is a shared relay used for MEWNET link system.
	Timer (* Notes 1 and 2)	3,072 points(T0 to T2999/ C3000 to C3071)	If a TM instruction has timed out, the contact with the same number turns on.
	Counter (* Notes 1 and 2)		If a CT instruction has counted up, the contact with the same number turns on
	Pulse relay (P)	2,048 points (P0 to P127F)	This relay is used to turn on only for one scan duration programmed with the OT" and OT\#instructions.
	Error alarm relay (E)	2,048 points (E0 to E2047)	If turned on while the unit is running, this relay stores the history in a dedicated buffer. Program this relay so that it is turned on at the time of abnormality.
	Special internal relay	176 points (R9000 to R910F)	Relay which turns on or off based on specific conditions and is used as a flag.
Memory area	External input (WX) relay	512 words (WX0 to WX511)	Code for specifying 16 external input points as one word (16 bits) of data.
	External output (WY) relay	512 words (WY0 to WY511)	Code for specifying 16 external output points as one word (16 bits) of data.
	Internal relay (WR)	887 words (WR0 to WR886)	Code for specifying 16 internal relay points as one word (16 bits) of data.
	Link relay (WL)	640 words (WL0 to WL639)	Code for specifying 16 link relay points as one word (16 bits) of data.
	Data register (* Note 1) (DT)	$\begin{array}{\|l} \hline \text { 10,240 words } \\ \text { (DT0 to DT10239) } \end{array}$	Data memory used in program. Data is handled in 16-bit units (one word).
	Link data register (LD) (* Note 1)	8,448 words (LD0 to LD8447)	This is a shared data memory which is used within the MEWNET link system. Data is handled in 16-bit units (one word).
	Timer/Counter set value area (* Note 1)	3,072 words (SV0 to SV3071)	Data memory for storing a target value of a timer and an initial value of a counter. Stores by timer/counter number.
	```Timer/Counter (EV) elapsed value area (* Note 1)```	3,072 words (EV0 to EV3071)	Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/ counter number.
	File register   (* Note 1) (FL)	98,295 words $(32,765$ words $\times 3$ banks )	Data memory used in program. Data is handled in 16-bit units (one word).


Item		Numbering	Function
Memory area	Special data   register (DT)	$\begin{aligned} & 512 \text { words (DT90000 to } \\ & \text { DT90511) } \end{aligned}$	Data memory for storing specific data. Various settings and error codes are stored.
	Index register (I)	14 words $\times 16$ banks (10 to ID)	Register can be used as an address of memory area and constants modifier.
Control instruction point	Master control relay points (MCR)	256 points (For FP2-C3P: 1st program: 256 points/2nd program: 256 points)	
	Number of labels (JP and LOOP)	256 points (For FP2-C3P: 1st program: 256 points/2nd program: 256 points)	
	Number of step ladder (* Note 3)	1,000 steps (For FP2-C3P: 1st program only)	
	Number of subroutine	100 subroutines	
	Number of interrupt program	1 program (periodical interrupt: allows setting of the time interval within the range from 0.5 ms to 1.5 s ) (For FP2-C3P: 1st program only)	
Constant	Decimal constants	K-32768 to K32767 (for 16-bit operation)	
		K-2147483648 to K2147483647 (for 32-bit operation)	
	Hexadecimal   constants (H)	H0 to HFFFF (for 16-bit operation)	
		H0 to HFFFFFFFFF (for 32-bit operation)	
	Floating point   type	$\begin{aligned} & \mathrm{f}-1.175494 \times 10^{-38} \text { to } \mathrm{f}-3.402823 \times 10^{38} \\ & \mathrm{f} 1.175494 \times 10^{-38} \text { to } \mathrm{f} 3.402823 \times 10^{38} \end{aligned}$	

Notes

1) There are two unit types, the hold type that saves the conditions that exist just before turning the power off or changing from the RUN mode to PROG. mode, and the non-hold type that resets them. The selection of hold type and non-hold type can be changed by the setting of system register.
2) The points for the timer and counter can be changed by the setting of system register 5 . The numbers given in the table are numbers when system register 5 is at its default setting.
3) Hold or non-hold type can be set using the system registers.

### 1.1.7 FP10SH

Item		Numbering	Function
Relay	External input relay	8,192 points (X0 to X511F)	Turn on or off based on external input.
	External output (Y) relay	8,192 points (Y0 to Y511F)	Externally outputs on or off state.
	Internal relay    (* Note 1) (R)	14,192 points (R0 to R886F)	Relay which turns on or off only within program.
	Link relay   (* Note 1)	10,240 points (L0 to L639F)	This relay is a shared relay used for MEWNET link system.
	Timer (* Notes 1 and 2) $\quad(T) ~$	$\begin{array}{\|l} \hline \text { 3,072 points } \\ \text { (T0 to T2999/ C3000 to C3071) } \end{array}$	If a TM instruction has timed out, the contact with the same number turns on.
	Counter    (* Notes 1 and 2) (C)		If a CT instruction has counted up, the contact with the same number turns on.
	Pulse relay (P)	2,048 points (P0 to P127F)	This relay is used to turn on only for one scan duration programmed with the OT" and OT\# instructions.
	Error alarm relay (E)	2,048 points (E0 to E2047)	If turned on while the unit is running, this relay stores the history in a dedicated buffer.   Program this relay so that it is turned on at the time of abnormality.
	Special internal relay	176 points (R9000 to R910F)	Relay which turns on or off based on specific conditions and is used as a flag.
Memory area	External input (WX) relay	512 words (WX0 to WX511)	Code for specifying 16 external input points as one word (16 bits) of data.
	External output (WY) relay	512 words (WYO to WY511)	Code for specifying 16 external output points as one word (16 bits) of data.
	Internal relay (WR)	887 words (WR0 to WR886)	Code for specifying 16 internal relay points as one word (16 bits) of data.
	Link relay (WL)	640 words (WL0 to WL639)	Code for specifying 16 link relay points as one word ( 16 bits) of data.
	Data register    (* Note 1) (DT)	$\begin{array}{\|l} \hline 10,240 \text { words } \\ \text { (DT0 to DT10239) } \end{array}$	Data memory used in program. Data is handled in 16-bit units (one word).
	Link data register (* Note 1)	8,448 words (LD0 to LD8447)	This is a shared data memory which is used within the MEWNET link system. Data is handled in 16 -bit units (one word).
	Timer/Counter set value area (* Note 1)	$\begin{array}{\|l} \hline \text { 3,072 words } \\ \text { (SV0 to SV3071) } \end{array}$	Data memory for storing a target value of a timer and an initial value of a counter. Stores by timer/counter number.
	Timer/Counter (EV) elapsed value area (* Note 1)	3,072 words (EV0 to EV3071)	Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/ counter number.
	File register   (* Note 1)	$\begin{array}{\|l\|} \hline 32,765 \text { words } \\ \text { (FL0 to FL32764) } \\ \hline \end{array}$	Data memory used in program. Data is handled in 16-bit units (one word).


Item		Numbering	Function
Memory area	Special data (DT) register	512 words   (DT90000 to DT90511)	Data memory for storing specific data. Various settings and error codes are stored.
	Index register (I)	14 words $\times 16$ banks (10 to ID)	Register can be used as an address of memory area and constants modifier.
Control instruction point	Master control relay points (MCR)	256 points (when using the 90k step expansion memory, up to a total of 512 points can be used for the 1st and 2nd programs)	
	Number of labels (JP and LOOP)	256 points (when using the 90k step expansion memory, up to a total of 512 points can be used for the 1st and 2nd programs)	
	Number of step ladder (* Note 3)	1,000 steps (can only be used for the 1st program)	
	Number of subroutine	100 subroutines (can only be used for the 1st program)	
	Number of interrupt program	25 program (can only be used for the 1st program)	
Constant	Decimalconstants $\quad$ (K)	K-32768 to K32767 (for 16-bit operation)	
		K-2147483648 to K2147483647 (for 32-bit operation)	
	Hexadecimal constants	H0 to HFFFF (for 16-bit operation)	
		H0 to HFFFFFFFFF (for 32-bit operation)	
	Floating point type	$\begin{aligned} & \mathrm{f}-1.175494 \times 10^{-38} \text { to } \mathrm{f}-3.402823 \times 10^{38} \\ & \mathrm{f} 1.175494 \times 10^{-38} \text { to } \mathrm{f} 3.402823 \times 10^{38} \end{aligned}$	

Notes

1) There are two unit types, the hold type that saves the conditions that exist just before turning the power off or changing from the RUN mode to PROG. mode, and the non-hold type that resets them. The selection of hold type and non-hold type can be changed by the setting of system register.
2) The points for the timer and counter can be changed by the setting of system register 5 . The numbers given in the table are numbers when system register 5 is at its default setting.
3) Hold or non-hold type can be set.

### 1.1.8 Relay Numbers

External input relays (X), External output relays (Y), Internal relays (R), Link relays (L) and Pulse relays ( P )

Since these relays are handled in units of 16 points, they are expressed as a combination of decimal and hexadecimal numbers as shown below.


Decimal number
1,2,3...
Hexadecimal number 0,1,2...9,A,B...F
The maximum value that can be selected varies with each relay.

## Example: External input relay (X)

X0, X1 . . . . . . . . . . . . . . . . . . . . . . . . . XF X1F
X10, X11. . . . . . . . . . . . . . . . . . . . X2F

Timers (T) and Counters (C)
The addresses for timer contacts ( T ) and counter contacts ( C ) are correspond to the timer and counter instruction numbers and expressed in decimals as shown below.

## Example: FP2



## 嗐要 Note

Counters and timers share the same area. The division of the area can be changed with system register 5. (The table and example are when settings are the default values.)

## Error alarm relays (E) (FP2SH/FP10SH only)

The addresses for error alarm relays (E) are represented in only decimals.
E0, E1
E2047

## External input relay (X) and External output relay (Y)

Only relays with numbers actually allocated to input contacts can be used as external input relay (X).

Only relays with numbers actually allocated to output contacts can output as external output relay $(\mathrm{Y})$. The external output relays $(\mathrm{Y})$ which are not allocated can be used as internal relays.

Allocation of numbers is determined by the combination of units and boards used. For details about the I/O allocation, refer to "Hardware Manual" of each PLC.

## Example: FP2



The 16 points external input relays X0 through XF are allotted for the 16-point type input unit for slot 0 , and the 16 points external output relays Y10 through Y1F are allotted for the 16-point type output unit for slot 1.

The 16 points X10 through X1F cannot be used in this such combination.

## Relation of WX, WY, WR and WL to X, Y, R and L

WX, WY WR and WL correspond respectively to groups of 16 external input relay (X) points, 16 external output relay $(\mathrm{Y})$ points, 16 internal relay $(\mathrm{R})$ points and 16 link relay (L) points.

Example: Word external input relay (WX)
Each relay is composed of 16 external input relay $(X)$ points as shown below.


When the state of an external input relay ( X ) changes, the content of WX also changes.

### 1.2 Explanation of Relays

### 1.2.1 External Input Relays ( X )

Function of external input relays (X)
This relay feeds signals to the programmable controller from an external device such as a limit switch or a photoelectric sensor.


## Usage restrictions

The addresses for inputs which do not actually exist cannot be used.
The on or off status of the external input relays cannot be changed by the program in the programmable controller.
There are no restrictions on the number of times one external input relay is programmed.

### 1.2.2 External Output Relays (Y)

## Function of external output relays (Y)

This relay outputs the program execution result of the programmable controller and activates an external device (load) such as a solenoid, operating panel or intelligent unit.
The on or off status of the external output relay is output as a control signal.


## Usage restrictions

External output relays which are not actually allocated can be used in the same way as internal relays. However, they cannot be specified as hold types.
When used as contacts, there are no restrictions on the number of times that can be used.
As a rule, when specified as the output destination for operation results of OT and KP instructions, use is limited to once in a program (to inhibit double output).

## Note

You can permit duplicated use of an output by changing the system register 20 setting. Even if the same relay is used as an operand for instructions such as SET and RST, it is not regarded as duplicated use of outputs.


### 1.2.3 Internal Relays (R)

Function of internal relays (R)
This relay can be used only within program and on or off status does not provide an external output. When the coil of the relay is energized, its contacts turn on.


## Usage restrictions

When used as contacts, there are no restrictions on the number of times that can be used.
As a rule, when specified as the output destination for operation results of OT and KP instructions, use is limited to once in a program (to inhibit double output).

You can permit duplicated use of an output by changing the system register 20 setting. Even if the same relay is used as an operand for instructions such as SET and RST, it is not regarded as duplicated use of outputs.

For the FP2/FP2SH/FP10SH, if the Initialize/Test switch is set to the upper side (the Initialize side) in the PROG mode, all of the internal relays (R) go off. If a hold type has been specified (see next page), the internal relays (R) go off as well.

## Note

With the FP2SH/FP10SH, system register 4 can be set in such a way that the relays are not cleared even if the Initialize/Test switch is set to the upper side.

## Non-hold type relay and hold type relay

There are two types of internal relays: hold type relays and non-hold type relays. When the power is turned off or the mode changed from RUN to PROG.,

- Hold type relays hold their on or off status and resume operation in that status when the system is restarted.
- Non-hold type relays reset.

For the FP0 C10/C14/C16/C32, and FP-e without clock/calendar function, non-hold type and hold type relay numbers are as follows:

Item	Non-hold type	Hold type
FP0 C10, C14, C16   FP-e	R0 to R60F (976 points)	R610 to R62F (32 points)
FP0 C32	R0 to R54F (880 points)	R550 to R62F (128 points)

For the FP0 T32C/FP0R/FP5/FP-X/FP2/FP2SH/FP10SH, and FP-e with clock/ calendar function, system register 7 can be used to specify whether a hold type or a non-hold type is used. If the beginning of a hold type relay is specified using a word number, relays before that point will be non-hold types, and subsequent relays will be hold types.

Value of system register 7   (initial number of hold type)	Non-hold   type
Hold type	

Default settings for hold types and non-hold types

Type	Non-hold type	Hold type
FP10SH/FP2SH	R0 to R499F (8000 points)	R5000 to R886F (6192 points)
FP2	R0 to R199F (3200 points)	R2000 to R252F (848 points)
FP0 T32C	R0 to R9F (160 points)	R100 to R62F (848 points)
FP $\Sigma$	R0 to R89F (1440 points)	R900 to R97F (128 points)
FP-e	R0 to R60F (976 points)	R610 to R62F (32 points)
FP-X/FP0R	R0 to R247F (3968 points)	R2480 to R255F (128 points)

## Note

For FPOR, FP $\Sigma$, FP-X and FP-e, in case of not using back-up battery, please keep the default value. Otherwise we cannot guarantee the function of hold/non-hold value.

### 1.2.4 Special Internal Relays

## Function of special internal relays

The special internal relays turn on or off under specific conditions. The on or off state is not externally output and only functions within the program.
The principal special internal relays are as follows:

- Operation status flags:

Operation status is indicated by on or off.

- Operation (RUN mode) in progress (R9020)
- Forced input/output in progress (R9029)
- Link station operation (R9060 to R909F)
- Turns on and off at each scan (R9012)
- Result of comparison instruction (R900A to R900C)
- High-speed counter control flag (R903A to R903D) and others
- Error flags:

Turns on when an error occurs.

- Operation error (R9007, R9008)
- Shared memory access error (R9031) and others
- Relays which turn on and off under special conditions:

The required conditions can be selected in the program and the relays used accordingly.

- Always on relay (R9010)
- Clock pulse relay (R9018 to R901E) and others

For the FP2/FP2SH/FP10SH, if the Initialize/Test switch is set to the upper side (the Initialize side) in the PROG mode, special internal relays R9000 to R910F go off. If self-diagnostic error 44 or an error with a lower number has occurred, however, R9000 to R9008 are not cleared.

### 1.2.5 Link Relays (L) for FP $\Sigma$, FP-X, FPOR

## Function of link relays (L)

Link relays are relays used for the PC Link, that can be shared between multiple programmable controllers when they are connected using a PLC link.
If calculation results are output to the link relay (coil) of a certain PLC, the results are also sent to other PLC connected with MEWNET, and will be reflected in link relay (contact) that have the same number.


When link relays are used, bit information can be exchanged in this way between PLCs.

## Available range of link relays

The available range of link relays varies depending on the type of network and the combination of units. The available range and number of points must be specified separately for each network.

For MEWNET-W0:
A maximum of 1,024 points are available with one control unit. The available range is from L0 to L63F

## Specifying hold type and non-hold type relays

There are two types of link relays, which can be switched when the power is turned off and the mode is switched from RUN to PROG and operation is stopped.

Hold type relays, which hold the on or off status in effect immediately prior to stopping, during the period between stopping and resuming operation
Non-hold type relays, which are reset when operation stops
In case of using back-up battery, System register 10 can be used to specify whether the link relays are the hold or non-hold type.

Range	System register no.
Lo to L63F	10

If the beginning of a hold type relay is specified using a word number, relays before that point will be non-hold types, and subsequent relays will be hold types.
For example, if " 10 " is set for system register 10, L0 to L9F will be non-hold types, and L100 to L63F will be hold types.
For the default value, all link relays are hold types.
If used as link relays for reception, be aware that no holding operation is carried out, even if the link relays are specified as hold types using the system registers.

## Usage restrictions

When used as contacts, there are no restrictions on the number of times that can be used.
As a rule, when specified as the output destination for operation results of OT instruction and KP instruction, use is limited to once in a program (to inhibit double output).

## Notes

- System register 20 can be used to permit double output. Also, double output does not result if the SET and RST instructions are used.
- Link relays must be allocated when the network is configured, before programming is done. The method by which allocations are made varies depending on the type of network. Refer to the manual for the pertinent link unit.


### 1.2.6 Link Relays (L) for FP2/FP2SH/FP10SH

## Function of link relays (L)

Link relays are relays used for the PC Link, that can be shared between multiple programmable controllers when they are connected using a MEWNET link. The following types of MEWNET links are available.

- MEWNET-H link system for FP10SH (for coaxial cables)
- MEWNET-W link system for FP2, FP2SH and FP10SH (for wire cables)
- MEWNET-P link system for FP10SH (for fiber-optic cables)

If calculation results are output to the link relay (coil) of a certain PLC, the results are also sent to other PLC connected with MEWNET, and will be reflected in link relay (contact) that have the same number.


When link relays are used, bit information can be exchanged in this way between PLCs.

## Available range of link relays

The available range of link relays varies depending on the type of network and the combination of units. The available range and number of points must be specified separately for each network.
For MEWNET-W and MEWNET-P:
A maximum of 1,024 points are available with one link unit. The available range is from L0 to L63F for the first unit (PC Link 0), and from L640 to L127F to the second unit (PC Link 1).
For MEWNET-W2
A maximum of 4,096 points can be used per link unit. Please set the range of use at the MEWNET-W2 settings menu.
With the FP2SH, the range between LO and L639F can be specified. When used with MEWNET-W the range between LO and L127F cannot be used.

With the FP2, the range between LO and L127F can be specified. Also, the internal relay can be used in place of the link relay by setting the MEWNET-W2 setting menu. However, when used with MEWNET-W the range between LO and L127F cannot be used with MEWNET-W2.

For MEWNET-H:
A maximum of 10,240 points can be used. Please set the range to be used with the MEWNET-H link setting software.
With the FP10SH, the range from L0 to L639F can be used.
If used in conjunction with a MEWNET-W or MEWNET-P link unit, be aware that the range from LO to L127F cannot be used.

## Specifying hold type and non-hold type relays

There are two types of link relays, which can be switched when the power is turned off and the mode is switched from RUN to PROG and operation is stopped.
Hold type relays, which hold the on or off status in effect immediately prior to stopping, during the period between stopping and resuming operation
Non-hold type relays, which are reset when operation stops
System register 10, 11, and 16 can be used to specify whether the link relays are the hold or non-hold type.

Range	System register no.
L0 to L63F	10
L640 to L127F	11
L1280 to L639F	16

If the beginning of a hold type relay is specified using a word number, relays before that point will be non-hold types, and subsequent relays will be hold types.
For example, if "10" is set for system register 10, L0 to L9F will be non-hold types, and L100 to L63F will be hold types.
For the default value, all link relays are hold types.
If used as link relays for reception, be aware that no holding operation is carried out, even if the link relays are specified as hold types using the system registers.

## Example:



## Usage restrictions

When used as contacts, there are no restrictions on the number of times that can be used.
As a rule, when specified as the output destination for operation results of OT instruction and KP instruction, use is limited to once in a program (to inhibit double output).

## Notes

- System register 20 can be used to permit double output. Also, double output does not result if the SET and RST instructions are used.
- Link relays must be allocated when the network is configured, before programming is done. The method by which allocations are made varies depending on the type of network. Refer to the manual for the pertinent link unit.

For the FP2/FP2SH/FP10SH, if the Initialize/Test switch is set to the upper side (the Initialize side) in the PROG mode, all of the link relays (L) go off. If a hold type has been specified (see next page), these relays go off as well.

With the FP2SH/FP10SH, system register 4 can be set in such a way that the relays are not cleared even if the Initialize/Test switch is set to the upper side.

### 1.2.7 Timer (T)

## Function of timers ( T )

When a timer is activated and the set time elapses, the timer contact with the same number as the timer turns on.
When the timer is in the time-up state and the timer execution condition turns off, the timer contact turns off.


## Usage restrictions

When used as contacts, there are no restrictions on the number of times that can be used.

For the FP2/FP2SH/FP10SH, if the Initialize/Test switch is set to the upper side (the Initialize side) in the PROG mode, the timer contact goes off. If a hold type has been specified, it goes off as well.

With the FP2SH/FP10SH, system register 4 can be set in such a way that the timer contact is not cleared even if the Initialize/Test switch is set to the upper side.

### 1.2.8 Counter (C)

Function of counters (C)
When the decrement-type preset counter is activated and the elapsed value reaches zero, the counter contact with the same number as the counter turns on.
When the counter's reset input is turned on, the counter contact turns off.


## Usage restrictions

When used as contacts, there are no resrictions on the number of times that can be used.

For the FP2/FP2SH/FP10SH, if the Initialize/Test switch is set to the upper side (the Initialize side) in the PROG mode, the counter contact goes off. If a hold type has been specified, it goes off as well.

With the FP2SH/FP10SH, system register 4 can be set in such a way that the counter contact is not cleared even if the Initialize/ Test switch is set to the upper side.

### 1.2.9 Items Shared by the Timer and Counter

## Timer and counter partitioning

Timers and counters share the same area. The partitioning of the area can be changed to obtain the number of timers or counters needed.

Partition the area by setting system register 5. If the initial number of the counter is specified, those prior to that point will be timers, and those subsequent to that point will be counters.

If the same value is set for system register 5 and 6, timers are non-hold types, and counters are hold types. Normally, the same value should be set for both system registers.

Value of system register 5
(initial number for counter)


Non-hold
type

Hold type

Default settings for timer and counter

Type	Timer	Counter
FP2SH/FP10SH	T0 to T2999 (3000 points)	C3000 to C3071 (72 points)
FP2	T0 to T999 (1000 points)	C1000 to C1023 (24 points)
FP2, FP-X, FP0R	T0 to T1007 (1008 points)	C1008 to C1023 (16 points)
FP0, FP-e	T0 to T99 (100 points)	C100 to C143 (44 points)

## Hold type and non-hold type partitioning

The contents of timer contacts, counter contacts, set value areas and elapsed value areas can be held when the power is turned off or the mode switched from RUN to PROG., and operation later resumed based on those contents.
In the case of the FP0 C10/C14/C16/C32, and FP-e without clock/calendar function, the areas which hold their contents when the power is turned off are fixed as shown below. System register settings 6 to 8 as well as 14 become invalid.

Timer	Non-hold type: all points
Counter	Non-hold type
	FPO C10, C14, C16 FP-e: From set value to C139
	FP0 C32: From set value to C127
	Hold type
	FP0 C10, C14, C16 FP-e: C140 to C143
	FP0 C32: C128 to C143

For the FP0 T32C/FP0R/FP5/FP-X/FP2/FP2SH/FP10SH, and FP-e with clock/calendar function, system register 6 can be used to specify whether a hold type or a non-hold type is used. If the beginning of a hold type is specified using a word number, the contents of timer/counter contacts and set value/elapsed value areas before that point will be non-hold types, and subsequent the contents of timer/counter contacts and set value/elapsed value areas will be hold types.

Even if specifying for the unit without batteries, the data will be indefinite.
Value of system register 6

(initial number of hold type) \begin{tabular}{l}

Non-hold
type

Hold type
\end{tabular}

Default settings for hold types and non-hold types

Type	Non-hold type	Hold type
FP2SH/FP10SH	0 to 2999 (3000 points)	3000 to 3071 (72 points)
FP2	0 to 999 (1000 points)	1000 to 1023 (24 points)
FPг, FP-X, FPOR	0 to 1007 (1008 points)	1008 to 1023 (16 points)
FP-e	0 to 139 (140 points)	140 to 143 (4 points)
	SV: non-hold *1	SV: hold
FP0 T32C	0 to 99 (100 points)	100 to 143 (44 points)

[家密 Note
For FPOR, FP $\Sigma$, FP-X and FP-e, in case of not using back-up battery, please keep the default value. Otherwise we cannot guarantee the function of hold/non-hold value.
*1 Use the following methods for holding the SV data:

- Set the transfer instruction for the data register (DT) to hold the data. Then, perform the setting so that the data can be transferred from DT to SV after the RUN mode starts.
- Use the FP-e model with a battery.

For the FP2/FP2SH/FP10SH, contacts of timers and counters specified as hold types, as well as setting value areas and elapsed value areas, are cleared to 0 when the Initialize/Test switch is set to the upper side (the Initialize side).

With the FP2SH/FP10SH, system register 4 can be set in such a way that the counter contact is not cleared even if the Initialize/Test switch is set to the upper side.

### 1.2.10 Pulse Relays (P)

## Note

## Pulse relays $(P)$ can only be used with the FP2/FP2SH/FP10SH.

## Function of pulse relays (P)

A pulse relay $(P)$ goes on for one scan only. The on or off state is not externally output and only operates in the program.

A pulse relay only goes on when a leading edge start instruction (OT $\uparrow$ ) or a trailing edge start instruction (OT $\downarrow$ ) is executed.

When used as the trigger, a pulse relay only operates during one scan when leading edge or trailing edge is detected.

## Example 1: Differential execution when input X0 rises



## Example 2: Differential execution when input X1 falls



## Usage restrictions

Pulse relays are cleared when the power is turned off.
A pulse relay can only be used once in a program as an output destination for an OT $\uparrow$ or OT $\downarrow$ instruction (double output is prohibited).
There is no limitation to the number of times a pulse relay can used as a contact.
A pulse relay cannot be specified as an output destination for an OT, KP, SET, RST or ALT instruction.

A word unit pulse relay (WP) cannot be specified as a storage location for a high-level instruction.

### 1.2.11 Error Alarm Relays (E)

## 际密 Note

## Error alarm relays can only be used with the FP2SH/FP10SH.

## Function of error alarm relays (E)

Error alarm relays are used to feed back error conditions freely assigned by the user to internal relays, and to store them in memory.
Error alarm relays are turned on and off using the SET and RST instructions in the user program.
When an error alarm relay goes on, the number of error alarm relays which are on, the relay numbers, and the data of the calendar timer which went on first are stored in a memory area in the CPU unit.

DT90400	No. of relays which are on	
DT90401 to DT90419	Relay numbers which are on	Data of calendar timer for first relay to go   on
DT90420	Min./sec. data	
DT90421	Day/time data	Year/month data
DT90422		

Information for up to 500 error alarm relays can be stored in the memory area. Those which can be monitored or operated by the user, however, are those in the range from DT90401 to DT90419 only.

## Usage restrictions and precautions

Error alarm relay (E) cannot be specified as the output destination for the OT, KP, or ALT instructions.

Error alarm relay (E) can be turned on and off in multiple locations in the program, using the SET and RST instructions. However, no check is carried out for overlapping use.

## Program for setting (turning on) an error alarm relays

The SET instruction should be used to turn on error alarm relays in the error alarm conditions.

Error alarm relays are held even if the error condition goes off.

Example: If XO goes on when an error occurs


## Program for resetting (turning off) an error alarm relay

When an error has been corrected, the RST instruction should be used to turn off the error alarm relay.

## $\stackrel{y}{s}$ <br> Example: If X1 goes on when an error is corrected



## Clearing all buffer areas

Either of the following methods may be used.

- To reset all of the error alarm relays, use the RST instruction in the same way as that described on the next page, and specify special data register DT90400.
- If the Initialize/Test switch is set to the Initialize side in the PROG mode, all error alarm relays (E) go off, and the storage buffer is cleared.
(To avoid clearing the buffer with the Initialize switch, change the setting of system register 4.)


## Clearing buffer areas and initial data

Of the areas in which relay numbers are stored, only DT90400 and DT90401 can be cleared by directly specifying the special data register with the RST instruction.
If DT90400 is specified, all error information in the buffer is cleared, and if DT90401 is specified, the initial relay number in the buffer area is cleared. Buffers fill up as shown in the example below.
Example: When the contents of DT90401 are deleted using the RST instruction



### 1.3 Explanation of Memory Areas

### 1.3.1 Data Register (DT)

## Function of data registers (DT)

Data registers are memory areas which are handled in word (16-bit) units, and are used to store data such as numerical data configured of 16 bits.


Example of a program which writes a numeric value to DTn.


When 32-bit (double word) data is handled in data registers, use two data registers as a set. The number of the data register for the lower 16 bits is specified.

DTn+1																DTn														
0	0	0	1	1	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	1	0	0		1	0	1	1	0	0	0

higher 16-bit area
lower 16-bit area

## Non-hold type data and hold-type data

There are two types of data registers which handle data differently when the power is turned off or the mode is changed from RUN to PROG.:

- Hold type data registers hold their contents while operation stops and allow operation to be restarted with the contents still effective.
- Non-hold type data registers reset when operation stops.

For the FP0 C10/C14/C16/C32, and FP-e without clock/calendar function, non-hold type and hold type data register numbers are as shown in the following table.

Item		FP0 C10/C14/C16 and FP-e	FP0 C32
Data register	Non-hold type	1652 words (DT0 to DT1651)	6112 words (DT0 to DT6111)
	Hold type	8 words (DT1652 to DT1659)	32 words (DT6112 to DT6143)

For the FP0 T32C/FP5/FP0R/FP-X/FP2/FP2SH/FP10SH, and FP-e with clock/calendar function, system register 8 can be used to specify whether hold types or non-hold types are to be used. If the beginning of a hold type data register is specified using a word number, data registers before that point will be non-hold types, and subsequent data registers will be hold types.


Default settings for hold types and non-hold types

Type	Non-hold type	Hold type
FP $\Sigma$, FP-X (C30, C60)	DT0 to DT32709 (32710 words)	DT32710 to DT32765 (55 words)
FP-X (C14)	DT0 to DT12229 (12230 words)	DT12230 to DT12284 (55 words)
FP-e	DT0 to DT1651 (1652 words)	DT1652 to DT1659 (8 words)
FP0R C10, C14, C16	DT0 to DT11999 (12315 words)	DT12000 to DT12314 (315 words)
FP0R C32, T32, F32	DT0 to DT32449 (32451 words)	DT32450 to DT32764 (315 words)

## Note

For FP $\Sigma$, FP-X and FP-e, in case of not using back-up battery, please keep the default value. Otherwise we cannot guarantee the function of hold/non-hold value.

For the FP2/FP2SH/FP10SH, if the Initialize/Test switch is set to the upper side (the Initialize side) in the PROG mode, all data registers (DT) are cleared to 0 . Even if a hold type has been specified, these are cleared to 0 .

With the FP2SH/FP10SH, system register 4 can be set in such a way that the data registers are not cleared even if the Initialize/ Test switch is set to the upper side.

### 1.3.2 Special Data Registers (DT)

## Function of the special data registers

These data registers have specific applications.
Data cannot be written to most of them using instructions such as F0 (MV).
With the FP0 T32C, FP0R, FPE, FP-X, FP2, FP2SH, FP10SH and the FP0 C10/C14/C16/ C32, FP-e, the special data registers have different numbers, but the last three digits of the numbers are the same.

Example:
With the FPO C10/C14/
C16/C32, FP-e:
With the FPO T32C, FPOR D T 90055055
FPL, FP-X, FP2, FP2SH and
FP10SH:

The main functions of special data registers are:

## Environmental settings and operation statuses

The operation statuses of the programmable controller specified with the system registers and the various types of instructions are stored.

- Link communication status (DT9140 to DT9254/DT90140 to DT90254)
- High-speed counter control flag (DT9052/DT90052) and others


## Error contents

The unit in which the error occurred, and other information, is stored.

- Self-diagnostic error code (DT9000/DT90000)
- The slot number of the unit where the error occurred (DT9002, DT9003, etc.)
- Remote input/output error slave station numbers (DT9131 to DT9135)
- The address where the operation error occurred (DT9017, DT9018/DT90017, DT90018)


## Clock/calendar

(can be used with all types of the FP0 T32C, FP0R, FP-e, FP 2 , FP-X, FP2, FP2SH and FP10SH)
The year, month, day, hour, minute, second, and day of the week tracked by the calendar timer are stored here (DT9053 to DT9057/DT90053 to DT90057).

## 0 Note

The values stored for the clock/calendar can be overwritten (to calibrate the date and time). Values should be written to DT9054 to DT9057/DT90054 to DT90057 either using the F0 (MV) instruction or directly, using programming tools.

## High-performance counter

These registers are used for reading and writing the target value and elapsed value of the high-performance counters.

- High-performance counter elapsed/target value area (DT9044 to DT9051/DT90044 to DT90051 and DT9104 to DT9111/DT90104 to DT90111)

For the FP2/FP2SH/FP10SH, if the Initialize/Test switch is set to the upper side (the Initialize side) in the PROG mode, all special data registers are cleared to 0. If self-diagnosis error 44 or an error with a lower number occurs, however, DT9000 (DT90000 with the FP2, FP2SH and FP10SH) is not cleared.

### 1.3.3 File Registers (FL)

## Function of file registers (FL)

File registers are memory areas which are handled in word (16-bit) units, and are used to store data such as numerical data configured of 16 bits.
They can be used in exactly the same way as data registers.

Bit position									7 7 • $\cdot 4.43 \cdot 3 \cdot 0$							
FLn	0	0	0	1	1	0		0	0	1	0	1	1	0		

Double-word specifications can also be used in the same way as with data registers. 32-bit data can be handled.

The number of file registers varies depending on the type and the system register settings.

Type	No. of file register words
FP10SH	32,765 words
FP2 $\mathbf{( 3 2}$ K)	Max. 30,717 words (see note)
FP2 $\mathbf{( 1 6 ~ K )}$	Max. 14,333 words (see note)
FP2SH	32,765 words $\times 3$ banks

## Note

The number of words varies depending on the type and the system register settings.

## Non-hold type data and hold type data

System register 9 can be used to specify whether hold types or non-hold types of file registers are to be used. For the default setting, all file registers are hold types.

For the FP2/FP2SH/FP10SH, if the Initialize/Test switch is set to the upper side (the Initialize side) in the PROG mode, all file registers are cleared to 0 . Even if a hold type has been specified, these are cleared to 0 .

## Note

With the FP2SH/FP10SH, system register 4 can be set in such a way that the file registers are not cleared to 0 even if the Initialize/Test switch is set to the upper side.

### 1.3.4 WX, WY, WR and WL

## Function of WX, WY, WR and WL

Relays (X, Y, R, L) can be handled as blocks of 16 points.
These are one-word (16-bit) memory areas, thus they can be treated as data memory.
The composition of the one-word memory areas is as follows.
The numbers correspond to the words as shown.
WRO


WR1


WR2


For the FP2/FP2SH/FP10SH, if the Initialize/Test switch is set to the upper side (the Initialize side) in the PROG mode, WX, WY, WR, and WL are cleared to 0 . Even if a hold type has been specified, these are cleared to 0 .
Pulse relays $(P)$ and error alarm relays ( $E$ ) cannot be handled in word units.

## Examples of using WX, WY, WR and WL

WX can be used to read in digital switch and keyboard inputs, and WY can be used for output to 7-segment displays.
WR can also be used as a shift register.
All of the relays can be used to monitor 16-bit words.

## Precautions concerning usage

If an on or off status of one of the relays composing the memory area changes, the memory area value will also change.


### 1.3.5 Link Data Registers (LD) for FP $\Sigma /$ FP-X/FPOR

## Function of link data registers (LD)

Link data registers are data memories for "PC links", which are shared between multiple programmable controllers which are connected through the same network link.

When data is written to a link data register of one PLC, the contents are stored in the link data registers that have the same numbers, in other PLCs connected through the network.


When link data registers are used, data can be exchanged between PLCs simply by writing the data, as shown here.

## Available range of link data registers

The available range of link data registers varies depending on the type of network and the combination of units. The available range and number of points must be specified separately for each network
For MEWNET-W0
A maximum of 128 words can be used with one control unit. The available range is from LD0 to LD127

## Specifying hold type and non-hold type registers

There are two types of link data registers, which can be switched when the power is turned off and the mode is switched from RUN to PROG and operation is stopped.

- Hold type registers, which hold the on or off status in effect immediately prior to stopping, during the period between stopping and resuming operation
- Non-hold type registers, which are reset when operation stops

In case of using back-up battery, System registers 12 can be used to specify whether the link data registers are the hold type or non-hold type.

Range	System register no.
LD0 to LD127	12

If the beginning of a hold type register is specified using a word number, registers before that point will be non-hold types, and subsequent registers will be hold types. For example, if " 64 " is set for system register 12, LD0 to LD63 will be non-hold types, and LD64 to LD127 will be hold types.
For the default value, all link data registers are hold types.
If used as link data registers for reception, be aware that no holding operation is carried out, even if the link data registers are specified as hold types using the system registers.

### 1.3.6 Link Data Registers (LD) for FP2/FP2SH/FP10SH

## Function of link data registers (LD)

Link data registers are data memories for "PC links", which are shared between multiple programmable controllers which are connected through the same MEWNET link.
The following types of MEWNET links are available.

- MEWNET-H link system for FP10SH (for coaxial cables)
- MEWNET-W link system for FP2, FP2SH and FP10SH (for wire cables)
- MEWNET-P link system for FP10SH (for fiber-optic cables)

When data is written to a link data register of one PLC, the contents are stored in the link data registers that have the same numbers, in other PLCs connected through the MEWNET.


When link data registers are used, data can be exchanged between PLCs simply by writing the data, as shown here.

## Available range of link data registers

The available range of link data registers varies depending on the type of network and the combination of units. The available range and number of points must be specified separately for each network.
For MEWNET-W and MEWNET-P:
A maximum of 128 words can be used with one link unit. The available range is from LD0 to LD127 for the first unit (PC Link 0), and from LD128 to LD255 for the second unit (PC Link 1).

For MEWNET-W2:
A maximum of 4,096 words can be used per link unit. Please set the range of use at the MEWNET-W2 settings menu.
With the FP2SH, the range between LD0 and LD8447 can be specified. When used with MEWNET-W the range between LD0 and LD255 cannot be used.
With the FP2, the range between LD0 and LD255 can be specified. Also, the data register can be used in place of the link relay by setting the MEWNET-W2 setting menu. However, when used with MEWNET-W the range between LDO and LD255 cannot be used with MEWNET-W2.

For MEWNET-H:
A maximum of 8,192 words can be used. Please set the range to be used with the MEWNET-H link setting software.
With the FP10SH, the range from LD0 to LD8447 can be used.
If used in conjunction with a MEWNET-W or MEWNET-P link unit, be aware that the range from LD0 to LD255 cannot be used.

## Specifying hold type and non-hold type registers

There are two types of link data registers, which can be switched when the power is turned off and the mode is switched from RUN to PROG and operation is stopped.

- Hold type registers, which hold the on or off status in effect immediately prior to stopping, during the period between stopping and resuming operation
- Non-hold type registers, which are reset when operation stops

System registers 12, 13 and 17 can be used to specify whether the link data registers are the hold type or non-hold type.

Range	System register no.
LD0 to LD127	12
LD128 to LD255	13
LD256 to LD8447	17

If the beginning of a hold type register is specified using a word number, registers before that point will be non-hold types, and subsequent registers will be hold types. For example, if " 64 " is set for system register 12 , LD0 to LD63 will be non-hold types, and LD64 to LD127 will be hold types.

For the default value, all link data registers are hold types.
If used as link data registers for reception, be aware that no holding operation is carried out, even if the link data registers are specified as hold types using the system registers.

Note
This is determined based on the settings of system register 0 and 1.

## Example:



Note
Link data registers must be allocated when the network is configured, before programming is done. The method by which allocations are made varies depending on the type of network. Refer to the manual for the pertinent link unit.

For the FP2/FP2SH/FP10SH, if the Initialize/Test switch is set to the upper side (the Initialize side) in the PROG mode, all of the link data registers (LD) are cleared to 0. Even if a hold type has been specified, these link data registers are cleared to 0.

With the FP2SH/FP10SH, system register 4 can be set in such a way that the link data registers are not cleared to 0 even if the Initialize/Test switch is set to the upper side.

### 1.3.7 Set Value Area for Timer/Counter (SV)

Function of set value areas (SV)
A set value for a timer or counter is stored in the set value area (SV) with the same number as the timer or counter.


A decimal number or SV area number is specified for the set value when the TM or CT instruction is entered in the program.
An SV is a one-word, 16-bit memory area which stores a decimal number from KO to K32767.

## Using set value area (SV)

During RUN mode, a set value for a timer or counter can be changed by rewriting the corresponding set value area.
The value in a set value area can be read and changed from the program by specifying the destination and other information in $\mathbf{F O}$ (MV) data transfer instruction.
The set value area can be read and rewritten using a programming tool.
For the FP2/FP2SH/FP10SH, if the Initialize/Test switch is set to the upper side (the Initialize side) in the PROG mode, all timer/counter setting value areas (SV) are cleared to 0 . Even if a hold type has been specified, these are cleared to 0 .

四票
With the FP2SH/FP10SH, system register 4 can be set in such a way that these areas not cleared even if the Initialize/Test switch is set to the upper side.

## Example:

SV and EV areas are in a one-to-one correspondence with timers and counters.

Timer/Counter number	Set value area (SV)	Elapsed value area (EV)
T0	SV0	EV0
T1	SV1	EV1
$:$	$\vdots$	$\vdots$
T99	SV99	EV99
C100	SV100	EV100
$:$	$:$	$:$

### 1.3.8 Elapsed Value Area for Timer/Counter (EV)

## Function of elapsed value areas (EV)

While a timer or counter is operating, the elapsed value is stored in the elapsed value area (EV) with the same number as the timer or counter.
When the EV reaches zero, the timer or counter contact with the same number turns on.

An EV is a one-word, 16-bit memory area which stores a decimal number from K 0 to K32767.


Tn turns on when decrement operation ends

## Using elapsed value area (EV)

The elapsed value of a timer or counter in operation can be changed to prolong or shorten the operation.
The value in elapsed value area can be read and changed from the program by specifying the F0 (MV) data transfer instruction.
The elapsed value area can be read and rewritten using a programming tool.

For the FP2/FP2SH/FP10SH, if the Initialize/Test switch is set to the upper side (the Initialize side) in the PROG mode, the timer/counter elapsed value areas (EV) are cleared to 0 . Even if a hold type has been specified, these values are cleared to 0 .

## Note

With the FP2SH/FP10SH, system register 4 can be set in such a way that the timer/counter elapsed value areas are not cleared to 0 even if the Initialize/Test switch is set to the upper side.

### 1.3.9 Index Registers (IX, IY) (for FPO, FP-e)

Function of index registers (IX, IY)
Index registers are used to indirectly specify constants and memory area addresses. Two 16-bit registers are available, IX and IY. Changing addresses and constants using a value in an index register is called "index modification".
With the FPO, FP-e, index modification is possible only with regard to operands of high-level instructions.

## Modifying an address

Address = Base address + Value in IX or IY (K constant)

## Example: Modifying DT11



## Modifying a constant

Constant $=$ Base value + Value in IX or IY

## Example 1: Modifying K100



## Example 2: Modifying H10



## Index modification method

Example 1: Modifying a destination address


The value of DTO determines the WR address where K100 is written.
When the DTO value is K10, K100 is written to WR10.


Example 2: Modifying a source address


The value of DT1 determines the WR address for transferring a value to DTO.
When the DT1 value is K9, the value in WR9 is transferred to DTO.


## Cautions when using index registers

An index register can not be modified with an index register.
IXIX, IXIY
If the result of address modification overflows the memory area, an operation error will result.

When the address resulting from modification is negative or a large number.
When modifying 32-bit constants, IX is specified. At this point, IX and IY in combination are handled as 32-bit data.


Contents of IY Contents of IX
The results of modification will be 32-bit data.

For detailed information about the procedures for using index registers section 4.5

## 1．3．10 Index Registers（IO to ID）（for FP $\Sigma /$ FP－X／FPOR）

## Function of index registers（ 10 to ID）

Index registers are used for indirect specification of values to addresses and operands in relays and memory areas．

There are a total of 14 index registers which can be used with the FP亡，consisting of IO to I9 and IA to ID．

## Cautions when using index registers

An index register can not be modified with an index register．
IOIO， 1111
An index register can be modified using a different index register．
Available：IOIA，Not available： 1010
If the result of address modification overflows the memory area，an operation error will result．

When the address resulting from modification is negative or a large number．
When a 32－bit constant is modified，the specified index register number and the following index register number are used in combination to handle the data as a 32－bit data．


Contents of $\operatorname{In}+1 \quad$ Contents of In
The results of modification will be 32－bit data．

## 埌密 Note

When 32－bit constants are being modified，ID should not be specified．

## The following index modifications are possible

Memory area numbers used with high－level instructions
K constants（16－bit and 32 －bit）and H constants（16－bit and 32 －bit）specified with high－level instructions

There are some cases in which index modification cannot be specified，depending on the instruction．Confirm the table of ＂Operands＂on the page describing the various instructions．

### 1.3.11 Index Registers (IO to ID) (for FP2, FP2SH and FP10SH)

## Function of index registers ( $\mathbf{1 0}$ to ID)

Index registers are used for indirect specification of values to addresses and operands in relays and memory areas.
Changing an address or a constant using an index register value is called "index modification".

There are a total of 14 index registers which can be used with the FP2, FP2SH and FP10SH, consisting of IO to I9 and IA to ID.

With the FP2SH/FP10SH, because there are bank areas for index registers, changing the bank enables 14 points $\times 16$ banks $=224$ points of index registers available for use.

## Cautions when using index registers

An index register can not be modified with an index register.
IOIO, I111
An index register can be modified using a different index register.
Available: IOIA, Not available: IOIO
If the result of address modification overflows the memory area, an operation error will result.

When the address resulting from modification is negative or a large number.
When a 32-bit constant is modified, the specified index register number and the following index register number are used in combination to handle the data as a 32-bit data.


Contents of $\mathrm{In}+1 \quad$ Contents of In
The results of modification will be 32-bit data.

0害要 Note
When 32-bit constants are being modified, ID should not be specified.

For the FP2/FP2SH/FP10SH, if the Initialize/Test switch is set to the upper side (the Initialize side) in the PROG mode, index registers IO to ID are cleared to 0.

With the FP2SH/FP10SH, system register 4 can be set in such a way that these are not cleared to 0 even if the Initialize/Test switch is set to the upper side.

The bank switching function for index registers can be used on the FP2SH/FP10SH. This function is not provided in the FP2.

## The following index modifications are possible

Memory area numbers used with high－level instructions
K constants（16－bit and 32 －bit）and H constants（16－bit and 32－bit）specified with high－level instructions
Relay numbers used with the following basic instructions：ST，ST／，AN，AN／，OR，OR／， OT，KP，SET，RST，OT $\uparrow$ ，OT $\downarrow$

Instruction numbers specified with the following basic instructions：TM，CT，MC，MCE， JP，LOOP，CALL，FCAL（FCAL instruction can be used with the FP2SH／FP10SH．）
Memory areas used with the following basic instructions：TM，CT，SR

## 㤑害票 Note

There are some cases in which index modification cannot be specified，depending on the instruction．Confirm the table of ＂Operands＂on the page describing the various instructions．

Modification of memory area numbers specified by high-level instructions Address = Base address + value in 10 through ID (K constant)

Example: Modifying DT11


V
Example 1: Modifying a destination address


The value of DTO determines the DT address where K100 is written.
When the DT0 value is K10, K100 is written to DT110.

a
Example 2: Modifying a source address


The value of DT1 determines the DT address for transferring a value to $D T 0$.
When the DT1 value is K9, the value in DT109 is transferred to DTO.


## Modification of values of constants specified by high-level instructions

Constant = Base value + value in IO through ID

## Example 1: Modifying 16-bit constant K100



## Example 2: Modifying 16-bit constant H10



Example 3: Modifying 32-bit constant KO


Modification of relay numbers specified by basic instructions
Number = Base number + value in IO through ID (K constant / H constant)
Example: Modifying X10


Example 1: Modifying a trigger


The trigger of the F35 (+1) instruction is determined by the DTO value.
When the value of DT0 is K10, the F35 (+1) instruction is executed when XA goes on.


Example 2: Modifying an output destination


The value of DT2 determines the output destination when X0 goes on.
When the value of DT0 is HF and X0 goes on, Y1F goes on.


Example 3: Modifying a destination address
$\left|\begin{array}{|lll}\text { XO } & {\left[\begin{array}{lll}\text { FO } & \text { MV, DT O, } & 10 \\ \text { FO } & \text { MV, K100, } & \text { IOWRO }\end{array}\right]}\end{array}\right|$ IO setting

The value of DT0 determines the address of WR where K100 is written.
When the value of DT0 is K10, K100 is written to WR10.


Example 4: Modifying a source address


The value of DT1 determines the address of WR for transferring a value to DTO.
When the value of DT1 is K9, the value in WR9 is transferred to DT0.


## Items requiring particular attention

For the external input relay $(X)$, external output relay $(Y)$, and internal relay $(R)$, when using index modification on relay numbers, be aware that the last digit of the relay number is hexadecimal and the first digits are decimal.

Example: For external input relay (X)
Decimal
1, 2, 3 12
Hexadecimal
0, 1, 2, 3
9 A,B
F
X 0,X 1........................ X
X 10, X 11.......................... X 1F
X 20, X $21 \ldots . . . . . . . . . . . . . . . .$. . $2 F$

Example using IOXO

Value of 10		Target address
K	H	
0	0	X0
1	1	X1
:	:	:
9	9	X9
10	A	XA
:	:	:
15	F	XF
16	10	X10
:	:	:
31	1F	X1F
:	:	:
159	9F	X9F
160	A0	X100
161	A1	X101
:	:	:
255	FF	X15F
256	100	X160
257	101	X161
:	:	:
265	10A	X169
267	10B	X16A
:	:	:

Modifying instruction numbers of basic instructions
Timer numbers
Modifying TML20 --- TML IO20
Counter numbers
Modifying CT3000 --- CT 103000
Shift register numbers
Modifying SRWRO --- SR IOWRO
Master control numbers
Modifying MCE1 --- MCE I01
Label number specification with the Jump instruction
Modifying JP1 --- JP I01
Label number specification with the Loop instruction
Modifying LOOP5 --- LOOP I05
Subroutine program numbers
Modifying CALL10 --- CALL 1010

## [10 Note

Timer numbers and counter numbers can be modified only when a memory area is specified for the set value.


Modification cannot be done if the set value is specified with a constant.


## Changing index register banks (for FP2SH/FP10SH only)

The banks of the index registers of the FP2SH/FP10SH can be changed to allow use of up to 224 points ( 14 points $\times 16$ banks) in a program.


When the register bank setting instruction F410 (SETB) or the register bank changing instruction F411 (CHGB) is used to specify a bank number, index registers I0 to ID used after that point can be used as separate index registers from the IO to ID index registers used prior to changing the bank.

The bank is automatically set to bank 0 before execution of the leading address of the program. The bank is also automatically set to bank 0 before execution of the leading address of a second program.

The bank numbers of index registers used in interrupt programs, subroutines, and other sub programs should be specified in such a way that the F411 (CHGB) instruction is executed at the beginning of the sub program, and the F412 (POPB) instruction is executed at the end of the sub program.

Example 1: Changing banks using a register bank setting instruction F410 (SETB)


Different values can be set for 10 in bank 0 , bank 1 and bank 2 . The set values are only effective within their respective ranges.

For details on changing bank instruction, refer to the explanations of F410 (SETB), F411 (CHGB) and F412 (POPB) instructions.

Example 2: Changing banks within an interrupt program


### 1.4 Explanation of Constants

### 1.4.1 Integer Type Decimal Constants (K)

## Function of decimal constants (K)

This is binary data that has been converted to the decimal format.
When entering and reading a decimal constant, specify the value by entering a K at the beginning.

Decimal constants are primarily used to specify data sizes and quantities such as set values for timer.

In the PLC, the decimal constant $(\mathrm{K})$ is processed as binary $(\mathrm{BIN})$ data in units of 16 bits, as shown below.

The sign is determined by the MSB "Most Significant Bit" (bit position 15). [A "0" indicates a positive sign (+), and a "1" indicates a negative sign (-).] The MSB (Most Significant Bit) is called the "sign bit".

Example: Decimal number "+32" (K32)


E Example: Decimal number "-32" (K-32)


Data is normally handled in units of one word (16 bits), however, it is also occasionally handled in units of two words ( 32 bits). In this case, as well, the MSB serves as the sign bit.

The available range of a decimal constant is:
16-bit equivalent data: K-32768 to K32767
32-bit equivalent data: K-2147483648 to K2147483647

### 1.4.2 Hexadecimal Constants (H)

## Function of hexadecimal constants (H)

Hexadecimal constants are values which have been converted from binary into hexadecimal. When entering and reading a hexadecimal constant, specify the value by entering an H at the beginning.

Hexadecimal constants are primarily used to specify an ordering of 1's and 0's in 16-bit data, such as system register settings and specification of control data for high-level instructions. Hexadecimal constants are also used to specify BCD data.

In the PLC, the hexadecimal constant (H) is processed as binary (BIN) data in units of 16 bits, as shown below.

## Example: Hexadecimal number "2A" (H2A)



Data is normally handled in units of one word (16 bits), however, it is also occasionally handled in units of two words (32 bits).
The available range of a hexadecimal constant is:
16-bit equivalent data: H0 to HFFFF
32-bit equivalent data: HO to HFFFFFFFF

### 1.4.3 Floating Point Type Real Numbers (f)

## Available PLC

FPO, FPOR, FP-e, FPE, FP-X, FP2, FP2SH and FP10SH
Range of floating point type real numbers that can be used in operations
The range of floating point type real numbers that can be stored in the memory area is as noted below.
Range of negative numbers: $-3.402823 \times 10^{38}$ to $-1.175494 \times 10^{-38}$
Range of positive numbers: $1.175494 \times 10^{-38}$ to $3.402823 \times 10^{38}$
Even if the results of the real-number operation involve multiple digits, the actual processing is effective for a mantissa of up to 7 digits.

Example: If the actual operation result were 0.33333333 ..., the stored data would consist of the value 0.3333333 .

## Area in which floating point type real numbers are stored

With floating point type real number operation instructions, the area in which data converted to a real number is stored consists of two words ( 32 bits) per data element. As a result, in transmission instructions such as that used to send real-number data to a storage area and in other operations, data should be moved in units of two words (32 bits).

Example 1: If DTO is specified as the area in which floating point type real number data is to be stored, the data will be written to DTO and DT1.


The operation results will be stored in DT0 and DT1.
Storage destination


Example 2: When floating point type real number data stored in DT0 and DT1 is being sent to destination, the 32 -bit data sending instruction F1 (DMV) instruction should be used.


## Processing of floating point type real number operations

## 1) Processing by specifying an integer device

Instructions can be used to store data in a specific location. Adding the symbol \% or \# to either S (source: the area from which the data is loaded) or D (destination: the area in which the result is stored) determines how the data is processed. If added to S (source), integer data is automatically converted to real-number data and the operation is carried out. If added to $D$ (destination), the real-number data resulting from the operation is automatically converted into integer data and stored in the destination.
When the integer area consists of 16-bit data ... It is specified using the \% symbol. When the integer area consists of 32 -bit data ... It is specified using the \# symbol.

Example 1: Specifying the target operation data $S$ for an integer device
The contents of "DT10" and "DT20" are converted to real numbers, and the operation is executed. The results are stored in "DT30 and DT31" as real-number data.


Example 2: Specifying stored results $D$ for an integer device
The target operation data stored in "DT40 and DT41" and "DT50 and DT51" are loaded, and the operation is executed. The results of the operation are converted to an integer and stored in DT60.


Example 3: When the integer data $S$ targeted by the operation is stored as two words
The contents of "DT70 and DT71" and "DT80 and DT81" are converted to real numbers and the operation is executed. The results of the operation are stored in "DT90 and DT91" as real-number data.


In processing involving an integer device specification and real numbers being converted to integers, the processing is the same as that of the F327 (INT) instruction.
If the real-number data is a positive number, the number is rounded off, and any digits to the right of the decimal point are discarded.

If the real-number data is a negative number, the value 0.4999 ... is subtracted from the target real-number data, and the value is rounded off to the decimal point.

돈
Example 1: If the operation result is $\mathbf{f 1 . 2 3 4}$, the value will be stored as integer data "K1".
$\underset{y}{c}$
Example 2: If the operation result is $\mathrm{f}-1.234$, the value will be stored as integer data "K-2".
Integer device specification can be used for the following instructions.
F309 (FMV) to F324 (FSQR) / F336 (FABS) to F338 (DEG) / F345 (FCMP) to F349 (FZONE)
2) Using the integer $\rightarrow$ real number and real number $\rightarrow$ integer conversion instructions to convert values

With this method, a conversion instruction is used to convert integer data to real numbers.
When the integer data is 16-bit data, F325 (FLT) is used.
When the integer data is 32-bit data, F326 (DFLT) is used.
Real-number data that has undergone real-number operation processing is converted from real-number data to integer data using the F327 (INT) to F332 (DROFF)
conversion instructions.

$\stackrel{y}{5}$
Example 1: When conversion is carried out using the maximum value that does not exceed the allowable range


When the value is a positive number, the result is rounded off to the decimal point.
When the value is a negative number, the value 0.4999 . is
subtracted from the data, and the result is rounded off.
If the real-number data is 1.5 , it is converted as integer data K1.
If the real-number data is $\mathbf{- 1 . 5}$, it is converted as integer data K-2.

Example 2: When conversion is carried out by rounding down the digits to the right of the decimal point


Digits to the right of the decimal point are rounded down. If the real-number data is 1.5 , it is converted as integer data Ki.
If the real-number data is $\mathbf{- 1 . 5}$, it is converted as integer data K-1.

Example 3: When conversion is carried out by rounding off the digits to the right of the decimal point.


Digits to the right of the decimal point are rounded off. If the real-number data is 1.5 , it is converted as integer data K2.
If the real-number data is $\mathbf{- 1 . 5}$, it is converted as integer data K-2.

## 3) Direct specification of the real-number constant data

When operations are being carried out on real-number constants as real-number data, the values can be directly input by using a programming tool in which " $f$ " is added either to the target data " S " or the destination " D " defined by the instruction.
The range that can be specified by these instructions is 0.0000001 to 9999999 (the effective value consists of seven digits).

Example: Specifying the target data " S " with a real-number constant
The real-number data stored in DT10 and DT11 is multiplied by the real-number constant 0.5 , and the result of the operation stored in DT20 and DT21 as real-number data.


## 4) Specifying a K constant for conversion

The K constant (32-bit data) is an integer data element, so it is automatically converted to real-number data and the operation is executed.

— Automatic conversion to real number

## 5) Specifying an H constant for conversion

With an H constant (32-bit data), the operation is carried out using the H constant as floating point data.

## Operation if an overflow occurs

If the operation result exceeds the real-number range, an overflow flag (R9009) is set. If this occurs, one of the values noted below is set for R9009 as a result.
Positive infinite value: H7F800000
Negative infinite value: HFF800000

### 1.4.4 BCD Type Real Numbers (H) (for FP2, FP2SH and FP10SH)

Range of BCD type real numbers that can be used in operations
The range of real-number data that can be stored in the memory area is as noted below. -9999.9999 to +9999.9999
Data stored in the memory area in one-word units, with the positive/negative sign coming first, followed by the integer segment and then by the decimal point and any subsequent digits.


## Area in which the BCD type real number is stored

In the BCD type real number operation instructions, the area in which data converted to real numbers is stored consists of a three-word area for each data element. As a result, in instructions such as that used to send real-number data to a storage area and in other operations, data should be moved in units of three words.

Example 1: If DT0 is specified as the area in which BCD type real-number data is to be stored, the data will be written to "DT0 to DT2".


Operation results


Example 2: When sending BCD type real-number data stored in "DTO to DT2", the F10 (BKMV) block transmission instruction or a similar instruction should be used, and the data sent in three-word units.


Transmission source		Transmission destination	
DT0	H0	- DT100	H0
DT1	H0	- DT101	H0
DT2	H7071	$\rightarrow$ DT102	H7071

### 1.4.5 Character Constants (M)

## Function of character constants (M)

The character constant is used to express ASCII code in binary.
The character constant is expressed by adding the prefix M to the data.
There are only two instructions in which character constants can be specified, F95 (ASC) instruction, F257 to F265 (SYS1) instruction and F149 (MSG) instruction.
The character constant $M$ is stored in a specified memory area in the PLC as BIN data, as shown below.

Example: When character constant "MEWNET" is input

| T | E | N | W | E | M |
| :---: | :---: | :---: | :---: | :---: | :---: | Character constant

One word One word One word

### 1.5 Data Ranges Which can be Handled in the PLC

### 1.5.1 Data Ranges Which can be Handled in the PLC

## 16-bit data

Data which can be handled in the PLC (16-bit binary data)	Decimal constants		Hexadecimal constants
(01/1/1/1/1/1/1/1/1/\|1/1/1/1	K	32767	H7FFF
0000 O이이이이이이머	K	1	H0001
	K	-	H0000
	K	-1	HFFFF
			-
100 0 이이이이이이	K	-32768	H8000

## 32-bit data

Data which can be handled in the PLC (32-bit binary data)	Decimal constants	Hexadecimal constants
	K 2147483647	H7FFFFFFF
		H00000001
	K $\quad 0$	H00000000
	K	HFFFFFFFF
	K-2147483648	H80000000

## Expression of decimal numbers in PLC

Decimal number is basically processed in 16-bit or 32-bit binary.
The most significant bit (MSB) expresses negative or positive sign of the data. When the MSB is " 0 ", data is regarded as having a zero or positive value and when the MSB is " 1 ", data is regarded as having a negative value.
In the case of positive numbers, the bits following the most significant bit express the size of the data.

## N Example 1: Expressing the decimal number "1868"



The data size is indicated by the other bits.
$1,024+512+256+64+8+4=1,868$

- Most significant bit: 0 (positive value)

A negative number is expressed as a two's complement (the bits of the 16-bit binary data of the positive number are inverted and 1 is added to the result).

## Example 2: Expressing the decimal number "-4"



Add 1


## Data ranges which can be handled in the PLC

Binary data which can be handled by programmable controllers are:
16-bit binary data: K-32768 to K32767
32-bit binary data: K-2147483648 to K2147483647
BCD code which can be handled by programmable controllers are:
16-bit (4-digit BCD H code): H0 to H9999
32-bit (8-digit BCD H code): H0 to H99999999
If any of the above ranges are exceeded when processing the corresponding data, overflow or underflow will result.
$B C D$ is an acronym for binary coded decimal and refers to expressing each digit of a decimal number by four binary digits.

## Example: When the decimal number is expressed in BCD



### 1.5.2 Overflow and Underflow

Operation instructions occasionally produce a value which is outside of the allowed range. This is called overflow if the value exceeds the maximum value and underflow if the value falls short of the minimum value. When an overflow or underflow occurs, the carry flag R9009 turns on.

## Overflow and underflow during binary operation

If any of the following values are exceeded, overflow or underflow will result.

16-bit binary operation
(Overflow results if over the maximum value.)

Max. value	K 32767	H 7FFF	
	K	1	H 0001
	K	0	H 0000
	K	-1	H FFFF
	.		$\vdots$
Min. value	K-32768	H 8000	

(Underflow results if under the minimum value.)

32-bit binary operation
(Overflow results if over the maximum value.)

K2147483647	H 7FFFFFFF	
	$\vdots$	$\vdots$
K	1	H 00000001
K	0	H 00000000
K	-1	H FFFFFFFF
	.	$\vdots$
K-2147483648	H 80000000	

(Underflow results if under the minimum value.)

## Overflow and underflow during BCD operation

If any of the following values are exceeded, overflow or underflow will result.
Only positive values can be handled.

4-digit BCD code operation
(Overflow results if over the maximum value.)

(Underflow results if under the minimum value.)

8-digit BCD code operation
(Overflow results if over the

(Underflow results if under the minimum value.)

## Values when overflow or underflow occurs

Numerical value handled by the FP series programmable controller all form a loop joined at the maximum value and the minimum value as shown below.

16-bit binary operation


1
Example 1: For K32767 + K1 (overflow)
The operation result is K-32768 and the carry flag turns on.
1
Example 2: For K-32768 - K1 (underflow)
The operation result is K32767 and the carry flag turns on.

4-digit BCD code operation


Example 1: For H9999 + H1 (overflow)
The operation result is HO and the carry flag turns on.

Example 2: For HO - H 1 (underflow)
The operation result is H9999 and the carry flag turns on.

Chapter 2

## Basic Instructions

### 2.1 Composition of Basic Instructions

### 2.1.1 Sequence Basic Instructions

These basic instructions perform bit unit logic operations and are the basis of the relay sequence circuit.
As shown in the illustration below, this is expressed by the combination of the relay coil and contact.
There are several relay types which are explained in "Section 1.2 ", and the relay which can be specified depends on the instruction. Refer to the explanation of each instruction.

## Example:

## Start (ST) instruction

Read the on or off status of the specified contact.

## ST X0 <br> Read the status of external input (X0).

## Out (OT) instruction

Output the operation result to the specified coil.
OT
Y10

Outputs the operated result (on and off) to the external output (Y10).

## 15 <br> Example:



### 2.1.2 Basic Function Instructions

These are the timer, counter and shift register instructions.
To specify set values, the instructions are composed of several steps.

## Example:

Example of setting 3.0 seconds in the 0.1 second timer (timer 5 )


Timing begins when X0 turns on, and T5 turns on when 3.0 seconds elapses.

### 2.1.3 Control Instructions

These instructions determine the order and flow of program execution.
It is possible to change the sections to be executed, or to execute only the necessary segments, depending on the conditions.
Specify the section which will execute. This is composed of several steps.

## Master control relay

A certain part of the program (specified with MC or MCE) is only executed when the appropriate condition is met.

## Jump

Skips execution of part of the program (specified with JP or LBL) when the appropriate condition is met. This shortens program execution time.

## Step ladder control

Part of the program (specified with SSTP or STPE) is treated as an independent "process", and sequential and branch execution is carried out.

## Subroutine program

A program which is repeatedly executed for a particular operation is called as a subroutine (specified with SUB or RET) and executed when needed.

## Interrupt program

In addition to the normal program, enter an interrupt program (specified with INT or IRET) if you need a program which will execute immediately when a certain condition is met. When an interrupt is received, the normal program is interrupted and the interrupt program is executed.

### 2.1.4 Data Compare Instructions

This is a group of instructions which compare two data. A contact is turned on or off based on the result of the comparison. Each comparison instruction is composed of several steps.

## Example:

Example of comparing the value of DT10 to K100.


If the value of DT10 is less than K100, Y30 is turned on. If the value of DT10 is greater than K100, Y30 is turned off.

### 2.2 Number of Steps in the FP2, FP2SH and FP10SH

## Number of steps in basic instructions

Of the basic instructions used with the FP2, FP2SH and FP10SH, the number of steps in the following instructions changes depending on the number specified.

## Sequence basic instructions

With Start (ST), Out (OT), And (AN), Or (OR), and Keep (KP), the number of steps making up the instruction changes depending on the relay number which has been specified.

Type of relay		Relay number	Steps	
			Normal	With index modification
Input Output	X	0 to 127F	1	2
	Y	1280 or more	2	2
Internal relay	R	R0 to R111F	1	2
		R1120 or more	2	2
Special internal relay	R	R9000 to R910F	2	2
Link relay	L	L0 to L127F	1	2
		L1280 to L639F	2	2
Timer Counter	T	0 to 255	1	2
	C	256 or more	2	2

## Note

Index modification is possible only with the FP2, FP2SH and FP10SH.

## Basic function instructions

Type of instruction		Specified number	Steps		
		Normal	With index modification		
0.001 s units timer	TML		0 to 255	3	4
0.01 s units timer	TMR	256 or more	4	4	
0.1 s units timer	TMX				
1 s units timer	TMY	0 to 255	4	5	
		256 or more	5	5	
Counter	CT	0 to 255	3	4	
		256 or more	4	4	
Shift register	SR	WR0 to WR239	1	2	
		WR240 or more	2	2	

## Note

Index modification is possible only with the FP2, FP2SH and FP10SH.

## Control and subroutine instructions

Instructions	Steps	
	Normal specification	With index modification
JP	2	3
LOOP	4	5
CALL	2	3
FCAL	4	5

[^0]| $\boldsymbol{S T}$ | Start |
| :--- | :--- |
| $\boldsymbol{S T}$ | Start Not |
| $\boldsymbol{O}$ | Out |

Outline ST, ST/: Begins a logic operation.
OT: Outputs the operation result.

## Program example

Ladder Diagram	Boolean			
	Address		uc	
- - $\mathrm{x}^{\text {o }}$	0	ST	X	0
	1	OT	Y	10
X0 Start Out Y11	2	ST/	X	0
Start Not Out	3	OT	Y	11

## Operands

Instruction	Relay						Timer/Counter Contact		Index modifier   (*4)
	X	Y	R	$\begin{gathered} \mathrm{L} \\ (* 1) \end{gathered}$	$\begin{gathered} \hline \mathbf{P} \\ \text { (*2) } \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (* 3) \end{gathered}$	T	C	
ST, ST/	A	A	A	A	A	A	A	A	A
OT	N/A	A	A	A	N/A	N/A	N/A	N/A	

A: Available
N/A: Not Available
(*1) This cannot be used with the FP0/FP-e.
(*2) This can be used only with the FP2/FP2SH/FP10SH.
(*3) This can be used only with the FP2SH/FP10SH.
(*4) This can be used only with the FP0R/FP2/FP2SH/FP10SH.

## Explanation of example

Y10 goes on when X0 turns on.
Y11 goes on when X0 turns off.


## Description

The ST instruction starts logic operations and regards the input contact specified at the start as a Form A (normally open) contact.

The ST/ instruction starts logic operations and regards the input contact specified at the start as a Form B (normally closed) contact.
The OT instruction outputs the operation result to a specified coil.

## Precautions during programming

The ST and ST/ instructions start from the bus line.


The OT instruction cannot start directly from the bus line.


The OT instruction can be used consecutively.


Some input devices, such as emergency stop switches, usually have a Form B (normally closed) contact. When an emergency stop switch with a Form B contact is programmed, be sure to use the ST instruction.
$\square$

Outline Inverts the operation result up to this instruction.

## Program example

Ladder Diagram		Boolean			
		Address	Instruction		
Ho	Y10	0	ST	X	0
		1	OT	Y	10
	$\left[\begin{array}{c}\text { Y11 } \\ {[]}\end{array}\right.$	2	/		
	Not	3	OT	Y	11

## Explanation of example

Y10 goes on and Y11 goes off when X0 turns on.
Y10 goes off and Y11 goes on when X0 turns off.


## Description

The / instruction inverts the operation result up to this instruction.

Outline AN: Connects Form A (normally open) contacts in series.
AN/: Connects Form B (normally closed) contacts in series.

## Program example

Ladder Diagram	Boolean			
	Address	Instruction		
	0	ST	X	0
	1	AN	X	1
	2	AN/	X	2
	3	OT	Y	10

Operands

Instruction	Relay						Timer/Counter Contact		Index modifier (*4)
	X	Y	R	$\stackrel{L}{(* 1)}$	$\begin{gathered} \mathrm{P} \\ (* 2) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (* 3) \end{gathered}$	T	C	
AN, AN/	A	A	A	A	A	A	A	A	A

A: Available
N/A: Not Available
(*1) This cannot be used with the FP0/FP-e.
(*2) This can be used only with the FP2/FP2SH/FP10SH.
(*3) This can be used only with the FP2SH/FP10SH.
(*4) This can be used only with the FP0R/FP2/FP2SH/FP10SH.

## Explanation of example

Y10 goes on when both X0 and X1 turn on and also X2 turns off.


## Description

Performs a logical AND operation with the results of the immediately preceding serially connected operation.

## Precautions during programming

Use the AN instruction when normally open contacts (Form A contacts) are serially connected.
Use the AN/ instruction when normally closed contacts (Form B contacts) are serially connected.


The AN and AN/ instructions can be used consecutively.


Outline OR: Connects Form A (normally open) contacts in parallel.
OR/: Connects Form B (normally closed) contacts in parallel.

## Program example



## Operands

Instruction	Relay						Timer/Counter Contact		Index modifier   (*4)		
	X	Y	R	$\begin{gathered} \mathrm{L} \\ (* 1) \end{gathered}$	$\begin{array}{\|c} \mathbf{P} \\ (* 2) \end{array}$	$\underset{(*)}{E}$	T	C			
OR, OR/	A	A	A	A	A	A	A	A	A		Available   : Not Available

[^1](*2) This can be used only with the FP2/FP2SH/FP10SH.
(*3) This can be used only with the FP2SH/FP10SH.
(*4) This can be used only with the FP0R/FP2/FP2SH/FP10SH.

## Explanation of example

Y10 goes on when either X0 or X1 turns on or X2 turns off.


## Description

Performs a logical OR operation with the results of the immediately preceding operation connected in parallel.

## Precautions during programming

Use the OR instruction when normally open contacts (Form A contacts) are connected in parallel.
Use the OR/ instruction when normally closed contacts (Form B contacts) are connected in parallel.
The OR instruction starts from the bus line.
The OR and OR/ instructions can be used consecutively.



Availability
FP2/FP2SH/FP10SH
FP-X (V2.00 or more)
FPS (V3.10 or more)
FPOR

Outline Contact instructions for leading edge detection and trailing edge detection
Logic processing is only carried out during the scan following detection of a leading edge or trailing edge in the signal.

## Program example



## Operands

Instruction	Relay						Timer/Counter Contact		Index modifier
	X	Y	R	L	P	E	T	C	
ST $\uparrow$, ST $\downarrow$	A	A	A	A	A	N/A	A	A	N/A
AN $\uparrow$, AN $\downarrow$	A	A	A	A	A	N/A	A	A	N/A
$\mathbf{O R} \uparrow$, OR $\downarrow$	A	A	A	A	A	N/A	A	A	N/A

A: Available
N/A: Not Available

## Explanation of example

## ST $\uparrow$, AN $\uparrow$ and $\mathbf{O R} \uparrow$ instructions

Output to Y10 takes place for one scan only following a change in X 0 from off to on.


Output to Y 11 takes place for one scan only following a change in X 2 from off to on when X 1 is on.


Output to Y12 takes place for one scan only following a change in X 3 or X 4 from on to off.


Outline Leading edge detection and trailing edge detection output
The result of processing is output to the pulse relay for one scan only.

## Program example



## Operands

Instruction	Relay						Timer/Counter Contact		Index modifier
	X	Y	R	L	P	E	T	C	
OT $\uparrow$	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	A
OT $\downarrow$	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	A

A: Available
N/A: Not Available

## Explanation of example

Output to pulse relay "PO" takes place for one scan only following a change in X0 from off to on.


Output to pulse relay "P1" takes place for one scan only following a change in X1 from on to off.


## Description

## OT $\uparrow$ instructions

Output to the pulse relay takes place for one scan only following a change in the immediately previous processing result from off to on. The pulse relay goes on for one scan only.

## OT $\downarrow$ instructions

Output to the pulse relay takes place for one scan only following a change in the immediately previous processing result from on to off. The pulse relay goes on for one scan only.

## Precautions during programming

When the pulse relay (P) (which goes on for one scan only due to execution of a OT $\uparrow$ or $\mathbf{O T} \downarrow$ instruction) is used with a logic instruction (ST, AN or OR), operation is the same as a normal contact followed by DF instruction.
Example using an OT $\uparrow$ instruction and the pulse relay ( P )


Example using a DF instruction


Both example are executed as shown below.


## Alternative out

Outline Inverts the output condition each time the leading edge of the signal is detected.

## Program example



## Operands

Instruction	Relay						Timer/Counter Contact		Index modifier
	X	Y	R	L	P	E	T	C	
ALT	N/A	A	A	A	N/A	N/A	N/A	N/A	N/A

A: Available N/A: Not Available

## Explanation of example

Each time X 0 changes from off to on, the on/off state of output Y 10 toggles.


## Description

When the immediately previous processing result changes from off to on, the on/off state of the specified coil toggles.
The on/off state of the specified coil is held until an ALT instruction specifying that coil rises. (Flip-flop control)

## Precautions during programming

During the interval that the input remains on, the output only toggles when the rise occurs, not after that.
When the mode is changed to RUN or the power is turned on in RUN mode such that the input is initially on, toggling does not occur at the first scan.
When used with instructions which change the order of execution such as MC to MCE and JP to LBL (see below), take care because the operation of instructions may change depending on the timing of instruction execution and input.

- MC to MCE instructions
- JP to LBL instructions
- F19 (SJP) to LBL instructions
- LOOP to LBL instructions
- CNDE instruction
- Step ladder instructions
- Subroutine instructions

Outline Multiple blocks are connected in series.

## Program example

Ladder Diagram	Boolean			
	Address	Instruction		
	0	ST	X	0
' X0', X2 Y Y10	1	OR	X	1
, $0 \times 1$	2	ST	X	2
Block 2	3	OR	X	3
	4	ANS		
	5	OT	Y	10

## Explanation of example

Y10 goes on when X 0 or X 1 and X 2 or X 3 turn on.


## Description

Blocks connected in parallel are connected in series.


A block begins with the $\mathbf{S T}$ instruction.

## When blocks are consecutive

When blocks are consecutive, a division of the blocks should be considered, such as that shown below.


Outline Multiple blocks are connected in parallel.

## Program example

Ladder Diagram	Boolean			
	Address	Instruction		
	0	ST	X	0
- - - - -	1	AN	X	1
[]	2	ST	X	2
$\mathrm{x}_{2}{ }^{-} \times{ }^{-}$- Block 2	3	AN	X	3
- - - - - -	4	ORS		
	5	OT	Y	10

## Explanation of example

Y10 goes on when both X 0 and X 1 or both X 2 and X 3 turn on.


## Description

Blocks connected in series are connected in parallel.


A block begins with the $\mathbf{S T}$ instruction.

## When blocks are consecutive

When blocks are consecutive, a division of the blocks should be considered, such as that shown below.


Outline PSHS: Stores the operation result up to this instruction.
RDS: Reads the operation result stored by the PSHS instruction.
POPS: Reads and clears the operation result stored by the PSHS instruction.

## Program example



## Explanation of example

When X0 turns on:

- Stores the operation result up to the PSHS instruction and Y10 goes on when X1 turns on.
- Reads the stored result using the RDS instruction and Y11 goes on when X2 turns on.
- Reads the stored result using the POPS instruction and Y12 goes on when X3 turns off. Also clears the result stored by the PSHS instruction.



## Description

One operation result can be stored in memory and read, and multiple processes performed.

## PSHS (stores operation result):

Stores the operation result up to this instruction and continues execution from the next step.

## RDS (reads operation result):

Reads the operation result stored using the PSHS instruction and, using this result, continues operation from the next step.

## POPS (resets operation contents):

Reads the operation result stored using the PSHS instruction and, using this result, continues operation from the next step. Also clears the operation result stored by the PSHS instruction.
These instructions are used if there is branching from a single contact, followed by another contact or contacts.

## Precautions during programming

You can continue to use the same operation result several times by repeatedly using the RDS instruction. When you are finished, be sure to issue the POPS instruction.


An RDS instruction can be used repeatedly any number of times.


## Caution regarding repeated use of a PSHS instruction

The PSHS instruction is limited in the number of times that it can be used consecutively. The number of times that the instruction can be used consecutively before the next POPS instruction is as shown below.

Type	No. of consecutive times
FP0, FP-e, FPE, FP-X, FP0R	Up to 8 times maximum
FP2, FP2SH, FP10SH	Up to 7 times maximum

If the instruction is used consecutively more than the allowable number of times, be aware that the program will not run correctly.


If a POPS instruction is used during repeated use of a PSHS instruction, reading will take place in order beginning from the last data stored by the PSHS instruction.


## Leading edge differential

Outline DF: Turns on the contact for only one scan when the leading edge of the trigger is detected.
DF/: Turns on the contact for only one scan when the trailing edge of the trigger is detected.

## Program example

Ladder Diagram	Boolean			
	Address	Instruction		
Leading edge differential	0	ST	X	0
X0 . - $\downarrow$	1	DF		
$0-1$ - ${ }_{-}$	2	OT	Y	10
	3	ST	X	1
	4	DF/		
Trailing edge differential	5	OT	Y	11

## Explanation of example

Y10 goes on for only one scan when the leading edge (off $\rightarrow$ on) of XO is detected.
Y11 goes on for only one scan when the trailing edge (on $\rightarrow$ off) of X 1 is detected.


## Related instructions

With the FPD, FP-X, FPOR, FP2, FP2SH and FP10SH, the DFI instruction can be used. It is executed only for the first scan.

## Description

The DF instruction executes and turns on output for only one scan duration when the trigger changes from an off to an on state.
The DF/instruction executes and turns on output for only one scan duration when the trigger changes from an on to an off state.
There is no limit on the number of times the DF and DF/ instructions can be used.
With the $\mathbf{D F}$ and $\mathbf{D F}$ / differential instructions, only a change in the on and off status of the contact is detected. Thus, if the execution condition is initially on such as when the mode is changed to RUN or the power turned on in RUN mode, output will not be obtained.

## Example: Leading edge differential (DF) instruction



## Precautions during programming

With a program such as the one in the figure below, operation will be as follows.

(1) When X 1 is off, even if X 0 rises, Y 10 remains off.
(2) Even if X 1 rises when XO is on, Y 10 remains off.
(3) If X 0 rises when X 1 is on, then Y 10 will go on for one scan.

In the following program the execution condition is initially on, therefore output is not obtained.


With the following program, output is obtained.


Caution is required when using a differential instruction with instructions which change the order of instruction execution such as MC and MCE or JP and LBL (below instructions).

- MC to MCE instructions
- JP to LBL instructions
- F19 (SJP) to LBL instructions
- LOOP to LBL instructions
- CNDE instruction
- Step ladder instructions
- Subroutine instructions

When combining a differential instruction with an AND stack or pop stack instruction, take care that the syntax is correct.
Operation is as follows with a circuit like the one shown below.
Time chart


Please use a program as follows when Y 0 is turned on at the rise of either X 0 or X 1 .
Time chart


## Example of a differential instruction application

Using a differential instruction makes it easier to adjust a program.

## Application example for self-hold circuit

Using a differential instruction makes it possible to handle long input signals.


## Application example for alternating circuit

A differential instruction can also be applied to an alternating circuit to hold and release the circuit using a single signal.

## Example 1:



Example 2:


Outline When a leading edge of signal is detected, the contact goes on during that scan only. Leading edge detection is possible at the first scan.

## Program example



## Explanation of example

Output to Y10 takes place for one scan only following a change in X0 from off to on.
When the trigger XO is met after RUN is begun


When the trigger XO is met before RUN


## Description

When the trigger (execution condition) changes from off to on, the DFI instruction outputs (differential output) during the following scan only.
When the trigger (execution condition) is met before RUN is begun, output (differential output) takes place at the first scan.

There is no limit to the number of times the DFI instruction can be used.
When the mode is changed to RUN or the power is turned on in RUN mode and the trigger (execution condition) is already met, a DF instruction will not obtain output at the first scan. For this reason, use a DFI instruction.

## Precautions during programming

When used with instructions which change the order of execution such as MC to MCE and JP to LBL (see below), caution must be exercised.

- MC to MCE instructions
- JP to LBL instructions
- F19 (SJP) to LBL instructions
- LOOP to LBL instructions
- CNDE instruction
- Step ladder instructions
- Subroutine instructions

Take care that the syntax is correct when combining a differential instruction with an ANS or POPS instruction.

Set

Reset

Outline
SET: When the execution conditions have been satisfied, the output is turned on, and the on status is retained.
RST: When the execution conditions have been satisfied, the output is turned off, and the off status is retained.

## Program example



## Operands

Instruction	Relay						Timer/Counter   Contact		Index   modifier   $(* 3)$
	$\mathbf{X}$	Y	R	L   $(* 1)$	$\mathbf{P}$	E   $(* 2)$	T	C	
	N/A	A	A	A	N/A	A	N/A	N/A	A

A: Available N/A: Not Available
(*1) This cannot be used with the FPO/FP-e.
(*2) This can be used only with the FP2SH/FP10SH.
(*3) This can be used only with the FPOR/FP2/FP2SH/FP10SH.

Operand	Relay				Timer/Counter		Register		Index register	Constant			Index modifier
	WX	WY	WR	WL	SV	EV	DT	FL	1	K	H	M	
RST	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

* A word device can be used only by FP2/FP2SH.


## Explanation of example

When X0 turns on, Y30 goes on and holds on.
When X1 turns on, Y30 goes off and stays off.


## Description

The SET instruction executes when the trigger is turned on. Output turns on and holds on even if the trigger's state changes.

The RST instruction executes when the trigger is turned on. Output coil turns off and stays off even if the trigger's state changes.
You can use relays with the same number as many times as you like with the SET and RST instructions. (Even if a total check is run, this is not handled as a syntax error.)

## When SET and RST instructions are used

When the SET and RST instructions are used, the output changes with each step during processing of the operation.

## y <br> Example:

When X0, X1, and X2 are turned on


This portion of the program is processed as if Y 10 were on.

This portion is processed as if Y 10 were off.

This portion is processed as if Y 10 were on.

I/O update is performed when an ED instruction is executed, therefore the data actually output is determined by the final operation result. In the above example, the Y10 output is on.
To output a result while operation is still in progress, use a partial I/O update instruction (F143).

## Precautions during programming

The output destination of a SET instruction is held even during the operation of an MC instruction.
The output destination of a SET instruction is reset when the mode is changed from RUN to PROG. or when the power is turned off, except when a hold type internal relay is specified as the output destination.

## SET and RST instructions and differential instructions

Be sure to place a DF instruction before the SET and RST instructions to make program development and refinement easier.
This is particularly effective when the same output destination is used in several places in the program.


## Precautions when using the FP2SH and FP10SH

It is not possible to specify a pulse relay $(\mathrm{P})$ as the output destination for a SET or RST instruction.
All error alarm buffers can be cleared using the RST DT90400 instruction.
The head of the error alarm buffers can be cleared using the RST DT90401 instruction.

## How relays are handled with SET and RST instructions

Relays can be turned off using the RST instruction.
Using the various relays with the SET and RST instructions does not result in double output.
It is not possible to specify a pulse relay $(\mathrm{P})$ as the output destination for a SET or RST instruction.

Outline This is output which is accompanied by set or reset input, and which is retained.

## Program example

Ladder Diagram	Boolean			
	Address	Instruction		
	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	ST ST KP	$X$ $X$ R	0 1 30

## Operands

	Relay						Timer/Counter Contact		Index modifier(*2)		
Instruction	X	Y	R	$\begin{gathered} \mathrm{L} \\ (* 1) \end{gathered}$	P	E	T	C			
KP	N/A	A	A	A	N/A	N/A	N/A	N/A	A		Available Not Available

(*1) This cannot be used with the FP0/FP-e.
(*2) This can be used only with the FP2/FP2SH/FP10SH.

## Explanation of example

When X0 turns on, output relay R30 goes on and stays on.
R30 goes off when X1 turns on.


## Description

When the set input turns on, output of the specified relay goes on and stays on.
Output relay goes off when the reset input turns on.
The output relay's on state is maintained until a reset input turns on, regardless of the on or off states of the set input.
If the set input and reset input turn on simultaneously, the reset input has priority.

## Precautions during programming

When the KP instruction is programmed between the MC and MCE instructions, the status of output destination (relay) specified by the KP instruction is maintained.
If a internal relay (R) specified by the KP instruction is set as the non-hold type, it is reset when the mode of operation is changed from RUN to PROG or when the power is turned off.
(If an internal relay set as a hold type is specified as the output destination, a reset does not take place.)

## Outline No operation

## Program example

Ladder Diagram	Boolean			
	Address		uc	
	0	ST	X	0
	1	AN	X	1
	2	NOP		
	3	AN/	X	2
	4	OT	Y	10

## Description

This instruction has no effect on the operation result to that point.
The same operation takes place without a NOP instruction.
The NOP instruction can be used to make the program easier to read when checking or correcting.
When you want to delete an instruction without changing addresses, write a NOP instruction (overwrite the previous instruction).
When you want to move the addresses of one part of a program without changing the program, insert a NOP instruction.

This is a convenient means of breaking a long program into several blocks.

## Example:

To move the starting point of a program block from address 39 to address 40, insert a NOP instruction at address 39.

Address			
36	ST	X0	
.	OR	X1	
.	OT	Y10	This moves the
39	ST	X2	starting point to
40	AN	X3	address 40.
.	OT	R20	
-	ST	R2	
.	DF		
44		X3	


Address			
36	ST	X0	
$\cdot$	OR	X1	
$\cdot$	OT	Y10	
39	NOP		Insert a NOP
40	ST	X2	instruction.
41	AN	X3	
$\cdot$	OT	R20	
$\cdot$	ST	R2	
$\cdot$	DF		
45	ST	X3	

## Deleting a NOP instruction

To delete the NOP instruction after editing in the PROG. mode, use the programming tools.

Outline $\quad$ Sets the on-delay timer for 0.001 s units

## Program example



## Operands

Instruction	Relay				Timer/ Counter		Register			Index register		Constant		Index modifier   (*2)
	$\begin{array}{\|l\|} \hline W X \\ (* 1) \end{array}$	$\begin{array}{\|l\|} \hline W Y \\ (* 1) \end{array}$	$\begin{array}{\|l\|} \hline \text { WR } \\ (* 1) \end{array}$	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	$\begin{array}{\|l\|} \hline \text { EV } \\ (* 1) \end{array}$	$\begin{aligned} & \hline \text { DT } \\ & (* 1) \end{aligned}$	$\begin{aligned} & \hline \text { LD } \\ & (* 1) \end{aligned}$	$\begin{gathered} \mathrm{FL} \\ (* 3) \end{gathered}$	IX	IY	K	H	
Set value	A	A	A	A	A	A	A	A	A	N/A	N/A	A	N/A	A

A: Available N/A: Not Available
(*1) This can be used with the FP2SH/FP10SH/FP-X (V2.0 or more)/FPE (V3.10 or more)/FP0R.
(*2) This can be used with the FP2/FP2SH/FP10SH.
$(* 3)$ This can be used with the FP2SH/FP10SH.

## Description

The timer is reset and does not retain its data when the power is turned off or the mode is changed from RUN to PROG. (If you need to retain the operating state, set system register 6. In that case, a battery must be used.)
Note) The FPO T32 is the type with a built-in secondary battery.
When the trigger (execution condition) is on, the set time decrements until the elapsed value reaches zero, and at this point the timer contact Tn ( n represents the timer contact number) goes on.
If the trigger (execution condition) goes off during decrement operation, operation stops and the elapsed value is reset to zero (cleared).

An OT instruction can appear immediately after a timer coil.

## Setting the time in the timer

The time setting is equal to the time increment multiplied by the value set in the timer.
The value set in the timer can be a decimal value within the range K1 to K32767. The time increment is 0.001 seconds, producing a time range of 0.001 to 32.767 seconds.

## Example:

When the value K43 is set, the time will be $0.001 \times 43=0.043$ seconds.
When the K500 is set, the set time will be $0.001 \times 500=0.5$ seconds.

## Precautions during programming

The timer value decrements during processing, therefore, create the program so that one decrement occurs during one scan. (A correct result will not be obtained if no processing operations or multiple processing operations take place during one scan due to an interrupt program or JP/LOOP instruction.) If multiple processing operations are needed during one scan, set system register 4.
Take care that the syntax is correct when combining a timer instruction with an ANS or POPS instruction.

## 1) Specifying the timer setting with a decimal constant $K$

## Timer operation when a decimal constant $K$ is specified

When a K constant is specified for the timer setting, the memory area SV with the same number as the timer number is used as the setting value area.
(1) When the mode is changed to RUN or the power is turned on in RUN mode, the timer setting will be transferred to the setting value area SV with the same number as the timer.

(2) When the trigger X0 (timer execution condition) rises from off to on, the setting is transferred from the setting value area SV to the elapsed value area EV with the same number.
(The same operation takes place if the mode is changed to RUN while the trigger (execution condition) is on.)
(3) With each scan, the value in the elapsed value area EV decrements if the trigger (execution condition) is on.

(4) When the value in the elapsed value area EV reaches zero, the timer contact $T$ with the same number goes on.


## Important points when specifying constant (K)

The constant (K) can be changed during RUN.
A specified constant $(K)$ cannot be modified by index modification.
This program cannot be executed.


When the constant $(\mathrm{K})$ is specified, the timer number cannot be modified by index modification.
This program cannot be executed.


## 2) Using a word memory area for a timer setting

## Timer operation when a word memory area is specified

A word memory area specified as a set value is used as a setting value area
(1) When the execution condition (X0) for a high-level instruction goes on, the setting value is set in the specified area (this explanation uses DT0 as an example).
The following diagram uses the F0 (MV) instruction as an example.

(2) When the timer execution condition rises from off to on, the value is transferred from the setting value area (DT0 in this example) to the elapsed value area EV with the same number as the timer.
(The same operation takes place if the mode is changed to RUN while the trigger (execution condition) is on.)
(3) With each scan, the value in the elapsed value area EV decrements if the trigger (execution condition) is on.

(4) When the value in the elapsed value area EV reaches zero, the timer contact $T$ with the same number goes on.


## Important points when specifying a word memory area

Even if the value of the specified word memory area is changed during decrement operation, decrement operation will continue using the value prior to the change. Timer operation using the new value will not begin until the next time the execution condition changes from off to on.
There are both word memory area which reset (non-hold type) and do not reset (hold type) when the power is turned off or the mode changed from RUN to PROG. If you need to retain the value written to a word memory area when the power is turned on a second time, or after the mode is changed from RUN to PROG., use a memory area which has been set for hold type with the system register.

When a word memory area is used for a set value, the memory area address and timer number can be modified by index modification.

Example: Modifying a memory area address


When $\mathrm{I} 2=\mathrm{K} 10$, DT10 is used as the setting value area.

- Setting value area: DT10
- Elapsed value area: EV5
- Timer contact: T5

Example: Modifying a timer number


When $\mathbf{I O}=\mathbf{K 1 0}$, the timer operates as TML15.

- Setting value area: DT0
- Elapsed value area: EV15
- Timer contact: T15

The timer contact can also be modified by index modification.

## Notes

- When a timer number is modified, the number of steps is 4 regardless of the value in the index register.
- When both the memory area address and timer number are modified, different index registers can be used for each.
Examples of timer instruction applications
Serial connection of timer


Boolean

ST	X	0
TMX		0
K		30
TML		1
KT		200
ST	T	0
OT	Y	10
ST	T	1
OT	Y	11

Time chart


Parallel connection of timer


## Changing set values based on specified conditions

The set value is K 50 when X 0 is on and K 30 when X 1 is on.

Ladder diagram


Boolean

ST/	X
AN	X 0
F0	(MV)
	K 500
	DT 0
ST/	X 0
AN	X 1
FO	(MV)
	K 300
	DT 0
ST	X 2
TML	5
	DT 0
ST	T 5
OT	Y 30

Time chart


## Example of setting a set value from external digital switches

The BCD data of the digital switches connected to XO through XF is converted and becomes the set value

Ladder diagram


Boolean

ST	R	10
F81	(BIN)	
	WX	0
	DT	1
ST	R	11
TML		5
	DT	1
ST	T	5
OT	Y	30

## Timer (0.01s units)

Timer ( 0.1 s units)
Timer (1.0s units)

Outline TMR:Sets the on-delay timer for 0.01 s units
TMX: Sets the on-delay timer for 0.1 s units
TMY: Sets the on-delay timer for 1.0 s units

## Program example

Ladder Diagram	Boolean			
	Address	Instruction		
Unit of timer- Timer number	0	ST	X	0
Trigger	1	TMX		5
0 -		K		30
T5 Elapsed value- Y37	4	ST	T	5
Timer contact of timer No. 5	5	OT	Y	37

## Operands

Instruction	Relay				Timer/ Counter		Register			Index register		Constant		Index modifier   (*2)
	$\begin{array}{\|l\|} \hline W X \\ (* 1) \end{array}$	$\begin{array}{\|l\|} \hline W Y \\ (* 1) \end{array}$	$\begin{array}{\|l\|} \hline \text { WR } \\ (* 1) \end{array}$	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	$\begin{array}{\|l\|} \hline \text { EV } \\ (* 1) \end{array}$	$\begin{aligned} & \hline \text { DT } \\ & (* 1) \end{aligned}$	$\begin{aligned} & \hline \text { LD } \\ & (* 1) \end{aligned}$	$\begin{gathered} \mathrm{FL} \\ (* 3) \end{gathered}$	IX	IY	K	H	
Set value	A	A	A	A	A	A	A	A	A	N/A	N/A	A	N/A	A

A: Available N/A: Not Available
(*1) This can be used with the FP2SH/FP10SH/FP-X (V2.0 or more)/FP $\Sigma$ (V3.10 or more)/FP0R.
(*2) This can be used with the FP2/FP2SH/FP10SH.
(*3) This can be used with the FP2SH/FP10SH.

## Description

The timer is a non-hold type that is reset if the power is turned off, or if the mode is changed from the RUN to the PROG mode. (If it is necessary to hold the operation state, set system register 6. In that case, a battery must be used.)
Note) The FPO T32 is the type with a built-in secondary battery.
When the trigger is on, the set time [ n ](K1) decrements, and when the elapsed value reaches zero, timer contact Tn ( n is the timer contact number) turns on.
If the trigger turns off during operation, operation stops and the elapsed value is reset (cleared to 0 ).
An OT instruction can be entered immediately after a timer coil.

## Timer set time

The formula of the timer set time is [the time unit] $\times$ [set value]
The timer setting [n](K1) must be a decimal constant from K1 to K32767.

- TMR is from 0.01 to 327.67 seconds in increments of 0.01 seconds.
- TMX is from 0.1 to 3276.7 seconds in increments of 0.1 seconds.
- TMY is from 1 to 32767 seconds in increments of 1 second.


## Example:

## When K43 is set in TMX, the set time is $0.1 \times 43=4.3$ seconds. <br> When K500 is set in TMR, the set time is $0.01 \times 500=5$ seconds.

## Precautions during programming

In order to ensure correct timer operation, the TM instruction should be executed in every scan. Be aware of this when using instructions like INT, JP and LOOP.
When a timer instruction is combined with an ANS or POPS instruction, take care that the syntax is correct.

## Timer operation

The following is an example of setting the set value with a K constant. For an explanation of operation when an set value area (SV) is specified, see the following pages.
(1) When the mode is changed to RUN or when the power is turned on with the mode set to RUN, the timer set value is transferred to the set value area (SV) with the same number.
(1)Transfers to SV area

(2) When the timer trigger rises from off to on, the setting is transferred from the set value area (SV) to the elapsed value area (EV) with the same number. (The same operation takes place if the mode is changed to RUN when the trigger is on.)
(3) The value in the elapsed value area (EV) decrements every scan if the trigger stays on.

(4) When the value in the elapsed value area (EV) reaches zero, the timer contact ( T ) with same number turns on.


## Examples of timer instruction applications

## Serial connection of timer

## Ladder diagram



Time chart


## Parallel connection of timer

## Ladder diagram



Boolean

ST	X	0
PSHS		
TMX		0
K		30
POPS		1
TMX		1
K		20
ST	T	0
OT	Y	10
ST	T	1
OT	Y	11

Time chart


## Directly specifying a set value area number as a timer setting value

With FP0/FP-e/FPE/FP-X/FP2/FP2SH/FP10SH with a CPU Ver. 4.4 or later with a CPU Ver. 2.7 or later, the set value area number can be specified directly as the set value $n$.


The above program operates as follows:
(1) When trigger X0 is on the data transfer instruction F0 (MV) is executed, set the K30 in SV5.
(2) When trigger X1 turns on, decrement operation begins from the set value 30 .

Specify n (the number of the set value area SV) to be the same number as the timer.


Even if the value of the set value area (SV) is changed during decrement operation, the decrement operation will continue from the value before the change. Timer operation from the new value will not begin until decrement operation has ended or is interrupted and the trigger subsequently changes from off to on.
The set value area (SV) is normally a non-hold type which resets if the power is turned off or the mode is changed from RUN to PROG.
If the SV value was changed while in the RUN mode, and that value is to be used as the set value, without being reset, the next time that the power supply is turned on, or when the mode is changed from RUN to PROG, system register 6 should be used to specify the value as a hold type.

## Timer operation when a set value area number is directly specified

(1) When the trigger for a high-level instruction is on, the value is set in the set value area (SV). The following diagram shows an example of using the high-level instruction FO(MV).

(2) When the timer trigger rises from off to on, the setting is transferred from the set value area (SV) to the elapsed value area (EV) with the same number. (The same operation takes place if the mode is changed to RUN when the trigger is on.)
(3) The value in the elapsed value area (EV) decrements if the trigger stays on every scan.

(4) When the value in the elapsed value area (EV) reaches zero, the timer contact ( $T$ ) with same number turns on.


## Examples of applying direct specification of set value area numbers

Changing set values based on specified conditions
The set value is K50 when X0 is on and K30 when X1 is on.

## Ladder diagram



Boolean

ST/	X	1
AN	X	0
FO		(MV)
	K	50
	SV	5
ST/	X	0
AN	X	1
FO		$(M V)$
	K	30
	SV	5
ST	X	2
TMX		5
	SV	5
ST	T	5
OT	Y	30

Time chart


## Example of setting a set value from external digital switches

The BCD data of the digital switches connected to X0 through XF is converted and becomes the set value

## Connection example



## Ladder diagram



## Boolean

ST	R	10
F81	(BIN)	
	WX	0
	SV	5
ST	R	11
TMX		5
	SV	5
ST	T	5
OT	Y	30

With the FP2SH/FP10SH, FP-X (Ver 2.0 or later), a memory area such as a data register DT can be specified as the set value. Regarding the operation, refer to the operation when specifying the SV.

## CT <br> Counter

Outline Decrements a preset counter.

## Program example



## Operands

Instruction	Relay				Timer/ Counter		Register			Index register		Constant		Index modifier (*2)
	$\begin{array}{\|l\|} \hline W X \\ (* 1) \end{array}$	$\begin{array}{\|l\|l\|} \hline \mathbf{W Y} \\ (* 1) \end{array}$	$\begin{array}{\|l\|} \hline \text { WR } \\ (* 1) \end{array}$	$\begin{aligned} & \mathrm{WL} \\ & \left(*_{1}\right) \end{aligned}$	SV	$\begin{array}{\|l\|} \hline \text { EV } \\ (* 1) \end{array}$	DT   (*1)	$\begin{array}{\|c\|} \hline \text { LD } \\ \text { (*1) } \end{array}$	$\begin{array}{\|c\|} \hline F L \\ \hline(* 3) \end{array}$	IX	IY	K	H	
Set value	A	A	A	A	A	A	A	A	A	N/A	N/A	A	N/A	A

A: Available N/A: Not Available
(*1) This can be used with the FP2SH/FP10SH/FP-X (V2.0 or more)/FP $\Sigma$ (V3.10 or more)/FPOR.
(*2) This can be used with the FP2/FP2SH/FP10SH.
(*3) This can be used with the FP2SH/FP10SH.

## Explanation of example

When the leading edge of X 0 is detected ten times, counter contact C100 turns on and then Y31 goes on.
The elapsed value is reset when X 1 turns on.


## Description

The counter is a decremental preset counter.
At the fall time when the reset input goes from on to off, the value of the set value area (SV) is preset in the elapsed value area (EV).
When the reset input is on, the elapsed value is reset to 0 .
When the count input changes from off to on, the set value begins to decrement, and when the elapsed value reaches 0 , the counter contact Cn ( n is the counter number) turns on.
If the count input and reset input both turn on at the same time, the reset input is given priority.
If the count input rises and the reset input falls at the same time, the count input is ignored and preset is executed.
An OT instruction can be entered immediately after a counter instruction.

## Setting the counting value

The counting value can be set to a decimal constant (K constant) from K0 to K32767.

## Counter operation

The following are examples of specifying a K constant as the set value. For an explanation of operation when a set value area number is specified, see following pages.
(This example shows a case in which " 100 " is specified for the counter.)
(1) When the mode is changed to RUN or the power is turned on with the mode set to RUN, the counter set value is transferred to the set value area (SV) with the same number.
(2) When the reset input falls, the value in the set value area (SV) is preset in the elapsed value area (EV).

(3) Each time the count input XO turns on, the value in the elapsed value area (EV) decrements.


* next page
(4) When the value in the elapsed value area (EV) reaches zero, the counter contact (C) with the same number turns on.



## Precaution during programming

When combining a counter instruction with an AND stack instruction or pop stack instruction, take care that the syntax is correct.

## Precautions of counting input detection

In a counter instruction, the decrement takes place when the rise of the count input from off to on is detected.
If the count input remains continuously on, since a decrement will only take place at the rise, no further subtraction will take place.
In cases where the count input is initially on such as when the mode is changed to RUN or the power is turned on with the mode set to RUN, decrement operation will not take place at the first scan.


When used in combination with instructions which change the order of instruction execution such as MC and MCE or JP and LBL (see below), the operation of the instruction may change depending on the timing of instruction execution and the count input. Exercise caution in these cases.

- MC to MCE instructions
- JP to LBL instructions
- F19 (SJP) to LBL instructions
- LOOP to LBL instructions
- CNDE instructions
- Step ladder instructions
- Subroutine instructions


## Related instructions

Counter instructions also include an up/down counter instruction (F118).
An increment instruction (F35) can be used to provide the same type of function.

## Directly specifying a set value area number as a counter set value

With FP0/FP-e/FPE/FP-X/FP2/FP2SH/FP10SH with a CPU of Ver. 4.4 or later, the set value area number can be specified directly as the set value $n$.


The above program operates as follows:
(1) When trigger X0 is on the data transfer instruction [F0 (MV)] is executed, set the K30 in SV100.
(2) When the count input X1 turns on, decrement operation begins from the set value 30 .

Specify [ $n$ ] (the number of the set value area SV) to be the same number as the counter.


Even if the value in the set value area (SV) is changed during decrement operation, the decrement operation will continue from the value before the change. Counter operation from the new value will not begin until the counter is reset and the count input subsequently changes from off to on.

## Counter operation when a set value area number is directly specified

(1) When the trigger for a high-level instruction is on, the value is set in the set value area (SV). The following diagram shows an example of using the high-level instruction FO (MV).

(2) When the reset input is off, the value in the set value area (SV) is preset in the elapsed value area (EV).

(3) Each time the count input X 1 turns on, the value in the elapsed value area (EV) decrements.

(4) When the elapsed value area (EV) reaches zero, the counter contact $C$ with the same number turns on.


## Examples of applying direct specification of set value area numbers

## Changing set values based on specified conditions

The set value is K 50 when X 0 is on and K 30 when X 1 is on.

## Ladder diagram



Boolean

ST/	X	1
AN	X	0
F0		(MV)
	K	50
	SV	100
ST/	X	0
AN	X	1
FO		$($ MV)
	K	30
	SV	100
ST	$X$	2
ST	X	3
CT		100

SV 100
ST C 100
OT Y 30

Time chart
Example when X0 turns on


## SR

## Shift register

Outline One bit shift of 16-bit [word internal relay (WR)] data to the left.

## Program example



## Operands

Instruction	Relay				Timer/Counter		Register			Index register		Constant		Indexmodifier (*)
	WX	WY	WR	WL	SV	EV	DT	LD	FL	IX	IY	K	H	
D: Data area	N/A	N/A	A	N/A	A									

(*) This can be used only with the FP2/FP2SH/FP10SH.

A: Available N/A: Not Available

## Explanation of example

If the X1 turns on when X2 is in the off state, the contents of the internal relay WR3 (internal relays R30 to R3F) are shifted one bit to the left.
" 1 " is shifted in R30 if X0 is on, and " 0 " is shifted in R30 if X0 is off.
If the X 2 turns on, the contents of WR3 are reset to 0 .


## Description

Shifts the specified data area (WR) one bit to the left.
When the shift input turns on (rises), the contents of WR are shifted one bit to the left.
During the shift, 1 is set in the empty bit (least significant bit) if the data input is on, or 0 if the data input is off. When shift input is turned on:


Data input (X0) on: set bit to 1.
Data input (X0) off: set bit to 0 .
When the reset input turns on, the contents of WR are cleared.
When reset input is turned on:


## Precautions during programming

The SR instruction needs data input, a shift input, and a reset input.
When the reset input and the shift input are detected simultaneously, the reset input has priority.


If the internal relay area is specified as a hold type, take care that the data in the area is not reset to " 0 " when the power turns on.
When combining a shift register instruction with an ANS or POPS instruction, take care that the syntax is correct.

## Cautions on shift input detection

With SR instructions, shift operation takes place when the off-on rise of the shift input is detected.
If the shift input remains continuously on, a shift will only take place at the rise. No further shifts will take place. In cases where the shift input is initially on such as when the mode is changed to RUN or when the power is turned on with the mode set to RUN, a shift operation will not take place at the first scan.


When used in combination with instructions which change the order of instruction execution such as MC and MCE or JP and LBL (see below), the operation of the instruction may change depending on the timing of instruction execution and the shift input.
Exercise caution in these cases.

- MC to MCE instructions
- JP to LBL instructions
- F19 (SJP) to LBL instructions
- LOOP to LBL instructions
- CNDE instruction
- Step ladder instructions
- Subroutine instructions


## Related instructions

In addition to the shift register instruction, there is also a left/right shift register (F119).
The same type of operation can also be implemented using a data shift instructions ( $\mathbf{F 1 0 0}$ to $\mathbf{F 1 1 3}$ ) or a data rotate instructions ( $\mathbf{F} 120$ to $\mathbf{F 1 2 3}$ ).

Outline Executes the program between the MC and MCE when the execution condition turns on.
When the execution condition is off, output between the MC and MCE is turned off.

## Program example



## Explanation of example

Executes the program from the MC1 instruction to the MCE1 instruction when the execution condition X0 turns on.
If the execution condition is off, output is turned off without processing being carried out between the MC1 and MCE1 instructions.


## Description

Executes program between the MC and MCE instructions when the execution condition turns on.
When the execution condition is in the off state, the instructions operate as follows.

Instruction	Condition of input and output
OT	All off
KP	Holds the state.
SET	Holds the state.
RST	Holds the state.
TM	Reset
CT	Holds the value.
SR	Holds the value.
Differential	See next page.
Other instructions	Not executed

You must be careful when using one of the instructions below, which are executed by detecting the leading edge of execution condition such as the differential instruction.

- DF instruction
- Count input for CT instruction
- Count input for F118 (UDC) instruction
- Shift input for SR instruction
- Shift input for F119 (LRSR) instruction
- NSTP instruction
- Differential execution type high-level instruction (this instruction is specified by P and a number)


## Operation of differential instructions between MC and MCE

If a differential instruction is used between MC and MCE, the output will vary as follows depending on the timing of the MC execution condition and the input of differential instruction.


## Time chart 1



The input X1 of the differential instruction has not changed with respect to the previous execution, therefore differential output is not obtained.

## Time chart 2



The input X1 of the differential instruction has changed from off to on with respect to the previous execution, therefore differential output is obtained.

Output will not be obtained if the same execution condition is specified for an MC instruction and a differential instruction. If output is needed, enter the differential instruction outside of the MC to MCE instruction sequence.


## Precautions during programming

A second MC-MCE instruction pair can be entered (nested) between an initial MC-MCE instruction pair.
(There is no limit to the number of nestings.)


The program cannot be executed if:
If either MC or MCE is missing
The order of the MC and MCE instructions is reversed.


There are two or more master control instruction sets with the same number.


## JP

Jump
Label

Outline Skips to the LBL instruction with the same number as the JP instruction.

## Program example

Ladder Diagram	Boolean			
	Address	Instruction		
	10	ST	X	1
	11	JP		1
	:	幺		
	20	LBL		1

## Explanation of example

When the execution condition X1 turns on, the program skips from JP1 to LBL1.


## Description

When the execution condition turns on, the program jumps to the label (LBL) instruction that has the same number as the specified jump number.

The program then continues with the instructions starting from the address of the label that is the jump destination.

The same label is used for the JP, LOOP and F19(SJP) instructions. Any of these instructions can be used as the starting point for the jump destination.

Two or more JP instructions with the same number can be used in a program.


Two or more LBL instructions with same number cannot be specified in the same program.
If a label for the jump destination is not programmed, a syntax error will occur.

You must be careful when using one of the instructions below, which are executed by detecting the rise of a execution condition such as the differential instruction.

- DF (leading edge differential)
- Count input with CT (counter)
- Count input with F118 (up/down counter)
- Shift input with SR (shift register)
- Shift input with F119 (left/right shift register)
- NSTP (next step)
- Differential execution type high-level instruction (this instruction is specified by P and a number)


## Precautions during programming

If the address of the LBL instruction precedes the address of the JP instruction, the scan will not terminate and an operation bottleneck error may occur.
The JP instruction and LBL instruction cannot be used in the step ladder area (the area between SSTP and STPE).
You cannot perform a jump from a main program to a sub program (a subroutine program or interrupt program after the ED instruction), from a sub program to a main program, or from a sub program to another sub program.

## TM, CT, and SR instruction operation between JP and LBL instructions

When the LBL instruction is located after the JP instruction:

- TM instruction: The TM instruction is not executed.

If it is not executed once during a single scan the correct time cannot be guaranteed.

- CT instruction: Even if the count input is on, counting is not performed. The elapsed value is preserved.
- SR instruction: Even if the shift input is on, no shift is performed. The contents of the specified register are preserved.
When the LBL instruction is located before the JP instruction:
- TM instruction: Because the TM will run several times during a single scan, the correct time cannot be guaranteed.
- CT instruction: If the state of the count input does not change during the scan, it will operate in the usual way.
- SR instruction: If the state of the shift input does not change during the scan, it will operate in the usual


The program jumps when the execution condition turns on.


The program is repeated when the execution condition turns on.

Note
With the FP2SH and FP10SH, the time can be kept accurately even if these are executed multiple times during a single scan. To use these together with the JP instruction, change the setting of system register 4.

## Differential instruction operation between JP and LBL instructions

If a differential instruction is used in the area between a JP and LBL instruction, be aware that the output will differ as shown below depending on the execution condition of the JP and the input timing of differential instruction.


## Time chart 1



## Time chart 2



When the execution condition for the JP instruction equals the execution condition for the differential instruction, the leading edge (or trailing edge) of the execution condition for the differential instruction will not be detected.
If the differential output is required, do not write the differential instruction between the JP and LBL instructions.


Outline Skips to the LBL instruction that has the same number as the LOOP instruction and executes what follows, repeatedly, until the data of a specified operand becomes " 0 ".

## Program example



## Operands

Instruction	Relay				Timer/Counter			Register			Index   register		Constant		Index   modifier   $(* 5)$
	WX	WY	WR	WL   $(* 1)$	SV	EV	DT	LD   $(* 1)$	FL   $(* 2)$	IX   $(* 3)$	IY   $(* 4)$	K	H	A	
	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A	

(*1) This cannot be used with the FPO/FP-e.
(*2) This cannot be used with the FPO/FP-e/FP0R/FPE/FP-X.
(*3) With the FP0R, FPE, FP-X, FP2, FP2SH and FP10SH, this is 10 to IC.
(*4) With the FPOR, FP $2, F P-X, F P 2, ~ F P 2 S H$ and FP10SH, this is ID.
(*5) Only FP2, FP2SH and FP10SH label numbers can be used.

## Description

When the execution condition (trigger) turns on, 1 is subtracted from the contents of $S$ and if the result is other than 0 , the program jumps to the label (LBL instruction) that has the same number as the specified number. The program then continues with the instructions starting from the address of the label that is the loop destination.
Set the number of times to execute the program with the LOOP instruction. When the number of times set in $S$ (K constant) reaches 0 , the jump will not occur even if the execution condition (trigger) turns on.


If the value of DTO is K5, then after performing the jump 5 times, even if X 1 is set to on, the jump operation is not executed.

If the contents of memory area specified by $S$ is 0 from the beginning, the jump operation is not executed (it is ignored).

A label is common for the JP instruction, the LOOP instruction and the F19 (SJP) instruction. One can be used as the destination for all instructions as many times as required.


Two or more LBL instructions with the same number cannot be specified in a program.
With the FP2, FP2SH and FP10SH, index modification of the number specified by the LOOP instruction is possible.

If a label for the loop destination is not programmed, a syntax error will occur.

## Flag conditions

- Error flag (R9007): Turns on and remains on when the specified value in the data area " S " becomes less than " 0 " (when the most significant bit (bit position 15) of the specified data area becomes " 1 ").
- Error flag (R9008): Turns on for an instant when the specified value in the data area becomes less than " 0 " (when the most significant bit (bit position 15) of the specified data area becomes " 1 ").


## TM, CT, and SR instruction operation between the LOOP and LBL instructions

When the LBL instruction is located after the LOOP instruction:

- TM instruction: The TM instruction is not executed.

If it is not executed once during a single scan, the correct time cannot be guaranteed.

- CT instruction: Even if the count input is on, counting is not performed. The elapsed value is preserved.
- SR instruction: Even if the shift input is on, no shift is performed.
The contents of the specified register are preserved.
When the LBL instruction is located before the LOOP instruction:
- TM instruction: Because the timer will run several times during a single scan, the correct time cannot be guaranteed (see note).
- CT instruction: If the state of the count input does not change during the scan, it will operate in the usual way.
- SR instruction: If the state of the shift input does not change during the scan, it will operate in the usual way.

The program jumps when the execution condition (trigger) turns on.
(trigger) turns on.

The program is repeated when the execution condition (trigger) turns on.

$\qquad$ i- $\square$ Note

With the FP2SH and FP10SH, the time can be kept accurately even if these are executed multiple times during a single scan. To use these together with the LOOP instruction, change the setting of system register 4.

## Precautions during programming

When the label is written in an address before the LOOP instruction, be careful of the following points.
Be sure to have the instruction that sets the number of loop cycles before the area between the LBL and LOOP instructions.
Set the instructions that will be repeated between LBL and LOOP so that they have the same trigger as the LOOP instruction.
During repeating, it is possible that one scan can exceed the surveillance time for operation jams and cause a operation bottleneck error.

## Example 1: Execute 5 times of both $\mathrm{F0}$ (MV) instructions when X 5 is on.



## Example 2: Send the value of DT100 to DT200 through DT219.



The LOOP instruction and LBL instruction cannot be used in the step ladder area (the area between SSTP and STPE).
You cannot perform a jump from a main program to a sub-program (a subroutine program or interrupt program after the ED instruction), from a sub-program to a main program, or from a sub-program to another sub-program.
You must be careful when using one of the instructions below, which are executed by detecting the leading edge of execution condition (trigger) such as the differential instruction.

- DF (leading edge differential)
- Count input of CT (counter)
- Count input of F118 (up/down counter)
- Shift input of SR (shift register)
- Shift input of F119 (left/right shift register)
- NSTP (next step)
- Differential execution type high-level instruction (this instruction is specified by $P$ and a number)

Outline Stops execution in TEST/RUN mode.

## Program example

Ladder Diagram			Boolean			
				Instruction		
			10	ST	X	0
			11	OT	Y	30
			12	BR		
			13	ST	X	1
			14	OT	Y	

## Description

The BRK instruction is effective only in the TEST/RUN mode. In the normal RUN condition, this instruction is not executed.
In the TEST/RUN mode, program execution is temporarily stopped with the address containing this BRK instruction.
The BRK instruction is used for checking the program by executing a part of the program.

## How to use the BRK instruction

## Procedure:

1. Set the INITIALIZE/TEST switch of the CPU to the TEST side.
2. Select the modes for TEST/RUN operation by using programming tool software, as follows:

- Output: DISABLE or ENABLE (select one according to your requirements)
- BRK: VALID (in the BRK instruction valid mode)
- Test mode: ConTI (in the continuous run mode)

3. Change the mode to RUN for starting TEST/RUN operation.

4. When XO is in the on state, the BRK instruction is executed and program execution stops.
5. Press the "F3" key while holding down the "Shift" key in the MONITOR \& TEST RUN window of the programming tool software to continue the program execution.
If a BRK instruction is executed, program execution stops.

6. Up to the end of the program, proceed according to the operation in steps 4 and 5 above. If you want, change to the step operation mode, in which the program stops execution after execution of each instruction.

Outline Indicates the end of the ordinary program.

## Program example



## Description

Indicates the end of the ordinary program.

## Program area

Address $0 |$|  |
| :---: |
|  |
|  |
|  |
|  |
| Ordinary program |
| Subroutine program |
| Interrupt program |

Program areas are divided into an ordinary program area (main program) and "subroutine" and "interrupt program" areas (sub-programs) using this instruction.

Enter subroutine programs and interrupt programs after the ED instruction.

Outline Ends one scan of the program when the execution condition (trigger) turns on.

## Program example

Ladder Diagram	Boolean			
	Address	Instruction		
	0	ST	X	0
	1	OR	Y	30
X0 X1 Y30	2	AN/	X	1
0 Y30	3	OT	Y	30
- Execution condition	$\vdots$	!		
X3 Execution condition (Trigger)	96	ST	X	3
	97	CNDE		
	98	ST	R	0
	99	AN/	X	2
	100	OT	Y	31

## Description

The CNDE instruction enables you to end one scan of the program.
When the execution condition (trigger) turns on, the program finishes and the input, output, and other such operations are performed. When the operations are completed, the program then returns to the starting address.
You can adjust the timing that operations are performed by performing the operations only after a required number of program scans are completed.
The CNDE instruction cannot be performed in sub-programs such as subroutine programs or interrupt programs. Use the CNDE instruction in the main program area only.
Two or more CNDE instructions can be used within the main program.
You must be careful when using one of the instructions below, which are executed by detecting the leading edge of a execution condition (trigger) such as the differential instruction.

- DF (leading edge differential)
- Count input for CT (counter)
- Count input for F118 (UDC) (up/down counter)
- Shift input for SR (shift register)
- Shift input for F119 (LRSR) (left/right shift register)
- NSTP (next step)
- Differential execution type high-level instruction (this instruction is specified by P and a number)


## Basic Instructions

Program execution when the CNDE
instruction is executed (when X3 turns on).


Outline Adds page break for use when printing.

## Program example



## Explanation of example

Insert the EJECT instruction in the address where you want the page to break when printing out the program you created. In the above, the page will break at address 2 .

## Description

When printing out the program created with the software tool, the page will break at the position where this instruction is inserted.
As with the NOP instruction, processes in the program will not be affected.

## SSTP

NSTL
NSTP
CSTP
STPE

## Start step

Next step (scan execution type)
Next step (pulse execution type)
Clear step
Step end

Outline SSTP: Indicates the start of a step ladder process.
NSTL: Opens a step ladder process.
NSTL is executed every scan if its trigger is on.
NSTP: Opens a step ladder process.
NSTP is executed when the leading edge of its trigger is detected.
CSTP: Resets the specified process.
STPE: Indicates the end of step ladder area.

## Program example



## Description

When the NSTL instruction or the NSTP instruction is executed, the process starting with the SSTP instruction of the specified number is started and executed.
In a step ladder program, a process is identified as being from one SSTP instruction to the next SSTP or STPE instruction.

## Example:



Operations such as the sequence control, selection branch control, parallel branch control are easily executed.

## - Sequence control

Only the necessary processes are switched and executed in order.


## - Selection branch control

The processes are selected and executed according to conditions.


## - Parallel branch merge control

Multiple processes are executed simultaneously.
After each process is completed, the next process is executed.


## Syntax of step ladder instruction

## SSTP (start step) instruction:

This instruction indicates the start of a process n .


In a step ladder program, a process n is identified as being from one SSTPn instruction to the next SSTP or STPE instruction.
No two processes can have the same process number.
The OT instruction can be programmed at the address just after the SSTP instruction.
The SSTP instruction cannot be programmed in sub-program (subroutine or interrupt program area).
The area starting from the first SSTP instruction to the STPE instruction is referred to as the step ladder area. The programs in this area are all controlled as processes.
Other areas are referred to as ordinary ladder areas.


There is a special internal relay that turns on for one scan only when a process on the step ladder starts. (R9015: step ladder initial pulse relay.) This relay is used to perform operations for only one scan for counter reset or other such process starts.

## NSTL (Next step, scan execution type) instruction:

## NSTP (Next step, differential (pulse) execution type) instruction:

When an NSTPn or NSTLn instruction is executed, the process with the same process number " $n$ " as the NSTP or NSTL instruction is opened.
The execution condition (trigger) for the next step instruction means the execution condition (trigger) to start the process.


Declare the first process to start in the next step instruction in the ordinary ladder area.
A process can be started from the ordinary ladder area or from an already started process.
However, when you start a process with a next step instruction from within a process, the process that is operating and contains the next step instruction is automatically cleared and the specified process starts. Be aware that the outputs and other processes are actually turned off by the clear operation during the next scan.
The NSTP instruction is a differential (pulse) execution type instruction, so it is executed for only one time when the execution condition (trigger) turns on. Also, since it only detects if the execution condition (trigger) has changed between on and off, when switched to the RUN mode or when the power supply is turned on while in the RUN mode and the execution condition (trigger) is already on, the instruction is not executed.


When you use the NSTP instruction with one of the following instructions that changes the order of the execution of instructions, be aware that the operation of the instructions will differ depending on the timing of their execution and their triggers.

- MC to MCE instructions
- JP to LBL instructions
- F19 (SJP) -LBL instructions
- LOOP to LBL instructions
- CNDE instruction
- Step ladder instructions
- Subroutine instruction

When combining the NSTP instruction with an ANS or POPS instruction, be careful that the programming is correct.

## CSTP (clear step) instruction:

When a CSTP instruction is executed, the process " $n$ " with the same process number " $n$ " is cleared. This instruction can be used to clear the final process or to clear the processes when the parallel branch merge control is executed.


A process can also be cleared from the ordinary ladder area or from a process that is already started.

## Note

> With the FP乏, FP-X, FPOR, FP2, FP2SH and FP10SH, the SCLR (Block Clear) instruction used to clear multiple processes of specified range at one time. Refer to "SCLR" instruction.

## STPE (step end) instruction:

The STPE instruction indicates the end of the step ladder area. Be sure to write this instruction at the end of the last process. Thus, the final process of the step ladder is from SSTP to STPE.


In the above situation, process n is the last process.
The STPE instruction is used only once in the main program. (This instruction cannot be programmed in sub-program such as a subroutine program or interrupt program.)

## Precautions during programming

You do not have to program processes in the order of process numbers.
In the step ladder area, you cannot use the following instructions:

- Jump instructions (JP and LBL)
- Loop instructions (LOOP and LBL)
- Master control instructions (MC and MCE)
- Subroutine instructions (SUB and RET) (*)
- Interrupt instructions (INT and IRET)
- ED instruction
- CNDE instruction
(*) * : The CALL instruction can be used within the step ladder area.

When you need to clear an entire processes in step ladder program, use the master control (MC and MCE) instructions as shown below.

## v <br> Example: All processes are cleared when XO becomes on.



It is not necessary to execute processes in order of process numbers. You can execute two or more processes at the same time.
Once you force on or off an output that is programmed in a process not yet executed, the output condition is maintained until the process starts even if the forced on and off operation is canceled.

## Step ladder operations

When the step ladder processes are programmed, program execution proceeds in the ordinary ladder area and in the processes triggered by the next step instructions (NSTL or NSTP). Processes that have not been triggered are ignored.


In the diagram, program execution occurs in the ordinary ladder areas and in process 2.
The moment the step ladder process is opened, step ladder internal pulse relay R9015 turns on for an instant only in the first scan of the process. You can use R9015 to reset a counter or shift register used in the opened process.

The execution state (start/stop) for processes are stored in special data registers:

Type	Special data register
FP0 C10, C14, C16, C32/   FP-e	DT9060 to DT9067
FP0 T32/FP0R	DT90060 to DT90067
FP $\Sigma /$ FP-X/FP2/FP2SH/   FP10SH	DT90060 to DT90122

## d

Example: The start-up conditions for processes No. 16 through No. 31

Bit position								
num	31. 28	27. 24	23. 20		19 .			
DT9061/DT90061	0 010	0\|0	0	0			0	

When bit position 8 of DT9061/DT90061 is " 1 ", the process no. 24 is starting.

## Notes on process clear

If the next step instruction is executed in an active process, that process is automatically cleared. However, the actual clear operation does not occur until the next scan. Therefore, for one scan during the process transition, there will be two simultaneously active processes. If you do not want them to be on at the same time, program with an interlock circuit. If there is a possibility of processes being simultaneously on because of hardware response delays, adapt hardware processing to take the response delay into account.

## Example:



If the process is cleared, the instructions in that process operate as follows.

Instruction	Operation status
OT	All off
KP	Holds the state.
SET	Holds the state.
RST	Holds the state.
TM	Reset the elapsed value and timer contact output.
CT	Holds the state at the time just before the trigger turns off.
SR	Holds the state at the time just before the trigger turns off.
DF and DF/ (*)	Remembers the state of execution condition (trigger).
Other instructions	Not executed.

(*) : Same operation as when the execution condition (trigger) for the MC instruction turns off. Refer to the $^{\text {a }}$ explanation of the MC and MCE instructions.

You must be careful when using one of the instructions below, which are executed by detecting the leading edge of execution condition (trigger) such as the differential instruction.

- DF (leading edge differential)
- Count input of CT (counter)
- Count input of F118 (UDC) (up/down counter)
- Shift input of SR (shift register)
- Shift input of F119 (LRSR) (left/right shift register)
- NSTP (next step)
- Differential execution type high-level instruction (this instruction is specified by P and a number)


## Examples of step ladder instructions

## (1) Sequence control of a process

This program repeats the same process until the work in a particular process is completed, then switches to be the next process as soon as the work is completed.
Program an NSTL instruction to trigger the next process in each process. When the NSTL instruction is executed, the next process is activated, and the currently executing process is cleared.
It is not necessary to execute in order of process number. You can also program the NSTL instruction to trigger a previous process in response to current conditions.

## Program example

1) When the $X 10$ turns on, process 10 is executed.
2) When X11 turns on, process 10 is cleared and process 11 is executed.
3) When X12 turns on, process 11 is cleared and process 12 is executed.
4) When X14 turns on, process 12 is cleared and step ladder operation finishes.

Program


Process flowchart


Time chart


## (2) Selection branch control of a process

This program selects and switches to the next process according to the actions and results of a particular process. Each process loops until its work is completed.
Program two or more NSTL instructions to trigger the next process in a process. Depending on the execution conditions, the next process is selected, triggered and program execution is transferred.

## Program example

1) When X 100 turns on, process 100 is executed.
2) When X101 turns on in process 100, process 101 is executed. Or when X102 turns on in process 100, process 102 is executed.
3) When X103 turns on in process 101, process 101 is cleared and process 200 is executed. When X104 turns on in process 102, process 102 is cleared and process 200 is executed.
4) When X 200 turns on, process 200 is cleared and step ladder operation finishes.

## Program



## Process flowchart



Time chart
When X101 turns on


## (3) Parallel branch merge control of a process

This program triggers multiple processes simultaneously. After each of the branch processes has completed its work, they merge again before transferring execution to the next process.
Program multiple NSTL instructions for one trigger in a process.
To merge processes, include a flag indicating the state of the other processes in the transfer condition for the next process.
When they merge and execute the next process, clear all uncleared processes at the same time.

## Program example

1) When $X O$ turns on, process 0 is executed.
2) When X10 turns on, process 0 is cleared and process 10 and process 20 are executed simultaneously (Parallel branch control).
3) When X11 turns on, process 10 is cleared and process 11 is executed.
4) When $X 30$ turns on, process 11 and process 20 are cleared and process 30 is activated. (Merge control)

- Clear process 20 with the clear instruction.
- Clear process 11 and execute process 30.

5) When X31 turns on, process 30 is cleared and initial process 0 is executed again.

## Program



Process flowchart


Time chart


## Clear multiple processes

Outline Reset multiple processes specified by n 1 and n 2 .

## Program example



## Explanation of example

When input XF goes on, processes in operation from 1 through 3 are cleared.


## Description

When an SCLR instruction is executed, all processes in operation from process n 1 through process n 2 are cleared.

## Precautions during programming

Set so that $n 1$ is greater than or equal to $n 2(n 1 \geqq n 2)$.
The SCLR instruction can be executed from both normal ladder areas and operating processes.

## Subroutine call

## Subroutine entry

Outline CALL: Executes the specified subroutine program.
SUB: Indicates the start of the subroutine program.
RET: Indicates the end of the subroutine program.

## Program example



## Description

When the execution condition (trigger) turns on, the CALL instruction is executed and the subroutine program of the specified number is executed starting with the SUB instruction.
When the subroutine reaches the RET instruction, the program returns to the address after the CALL instruction of the main program and the execution of the main program resumes.


When CALLn is executed, the program is executed in the order (1), (2), (3) shown above.

## Subroutine Program Syntax

The subroutine program $n$ is the program from the $\mathbf{S U B n}$ instruction to the RET instruction. Always place the address (subroutine) after the ED instruction.
The CALL instruction can be programmed in the main program area, interrupt program area, or subroutine program area.
Two or more CALL instructions with the same program number can be specified in a program.

Nesting of subroutines is possible until the 5th nesting.


Called up from inside of the subroutine.
5th nesting example

## Flag conditions

- Error flag (R9007): Turns on and stays on when performing five nestings and executing the CALL instruction for the subroutine of the 5th nesting.
- Error flag (R9008): Turns on for an instant when performing five nestings and executing the CALL instruction for the subroutine of the 5th nesting.


## Precautions during programming

In the interrupt program, a subroutine program cannot be used.


In the subroutine program, an interrupt program cannot be used.


Subroutine

For the FPO/FP-e, subroutine program cannot be written inside another subroutine program.


For the FP2/FP2SH/FP10SH, subroutine programs may be constructed with multiple entrances and only one exit.
$\left.\begin{array}{|cc|}\hline \text { (1) } & \text { (SUB } 11\end{array}\right)-$ CALL11

When "CALL 11 " is executed, (1) to (4) are executed.
When "CALL 13 " is executed, (3) and (4) are executed.
You must be careful when you use, in a subroutine, one of the instructions below that is executed by detecting the leading of execution condition (trigger) such as the differential instruction.

- DF (leading edge differential)
- Count input of CT (counter)
- Count input of F118 (up/down counter)
- Shift input of SR (shift register)
- Shift input of F119 (left/right shift register)
- NSTP (next step)
- Differential execution type high-level instruction (this instruction is specified by P and a number)


## When the CALL instruction execution condition (trigger) is off

If the execution condition (trigger) for the CALL instruction is in the off state, the subroutine program is not executed. (This is the same for CALL instructions within master controls or step ladders.) When the execution condition (trigger) for the CALL instruction is in the off state, the instructions in the subroutine operate as follows.

Instruction	Operation status
OT	Holds the state.
KP	Holds the state.
SET	Holds the state.
RST	Holds the state.
TM	Does not perform any timing. If timing is not performed once per scan, the correct   time cannot be guaranteed.
CT	Holds the elapsed value.
SR	Holds the elapsed value.
DF and DF/	Same as when a differential instruction is used between MC and MCE instructions.   See page 2-57.
Other instructions	Not executed.

## Output off type subroutine call

Outline Executes the specified subroutine. When returning to the main program, all outputs in the subroutine program are set to off.

## Program example



## Description

Operation and syntax are the same as normal subroutine call instructions. However, the following points are different.
If the trigger for the CALL instruction is in the off state, the subroutine program is not executed. When the trigger for the CALL instruction is in the off state, the instructions in the subroutine program operate as follows.

Instruction	Operation status
OT	All off (differs from a normal subroutine instruction)
KP	Holds the state.
SET	Holds the state.
RST	Holds the state.
TM	Resets (differs from a normal subroutine instruction)
CT	Holds the state at the time just before the trigger turns off.
SR	Holds the state at the time just before the trigger turns off.
DF and DF/	Same operation as when the execution condition (trigger) for the MC instruction   turns off. Refer to the explanation of the MC and MCE instructions.
Other instructions	Not executed.

## Precautions during programming

Like a CALL instruction, up to five nesting levels are possible. However, it will not be possible to use certain MC numbers depending on the number of nesting levels as shown below.

Calls from other than subroutines	MC255
2nd	MC255 to 254
3rd	MC255 to 253
4th	MC255 to 252
5th	MC255 to 251

Availability

FPO/FPOR/FP-e/ FP $\Sigma /$ FP-X

Outline INT: Indicates the start of the interrupt program.
IRET: Indicates the end of the interrupt program.
Program example


## Description

When an interrupt is input, the interrupt program of the number specified is executed starting from the INT instruction.
When the interrupt program reaches the IRET instruction, the program returns to the address where the interrupt occurred and the main program resumes.


When the interrupt occurs, the program is executed in the order (1)-(2)-(3) shown above.

## Syntax of interrupt program

An interrupt program $n$ is the program between the INTn instruction and the IRET instruction. The interrupt program must always be placed after the ED instruction.
The number of the interrupt program is decided by the type of the interrupt.

Interrupt Program No.	Interrupt input			
	FP0/FP-e	FP $/$ /FPOR	FP-X Ry	FP-X Tr
INTO	X0	X0	X0	X0
INT1	X1	X1	X1	X1
INT2	X2	X2	X2	X2
INT3	X3	X3	X3	X3
INT4	X4	X4	X4	X4
INT5	X5	X5	X5	X5
INT6	-	X6	X6	X6
INT7	-	X7	X7	X7
INT8	-	-	X100	-
INT9	-	-	X101	-
INT10	-	-	X102	-
INT11	-	-	X200	-
INT12	-	-	X201	-
INT13	-	-	X202	-
INT24	Periodical interrupt			


Interrupt   Program No.	High-speed counter-initiated interrupt				
	FP0/FP-e	FPOR	FP $\Sigma$	FP-X Ry	FP-X Tr
INT0	ch0	ch0	ch0	ch0	ch0
INT1	ch1	ch1	ch1	ch1	ch1
INT2	-	-	-	ch2	ch2
INT3	ch2	ch2	ch2	ch3	ch3
INT4	ch3	ch3	ch3	ch4	ch4
INT5	-	-	-	ch5	ch5
INT6	-	ch4	-	ch6	ch6
INT7	-	ch5	-	ch7	ch7
INT8	-	PLS-ch0	-	ch8	-
INT9	-	PLS-ch1	-	ch9	-
INT10	-	PLS-ch2	-	-	-
INT11	-	PLS-ch3	-	chA	-
INT12	-	-	-	chB	-
INT13	-	-	-	-	

Note) When using the high-speed counter-initiated interrupt program, the counting performance of the high-speed counter may be decrement at the moment of the start-up of the interrupt program.

Note) Only for the PLS-ch* of FPOR, it is the target value match interrupt of pulse output.

## Before inputting an interrupt program

(1) Declare the contact point to be used as the interrupt input (trigger).

Select the contact point to be used as the interrupt input (trigger) and indicate it at system register 403.

## Notes

## - If the high-speed counter/pulse catch is set, that contact cannot be used as the interrupt input (trigger). <br> - For the high speed counter-initiated interrupts and periodical interrupts, it is not necessary to indicate the input (trigger) contact.

(2) Enable the execution of interrupt programs.

The default conditions are set with interrupt programs disabled. Enable the execution of interrupt programs with the ICTL instruction.

## Precaution when rewriting in RUN mode (for FP0/FP0R/FP-e/FP $\Sigma / F P-X$ )

If the program is rewritten in the RUN mode, execution will be inhibited for all interrupt programs, and will have to be enabled again after the rewriting has been completed in the RUN mode.
Use the R9034 (rewriting done flag in RUN) to enable the interrupt programs again automatically using the ladder program. The R9034 is a special relay that turns on for only I scan after the completion of the rewriting in the RUN mode.

## Interrupt program execution

There are three types of interrupt.
(1) Interrupt from the input contact

The interrupt occurs when the input specified at system register 403.
(2) High-speed counter-initiated interrupt

When executing the high-speed counter instruction, the interrupt occurs when the high-speed counter elapsed value equals the set target value.
(3) Periodical interrupt (INT24)

The interrupt occurs in fixed time intervals. Set the time interval with the ICTL instruction.
When the interrupt occurs, the interrupt program with the corresponding number is executed.


If interrupts are disabled, an interrupt will occur only at the point when interrupts are enabled with the ICTL instruction.


When another interrupt program is being executed, an interrupt will occur after the current program is completed.


## Precautions during programming for all types

If either the INT instruction or IRET instruction is missing, a syntax error will result.
When an interrupt is issued, the operation memory corresponding to the interrupt input contact does not undergo I/O refreshing. Therefore, contacts other than the interrupt input contact, such as the constantly-on relay R9010, should be specified by the input conditions in the interrupt program.


A subroutine program cannot be used in an interrupt program.


An interrupt program cannot be used in a subroutine program.


Interrupt program cannot be programmed into another interrupt program.


## Control when more than one interrupt occurs simultaneously.

When more than one interrupt occurs simultaneously, the interrupt program with the smaller number is executed first. The other interrupt programs are then placed in the execution waiting state. After the first interrupt program is completed, the other programs will be executed in order from the smallest number to the greatest.

## I <br> Example:



When more than one interrupt occurs while a interrupt program is being executed, the other programs will be executed in order from the smallest number to the greatest after the program currently being executed is finished.

## Example:



During execution of the INT3 program in the example above, the INT2 input occurred before INT1. But, after INT3 program is done, the INT1 program is executed first and then INT2 is executed.

## Interrupt program execution waiting state and clearing

When multiple interrupt programs occur simultaneously or new interrupt programs occur during the execution of another interrupt program, the interrupt programs of lower preference are placed in the execution waiting state. They are then executed in order of preference when the other interrupt programs are completed.

## Example:



If placed in the execution waiting state, there is a time difference between the time of when the interrupt occurs and when the interrupt program is actually executed. If you do not want to execute the interrupt program placed in the execution waiting state because of this, it can be cleared with the ICTL instruction. An interrupt program that is cleared will not be executed.

## Example:



When the execution of interrupt programs is disabled with the ICTL instruction, interrupts that occur are still placed in the execution waiting state. When the execution is enabled with the ICTL instruction, the waiting interrupt programs will then be executed. Programs in the execution waiting state can be cleared with the ICTL instruction. Interrupt

FP2/FP2SH/FP10SH

Outline INT: Indicates the start of the interrupt program.
IRET: Indicates the end of the interrupt program.

## Program example

Ladder Diagram		Boolean	
		Address	Instruction
$20$	- (ED )-	20	ED
	-(INT 'Ō1)-	21	INT 0
	Interrupt program number ${ }^{4} \underset{\sim}{\sim}$	$\vdots$	$\vdots$
	(IRET )	26	IRET

## Description

When an interrupt is input, the interrupt program of the number specified is executed starting from the INT instruction.
When the interrupt program reaches the IRET instruction, the program returns to the address where the interrupt occurred and the main program resumes.


When the interrupt occurs, the program is executed in the order (1)-(2)-(3) shown above.
In the default mode, all interrupt programs are disabled and cannot be executed. The ICTL instruction should be used to enable execution of an interrupt program.

## Syntax of interrupt program

An interrupt program $n(n: 0$ to 24 ) is the program between the INTn instruction and the IRET instruction. The interrupt program must always be placed after the ED instruction. Up to 25 programs can be written.
The number of the interrupt program is decided by the type of the interrupt.
INT0 to INT15: Interrupts from the interrupt unit
INT16 to INT23: Interrupts from an intelligent unit that issues interrupts
INT24: Periodic interrupt

## Interrupt program execution

There are three types of interrupt.
(1) Interrupts from a interrupt unit (corresponding to INTO to INT15)

Interrupts are issued in response to the rise or fall of the interrupt unit input (whether rising or falling is specified on the unit side).
(2) Interrupts from an intelligent unit that issues interrupts (corresponding to INT16 to INT23)

Interrupts are issued in response to the operation status of an intelligent unit with an interrupt issuing function.
(3) Periodical interrupt (INT24)

The interrupt occurs in fixed time intervals. Set the time interval with the ICTL instruction.
When the interrupt occurs, the interrupt program with the corresponding number is executed.
Main program $\square$
$\qquad$ Execution

INT program $\qquad$ Execution $\qquad$

Interrupt input $\square$ | on |
| :---: |
| off | $\uparrow$ $\qquad$

If interrupts are disabled, an interrupt will occur only at the point when interrupts are enabled with the ICTL instruction.


When another interrupt program is being executed, an interrupt will occur after the current program is completed.


## Precautions during programming for all types

If either the INT instruction or IRET instruction is missing, a syntax error will result.
When an interrupt is issued, the operation memory corresponding to the interrupt input contact does not undergo I/O refreshing. Therefore, contacts other than the interrupt input contact, such as the constantly-on relay R9010, should be specified by the input conditions in the interrupt program.


A subroutine program cannot be used in an interrupt program.


An interrupt program cannot be used in a subroutine program.


Interrupt programs with multiple entrances and one exit can be written.

## Example:

When the interrupt of the interrupt program 11 is issued, (1) to (3)are executed. When the interrupt of No. 13 is issued, (3) is executed.


## Control when more than one interrupt occurs simultaneously.

When more than one interrupt occurs simultaneously, the interrupt program with the smaller number is executed first. The other interrupt programs are then placed in the execution waiting state. After the first interrupt program is completed, the other programs will be executed in order from the smallest number to the greatest.

## Example:



When more than one interrupt occurs while a interrupt program is being executed, the other programs will be executed in order from the smallest number to the greatest after the program currently being executed is finished.

## $\stackrel{y}{s}$ <br> Example:



During execution of the INT3 program in the example above, the INT2 input occurred before INT1. But, after INT3 program is done, the INT1 program is executed first and then INT2 is executed.

## Interrupt program execution waiting state and clearing

When multiple interrupt programs occur simultaneously or new interrupt programs occur during the execution of another interrupt program, the interrupt programs of lower preference are placed in the execution waiting state. They are then executed in order of preference when the other interrupt programs are completed.

## Example:



If placed in the execution waiting state, there is a time difference between the time of when the interrupt occurs and when the interrupt program is actually executed. If you do not want to execute the interrupt program placed in the execution waiting state because of this, it can be cleared with the ICTL instruction. An interrupt program that is cleared will not be executed.

## Example:



When the execution of interrupt programs is disabled with the ICTL instruction, interrupts that occur are still placed in the execution waiting state. When the execution is enabled with the ICTL instruction, the waiting interrupt programs will then be executed. Programs in the execution waiting state can be cleared with the ICTL instruction.

```
Availability
 FP0/FP-e/FP\Sigma/FP-X/
 FPOR
```

Outline Performs the interrupt enable or disable and the interrupt clear. Program example

Ladder Diagram		Boolean		
		Address	Instruction	
0		0	ST X	10
		1	DF	
		2	ICTL	
			H	0
			H	1
S1	16-bit equivalent constant or 16-bit area for interrupt control data setting			
S2	16-bit equivalent constant or 16-bit area for interrupt condition setting			

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	IX	IY	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A

## Description

When the ICTL instruction is executed, the interrupt program enable/disable and interrupt clear are set according to the settings in S1 and S2.
Be sure to use ICTL instructions so that they are executed once at the leading edge of the execution condition (trigger) using the DF instruction.
Two or more ICTL instructions can have the same execution condition (trigger).

## Note

Before executing an interrupt program, be sure to execute the ICTL instruction and enable the execution of the interrupt program.

## Precaution if rewriting during a RUN operation (for FP0/FP0R/FP-e/FPE)

If rewriting is done during a RUN operation while the interrupt function is being used, execution of the interrupt function is inhibited. The ICTL instruction has to be used once again to enable the interrupt program to be executed.

1
Example: A periodic interrupt is set every 10 ms when the operation is begun. (After rewriting during a RUN operation, interrupts are enabled again.)


## Input examples

Example 1: Setting a periodical interrupt every 10 ms from the start of operations


The R9013 (initial pulse relay) turns on only for the first scan after operations begin.

Example 2: Enable INTO through INT3 when XO rises.

$\left.\mathrm{HO}_{\mathrm{XO}}^{\mathrm{H}-(\mathrm{DF})-[I C T L, ~ H O, ~ H F}\right]$	X0: Enables INT0 to INT3 when on

Example 3: Clear interrupts other than INTO after the INTO program is completed.


## Specifying control data

S1: Specifying the control functions and interrupt types


Selection of control function
H00: Interrupt "enabled/disabled" control
H01: Interrupt trigger reset control
Set S1 = H0 to specify enable or disable for the execution of INT0 through INT7.
Set S1 = H100 to clear interrupts INT0 through INT7.
Set S1 = H2 (for units of 10ms) to set the time interval for INT24.
Set S1 = H3 (for units of 0.5 ms ) to set the time interval for INT24.

## Precautions during programming

The inputs that can be actually used as an interrupt input are different depending on the models. (Refer to the table below.)

Interrupt Program No.	Interrupt input			
	FP0/FP-e	FP $\Sigma /$ FPOR	FP-X Ry	FP-X Tr
INTO	X0	X0	X0	X0
INT1	X1	X1	X1	X1
INT2	X2	X2	X2	X2
INT3	X3	X3	X3	X3
INT4	X4	X4	X4	X4
INT5	X5	X5	X5	X5
INT6	-	X6	X6	X6
INT7	-	X7	X7	X7
INT8	-	-	X100	-
INT9	-	-	X101	-
INT10	-	-	X102	-
INT11	-	-	X200	-
INT12	-	-	X201	-
INT13	-	-	X202	-
INT24	Periodical interrupt			

Note) When using the high-speed counter-initiated interrupt program, the counting performance of the high-speed counter may be decrement at the moment of the start-up of the interrupt program.

## S2: Specifying the control of interrupts

(1) Enabling or disabling interrupt programs (when $\mathrm{S} 1=\mathrm{H} 0$ or $\mathrm{S} 1=\mathrm{H} 1$ ).

Set the control data in the bit corresponding to the number of the interrupt program that you want to control. Set the bit corresponding to the number of the program you want to enable to "1." (INT program disabled.) Set the bit corresponding to the number of the program you want to disable to "0." (INT program enabled.)

## I <br> Example: When specified so that the interrupt programs INT1 and INT2 are enabled, and INTO and INT3 to 13 are inhibited

$\left.\begin{array}{|c|ccc|cccc|cccc|cccc|}\hline \text { Bit position } & 15 & \cdots & \cdot 12 & 11 & \cdots & \cdots & 8 & 7 & \cdot & \cdot & 4 & 3 & \cdots & \cdots & 0 \\ \hline \begin{array}{c}\text { INT program } \\ \text { number }\end{array} & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}\right)$
(2) Clearing interrupt programs (when S1 $=\mathrm{H} 100$ or $\mathrm{S} 1=\mathrm{H} 101$ )

Set the control data in the bit corresponding to the number of the interrupt program that you want to control. Set the bit corresponding to the number of the program you want to clear to " 0 ." (INT program disabled.)
Set the bit corresponding to the number of the program you want to not clear to "1." (INT program enabled.)
Example: When specified so that the interrupt programs INTO to INT2 are cleared, and INT3 to INT13 are not cleared

Bit position	$15 \cdot 12$	$11 \cdot$ • 8	7	$3 \cdot \cdots$
INT program number	15141312	111098	76	32
S2 (Enabled/ disabled)	0000	0000	1111	100

(3) Specifying periodical interrupt (when $\mathrm{S} 1=\mathrm{H} 2$ )

Specify the setting with decimal number. The time interval = value of S2×10(ms).


K0 to K3000
Time interval setting: K1 to K3000 (10ms to 30s)
INT24 disabled: K0
(4) Specifying periodical interrupt programs (when $\mathrm{S} 1=\mathrm{H} 3$ )

The time interval = value of $\mathrm{S} 2 \times 0.5(\mathrm{~ms})$.

Bit position	$15 \cdot$	$\cdot 12$	$11 \cdot \cdots$	7	7	$\cdot$	4	3	$\cdots$	0
S2										
K 0 to K 3000										

Time interval setting: K1 to K3000 ( 0.5 ms to 1.5 s )
INT24 disabled: K0

## Example of enabling the execution of interrupt programs

## is Example:



S1: H0000
Specifies enabling or disabling of interrupt programs that correspond to interrupts at specified input contact or to target value match interrupts.
S2: H0021
Enable INT0 and INT5 (set bits 0 and 5 to " 1 ") and disable all others.

Bit position	15	$\cdot$	$\cdot 12$	11	$\cdots$	8	7	$\cdots$	4	3	$\cdots$	0	
$\mathbf{S 2}$	0	0	0	0	0	0	0	0	0	0	1	0	0



Set the bits to "1" that correspond to the interrupts to be enabled.

When this ICTL instruction is executed, interrupt programs No. 0 and No. 5 will be executed when their corresponding interrupt inputs occur.


How to start the interrupt program when executing the high-speed counter match ON/match OFF instruction.
(1) Set the counter by the system register. (It is not necessary to set the external interrupt.)
(2) Describe the interrupt program on the program. The high-speed counter corresponds to the interrupt program as below.

Interrupt   Program No.	High-speed counter-initiated interrupt			
	FPO/FP-e	FP $/$ /FPOR	FP-X Ry	FP-X Tr
INT0	ch0	ch0	ch0	ch0
INT1	ch1	ch1	ch1	ch1
INT2	-	-	ch2	ch2
INT3	ch2	ch2	ch3	ch3
INT4	ch3	ch3	ch4	ch4
INT5	-	-	ch5	ch5
INT6	-	-	ch6	ch6
INT7	-	-	ch7	ch7
INT8	-	-	ch8	-
INT9	-	-	ch9	-
INT10	-	-	-	-
INT11	-	-	chA	-
INT12	-	-	-	-
INT13	-	-	-	

(3) Enable the setting by the ICTLinstruction.

Enable ICTL, H0, H9 -INTO and INT7.
(4) Start the match ON/match OFF instruction.
(5) The program is executed when the conditions for the match ON/match OFF instruction are met.

## Example for clearing interrupt programs

## E Example:



S1: H100
Clears interrupts from specified input contact or target value match interrupts.

S2: HFE
Clears interrupt INTO (bit 0 is " 0 ") and does not clear the other interrupts.

For the relationship between the set value and the interrupt input contact, refer to page 2-106.

Even though the INTO interrupt input occurred, when the interrupt program is disabled, the ICTL instruction can still be used to clear the INTO interrupt.


Since INTO is cleared, the INTO program will not be executed even after execution is enabled. Since INT1 is not cleared, the INT1 program will be executed after execution is enabled.

## Example for setting periodical interrupt

## Example:


[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): H0002
Specifies periodical interrupt
[S2](WXO): K1500
Specifies the time interval for the periodical interrupt. With K1500, the time interval is K1500 $\times 10 \mathrm{~ms}=15000 \mathrm{~ms}$ (15s)
After this ICTL instruction is executed, the periodical interrupt will occur every 15 seconds. At these times, the INT24 interrupt program will be executed.


To stop the periodical interrupt program, execute the following program.
$\dagger$ Н(DF )-ICTL, H2, Ko ]

Outline Performs the interrupt enable or disable and the interrupt clear. Program example

Ladder Diagram		Boolean		
		Address	Instruction	
		40	ST X	10
		41	DF	
	ICTL, $\mathrm{H} 0, \mathrm{H}$	42	ICTL	
	S1 S2		H	0
			H	1
S1	16-bit equivalent constant or 16-bit area for interrupt control data setting			
S2	16 -bit equivalent constant or 16-bit area for interrupt condition setting			

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	$\underset{(* 1)}{ }$	$\begin{array}{\|l\|} \hline \text { IY } \\ (* 2) \end{array}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) With the FP2, FP2SH and FP10SH, this is 10 to IC.
(*2) With the FP2, FP2SH and FP10SH, this is ID.

## Description

When the ICTL instruction is executed, the interrupt program enable/disable and interrupt clear are set according to the settings in S1 and S2.
Be sure to use ICTL instructions so that they are executed once at the leading edge of the execution condition (trigger) using the DF instruction.
Two or more ICTL instructions can have the same execution condition (trigger).

## Note

Before executing an interrupt program, be sure to execute the ICTL instruction and enable the execution of the interrupt program.

## Flag conditions

- Error flag (R9007, R9008):
- It turns on, when the specified address using the index modifier exceeds a limit.
- It turns on, when the value outside of the range is specified for the interruption type and control function of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D).
- It turns on, when the value outside of the range is specified for [S2](WXO).


## Input examples

## Example 1: Setting a periodical interrupt every 10 ms from the start of operations

$\left|\begin{array}{lll}\text { R9013 } \\ \hline 1 \mapsto \text { ICTL, H2, K1 ] }\end{array}\right|$ Executes INT24 every 10ms

The R9013 (initial pulse relay) turns on only for the first scan after operations begin.

## Example 2: Enable INT0 through INT3 when X30 rises.

$\left|\begin{array}{lll}\text { X30 } \\ H \vdash(D F ~) ~ & \text { ICTL, HO, HF ] }\end{array}\right|$ X30: Enables INT0 to INT3 when on

Example 3: Clear interrupts other than INTO after the INTO program is completed.


## Specifying control data

S1: Specifying the control functions and interrupt types

Bit position	$15 \cdot \cdot 12$	$11 \cdot \cdot 8$	$7 \cdot 4$	$3 \cdot 0$	
S1					

(*1) The intelligent unit which issues interrupts has a high-speed counter unit, a pulse output unit, and other units.
(*2) FP2/FP2SH/FP10SH only
(*3) Available from FP2/FP2SH Ver. 1.50 or later

If execution has been specified as enabled or disabled for INT0 to INT15, [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) = H0.
If an interrupt clear has been specified for INT0 to INT15, [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) = H100.
If execution has been specified as enabled or disabled for INT16 to $\operatorname{INT} 23,[\mathrm{~S} 1]=\mathrm{H} 1$.
If an interrupt clear has been specified for INT16 to INT23, [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) = H101.
Set [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) = H2 to set the time intervals for INT24.
Set [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) = H3 to set the time intervals for INT24 (for the FP2, FP2SH and FP10SH only)

## S2: Specifying the control of interrupts

(1) Enabling or disabling interrupt programs (when $\mathrm{S} 1=\mathrm{H} 0$ or $\mathrm{S} 1=\mathrm{H} 1$ ).

Set the control data in the bit corresponding to the number of the interrupt program that you want to control.
Set the bit corresponding to the number of the program you want to enable to " 1. " (INT program disabled.)
Set the bit corresponding to the number of the program you want to disable to "0." (INT program enabled.)

Bit position	$15 \cdot 12$	$11 \cdot 8$	$7 \cdot 4$	$3 \cdot \cdots$
INT program number	15141312	111098	765	32
S2 (Enabled/ disabled)	0000	0000	0000	0000


Bit position	15	$\cdots$	$\cdot 12$	11	$\cdots$	8	7	$\cdots$	4	3	$\cdots$	0	
INT program   number	-			-		23	22	21	20	19	18	17	16
S2 (Enabled   disabled)	0	0	0	0	0	0	0	0	0	0	0	0	0

(2) Clearing interrupt programs (when S1 $=\mathrm{H} 100$ or S1 $=\mathrm{H} 101$ )

Set the control data in the bit corresponding to the number of the interrupt program that you want to control.
Set the bit corresponding to the number of the program you want to clear to "0." (INT program disabled.)
Set the bit corresponding to the number of the program you want to not clear to "1." (INT program enabled.)

Bit position	$15 \cdot 12$	11.	$7 \cdot 4$			
INT program number	15141312	111098	765		2	10
S2 (Enabled/ disabled)	0000	0000	0000		0	0


Bit position	15	$\cdots$	$\cdot 12$	11	$\cdots$	8	7	$\cdots$	4	3	$\cdots$	0	
INT program   number	-			-			23	22	21	20	19	18	17

(3) Specifying periodical interrupt (when $\mathrm{S} 1=\mathrm{H} 2$ or $\mathrm{S} 1=\mathrm{H} 4$ )

Specify the setting with decimal number. The time interval = value of $\mathrm{S} 2 \times 10(\mathrm{~ms})$.


Time interval setting: K1 to K3000 (10ms to 30s)
INT24 disabled: K0
Note
For the difference in the operation of H 2 and H 4 , refer to "Example 2 for setting periodical interrupt".
(H4 can be specified with the PLC FP2/FP2SH Ver. 1.50 or later.)
(4) Specifying periodical interrupt programs (when $\mathrm{S} 1=\mathrm{H} 3$ or $\mathrm{S} 1=\mathrm{H} 5$ ) for FP0/FP2/FP2SH/FP10SH only Specify the setting with decimal number.
The time interval $=$ value of $\mathrm{S} 2 \times 0.5(\mathrm{~ms})$.

| Bit position | $15 \cdot$ | $\cdot 12$ | 11 | $\cdots$ | 8 | 7 | $\cdots$ | 4 | 3 | $\cdots$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S2 |  |  |  |  |  |  |  |  |  |  |  |
| K 0 to K3000 |  |  |  |  |  |  |  |  |  |  |  |

Time interval setting: K1 to K3000 ( 0.5 ms to 1.5 s ) INT24 disabled: K0

## Note

> For the difference in the operation of H3 and H5, refer to "Example 2 for setting periodical interrupt".
> (H5 can be specified with the PLC FP2/FP2SH Ver. 1.50 or later.)

## Example of enabling the execution of interrupt programs

$\stackrel{y}{c}$ Example:

[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): H0000
This specifies whether execution of the interrupt program corresponding to the interrupt from the interrupt unit (INTO to INT15) is enabled or disabled.
[S2](WXO): H0101
Enable INT0 and INT8 (set bits 0 and 8 to " 1 ") and disable all others.


Set the bits to "1" that correspond to the interrupts to be enabled.

The I/O number is an example showing the interrupt unit mounted in Slot 0.

To enable all interrupts INT0 to INT15, set S2 = HFFFF.

When this ICTL instruction is executed, interrupt programs INT0 and INT8 will be executed when their corresponding interrupt inputs occur.


## Example for clearing interrupt programs

## $\stackrel{y}{c}$

 Example:
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): H0100
Clears interrupts from the interrupt unit (INT 0 to INT15).

## [S2](WXO): HFFFE

Clears interrupt INTO (bit 0 is " 0 ") and does not clear the other interrupts.

For the relationship between the set value and the interrupt unit, refer to page 2-114 "Example of enabling the execution of interrupt programs."

Even though the INTO interrupt input occurred, when the interrupt program is disabled, the ICTL instruction can still be used to clear the INTO interrupt.


Since INTO is cleared, the INTO program will not be executed even after execution is enabled. Since INT8 is not cleared, the INT8 program will be executed after execution is enabled.

Example 1 for setting periodical interrupt
E Example:

[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): H0002
Specifies periodical interrupt (units: 10ms)

## [S2](WXO): K1500

Specifies the time interval for the periodical interrupt. With K 1500 , the time interval is $\mathrm{K} 1500 \times 10 \mathrm{~ms}=15000 \mathrm{~ms}$ (15s)
After this ICTL instruction is executed, the periodical interrupt will occur every 15 seconds. At these times, the INT24 interrupt program will be executed.


To stop the periodical interrupt program, execute the following program.
$\mid$ Н-(DF )-[ICTL, H2, Ko ]

Example 2 for setting periodical interrupt
When H4 or H5 is designated, the periodical interrupt occurs at the specified interval regardless of interrupt processing time.


After the periodical interrupt program completed, the next interrupt timing is counted.
When the execution time of the periodical interrupt program is less than $500 \mu \mathrm{~s}$, the interrupt is carried out at every interval specified by [S2](WXO). However, when the execution time is $500 \mu \mathrm{~s}$ or longer, the interval is automatically shifted in increments of $500 \mu \mathrm{~s}$.


Regardless of the execution time of the interrupt program, it is executed for the fixed interval.

The specified time interval for the periodical interrupt must be longer than the time taken for the interrupt processing.


When the specified time for the periodical interrupt is longer than the execution time of the interrupt program, the operation cannot be carried out for the specified interval, and the CPU may give an alarm.

## Availability

Communication conditions setting
FP $\Sigma /$ /FP-X/FPOR

Outline This changes the communication conditions for the COM port or Tool port based on the contents specified by the character constant.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register		Index   register		Constant		Index	
	modifier													
	WX	WY	WR	WL	SV	EV	DT	LD	FL	I	K	H	M	
S	N/A	A	N/A											

## Explanation of example

When RO turns on, the transmission format and baud rate for the COM. 1 port are set as follows.
Character bit: 8, Parity: Odd
Stop bit: 1
Baud rate: 19,200 bps

## Description

The communication conditions for the port specified by No. 1 keyword are changed to the contents specified by No. 2 keyword.
Contents that can be changed include the following:

1) Communication format
2) Baud rate
3) Unit No. For FPOR, indirect settings are available.
4) Header and Terminator
5) RS (Request to Send) control

## Keyword setting

1) Communication format (Shared by the Tool, COM. 1 and COM. 2 ports)

	SYS1, M	
Port used		
TOOL: Tool port		
COM1: COM. 1 port		
COM2: COM. 2 port		

2) Baud rate (Shared by the Tool, COM. 1 and COM. 2 ports)

	SYS1, M
Port used	
TOOL: Tool port	
COM1: COM. 1 port	
COM2: COM. 2 port	
Baud rate	
300: 300 bps	600: 600 bps
1200:1200 bps	2400: $2,400 \mathrm{bps}$
$4800: 4,800 \mathrm{bps}$	$9600: 9,600 \mathrm{bps}$
19200: $19,200 \mathrm{bps}$	$38400: 38,400 \mathrm{bps}$
$57600: 57,600 \mathrm{bps}$	$115200: 115,200 \mathrm{bps}$

The baud rates of 300,600 or 1200 bps can be specified only with the FPOR, FP-X ver 2.0 or later and FP $\Sigma$ ver3.10 or later.
Also, those baud rates cannot be specified by the system register.
3) Unit No. (Shared by the Tool, COM. 1 and COM. 2 ports)

Port used
TOOL: Tool port
COM1: COM. 1 port
COM2: COM. 2 port
Unit No.
No1 to No99: No. 1 to No. 99

For FPOR, the indirect settings of unit number is available.

> SYS1, M

Port used
TOOL: Tool port COM1: COM. port

DT number that Unit No. is stored.
D000D = DT0
D9999 = DT9999 Always specify with a number of $D+4$ digits.
4) Header and Terminator (Shared by the TOOL, the COM. 1 and COM. 2 ports)

Port used
TOOL: Tool port (FPE $32 \mathrm{k} /$ /FP-X/FPOR)
COM1: COM. 1 port
COM2: COM. 2 port
Header
STX: STX
NOSTX: STX not exist
Terminator
ETX: ETX
CR: CR
CRLF: CR + LF
NOTERM: None

5) RS (Request to Send) control (COM. 1 port only)
Port used
COM1: COM. 1 port
RS control for the 1-channel RS232C type
communication cassette
RTS1: Disables communication
(Sets the RS terminal to "on")
RTS0: Enables communication
$\quad$ (Sets the RS terminal to "off")

* Not available for FPOR.


## Precautions during programming

- Executing this instruction does not rewrite the contents of the system ROM in the control unit. As a result, turning the power supply off and then on again rewrites the contents of the system registers specified by the tool software.
- We recommend using differential execution with this instruction.
- Because the system register settings are changed, a verification error may occur in some cases if verification is carried out with the tools.
- For No. 1 and No. 2 keywords, input 12 letters after "M" aligning to the right. Separate No. 1 and No. 2 keywords with a comma "," and do not use spaces. An operation error will occur.
[Example] If inputting (SYS1, M COM1, WAIT2)
Input => M ـ C O M 1, W A IT2
Input a space after " M " to be 12 letter aligning to the right.
- For FP0R, specify COM1 for COM port.


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- Any character other than a keyword is specified
- There is no comma between No. 1 and No. 2 keywords
- The small letter of the alphabet is used to specify the keyword (except for numbers used to specify unit No.)
- No communication cassette has been installed when COM1 or COM2 has been set
- The setting of the unit No. setting switch is anything other than 0 when COM1 or COM2 has been set and the unit No. is being changed
- The unit No. set using this instruction is anything other than a value between 1 and 99
- The baud rate or transmission format for COM1 has been changed when the PLC link mode is specified for COM1
- The baud rate or transmission format is changed while the Tool port, COM. port 1 , or COM. port 2 is being initialized using MODEM
- The communication mode is set to anything other than the general communication mode when header and terminator have been set
- Any communication cassette other than the 1-channel RS232C type communication cassette is installed when using RS control
- The specified unit No. is larger than the largest unit No. specified by the system register when the COM. 1 port is in the PLC link mode


## Password setting

## Availability

FP $\Sigma /$ FP-X/FPOR

Outline This changes the password specified by the controller, based on the contents specified by the character constant.

## Program example



## Explanation of example

When R0 turns on, the controller password is changed to "ABCD".

## Description

This changes the password specified by the controller to the contents specified by No. 2 keyword.

## Keyword setting

For the 4-digit password


For the 8-digit password (It is available for FP $\Sigma 32 \mathrm{k} / \mathrm{FP}-X / F P 0 R$.)


If the specified characters are less than 8 , spaces are added at the end of the characters to be 8-digit password.

## Precautions during programming

- When this instruction is executed, writing to the internal F-ROM takes approximately 100 ms .
- If the specified password is the same as the password that has already been written, the password is not written to the F-ROM.
- We recommend using differential execution with this instruction.
- For No. 1 and No. 2 keywords, input 12 letters after "M" aligning to the right. Separate No. 1 and No. 2 keywords with a comma "," and do not use spaces. An operation error will occur.
[Example] If inputting (SYS1, M COM1, WAIT2) Input => M ـ C O M 1, W A I T 2
Input a space after " M " to be 12 letter aligning to the right.


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- Any character other than a keyword is specified
- There is no comma between No. 1 and No. 2 keywords
- The small letter of the alphabet is used to specify the keyword (For the 4-digit password)
- The data specified for the password setting is any character other than 0 to 9 or A to F, or the specified data consists of other than four digits. (For the 4-digit password)

Outline This sets the interrupt input based on the contents specified by the character constant.

## Program example

Ladder Diagram			Boolean Non-ladder			
			Address	Instruction		
Trigger			10		R	0
			11	DF		
10		SYS1, $\mathrm{M}^{-}$	12	$\begin{aligned} & \text { SYS1 } \\ & \text { M } \end{aligned}$		INT1,UP
	S	Character cons				

## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	I	K	H	M	
S	N/A	A	N/A											

A: Available
N/A: Not Available

## Explanation of example

When R0 turns on, input X 1 is set to the interrupt that becomes valid at the rising edge.

## Description

This sets the input specified by No. 1 keyword as the interrupt input, and changes the input conditions to the contents specified by No. 2 keyword.

## Keyword setting

	SYS1, M	INT2,UP
Interrupt input		
INT0: X0 INT1: X1	INT8: X0	INT9: X1
INT2: X2 INT3: X3	INT10: X2	INT11: X3
INT4: X4 INT5: X5	INT12: X4	INT13: X5
INT6: X6 INT7: X7		
INT8 - INT10 $\rightarrow$ Pulse I/O	assette 1	
INT11-INT12 $\rightarrow$ Pulse I/	cassette 2	
Effective edges		
UP: Rising edge		
DOWN: Falling edge		
BOTH: Rising and falling		

## Precautions during programming

- Executing this instruction does not rewrite the contents of the system ROM in the control unit. As a result, turning the power supply off and then on again rewrites the contents of the system registers specified by the tool software.
- We recommend using differential execution with this instruction.
- When UP or DOWN has been specified, the contents of the system registers change in accordance with the specification, so a verification error may occur in some cases, when the program is verified. When BOTH has been specified, the contents of the system registers do not change.
- For No. 1 and No. 2 keywords, input 12 letters after "M" aligning to the right. Separate No. 1 and No. 2 keywords with a comma "," and do not use spaces. An operation error will occur.
[Example] If inputting (SYS1, M COM1, WAIT2)
Input => M ـ C O M 1, W A IT2
Input a space after " M " to be 12 letter aligning to the right.


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- Any character other than a keyword is specified
- There is no comma between No. 1 and No. 2 keywords
- The small letter of the alphabet is used to specify the keyword


## Availability

FP $\Sigma /$ /FP-X/FPOR

Outline This sets the system setting time when a PLC link is used, based on the contents specified by the character constant.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	M	
S	N/A	A	N/A											

A: Available N/A: Not Available

## Explanation of example

When R9014 turns on when a PLC link is being used, the link entry wait time and the error detection times for transmission assurance relay are set as follows.

Link entry wait time: 100 ms
Error detection time for transmission assurance relay: 100 ms

## Description

The conditions specified by No. 1 keyword are set as the time specified by No. 2 keyword.
The setting for the link entry waiting time is set if the transmission cycle time is shortened when there are stations that have not joined the link (*).

* Stations that have not joined the link: Stations that have not been connected between the No. 1 station and the station with the largest number, or stations for which the power supply has not been turned on
The error detection time setting for the transmission assurance relay is set if the time between the power supply being turned off at one station and the transmission assurance relay being turned off at a different station is to be shortened.


## Keyword setting

1) Link entry wait time

2) Error detection time for transmission assurance relay


## Precautions during programming

- The program should be placed at the beginning of all PLCs being linked, and the same values specified.
- This instruction should be specified in order to set special internal relay R9014 as the differential execution condition.
- The setting contents of the system registers are not affected by this instruction being executed.
- For No. 1 and No. 2 keywords, input 12 letters after "M" aligning to the right. Separate No. 1 and No. 2 keywords with a comma "," and do not use spaces. An operation error will occur.
[Example] If inputting (SYS1, M COM1, WAIT2)
Input => M ـ C O M 1, W A I T 2
Input a space after " M " to be 12 letter aligning to the right.


## Precautions when setting the link entry wait time

- This should be specified such that the value is at least twice that of the largest scan time of all the PLCs that are linked.
- If a short value has been specified, there may be some PLCs that are not able to join the link even though the power supply for that PLC has been turned on.
- If there are any stations that have not joined the link, the setting should not be changed, even if the link transmission cycle time is longer as a result. (The default value is 400 ms .)


## Precautions when setting the error detection time for the transmission assurance relay

- This should be specified such that the value is at least twice that of the largest transmission cycle time of all the PLCs that are linked.
- If a short value has been specified, there is a possibility that the transmission assurance relay will malfunction.
- The setting should not be changed, even if the detection time for the transmission assurance relay is longer as a result. (The default value is 6400 ms .)


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- Any character other than a keyword is specified
- There is no comma between No. 1 and No. 2 keywords
- The small letter of the alphabet is used to specify the keyword
- The specified value is outside the specified range

Outline This changes the operation mode of the high-speed counter based on the contents specified by the character constant.

## Program example

Ladder Diagram			Boolean Non-ladder		
			Instruction		
Trigger				R	0
			DF		
10		SYS1, M			HSC1,UP
	S	Character con			

Operands

Operand	Relay				Timer/Counter		Register			Index registerI	Constant			Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	M	
S	N/A	A	N/A											
														A: Ava N/A: Not

## Explanation of example

When RO turns on, the operation mode of the high-speed counter CHO is set to the addition mode.

## Description

This changes the operation mode of the high-speed counter specified by No. 1 keyword to the operation mode specified by No. 2 keyword.

## Keyword setting

$\qquad$ SYS1, M
High-speed counter setting
HSCn $\quad \mathrm{n}: 0$ to 9, A, B with FP-X Ry type   $\mathrm{n}: 0$ to 7 with FP-X Tr type   $\mathrm{n}: 0,1,2,3$ with FP   $\mathrm{n}: 0,1,2,3,4,5$ with FP0R

## Precautions during programming

- If the system register is not set to the addition input or subtraction input for this instruction, an operation error occurs. Set the system register to the addition or subtraction input in advance. When the addition/subtraction input setting is specified even if the setting has been already done, an operation error does not occur.
- Executing this instruction does not rewrite the contents of the system ROM in the control unit. As a result, turning the power supply off and then on again rewrites the contents of the system registers specified by the tool software.
- We recommend using differential execution with this instruction.
- When UP or DOWN has been specified, the contents of the system registers change in accordance with the specification, so a verification error may occur in some cases, when the program is verified. When BOTH has been specified, the contents of the system registers do not change.
- For No. 1 and No. 2 keywords, input 12 letters after "M" aligning to the right. Separate No. 1 and No. 2 keywords with a comma "," and do not use spaces. An operation error will occur.
[Example] If inputting (SYS1, M COM1, WAIT2)
Input => M ـ C O M 1, W A I T 2
Input a space after " M " to be 12 letter aligning to the right.


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- Any character other than a keyword is specified
- There is no comma between No. 1 and No. 2 keywords
- The small letter of the alphabet is used to specify the keyword
- The system register is set to items other than the addition input or subtraction input.

Outline $\quad$ This specifies the response waiting time based on the MEWTOCOL-COM of the COM port or Tool port, in response to the contents specified by the character constant.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	1	K	H	M	
S	N/A	A	N/A											

A: Available
N/A: Not Available

## Description

The port MEWTOCOL-COM response time specified by No. 1 keyword is delayed based on the contents specified by No. 2 keyword.
This instruction is used to delay the response time on the PLC side until the state is reached in which commands can be sent by an external device and responses can be received from the PLC.
<Usage example>
When a commercial RS232C/RS485 converter is being used to carry out communication between a personal computer and the FPE, this instruction is used to return the PLC response after switching of the enable signal has been completed on the converter side.


## Keyword setting

SYS1, M
Port used
TOOL: Tool port COM1: COM. 1 port
COM2: COM. 2 port

## Response time

WAIT0 to WAIT999 (n: 0 to 999)
If the communication mode or the MOD BUS RTV mode has been set to the computer link mode, the set time is the scan time $\times \mathrm{n}$ ( $\mathrm{n}: 0$ to 999).
If the communication mode has been set to the PLC link mode, the set time is $n \mu s$ ( $\mathrm{n}: 0$ to 999).
If $\mathrm{n}=0$, the delay time set by this instruction will be set to "None".

## Precautions during programming

- The settings should not be changed as long as there is no trouble, to prevent the PLC link from getting unstable.
- This instruction is valid only if the setting on the controller side has been set to the computer link mode or the PLC link mode.
- The instruction should be executed at the beginning of the program, at the rise of R9014. The same value should be set for all linked PLCs.
- Executing this instruction does not change the settings in the system registers.
- If changing the settings, a value of at least twice should be set.
- We recommend using differential execution with this instruction.
- When the power supply to the PLC is off, the settings set by this instruction are cleared. (The set value will become 0.) If the mode is switched to the PROG. mode after the instruction has been executed, however, the settings will be retained.
- If a commercial RS232C/RS485 converter is being used in the PLC link mode, this instruction should be programmed in all of the stations (PLCs) connected to the link.
- For No. 1 and No. 2 keywords, input 12 letters after "M" aligning to the right. Separate No. 1 and No. 2 keywords with a comma "," and do not use spaces. An operation error will occur. [Example] If inputting (SYS1, M COM1, WAIT2)

Input => M $\qquad$ COM1, WAIT2
Input a space after " M " to be 12 letter aligning to the right.

## Flag conditions

- Error flag (R9007):
- Error flag (R9008):

Turns on and stays on when:
Turns on for an instant when:

- Any character other than a keyword is specified
- There is no comma between No. 1 and No. 2 keywords
- The small letter of the alphabet is used to specify the keyword
- No communication cassette has been installed when COM1 or COM2 has been set

Outline This changes the settings entered for the system registers of the PLC link function, in accordance with the specified data.

## Program example



Operands

$\left.$| Operand | Relay |  |  |  | Timer/Counter |  |  | Register |  | Index <br> register |  | Constant |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Index |
| :---: |
| modifier | \right\rvert\,

## Description

The contents of system registers No. 40 to No. 47 are changed to the contents of the data registers starting with the number specified by [S].
Note) With the FPOR, the FP $\Sigma 32 k$ and the FP-X, the contents of system registers No. 50 to No. 57 are also changed.

## System registers

	No.	Name	Setting value and range
$\begin{aligned} & \text { PLC } \\ & \text { WO-0 } \end{aligned}$	40	Range of link relays used	0 to 64 words
	41	Range of link data registers used	0 to 128 words
	42	Starting number for link relay transmission	0 to 63
	43	Link relay transmission size	0 to 64 words
	44	Starting number for link data register transmission	0 to 127
	45	Link data register transmission size	0 to 127 words
	46	PC (PLC) Link switch flag	Normal/reverse
	47	Maximum unit number setting for MEWNET-W0 PLC link	1 to 16
$\begin{aligned} & \text { PLC } \\ & \text { WO-1 } \end{aligned}$	50	Range of link relays used	0 to 64 words
	51	Range of link data registers used	0 to 128 words
	52	Starting number for link relay transmission	64 to 127
	53	Link relay transmission size	0 to 64 words
	54	Starting number for link data register transmission	128 to 255
	55	Link data register transmission size	0 to 127 words
	57	Maximum unit number setting for MEWNET-WO PLC link	1 to 16

## Program example

-1-[FO MV, K 64, DTO ]	Set value of system register 40
[F0 MV , K 128, DT1 ]	Set value of system register 41
[FO MV , K 0, DT2 ]	Set value of system register 42
[FO MV , K 10, DT3	Set value of system register 43
[F0 MV , K 0, DT4 ]	Set value of system register 44
[FO MV , K 10, DT5	Set value of system register 45
[FO MV , K 0, DT6 ]	Set value of system register 46
[FO MV , K 5, DT7 ]	Set value of system register 47
[SYS2, DT0, K40, K47 ]	Sets the values stored in DT0 to DT7 in system registers 40 to 47

Decimals of the average value are rounded off so that the average value is an integer.

## Precaution during programming

- Executing this instruction does not rewrite the contents of the system ROM in the control unit. As a result, turning the power supply off and then on again rewrites the contents of the system registers specified by the tool software.
- A value between K40 and K47 should be specified for "D1" or "D2". Also, the values should always be specified in such a way that D1 $\leqq$ D2.
- The values of the system registers change, so a verification error may occur when the program is verified.


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- D1 > D2
- The specified value is outside the ranges specified for the various system registers setting values


Outline Performs start operation by comparing two word data items with the comparison condition. The contact goes on or off depending on the result of the comparison.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & \hline W L \\ & (* 1) \end{aligned}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$	$\begin{gathered} \hline \text { IX } \\ (* 3) \end{gathered}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FPO/FP-e.
Available
(*2) This cannot be used with the FPO/FP-e/FPE/FP-X/FPOR .
(*3) With the FPE, FP-X, FPOR, FP2, FP2SH and FP10SH, this is IO to IC.
(*4) With the FPE, FP-X, FP0R, FP2, FP2SH and FP10SH, this is ID.

## Explanation of example

Compares the contents of data register DT0 with the constant K 50 and K 60 . If $\mathrm{DTO}=\mathrm{K} 50$, the external output relay Y 30 goes on and if DT0 $\geqq \mathrm{K} 60$, the external output relay Y 31 turns on.


## Description

Compares the word data specified by S1 with the word data specified by S2 according to the comparison condition.

The ST instruction initiates a logical operation as the liaison contact when the comparison result is a specified status (=, <, >, etc.).
The result of the comparison operation is as follows:

Comparison   instruction	Condition		
	S1 < S2	S1 = S2	S1 $>$ S2
ST $=$	off	on	off
ST < >	on	off	on
ST>	off	off	on
ST> $=$	off	on	on
ST $<$	on	off	off
ST< $=$	on	on	off

## Precautions concerning usage

The start comparison instructions $\mathbf{S T}=, \mathbf{S T < >}, \mathbf{S T}>, \mathbf{S T}>=, \mathbf{S T}<$, and $\mathbf{S T}<=$ are programmed from the bus line.
If mixed with BCD or other type of data, the value will be regarded as negative when the most significant bit is 1 and a correct comparison may not be obtained. In this case, use an F81 (BIN) instruction or similar instruction to change the data to binary data before making the comparison.
Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

32-bit data comparison: Start equal
32-bit data comparison: Start equal not
32-bit data comparison: Start larger
32-bit data comparison: Start equal or larger
32-bit data comparison:
Start smaller
32-bit data comparison:
Start equal or smaller

Outline Performs start operation by comparing two double word data items with the comparison condition. The contact goes on or off depending on the result of the comparison.

## Program example

Ladder Diagram		Boolean	
		Address	Instruction
		9   10   19	STD $=$     DT  0   DT  100   OT Y 30   STD >     DT  0   DT  100   OT Y 31
S1	32-bit equivalent constant or lower 16-bit area of 32-bit data to be compared		
S2	32-bit equivalent constant or lower 16-bit area of 32-bit data to be compared		

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & \hline \text { WL } \\ & (* 1) \end{aligned}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & (* 1) \end{aligned}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\prime \operatorname{IX}}$	$\underset{(* 4)}{\prime \text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A

(*1) This cannot be used with the FPO/FP-e.
A: Available
(*2) This cannot be used with the FPO/FP-e/FPD/FP-X/FPOR.
(*3) With the FPE, FP-X, FPOR, FP2, FP2SH and FP10SH, this is IO to IC.
(*4) With the FPE, FP-X, FPOR, FP2, FP2SH and FP10SH, this is ID.

## Explanation of example

Compares the contents of data registers (DT1, DT0) with the data registers (DT101, DT100). If (DT1, DT0) $=($ DT101, DT100), the external output relay Y30 goes on and if (DT1, DT0) > (DT101, DT100), the external output relay Y31 goes on.

## Description

Compares the double word data specified by S1 and S1+1 with the double word data specified by S2 and $\mathrm{S} 2+1$ according to the comparison condition.
The STD instruction initiates a logical operation as the liaison contact when the comparison result is a specified status ( $=,<,>$, etc.).
The result of the comparison operation is as follows:

Comparison instruction	Condition		
	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1)< \\ & (\mathrm{S} 2+2, \mathrm{~S} 2) \end{aligned}$	$\begin{aligned} & (\mathbf{S} 1+1, \mathbf{S} 1)= \\ & (\mathbf{S} 2+2, \mathbf{S} \mathbf{2}) \end{aligned}$	$\begin{array}{\|l\|} \hline(S 1+1, S 1)> \\ (S 2+2, S 2) \end{array}$
STD=	off	on	off
STD< ${ }^{\text {c }}$	on	off	on
STD>	off	off	on
STD> =	off	on	on
STD<	on	off	off
STD< =	on	on	off

When processing 32-bit data, the higher 16-bit areas ( $S 1+1, S 2+1$ ) are automatically determined once the lower 16-bit areas (S1, S2) are specified.


## Precautions concerning usage

The start comparison instructions STD =, STD <>, STD >, STD >=, STD <, and STD <= are programmed from the bus line.

If mixed with BCD or other type of data, the value will be regarded as negative when the most significant bit is 1 and a correct comparison may not be obtained. In this case, use an F83 (DBIN) instruction or similar instruction to change the data to binary data before making the comparison.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


Floating point real number data comparison: Start equal
Floating point real number data comparison: Start equal not
Floating point real number data comparison: Start larger
Floating point real number data comparison: Start equal or larger
Floating point real number data comparison: Start smaller Floating point real number data comparison: Start equal or smaller

Availability
FPOR
FP-X Ver 1.10 or more
FP $\Sigma$ 32k

Outline Performs start operation by comparing two single precision real number data items with the comparison condition. The contact goes on or off depending on the result of the comparison.

## Program example

Ladder Diagram	Boolean	
	Address	Instruction
	0	STF =
		DT 0
$\xrightarrow[\sim]{\text { S1 }}$ S2		DT 100
0 [ F =, DT 0, DT $100 _$Y ${ }^{3}$	9	OT Y 30
F > DT 0, DT 100 Y31	10	STF >
-		DT 0
		DT 100
	19	OT Y 31


S1	Real number data (2 words) or lower 16-bit area of 32-bit data to be compared
S2	Real number data (2 words) or lower 16-bit area of 32-bit data to be compared

## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{array}{\|c\|} \hline F L \\ (* 1) \end{array}$	I (*2)	K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A

(*1) This cannot be used with the FPE/FP-X.
A: Available
(*2) 10 to ID.

* Index modification of a real number is not possible.


## Explanation of example

Compares the real number value of data registers (DT0, DT1) with the real number value of data registers (DT100, DT101). If (DT0, DT1) = (DT100, DT101), the external output relay Y30 goes on and if (DT0, DT1) > (DT100, DT101), the external output relay Y31 goes on.

## Description

Compares the real number data specified by S 1 and $\mathrm{S} 1+1$ with the real number data specified by S 2 and S2+1 according to the comparison condition.
The STF instruction initiates a logical operation as the liaison contact when the comparison result is a specified status (=, <, >, etc.).

The result of the comparison operation is as follows:

Comparison instruction	Condition		
	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1)< \\ & (\mathrm{S} 2+2, \mathrm{~S} 2) \end{aligned}$	$\begin{aligned} & (S 1+1, S 1)= \\ & (S 2+2, S 2) \end{aligned}$	$\begin{array}{\|l} \hline(S 1+1, S 1)> \\ (S 2+2, S 2) \end{array}$
STF=	off	on	off
STF<>	on	off	on
STF>	off	off	on
STF> =	off	on	on
STF<	on	off	off
STF< =	on	on	off

When processing 32-bit data, the higher 16-bit areas (S1+1, S2+1) are automatically determined once the lower 16-bit areas (S1, S2) are specified.


## Precautions concerning usage

The start comparison instructions STF =, STF <>, STF >, STF >=, STF <, and STF <= are programmed from the bus line.

Specifying the integer device with [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and [S2](WXO), the integer data is internally converted to real numbers before operations continue.
When the constant K is specified in S 1 and S 2 , the operations are the same as when a integer device is specified.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data are specified in (S1+1, S1) and (S2+1, S2).
$\Delta \mathrm{A}=$
AN $<>$
AN $>$
AN $>=$
AN <
AN $<=$

16-bit data comparison: AND equal
16-bit data comparison: AND equal not
16-bit data comparison: AND larger
16-bit data comparison: AND equal or larger
16-bit data comparison: AND smaller
16-bit data comparison: AND equal or smaller

Outline Performs AND operation by comparing two word data items with the comparison condition. The contact goes on or off depending on the result of the comparison. The contacts are connected in series.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \text { LD } \\ & (* 1) \end{aligned}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FPO/FP-e.
A: Available
(*2) This cannot be used with the FP0/FPOR/FP-e/FPE/FP-X.
(*3) With the FPI, FP-X, FPOR, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPD, FP-X, FP0R, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Compares the contents of data register DT0 with the constant K60 when X0 turns on. If DT0 $\geqq K 60$ in the X0 on state, external output relay Y30 goes on. If DT0 < K60 or if X0 is in the off state, external output relay Y30 goes off.


## Description

Compares the word data specified by S1 with the word data specified by S2 according to the comparison condition.
The AN instruction results in serial connection as the liaison contact when the comparison result is a specified status ( $=,<,>$, etc.).
The result of the comparison operation is as follows:

Comparison   instruction	Condition		
	S1 < S2	S1 = S2	S1 $>\mathbf{S 2}$
	off	on	off
AN $<>$	on	off	on
AN $>$	off	off	on
AN $>=$	off	on	on
AN $<$	on	off	off
AN $<=$	on	on	off

## Precautions concerning usage

Multiple AND comparison instructions AN =, AN <>, AN >, AN >=, AN <, and AN <= can be used consecutively.
If mixed with BCD or other type of data, the value will be regarded as negative when the most significant bit is 1 and a correct comparison may not be obtained. In this case, use an F81 (BIN) instruction or similar instruction to change the data to binary data before making the comparison.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

AND $=$
AND
AND $>$
AND $>=$
AND AND < =

32-bit data comparison: AND equal
32-bit data comparison: AND equal not
32-bit data comparison: AND larger
32-bit data comparison: AND equal or larger
32-bit data comparison:
AND smaller
32-bit data comparison:
AND equal or smaller

Outline Performs AND operation by comparing two double word data items with the comparison condition. The contact goes on or off depending on the result of the comparison. The contacts are connected in series.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & \hline \text { WL } \\ & (* 1) \end{aligned}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & \left.\mathbf{N}^{*} 1\right) \end{aligned}$	$\begin{gathered} \text { FL } \\ (* 2) \end{gathered}$	$\underset{(* 3)}{ }$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A

(*1) This cannot be used with the FP0/FP-e.
(*2) This cannot be used with the FP0/FP0R/FP-e/FPI/FP-X.

A: Available N/A: Not Available
(*3) With the FPI, FP-X, FPOR, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPD, FP-X, FPOR, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Compares the contents of data registers (DT1, DT0) with the data registers (DT101, DT100) when X0 turns on. If (DT1, DT0) $\geqq(D T 101, ~ D T 100)$ in the X0 on state, the external output relay Y30 goes on. If (DT1, DT0) < (DT101, DT100) or if X0 is in the off state, the external output relay Y30 goes off.

## Description

Compares the double word data specified by S1 and S1+1 with the double word data specified by S2 and $\mathrm{S} 2+1$ according to the comparison condition.
The AND instruction results in serial connection as the liaison contact when the comparison result is a specified status ( $=,<,>$, etc.).
The result of the comparison operation is as follows:

Comparison instruction	Condition		
	$\begin{aligned} & (S 1+1, \\ & \hline(S 2+1, \\ & (S 2) \end{aligned}$	$\begin{aligned} & (\mathbf{S} 1+1, \mathbf{S} 1)= \\ & (\mathbf{S} 2+1, \mathbf{S} \mathbf{2}) \end{aligned}$	$\begin{aligned} & \hline(\mathbf{S} 1+1, \mathbf{S} 1)> \\ & (\mathbf{S} 2+1, \mathrm{~S} 2) \end{aligned}$
AND=	off	on	off
AND<>	on	off	on
AND>	off	off	on
AND> =	off	on	on
AND<	on	off	off
$\mathrm{AND}_{<}=$	on	on	off

When processing 32-bit data, the higher 16-bit areas (S1+1, S2+1) are automatically determined once the lower 16-bit areas ( $\mathrm{S} 1, \mathrm{~S} 2$ ) are specified.


## Precautions concerning usage

Multiple AND comparisons instructions AND =, AND <>, AND >, AND >=, AND <, and AND <= can be used consecutively.
If mixed with BCD or other type of data, the value will be regarded as negative when the most significant bit is 1 and a correct comparison may not be obtained. In this case, use an F83 (DBIN) instruction or similar instruction to change the data to binary data before making the comparison.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## ANF =

ANF $<>$
ANF >
ANF > $=$
ANF < ANF < =

Floating point real number data comparison: AND equal
Floating point real number data comparison: AND equal not
Floating point real number data comparison: AND larger Floating point real number data comparison: AND equal or larger Floating point real number data comparison: AND smaller Floating point real number data comparison: AND equal or smaller

Availability
FPOR
FP-X Ver 1.10 or more
FP $\Sigma$ 32k

Outline Performs AND operation by comparing two single precision real number data items with the comparison condition. The contact goes on or off depending on the result of the comparison. The contacts are connected in series.

Program example


Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \mathrm{FL} \\ (* 1) \end{gathered}$	$\underset{(* 2)}{1}$	K	H	f		
S1	A	A	A	A	A	A	A	A	A	A2	A	A	A	A*	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A

(*1) This cannot be used with the FPE/FP-X.
(*2) 10 to ID.

A: Available

* Index modification of a real number is not possible.


## Explanation of example

Compares the real number value of data registers (DT0, DT1) with the real number value of data registers (DT100, DT101) when X0 turns on. If (DT0, DT1) $\geqq$ (DT100, DT101) in the X0 on state, the external output relay Y30 goes on. If (DT0, DT1) < (DT100, DT101) or if X0 is in the off state, the external output relay Y30 goes off.

## Description

Compares the real number data specified by S1 and S1 +1 with the real number data specified by S2 and $\mathrm{S} 2+1$ according to the comparison condition.
The ANF instruction results in serial connection as the liaison contact when the comparison result is a specified status (=, <, >, etc.).
The result of the comparison operation is as follows:

Comparison instruction	Condition		
	$\begin{aligned} & (S 1+1, \\ & \hline(S 2+1, \\ & (S 2) \end{aligned}$	$\begin{aligned} & (\mathbf{S} 1+1, \mathrm{~S} 1)= \\ & (\mathrm{S} 2+1, \mathrm{~S} 2) \end{aligned}$	$\begin{aligned} & \hline(\mathbf{S} 1+1, \mathrm{~S} 1)> \\ & (\mathrm{S} 2+1, \mathrm{~S} 2) \end{aligned}$
ANF=	off	on	off
ANF<>	on	off	on
ANF>	off	off	on
ANF> =	off	on	on
ANF<	on	off	off
ANF< =	on	on	off

When processing 32 -bit data, the higher 16 -bit areas ( $\mathrm{S} 1+1, \mathrm{~S} 2+1$ ) are automatically determined once the lower 16-bit areas ( $\mathrm{S} 1, \mathrm{~S} 2$ ) are specified.


## Precautions concerning usage

Multiple ANF comparisons instructions ANF =, ANF <>, ANF >, ANF >=, ANF <, and ANF <= can be used consecutively.
Specifying the integer device with [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and [S2](WXO), the integer data is internally converted to real numbers before operations continue.
When the constant K is specified in S 1 and S 2 , the operations are the same as when a integer device is specified.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data are specified in $(\mathrm{S} 1+1, \mathrm{~S} 1)$ and $(\mathrm{S} 2+1$, S2).

16-bit data comparison: OR equal
16-bit data comparison: OR equal not
16-bit data comparison: OR larger
16-bit data comparison: OR equal or larger
16-bit data comparison: OR smaller
16-bit data comparison: OR equal or smaller

Outline Performs OR operation by comparing two word data items with the comparison condition. The contact goes on or off depending on the result of the comparison. The contacts are connected in parallel.

## Program example



## Operands

	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
Operand	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	$\begin{aligned} & \mathrm{IY} \\ & (* 4) \end{aligned}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FP0/FP-e.
A: Available
(*2) This cannot be used with the FPO/FPOR/FP-e/FPD/FP-X.
(*3) With the FP亡, FP-X, FPOR, FP2, FP2SH, and FP10SH, this is I0 to IC.
(*4) With the FP亡, FP-X, FPOR, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

$Y 30$ goes on when $X 0$ is in the on state, or when DTO $\geqq K 60$. If DTO < K60 and if XO is in the off state, then Y30 goes off.


Description
Compares the word data specified by S1 with the word data specified by S2 according to the comparison condition.
The $\mathbf{O R}$ instruction results in parallel connection as the liaison contact when the comparison result is a specified status ( $=,<,>$, etc.).
The result of the comparison operation is as follows:

Comparison   instruction	Condition		
	S1 < S2	s1 $=\mathbf{S 2}$	S1 $>\mathbf{S 2}$
OR=	off	on	off
OR<>	on	off	on
OR>	off	off	on
OR> $=$	off	on	on
OR<	on	off	off
OR< $=$	on	on	off

## Precautions concerning usage

The $O R$ comparison instructions $O R=, O R<>, O R>, O R>=, O R<$, and $O R<=$ are programmed from the bus line.
Multiple $O R$ comparison instructions $O R=, O R<>, O R>, O R>=, O R<$, and $O R<=$ can be used consecutively.
If mixed with BCD or other type of data, the value will be regarded as negative when the most significant bit is 1 and a correct comparison may not be obtained. In this case, use an F81 (BIN) instruction or similar instruction to change the data to binary data before making the comparison.
Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

32-bit data comparison: OR equal
32-bit data comparison: OR equal not
32-bit data comparison: OR larger
32-bit data comparison: OR equal or larger
32-bit data comparison: OR smaller
32-bit data comparison: OR equal or smaller

Outline Performs OR operation by comparing two double word data items with the comparison condition. The contact goes on or off depending on the result of the comparison. The contacts are connected in parallel.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & \hline \text { WL } \\ & (* 1) \end{aligned}$	SV	EV	DT	$\begin{aligned} & \text { LD } \\ & \left.\mathbf{n}^{*} 1\right) \end{aligned}$	$\begin{gathered} \text { FL } \\ (* 2) \end{gathered}$	$\underset{(* 3)}{ }$	$\underset{(* 4)}{\operatorname{IY}}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A

(*1) This cannot be used with the FPO/FP-e.
(*2) This cannot be used with the FPO/FPOR/FP-e/FPE/FP-X.

A: Available $\mathrm{N} / \mathrm{A}$ : Not Available
(*3) With the FPI, FP-X, FPOR, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPD, FP-X, FP0R, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Compares the contents of data registers (DT1, DT0) with the data registers (DT101, DT100). When X0 turns on or if (DT1, DT0) $\geqq$ (DT101, DT100), the external output relay Y30 goes on.
If (DT1, DT0) < (DT101, DT100) and if X0 is in the off state, the external output relay Y30 goes off.

## Description

Compares the double word data specified by S1 and S1+1 with the double word data specified by S2 and $\mathrm{S} 2+1$ according to the comparison condition.
The ORD instruction results in parallel connection as the liaison contact when the comparison result is a specified status ( $=,>,<$, etc.).
The result of the comparison operation is as follows:

Comparison instruction	Condition		
	$\begin{aligned} & (S 1+1, S 1)< \\ & (S 2+1, \\ & \hline \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1)= \\ & (\mathrm{S} 2+1, \mathrm{~S} 2) \end{aligned}$	$\begin{array}{\|l\|} \hline(S 1+1, S 1)> \\ (S 2+1, S 2) \end{array}$
ORD=	off	on	off
ORD<>	on	off	on
ORD>	off	off	on
ORD> =	off	on	on
ORD<	on	off	off
$\mathrm{ORD}_{<}=$	on	on	off

When processing 32-bit data, the higher 16-bit areas (S1+1, S2+1) are automatically determined once the lower 16-bit areas ( $\mathrm{S} 1, \mathrm{~S} 2$ ) are specified.


## Precautions concerning usage

The OR comparison instructions ORD =, ORD <>, ORD >, ORD >=, ORD <, and ORD <= are programmed from the bus line.

Multiple OR comparison instructions $\operatorname{ORD}=$, ORD <>, ORD >, ORD >=, ORD<, and ORD <= can be used consecutively.
If mixed with BCD or other type of data, the value will be regarded as negative when the most significant bit is 1 and a correct comparison may not be obtained. In this case, use an F83 (DBIN) instruction or similar instruction to change the data to binary data before making the comparison.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## ORF = <br> ORF <> <br> ORF > <br> ORF >= <br> ORF $<$ <br> ORF < =

Floating point real number data comparison: OR equal
Floating point real number data comparison: OR equal not
Floating point real number data comparison: OR larger
Floating point real number data comparison: OR equal or larger
Floating point real number data comparison: OR smaller
Floating point real number data comparison: OR equal or smaller

Availability
FPOR
FP-X Ver 1.10 or more
FP $\Sigma$ 32k

Outline Performs OR operation by comparing two single precision real number data items with the comparison condition. The contact goes on or off depending on the result of the comparison. The contacts are connected in parallel.
Program example


S1	Real number data (2 words) or lower 16-bit area of 32-bit data to be compared
S2	Real number data (2 words) or lower 16-bit area of 32-bit data to be compared

## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \mathrm{FL} \\ (* 1) \end{gathered}$	$\stackrel{1}{(* 2)}$	K	H	f		
S1	A	A	A	A	A	A	A	A	A	A2	A	A	A	A*	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A

(*1) This cannot be used with the FPE/FP-X.
(*2) 10 to ID.

A: Available

* Index modification of a real number is not possible.


## Explanation of example

When X0 turns on or if (DT0, DT1) $\geqq$ (DT100, DT101) by comparing the real number value of data registers (DT0, DT1) with the real number value of data registers (DT100, DT101), the external output relay Y30 goes on. If (DT0, DT1) < (DT100, DT101) and if X0 is in the off state, the external output relay Y30 goes off.

## Description

Compares the real number data specified by S 1 and $\mathrm{S} 1+1$ with the real number data specified by S 2 and $\mathrm{S} 2+1$ according to the comparison condition.
The ORF instruction results in parallel connection as the liaison contact when the comparison result is a specified status ( $=,>,<$, etc.).
The result of the comparison operation is as follows:

Comparison instruction	Condition		
	$\begin{aligned} & \hline(S 1+1, S 1)< \\ & (S 2+1, S 2) \end{aligned}$	$\begin{aligned} & (S 1+1, S 1)= \\ & (S 2+1, S 2) \end{aligned}$	$\begin{array}{\|l\|} \hline(S 1+1, S 1)> \\ (S 2+1, S 2) \end{array}$
ORF=	off	on	off
ORF<>	on	off	on
ORF>	off	off	on
ORF> $=$	off	on	on
ORF<	on	off	off
ORF< =	on	on	off

When processing 32-bit data, the higher 16-bit areas (S1+1, S2+1) are automatically determined once the lower 16-bit areas ( $\mathrm{S} 1, \mathrm{~S} 2$ ) are specified.


## Precautions concerning usage

The $O R$ comparison instructions $O R F=, O R F<>, O R F>, O R F>=, O R F<$, and $O R F<=$ are programmed from the bus line.
Multiple OR comparison instructions ORF =, ORF <>, ORF >, ORF >=, ORF<, and ORF <= can be used consecutively.
Specifying the integer device with [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and [S2](WXO), the integer data is internally converted to real numbers before operations continue.
When the constant K is specified in S 1 and S 2 , the operations are the same as when a integer device is specified.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data are specified in ( $\mathrm{S} 1+1, \mathrm{~S} 1$ ) and ( $\mathrm{S} 2+1$, S2).

Chapter 3
High-level Instructions

### 3.1 Composition of High-level Instructions

### 3.1.1 Composition

Each high-level instruction is composed of a high-level instruction number, boolean and operands.

## Example: F0 (MV) instruction

The KO (S) is copied to DTO (D)


High-level instruction number
High-level instruction numbers are used for inputting the high-level instructions.

## Boolean

Boolean indicate the processing content of each instruction.

## Operand

Operands are used to specify the processing method and the storage area for processed data, etc. Operands are classified into three types: S (source), D (destination) and $n$ (number).
The number of operands differ depending on the instruction.

## Operand types

Source): Data which is to be processed or data which sets the processing method.

D
(Destination): Location where result of processing is stored.

П (number): Numeric data which is to be processed or which sets the processing method.
Operands are specified using constants or memory areas (registers) as explained in section 1.3 and 1.4.
Refer to the explanations of the instructions as only certain memory areas (registers) and constants can be used with each instruction.

### 3.1.2 High-level Instruction Numbers and Program Input

High-level instruction numbers are assigned to high-level instructions. For example, the number assigned to the MV instruction (16-bit data transfer instruction) is 0 ( $\mathbf{F 0}$ or P0).
A high-level instruction is entered by entering its high-level instruction number.
A high-level instruction with the prefix " $F$ " is executed in every scan while its execution condition (trigger) is in the on state.

A high-level instruction with the prefix " $P$ " is executed only when the leading edge of its execution condition (trigger) is detected.

For details about "F" and "P" type high-level instructions section 3.1.4
Input of "F" type high-level instruction


## Input of "P" type high-level instruction



### 3.1.3 High-level Instruction and Execution Condition (Trigger)

A high-level instruction is always used in a pair with its execution condition (trigger). When the operation result of the relay sequence circuit specified as the execution condition (trigger) is on, the high-level instruction is executed.

Example: When the execution condition (trigger) Xo is on, the FO (MV) instruction is executed and KO is transferred to DTO.


There is no need to program the same execution condition (trigger) many times when two or more high-level instructions are programmed consecutively with the same execution condition (trigger).

## Example:



## Precautions if omitting execution conditions (triggers)

If you need to program both "F" and "P" type high-level instructions using the same execution condition (trigger), proceed according to one of the following two examples.

## を

Example 1: The same execution condition (trigger) is programmed twice for "F" and "P" type instructions.
[F0 MV, DT 2,DT3]
[ F60 CMP, DT 1,DT 3]
X0
H| [ PO PMV, H 8000, DT 9058$]$
[ P157 PCADD, DT 9054, DT 0, DT 30 ]

## Example 2: The execution condition (trigger) is programmed once using the PSHS, RDS and POPS instructions.



### 3.1.4 "F" and "P" Type High-level Instructions

For more high-level instructions, " F " and " P " types are available.
"F" type high-level instruction
While the execution condition (trigger) is on, the instruction is executed at each scan repeatedly.


## "P" type high-level instruction

The leading edge of the execution condition (trigger) is detected, and a single scan is executed.

Execution condition
(Trigger)
P-type high-level instruction


As long as the execution condition (trigger) for the " P " type instruction continues to be on, the instruction is executed only at the rise of the condition, and is not subsequently executed.
If the mode is switched to the RUN mode, or the power supply is turned on in the RUN mode, the instruction is not executed in the first scan if the execution condition (trigger) for the "P" type instruction has been in effect from the beginning.

## RUN

(Power: on)


When you use the "P" type instruction with one of the following instructions that changes the order of the execution of instructions, be aware that the operation of the instructions will differ depending on the timing of their execution and their execution conditions (triggers).

- MC to MCE instructions
- JP to LBL instructions
- F19 (SJP) to LBL instructions
- LOOP to LBL instructions
- CNDE instruction
- Step ladder instructions
- Subroutine instruction

For detailed information section 4.3
When combining the " $P$ " type high-level instruction with an AND stack instruction or pop stack instruction, be careful that the programming is correct. For detailed information $\omega$ section 4.7

High-level Instructions

## FO (MV)

## 16-bit data move

Outline Copies 16-bit data to the specified 16-bit area. For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "PO (PMV)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|l\|l} \hline \text { FL } \\ \text { (*2) } \end{array}$	IX (*3)	IY (*4)	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.
N/A: Not Available
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPD, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The contents of data register DT10 are copied to data register DT20 when trigger R0 turns on.

## Description

The 16-bit data or 16-bit equivalent constant specified by $S$ is copied to the area specified by $D$.

## Reference

When using an FP0/FP-e/FPOR/FPS/FP-X high-speed counter: F0 (MV) page 3-437
When using an FP0/FP-e/FPOR/FP $/$ /FP-X pulse output: F0 (MV) page 3-443

## Application example

Example 1: Transfer K30 to timer set value area SV0 when R1 turns on.


Example 2: Transfer the timer elapsed value EVO to data register DT0 when R2 turns on.


## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

High-level Instructions

Outline Copies 32-bit data to the specified 32-bit area. For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P1 (PDMV)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|l\|l} \hline \text { FL } \\ \text { (*2) } \end{array}$	IX (*3)	IY (*4)	K	H	
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available
N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPD, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The contents of data registers DT11 and DT10 are copied to data registers DT21 and DT20 when trigger R0 turns on.


## Description

The 32-bit data or 32-bit equivalent constant specified by $S$ is copied to the 32 -bit area specified by $D$. When processing 32-bit data, the higher 16-bit areas ( $\mathrm{S}+1, \mathrm{D}+1$ ) are automatically determined once the lower 16-bit areas (S, D) are specified.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## Reference

FP1/FP-M high-speed counter elapsed value:
F1 (DMV) page ****

FPO/FP-e/FP $/$ /FP-X high-speed counter pulse output elapsed value: F1 (DMV) page 3-449

High-level Instructions

## (MV)

## 16-bit data invert and move

Outline Inverts 16-bit data and transfers it to the specified 16-bit area. For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P2 (PMV/)" is not available.
Program example

Ladder Diagram			Boolean		
			Address		uction
$10$	Trigger		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F } 2 \\ & \text { DT } \\ & \text { DT } \end{aligned}$	$\begin{array}{lr} \mathrm{R} & 0 \\ & (\mathrm{MV} /) \\ & 11 \\ & 20 \end{array}$
S		16-bit equivalent constant or 16-bit area to be inverted (source)			
	D	16-bit area (destination)			

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & W \mathrm{WL} \\ & \left({ }^{*} 1\right) \end{aligned}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ \hline(* 1) \end{array}$	$\begin{array}{\|c\|} \hline \text { FL } \\ (* 2) \end{array}$	IX (*3)	IY (*4)	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.
(*3) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The contents of data register DT11 are inverted and transferred to data register DT20 when trigger R0 turns on.

Source [S]: H5555

Bit position	15	.	.12	11	.	.		7	.	.	4	3	.	.	0
DT11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0



## Description

The 16 -bit data or 16 -bit equivalent constant specified by $S$ is inverted and transferred to the 16 -bit area specified by D .

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$



Bit position	$15 \cdot$.	$1 \cdot \mathrm{l}$		3
Binary data	1111	1011	0010	110
Hexadecimal	F	B	2	D

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## (DMV)

Outline Inverts 32-bit data and transfers it to the specified 32-bit area. For the FPOR/FPE/FP-X/FPO/FP-e, the P type high-level instruction "P3 (PDMV/)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{FL} \\ (* 2) \end{array}$	$\underset{(* 3)}{\text { IX }}$	$\begin{aligned} & \text { IY } \\ & (* 4) \end{aligned}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The contents of data registers DT12 and DT11 are inverted and transferred to data registers DT21 and DT20 when trigger R0 turns on.

DT20	H 1111	[D](DT100)
DT21	H 34A	
DT22		H FFFF

RO: on
"F3 (DMV)" execution


## Description

The 32-bit data or 32-bit equivalent constant specified by $S$ is inverted and transferred to the 32 -bit area specified by D.


When processing 32-bit data, the higher 16-bit areas (S+1, $D+1$ ) are automatically determined once the lower 16-bit areas (S, D) are specified.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## F4 (GETS)

Outline The head word No. of the specified slot is read.
This function is available from FP2/FP2SH Ver. 1.50 or later.

## Program example



## Operands

Operand	Relay				Timer/Counter			Register		Index   register		Constant		Index   modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	I	K	H		
S	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A	
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	A	

N/A: Not Available

## Explanation of example

The number of WX and WY for the slot specified by $S$ is read, and set in [ $D, D+1]$.

$$
\begin{array}{|l|l|}
\cline { 2 - 3 } & \text { Head number of WX of specified slot } \\
\cline { 2 - 3 } & \text { Head number of WY of specified slot } \\
\cline { 2 - 3 } &
\end{array}
$$

When the unit is with X only, the same value is stored for the head number of WY.
When the unit is with Y only, the same value is stored for the head number of WX .
When the unit without input/output is specified, the same value is stored in D and $\mathrm{D}+1$.

## Flag conditions

- Error flag (R9007)(R9008):
- It turns on, when the specified address using the index modifier exceeds a limit.
- It turns on, when the number other than 0 to 31 is specified for the slot number.


## $F 5$ (BTM)

## P5 (РВТМ)

Outline Copies bit data of one 16-bit area to the specified bit of another 16-bit area.
For the FPOR/FPI/FP-X/FPO/FP-e, the P type high-level instruction "P5 (PBTM)" is not available.

## Program example

Ladder Diagram			Boolean		
			Address		uction
			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F 5   DT   H   DT	
S		16-bit equivalent constant or 16-bit area (source)			
n		16-bit equivalent constant or 16-bit area (specifies source and destination bit positions)			
D		16-bit area (destination)			

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & \left.\mathbf{N}^{*} 1\right) \end{aligned}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$	$\begin{aligned} & \text { IX } \\ & (* 3) \end{aligned}$	$\begin{aligned} & \text { IY } \\ & (* 4) \end{aligned}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The data at bit position 4 in data register DT20 is copied to bit position 12 in data register DT10 when trigger R0 turns on.


## Description

A single bit in the 16-bit data or the 16-bit equivalent constant specified by $S$ is copied to a bit of the 16-bit area specified by $D$, as specified by $n$.
With the FP2SH and FP10SH, it is possible to transfer the contents of multiple bits as a single transfer.

## How to specify $\mathbf{n}$

The " $n$ " specifies the source and destination bit positions using hexadecimal data as follows:


Number of transfer bits
Range other than the above: " 0 " should be specified.
FP2 (Ver. 1.03 and subsequent versions), FP2SH and FP10SH only Range: From 0 to F can be specified (refer to next page).

Bit position of destination "D" (set range: H0 to HF)

## Bit position specification for S and D

Bit position	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Set value	HF	HE	HD	HC	HB	HA	H9	H8	H7	H6	H5	H4	H3	H2	H1	H0

For example, when bit position 10 is specified, "HA" should be specified.
If bit position 4 of $S$ is being transferred to bit position 12 of $D, n=H C 04$.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

Transferring multiple bits [this can only be executed with FP0R, FPइ, FP-X, FP2 (Ver. 1.03 and subsequent versions), FP2SH, and FP10SH]
With the FP2, FP2SH and FP10SH, if the number of bits to be transferred is specified for n , the specified number of bits is transferred in sequential order, starting from the position specified by S , to destination, starting from the position specified by D.
Up to 16 bits can be transferred. The number of bits to be transferred should be specified as a hexadecimal value. The range is from 0 to $F$ ( 1 bit to 16 bits).

No. of bits transferred	Setting (n)
$\mathbf{1}$ bit	$\mathrm{H} \square 0 \square$
2 bits	$\mathrm{H} \square 1 \square$
3 bits	$\mathrm{H} \square 2 \square$
4 bits	$\mathrm{H} \square 3 \square$
5 bits	$\mathrm{H} \square 4 \square$
6 bits	$\mathrm{H} \square 5 \square$
7 bits	$\mathrm{H} \square 6 \square$
8 bits	$\mathrm{H} \square 7 \square$
9 bits	$\mathrm{H} \square 8 \square$
10 bits	$\mathrm{H} \square 9 \square$
11 bits	$\mathrm{H} \square \mathrm{A} \square$
12 bits	$\mathrm{H} \square \mathrm{B} \square$
13 bits	$\mathrm{H} \square \mathrm{C} \square$
14 bits	$\mathrm{H} \square \mathrm{D} \square$
15 bits	$\mathrm{H} \square \mathrm{E} \square$
16 bits	$\mathrm{H} \square \mathrm{F} \square$

Example: When two bits are being transferred ( $n=H \square 1 \square$ )
Two bits sent, starting from bit position 5 of $S$ to bit position 10 of D........n = HA15

Bit position	15	.	.	12	11	.	.	8	7	.	.	4	3	.	.	0
$\mathbf{S}$	0	0	1	0	0	1	0	1	1	1	0	0	1	1	0	1

Two bits, starting from bit position $5 \longleftarrow$

Bit position	15	.	.	12	11	.	.	8	7	.	.	4	3	.	.	0
D	1	1	1	0	1	1	0	1	0	0	0	1	1	0	0	1

ป "F5 (BTM)" execution

Bit position	15	.	.	1	11	.	.	8	7	.	.	4	3	.	.	0
D	1	1	1	0	1	0	0	1	0	0	0	1	1	0	0	1

Bit positions 5 and 6 of $S$ are transferred to bit position 10 and 11 of D

High-level Instructions

If " 0 " is specified as the number of bits to be transferred, the specified one bit is transferred. If the specified range extends beyond the area of $S$, the contents of the part extending beyond the area are transferred as "0".

Example: When four bits starting from bit position 14 of $S$ are transferred to bit position 2 of $\mathrm{D} . . . \mathrm{n}=\mathrm{H} 23 \mathrm{E}$


Bit position	15	.	.	12	11	.	.	8	7	.	.	4	3	.	.	0
D	0	0	1	0	0	0	0	1	1	0	1	1	1	0	0	1


"F5 (BTM)" execution

Bit position	15	.	.	1	11	.	.	8	7	.	.	4	3	.	.	0
D	0	0	1	0	0	0	0	1	1	0	0	0	1	1	0	1

Bit positions 14 and 15 of $S$ are transferred to bit positions 2 and 3 of D. " 0 " is stored in bit positions 4 and 5 of D .

If the specified range extends beyond the area of D , the contents of the part extending beyond the area are not transferred. Data is not written to the next address.

Example: Six bits starting from bit position 6 of $S$ are transferred to bit position 12 of D...n = HC56
$\left.\begin{array}{|c|ccc|cccc|cccc|cccc|}\hline \text { Bit position } & 15 & . & . & 12 & 11 & . & . & 8 & 7 & . & . & 4 & 3 & . & . \\ \hline \mathbf{S} & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1\end{array}\right)$

Six bits, starting from bit position $6 \longleftarrow$


## F6 (DGT)

## P6 (PDGT)

## Hexadecimal digit data move

Outline Copies hexadecimal digits at one 16-bit area to the specified digit position in another 16-bit area.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P6 (PDGT)" is not available.

## Program example

Ladder Diagram			Boolean		
			Address		ruction
10			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F } 6 \\ & \text { DT } \\ & \text { H } \\ & \text { DT } \end{aligned}$	$\begin{array}{rr} \text { R } & 0 \\ \text { (DGT) } \\ & 10 \\ & 0 \\ & 20 \end{array}$
	S	16-bit equivalent constant or 16-bit area (source)			
	n	16-bit equivalent constant or 16-bit area (specifies source and destination hexadecimal digit position and number of hexadecimal digits)			
	D	16-bit area (destination)			

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$	$\underset{(* 3)}{ }$	$\begin{aligned} & \text { IY } \\ & (* 4) \end{aligned}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available N/A: Not Available
(*3) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is I0 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Hexadecimal   digit position	3					2				1			0	0
Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$

The lower four bits in the data register DT10 is copied.

Hexadecimal digit position		3			2				1				0		
Bit position	$15 \cdot 1211 \cdot 8$							$7 \cdot 14$					3		0
DT20	00	0	0	1	0		0	1	0		0	1	0	0	

In this example, the upper 12 bits of DT20 do not change.

## Description

The hexadecimal digits in the 16-bit data or in the 16-bit equivalent constant specified by $S$ are copied to the 16 -bit area specified by $D$, as specified by $n$.

## Digits

Digits are units of 4 bits used when handling data.
With this instruction, 16-bit data is separated into four digits. The digits are called in order hexadecimal digit 0 , digit 1 , digit 2 and digit 3, beginning from the least significant four bits


## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## How to specify $\mathbf{n}$

n specifies the (3) source hexadecimal digit position, the (2) number of digits and the (1) destination hexadecimal digit position to be copied using hexadecimal data as follows:

(3) Source: Starting hexadecimal digit position

H0: Hexadecimal digit 0
H1: Hexadecimal digit 1
H2: Hexadecimal digit 2
H3: Hexadecimal digit 3
(2) Number of hexadecimal digits to be copied

HO : Copies 1 hexadecimal digits ( 4 bits)
H 1 : Copies 2 hexadecimal digits ( 8 bits )
H 2 : Copies 3 hexadecimal digits (12 bits)
H3: Copies 4 hexadecimal digits (16 bits)
(1) Destination: Starting hexadecimal digit position

H0: Hexadecimal digit 0
H1: Hexadecimal digit 1
H2: Hexadecimal digit 2
H3: Hexadecimal digit 3
If the value for (1), (2) and (3) is 0 , such as " H 000 " in the example program on the previous page, use the short form, "H0."

## Examples of hexadecimal digit copy

The following patterns of digit transfer are possible based on the specification of $n$.
(1) When hexadecimal digit 1 of the source is copied to hexadecimal digit 1 of the destination:


Specify n: H 101
(2) When hexadecimal digit 3 of the source is copied to hexadecimal digit 0 of the destination:


Specify n: H 003 (Short form: H3)
(3) When multiple hexadecimal digits (hexadecimal digits 2 and 3 ) of the source are copied to multiple hexadecimal digits (hexadecimal digits 2 and 3 ) of the destination:


Specify n: H 212
(4) When multiple hexadecimal digits (hexadecimal digits 0 and 1) of the source are copied to multiple hexadecimal digits (hexadecimal digits 2 and 3 ) of the destination:


Specify n: H 210
(5) When 4 hexadecimal digits (hexadecimal digits 0 to 3 ) of the source are copied to 4 hexadecimal digits (hexadecimal digits 0 to 3 ) of the destination:


Specify n: H 130

Outline Copies two 16-bit data to the specified 32-bit area.
For the FP0R/FPE/FP-X, the P type high-level instruction "P7 (PMV2)" is not available.
Program example

Ladder Diagram		Boolean		
		Address		uction
Trigger		10	ST	R 0
		11	F7	(MV2)
			DT	10
			DT	20
			DT	30
S1	16-bit equivalent constant or 16-bit area (source)			
S2	16-bit equivalent constant or 16-bit area (source)			
D	Lower 16-bit area for 32-bit area (destination)			

Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{array}{\|c\|} \hline F L \\ (* 1) \end{array}$	I	K	H	f	
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPOR, FPE and FP-X.

A: Available N/A: Not Available

## Explanation of example

The contents of data register DT10 are copied to data register DT30 when trigger R0 turns on.
The contents of data register DT20 are copied to data register DT31 when trigger R0 turns on.


## Description

The two 16 -bit data or two 16 -bit equivalent constant specified by S 1 and S 2 is copied to the 32 -bit area specified by D when the trigger turns on.

## Related instruction

To copy three 16-bit data, use the F190 (MV3) instruction.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## F8 (DMV2)

P8 (PDMV2)
Two 32-bit data move

Outline Copies two 32-bit data to the specified 64-bit area.
For the FPOR/FP $\Sigma / F P-X$, the $P$ type high-level instruction "P8 (PDMV2)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \hline F L \\ (* 1) \end{gathered}$		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

(*1) This cannot be used with the FPOR, FPE and FP-X.
A: Available
N/A: Not Available

## Explanation of example

The contents of data register DT11 and DT10 and the contents of data register DT21 and DT20 are copied to data registers DT33, DT32, DT31 and DT30 when trigger R0 turns on.


## Description

The two 32-bit data or two 32-bit equivalent constant specified by S1 and S2 is copied to the 64-bit area ( $\mathrm{D}+3$, $D+2, D+1$ and $D$ ) specified by $D$ when the trigger turns on.

## Related instruction

To copy three 32-bit data, use the F191 (DMV3) instruction.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## Block move

Outline Copies block data to the specified area.
For the FPOR/FPS/FP-X/FP0/FP-e, the P type high-level instructions are not available.

## Program example



S1	Starting 16-bit area (source)
S2	Ending 16-bit area (source)
D	Starting 16-bit area (destination)

Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$		K	H	
S1	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.

## Description

The data block specified by S 1 and S 2 is copied to the block starting from the 16 -bit area specified by D .

## Precautions during programming

The starting area S1 and ending area S2 should be the same type of operand.
The number of the lower address should be specified by S 1 , and the number of the higher address should be specified by S 2 . If S 1 is specified as higher than S 2 and the instruction is executed, an operation error will occur.

## Explanation of example

The data of data register "DT0 to DT3" is copied to the data registers "DT10 to DT13" when trigger R0 turns on.


RO: on

DT9	K	0
DT10	K	0
DT11	K	0
DT12	K	0
	K	K



## Precautions if the same type of memory area is specified for S1, S2, and D

The instruction is not executed if the address and type of memory area is the same for S1 and D.
If the block being transferred overlaps the transfer destination, the transfer results will be overwritten.
If $S 1<D$, the source data is copied starting from the higher address to the lower address in order (DT4 $\rightarrow$ DT3
$\rightarrow$ DT2 $\rightarrow$ DT1).


If $S 1>D$, the source data is copied starting from the lower address to the higher address in order (DT0 $\rightarrow$ DT1 $\rightarrow$ DT2).


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S1 > S2
- The data block to be copied exceeds the limit of the destination area.


## Block copy

Outline Copies the specified 16-bit data to a block with one or more 16-bit areas.
For the FP0R/FPE/FP-X/FP0/FP-e, the P type high-level instructions are not available.

## Program example



S	16-bit equivalent constant or 16-bit area (source)
D1	Starting 16-bit area (destination)
D2	Ending 16-bit area (destination)

Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & \left({ }^{*} 1\right) \end{aligned}$	$\begin{gathered} \hline \text { FL } \\ (* 2) \end{gathered}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D1	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
D2	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.
N/A: Not Available
(*3) With the FPOR, FP $5, F P-X, F P 2, ~ F P 2 S H$, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The contents of data register DT0 are copied to the block ranging from data register DT10 to DT14 when trigger R0 turns on.

DT0	K	10
[S] DT1	K	11
DT2	K	12
DT3	K	13
4	K	14


DT10	K	0	[D1]
DT11	K	0	
DT12	K	0	
DT13	K	0	
DT14	K	0	[D2]

RO: on
"F11 (COPY)" execution
[S]


## Description

The 16-bit equivalent constant or 16-bit area specified by S is copied to all 16-bit areas of the block specified by D1 and D2.

## Precautions during programming

The starting area D1 and ending area D2 should be the same type of operand.
The area of the lower address for the block being copied should be specified by D1, and the higher address should be specified by D2. If D1 is specified as higher than D2 and the instruction is executed, an operation error will occur.

When the same number as D1 and D2 is specified, the 16-bit data will be copied to the 16-bit area of that number.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- D1 > D2.

Outline Reads data from the EEPROM area.

## Program example



S1	Constant for specifying the starting address of EEPROM (for source data)
S2	32-bit equivalent constant or lower 16-bit area of 32-bit data for specifying   number of words to be read
D	Starting 16-bit area for storing data read from EEPROM (for destination)

## Operands

Operand	Relay				Timer/Counter				Register			Index   register		Constant		Index   modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	IX	IY	K	H			
	N/A	A	N/A	N/A												
S2	N/A	A	N/A	N/A												
D	N/A	N/A	N/A	N/A	N/A	N/A	A	N/A								

A: Available
N/A: Not Available

## Explanation of example

10 blocks of data stored in blocks 0 to 9 of the EEPROM are transferred to data registers DT0 to DT639 when execution condition (trigger) R0 turns on.
[S2](WXO)


## Description

S2 blocks of data stored in the EEPROM starting from S1 are transferred into the data register specified by D . At this time, the transferred data is handled in units of 1 block/64 words.

## Precautions during programming

Values that can be specified by $\mathrm{S} 1, \mathrm{~S} 2$ and D

Type	Memory area		
	S1	S2	D
FP0 C10, C14, C16, FP-e	K0 to K9	K1 to K10	DT0 to DT1595
FP0 C32, SL1	K0 to K95	K1 to K96	DT0 to DT6080
FP0 T32	K0 to K255	K1 to K256	DT0 to DT16320

Volume of data held in the EEPROM

Type	Volume that can be read
FP0 C10, C14, C16, FP-e	640 words
FPO C32, SL1	6,144 words
FP0 T32	16,384 words

Because the initial data in the EEPROM is not fixed, caution is required when reading data that has not been written to the EEPROM.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The address specified by S 1 does not exist in the EEPROM area.
- The area specified by S2 exceeds the limit of the EEPROM area.
- The area is exceeded when blocks specified by $D$ and subsequent parameters are transferred.

Outline Reads data from the $\mathrm{F}-\mathrm{ROM}$ area.

## Program example



S1	Constant for specifying the starting address of F-ROM (for source data)
S2	32-bit equivalent constant or lower 16-bit area of 32-bit data for specifying   number of words to be read
D	Starting 16-bit area for storing data read from F-ROM (for destination)

## Operands

Operand	Relay				Timer/Counter			Register			Index   register		Constant		Index   modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	I	K	H			
	N/A	A	N/A	N/A											
S2	N/A	A	N/A	N/A											
D	N/A	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A		

A: Available
N/A: Not Available

## Explanation of example

10 blocks of data stored in blocks 0 to 9 of the F-ROM are transferred to data registers DT0 to DT20479 when execution condition (trigger) R0 turns on.
[S2](WXO)


## Description

S2 blocks of data stored in the $\mathrm{F}-\mathrm{ROM}$ starting from S 1 are transferred into the data register specified by D . At this time, the transferred data is handled in units of 1 block ( 2,048 words).

## Precautions during programming

Values that can be specified by S1, S2 and D

Type	Memory area		
	S1	S2	D
FPE, FP-X, FP0R	K0 to K15	K1 to K16	DT0 to DT30720   (FP-X C14, FP0R C10, 14, 16: DT0 to DT12284)

Volume of data held in the F-ROM

Type	Volume that can be read
FP $\Sigma$, FP-X, FPOR	32,765 words (FP-X C14, FP0R C10, 14, 16: 12285 words)

Because the initial data in the $\mathrm{F}-\mathrm{ROM}$ is not fixed, caution is required when reading data that has not been written to the F-ROM.

The initial value of F-ROM of FPOR can be cleared to 0 when the programs are all deleted with a tool software.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The address specified by S1 does not exist in the F-ROM area.
- The area specified by S 2 exceeds the limit of the F-ROM area.
- The area is exceeded when blocks specified by $D$ and subsequent parameters are transferred.

Data read from IC card

Outline Reads data from the expansion memory area of the IC card.

## Program example



S1	Constant for specifying the starting address of IC card expansion memory (for   source data)
S2	32-bit equivalent constant or lower 16-bit area of 32-bit data for specifying   number of words to be read
D	Starting 16-bit area for storing data read from IC card (for destination)

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	$\underset{(* 1)}{I X}$	$\begin{aligned} & \text { IY } \\ & (* 2) \end{aligned}$	K	H	
S1	N/A	A	A	A										
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This is 10 to IC.
A: Available
N/A: Not Available
(*2) This is ID.

## Explanation of example

10 words of data stored in addresses 0 to 9 of the IC card expansion memory area are transferred to data registers DT100 to DT109 when trigger R0 turns on.


## Description

S2 words of data stored in the IC card expansion memory area starting from S1 are transferred into the CPU memory location specified by D.

## Precautions during programming

The values available for S1 and S2 vary depending on the size of the IC card expansion memory area.
When using an nkB IC card
Value that can be specified for S 2 : 1 to $\left(\frac{\mathrm{n} \times 1024}{2}-1\right)$
Value that can be specified for S1: 0 to ([S2](WXO)-1)

$\mathbf{n}$	S1	S2
$\mathbf{2 5 6} \mathbf{k}$	K131070	K131071 (H1FFFF)
$\mathbf{5 1 2} \mathbf{k}$	K262142	K262143 (H3FFFF)
$\mathbf{1 \mathbf { M }}$	K524286	K524287 (H7FFFF)
$\mathbf{2 ~ M}$	K1048574	K1048575 (HFFFFF)

Note: When using as remaining DOS formatted mkB expansion memory:
S2: 1 to $\left(\frac{m \times 1024}{2}\right)$
S1: 0 to [S2](WXO)

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- No IC card is installed in the CPU.
- The IC card access enable switch is set to off (disabled).
- No expansion memory area is found on the IC card.
- The address specified by S1 does not exist in the expansion memory area of the IC card.
- The area specified by S2 exceeds the limit of the expansion memory area of the IC card.
- The area is exceeded when blocks specified by D and subsequent parameters are transferred.

Step	Availability
11	FP0 V2.0 or more/FP-e

Outline Writes data to the EEPROM area.

## Program example

Ladder Diagram			Boolean Non-ladder			
			Address		ucti	
			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   P 13   DT   K   K		0 ) 0 10 0
S1		Starting 16-bit area for storing source data				
S2		32-bit equivalent constant or lower 16-bit area of 32-bit data for specifying number of words to be write				
D		Starting address (constant) of EEPROM area for storing received data (for destination)				

## Operands

Operand	Relay				Timer/Counter		Register		Index   register		Constant	Index   modifier		
	WX	WY	WR	WL	SV	EV	DT	LD	FL	IX			H	
S1	N/A	N/A	N/A	N/A	N/A	N/A	A	N/A						
S2	N/A	A	N/A	N/A										
D	N/A	A	N/A	N/A										

## Explanation of example

10 blocks ( 640 words) of data stored in data registers DTO to DT576 are transferred to blocks 0 to 9 in the EEPROM area when execution condition (trigger) R0 turns on.

Data register DT EEPROM area


## Description

S2 blocks of data stored in the data register starting from S1 are transferred into the EEPROM area specified by D. At this time, the transferred data is handled in units of 1 block/64 words.

## Precautions during programming

Values that can be specified by S1, S2 and D

Type	Memory area		
	S1	S2	D
FP0 C10, C14, C16, FP-e	DT0 to DT1595	K1 to K10	K0 to K9
FP0 C32, SL1	DT0 to DT6080	K1 to K96	K0 to K95
FP0 T32	DT0 to DT16320	K1 to K256	K0 to K255

Volume of data that can be held in the EEPROM

Type	Volume that can be read
FP0 C10, C14, C16, FP-e	640 words
FPO C32, SL1	6,144 words
FP0 T32	16,384 words

Data can be written to the EEPROM up to 10,000 times.
In order to prevent this instruction from being written to the EEPROM numerous times through erroneous programming, it has been set up as a differential execution type of instruction (P13). When setting up the program, however, please make sure that this instruction is not written to the EEPROM numerous times.
When the instruction is executed, the operation execution time will be approximately 5 ms longer for block ( 64 words).
This instruction should not be used in interrupt programs.
If the FPOR is used as the FPO, the execution time will be longer. (FPO compatibility mode)
Comparative chart of execution time of FPOR in FPO mode and FPO

No. of specified   blocks	Execution time of FPO (Unit: $\mathbf{m s}$ )	Execution time of FPOR in FPO   compatibility mode (Unit: ms)
$\mathbf{1}$	5	100
$\mathbf{2}$	10	100
$\mathbf{4}$	20	100
$\mathbf{8}$	40	100
$\mathbf{1 6}$	80	100
$\mathbf{3 2}$	160	100
$\mathbf{3 3}$	165	200
$\mathbf{4 0}$	205	200

Note that the execution time of the FPOR in FPO mode is longer as shown in the above chart.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The number specified by S1 does not exist in the memory area.
- The area specified by S2 exceeds the limit of the memory area.
- The area is exceeded when blocks specified by D and subsequent parameters are transferred.


## Availability

-4 (P|CWT)
Data write to F-ROM
FP $/$ /FP-X/FPOR

Outline Writes data to the F-ROM area.

## Program example



## Operands

Operand	Relay				Timer/Counter			Register		Index   register		Constant	Index   modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	I	K		
S1	N/A	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	N/A	N/A	N/A
S2	N/A	A	N/A	N/A									
D	N/A	A	N/A	N/A									

A: Available
N/A: Not Available

## Explanation of example

1 block ( 2,048 words) of data stored in data registers DT0 is transferred to block 0 in the $\mathrm{F}-\mathrm{ROM}$ area when execution condition (trigger) R0 turns on.


## Description

S2 block of data stored in the data register starting from S1 is transferred into the F-ROM area specified by D . At this time, the transferred data is handled in units of 1 block ( 2,048 words).

## Precautions during programming

Values that can be specified by S1, S2 and D

Type	Memory area		
	S1	S2	D
FPE, FP-X, FPOR	DTO to DT30720   (FP-X C14, FP0R C10, 14, 16: DT0 to DT12284)	K1	K0 to K15

Volume of data that can be held in the F-ROM

Type	Volume that can be read
FP $\Sigma$, FP-X, FPOR	32,765 words (FP-X C14, FPOR C10, 14, 16: 12285 words)

Data can be written to the F-ROM up to 10,000 times.
In order to prevent this instruction from being written to the F-ROM numerous times through erroneous programming, it has been set up as a differential execution type of instruction (P13). When setting up the program, however, please make sure that this instruction is not written to the F-ROM numerous times.
The number of blocks that can be written to is only one. Also, a maximum time of approximately 100 ms is required for instruction execution. To write to multiple blocks, first divide into multiple scans.
This instruction should not be used in interrupt programs.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The number specified by S1 does not exist in the memory area.
- The area specified by S2 exceeds the limit of the memory area.
- The area is exceeded when blocks specified by $D$ and subsequent parameters are transferred.


## Data write to IC card

Outline Writes data to the expansion memory area in the IC card.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	$\underset{(* 1)}{I X}$	$\begin{aligned} & \text { IY } \\ & (* 2) \end{aligned}$	K	H	
S1	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A										

(*1) This is IO to IC.
(*2) This is ID.

A: Available $\mathrm{N} / \mathrm{A}$ : Not Available

## Explanation of example

10 words of data stored in data registers DT100 to DT109 are transferred to addresses 100 to 109 in the expansion memory area in the IC card when trigger R0 turns on.
[S2](WXO)

## Description

S2 words of data stored in the CPU starting from S1 are transferred into the expansion memory area in the IC card specified by D.
The F13 (ICWT)/P13 (PICWT) instruction can be executed only in the expansion memory area of an SRAM-type IC card.

## Precautions during programming

The values available for D vary depending on the size of expansion memory area in the IC card.
When using an nkB IC card
Value that can be specified for $\mathrm{S} 2: 1$ to $\left(\frac{\mathrm{n} \times 1024}{2}-1\right)$
Value that can be specified for S1: 0 to ([S2](WXO)-1)

$\mathbf{n}$	S1	S2
$\mathbf{2 5 6} \mathbf{k}$	K131070	K131071 (H1FFFF)
$\mathbf{5 1 2} \mathbf{k}$	K262142	K262143 (H3FFFF)
$\mathbf{1 \mathbf { M }}$	K524286	K524287 (H7FFFF)
$\mathbf{2 ~ M}$	K1048574	K1048575 (HFFFFF)

Note: When using as remaining DOS formatted mkB expansion memory:
S2: 1 to $\left(\frac{m \times 1024}{2}\right)$
S1: 0 to [S2](WXO)

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- No IC card is installed in the CPU.
- The IC card access enable switch is set to off (disabled).
- Write protect is in effect on the card side.
- The card is a FLASH-EEPROM type.
- No expansion memory area is found on the IC card.
- The area specified by S2 exceeds the limit of the expansion memory area of IC card.
- The area is exceeded when blocks specified by D and subsequent parameters are transferred.


## F14 (PGRD)

P14(PPGRD)

## Program read from IC card

Outline Reads a program from the IC card and executes it.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	$\underset{(* 1)}{I_{( }}$	$\underset{(* 2)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) With the FP2SH/FP10SH, this is IO to IC.

A: Available
N/A: Not Available
(*2) With the FP2SH/FP10SH, this is ID.

## Explanation of example

When the execution condition R0 is on, the programs for file names written to data register DT100 and subsequent data registers are read from the IC memory card, and are substituted for the program currently being executed.
If "STEP2" is written for data register DT100 or a subsequent register, the program with the file name "STEP2" stored on the IC memory card is read.


## Description

The program for the file name stored in the area specified by $S$ is read from the IC memory card, and is substituted for the program currently being executed.
Subsequent operation is carried out based on the program which was read.

## Precautions when changing programs

Programs are changed when the ED instruction is executed. At that point, the mode changes automatically from the RUN mode to the PROG. mode.
All output goes off.
The contents of memory areas not specified as hold-type are cleared.
When a program is read, the system registers are rewritten at the same time. The same system register settings as those of the specified program should always be used, including the I/O map, remote I/O map, and others.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- No IC card is installed in the CPU.
- The IC card access enable switch is set to off (disabled).
- No DOS formatted area is found on the IC card.
- The specified file name does not exist on the IC card.
- The specified file is not a program file for the FP2SH/FP10SH.
- The file is damaged.
- A file name which cannot be used is specified.


## Specifying file names

The program file name should be replaced with a character code, and written to the memory area that has $S$ as the first address.
ASCII codes can be used.
No extension should be attached.
A single-byte numerical value HOO is the final code. If " HOO " is written at the end of the file name (the MSB), the characters up to that point area treated as the file name.
If all 8 characters are specified for the file name, no final code is necessary. A code (H20) should be specified for any blank spaces.

All 8 characters specified
(Higher) (Lower)
\(\begin{array}{l|c:c|}DT100 \& "B" \& "A" <br>
DT101 \& "D" \& "C" <br>
\hline DT102 \& \mathrm{H} 20 \& \mathrm{H} 20 <br>
\hline DT103 \& \mathrm{H} 20 \& \mathrm{H} 20 <br>

\)\cline { 2 - 3 } \& \& \end{array}$\}$| Space |
| :--- |
| codes |

Only some of the characters specified
(Higher) (Lower)


Final code

## Specific example of specifying a file name

There are two ways to write a character code to a memory area specified by the F14 (PGRD) instruction. The character code can be written directly, using a data move instruction ( $\mathbf{F O}$ or $\mathbf{F 1}$ ).
The character code can be converted to the file name written when the program was created, using the ASCII conversion instruction (F95).
Writing a character code directly

## y

Example: When only some of the characters are specified
Specifying a file name of "ABCD"

File name	A	B	C	D
ASCII code	41	42	43	44



Specifying a file name of "STEP2"

File name	S	T	E	P	2
ASCII code	53	54	45	50	32



## Specifying a file name with the ASCII conversion instruction, and converting it

The file name is converted to a character code using the ASCII conversion instruction "F95 (ASC)", and is written to a specified memory area.

- Programming can only be done with the programming tool software.
- When the ASCII conversion instruction is executed, the results are stored in a 6-word (12-character) memory area. The specification should be made as follows.


## Operand of F95 M

பபபபThe file name ( 8 characters) should be entered with characters filling the spaces starting from the left. Spaces should be entered where characters are not specified.

## c <br> Example: ("৬" indicates a space)

## Specifying a file name of "ABCD"



## Specifying a file name of "STEP2"



## F15(XCH)

P15(PXCH)

## 16-bit data exchange

Outline Exchanges two 16-bit data items.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P15 (PXCH)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & (* 1) \end{aligned}$	$\begin{aligned} & \text { FL } \\ & \text { (*2) } \end{aligned}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\text { IY }}$	K	H	
D1	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
D2	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The contents of data register DT10 and data register DT22 are exchanged when trigger R0 turns on.


RO: on
"F15 (XCH)" execution

[D1] DT10	K	22
DT11	K	11
DT12	K	12
DT13	K	13
DT14	K	14


DT20	K	20
DT21	K	21
DT22	K	10
[D2]		
DT23	K	23
DT24	K	24

## Description

The contents in the 16-bit areas specified by D1 and D2 are exchanged.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## F16(DXCH)

## 32-bit data exchange

Outline Exchanges two 32-bit data items.
For the FP0R/FPE/FP-X/FP0/FP-e, the P type high-level instructions are not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & (* 1) \end{aligned}$	$\begin{gathered} \text { FL } \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	$\begin{aligned} & \text { IY } \\ & (* 4) \end{aligned}$	K	H	
D1	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
D2	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The contents of data registers DT11 and DT10 and data registers DT23 and DT22 are exchanged when trigger RO turns on.


RO: on

## "F16 (DXCH)" execution

[D1] DT10	H	$9 A B C$
DT11	H	DEF1
DT12	H	25 AC
DT13	H	F23


DT20	H	1234
DT21	H	5678
DT22	H	0
DT23	[D2]	H
	FFFD	

## Description

The contents in the 32-bit areas specified by D1 and D2 are exchanged.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## F17(SWAP)

P17(PSWAP)

## Higher/lower byte in 16-bit data exchange

Outline Exchanges higher and lower order bytes of the specified 16-bit data. For the FP0R/FPE/FP-X/FP0/FP-e, the P type high-level instructions are not available.

## Program example

Ladder Diagram			Boolean		
			Address		uction
			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F 17 DT	R 0 (SWAP) 0
D $\quad 16$-bit area to be exchanged higher and lower bytes					

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & \left({ }^{*} 1\right) \end{aligned}$	$\begin{gathered} \hline F L \\ (* 2) \end{gathered}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\text { IY }}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPL, FP-X.
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The higher and lower bytes of data register DT0 are exchanged when trigger R0 turns on.

Bit position	15	$\cdot$	$\cdot$	1	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT0	0	0	0	0	0	1	0	0	1	1	0	1	0	0	1	0
Hexadecimal	0		4			D			2							

Higher byte (8-bit) Lower byte (8-bit)

"F17 (SWAP)" execution
$\left.\begin{array}{|c|ccc|cccc|ccc|ccc|c|}\hline \text { Bit position } & 15 & \cdot & \cdot & 1 & 11 & \cdot & \cdot & 8 & 7 & \cdot & . & 4 & 3 & \cdot\end{array}\right)$

## Description

The higher order byte (higher 8-bit) and lower order byte (lower 8-bit) of the 16 -bit area specified by D are exchanged.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## 16-bit blocked data exchange

Outline Exchanges the 16-bit blocked data.
For the FPOR/FP $\Sigma / F P-X$, the $P$ type high-level instruction "P18 (PBXCH)" is not available.

## Program example

Ladder Diagram		Boolean		
		Address	Instruction	
	XCH, ${\underset{\text { D1 }}{\text { DT10, }} \text {, } \underbrace{\text { DT13, }}_{\text {D2 }} \underbrace{\text { DT31 }}_{\text {D3 }}]}^{\text {a }}$	$\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$	ST   F18   DT   DT   DT	(BXCH)   10   13   31
D1	Starting 16-bit area of block data 1			
D2	Ending 16-bit area of block data 1			
D3	Starting 16-bit area of block data 2			

## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \hline F L \\ (* 1) \end{gathered}$		K	H	f		
D1	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D2	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D3	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

(*1) This cannot be used with the FPOR, FPE and FP-X.

A: Available N/A: Not Available

## Explanation of example

The data block from data register DT10 to data register DT13 and the data block (DT31 to DT34) starting from data register DT31 are exchanged when trigger R0 turns on.


## Description

The data block specified by D1 and D2 and the block starting from the 16-bit area specified by D3 are exchanged when the trigger turns on.

## Precautions during programming

The starting area D1 and ending area D2 should:
Be the same type of operand.
Satisfy D1 $\leqq$ D2. If area D1 > D2, an operation error occurs.
If the areas of blocks to be exchanged overlap, correct exchange will not be possible. Note, however, that an error will not occur (the error flag will not turn on).

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- D1 > D2
- The data block to be exchanged exceeds the limit of the destination area.


## Auxiliary jump

## Label

Outline Skips to the LBL instruction with the same number as the data area specified by the F19 (SJP) instruction.

## Program example

Ladder Diagram		Boolean		
		Address		uction
$10$		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F19 } \end{aligned}$	$\begin{array}{lr} \text { R } & 0 \\ & (S J P) \\ \text { DT } & 0 \end{array}$
S	16-bit area for storing the label number [0 to 255 (256 points)]			

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	$\underset{(* 1)}{\text { IX }}$	$\underset{(* 2)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A

(*1) With the FP2, FP2SH, and FP10SH, this is IO to IC.
A: Available
(*2) With the FP2, FP2SH, and FP10SH, this is ID.
$\mathrm{N} / \mathrm{A}$ : Not Available

## Explanation of example

Skips to the label number with the same number as the value in data register DTO when trigger R0 turns on.


When DT0 is K1, the program skips from F19 (SJP) to LBL1.
When DT0 is K125, the program skips from F19 (SJP) to LBL125.

## Description

The F19 (SJP) instruction skips the program between the F19 (SJP) and the LBL with the number specified by $S$ when the trigger turns on.
Program execution continues from the next instruction after the jump destination label.
Up to 256 jump destinations can be specified (the range of values in which $S$ can be stored is from K0 to K255).
LBL instructions are specified as destinations of JP, LOOP and F19 (SJP) instructions. Any instruction may be used as the starting point for the jump destination.
Two or more LBL instructions with the same number cannot be used in the same program.
If there is no label with the same number as the value of $S$, or if the value stored is outside of the range, the F19 (SJP) instruction will not be executed.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The content of S is smaller than KO.
- The content of $S$ is larger than K255.


## Precautions during programming

If the label is written to an address prior to the F19 (SJP) instruction, be aware that there is a possibility that the scan cannot be completed, and an operation bottleneck error will occur.
The F19 (SJP) instruction cannot be used in a stepladder area (the range from SSTP to CSTP), in a subroutine, or in an interrupt program.
A jump cannot be made from a main program to a sub-program (subroutines or interrupt programs written subsequent to the ED instruction).

## Using differential type instructions between F19 (SJP) and LBL instructions

This is the same as when programming is done between the JP and LBL instructions. Refer to the explanation of the JP and LBL instructions.
You must be careful when using one of the instructions below, which are executed by detecting the leading edge of execution condition (trigger) such as the differential instruction.
DF (leading edge differential)
Count input of CT (counter)
Count input of F118 (up/down counter)
Shift input of SR (shift register)
Shift input of F119 (left/right shift register)
NSTP (next step)
Differential execution type high-level instruction (this instruction is specified by P and a number)

16-bit data addition
[D+S $\rightarrow$ D]

Outline Adds two 16-bit data items.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P20 (P+)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Indexregister register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \hline \text { LD } \\ (* 1) \end{gathered}$	$\begin{gathered} \hline F L \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FP0R, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The contents of data register DT10 and data register DT1 are added together when trigger R0 turns on.
When the decimal number 4 is in DT1 and the decimal number 8 is in DT10, as shown below.
Augend [D](DT100): K8

| Bit position | 15 | . | . | 12 | 11 | . | . | 7 | 7 | . | . | 4 | 3 | . | . | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DT10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |

Addend [S]: K4


Bit position	15	$\cdot$	$\cdot$	1	11	$\cdot$	$\cdot$	8	7	$\cdot$	.	4	3	$\cdot$	$\cdot$	0
DT1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Result [D](DT100): K12

Bit position	5	$\cdot$	$\cdot$	1	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$
DT10	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0

## Description

The 16 -bit equivalent constant or 16 -bit area specified by $S$ and the 16 -bit area specified by $D$ are added together.

| Augend data |
| :---: | :---: | :---: | :---: |
| (D) |$+$| Addend data |
| :---: |
| (S) |$\xrightarrow{\text { Trigger turns on }}$| Result |
| :---: |
| (D) |

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow or underflow will result.
Under normal circumstances, do not allow an overflow or underflow to occur.
If the calculated result accidentally overflows or underflows, use of the F21 (D+) instruction (32-bit data addition) is recommended.
When you use the F21 ( $\mathbf{D}_{+}$) instruction instead of $\mathbf{F 2 0}(+)$, be sure to convert the 16 -bit addend and augend into 32-bit data using the F89 (EXT) instruction.
If an overflow or underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ."
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 16 -bit data (overflows or underflows).

Outline Adds two 32-bit data items.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P21 ( $\mathrm{PD}+$ )" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & (* 1) \end{aligned}$	$\begin{gathered} \hline F L \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\prime \text { (Y }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is I0 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The contents ( 32 bits) of data registers DT11 and DT10 and the contents ( 32 bits) of data registers DT1 and DT0 are added together when trigger R0 turns on.


Store to DT11 Store to DT10
$\leftarrow$ The lower 16 bits of added result is stored in DT10 and the higher 16 bits of the result is stored in DT11.

## Description

The 32-bit equivalent constant or the 32-bit area specified by S and the 32-bit data specified by D are added together.

| Augend data |
| :---: | :---: | :---: |
| $(\mathrm{D}+1, \mathrm{D})$ |$+$| Addend data |
| :---: |
| $(\mathrm{S}+1, \mathrm{~S})$ |$\longrightarrow$| Result |
| :---: |
| $(\mathrm{D}+1, \mathrm{D})$ |

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow or underflow will result.
Under normal circumstances, do not allow an overflow or underflow to occur.
If an overflow or underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ."
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 32-bit data (overflows or underflows).

Outline Adds two 16-bit data items and stores the result in the specified area. For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P22 ( $\mathrm{P}+$ )" is not available.

## Program example

Ladder Diagram			Boolean			
			Address		uc	
Trigger			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F 22   DT   DT   DT	R	0 $(+)$ 10 20 30
S1 $\quad 16$-bit equivalent constant or 16-bit area (for augend)						
S2						
D		16-bit area (for result)				

Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{gathered} \hline F L \\ \hline(* 2) \end{gathered}$	$\begin{aligned} & \text { IX } \\ & (* 3) \end{aligned}$	$\begin{aligned} & \text { IY } \\ & (* 4) \end{aligned}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The contents of data registers DT10 and DT20 are added when trigger R0 turns on. The added result is stored in data register DT30.
when the decimal number 8 is in DT10 and the decimal number 4 is in DT20, as shown below.
Augend [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): K8

Bit position	15	.	.	1	11	.	.	8	7	.	.	4	3	.	.
DT10	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0



| Bit position | 15 | . | . | 12 | . | . | 8 | 7 | . | . | 4 | 3 | . | . | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DT20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |

Result [D](DT100): K12

Bit position	15	.	.12	11	.	8	7	.	.	3	3	.	0		
DT30	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0

## Description

The 16-bit data or 16-bit equivalent constant specified by S1 and S2 are added together. The added result is stored in D.

| Augend data |
| :---: | :---: | :---: |
| (S1) |$+$| Addend data |
| :---: |
| $(\mathrm{S} 2)$ |$\longrightarrow$| Result |
| :---: |

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow or underflow will result.
Under normal circumstances, do not allow an overflow or underflow to occur.
If the calculated result accidentally overflows or underflows, use of the F23 (D+) instruction (32-bit data addition) is recommended.
When you use the F23 (D+) instruction instead of F22 (+), be sure to convert the 16-bit addend and augend into 32-bit data using the F89 (EXT) instruction.
If an overflow or underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 16-bit data (overflows or underflows).

32-bit data addition
$[(S 1+1, S 1)+(S 2+1, S 2) \rightarrow(D+1, D)]$

Outline Adds two 32-bit data items and stores the result in the specified area. For the FPOR/FPE/FP-X/FPO/FP-e, the P type high-level instruction "P23 (PD+)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & \text { WL } \\ & \text { (*1) } \end{aligned}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & (* 1) \end{aligned}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	$\begin{gathered} \text { IY } \\ (* 4) \end{gathered}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The contents of data registers DT11 and DT10 and the contents of data registers DT21 and DT20 are added when trigger R0 turns on. The added result is stored in data registers DT31 and DT30.

$\leftarrow$ The lower 16 bits of added result is stored in DT30 and the higher 16 bits of the result is stored in DT31.

## Description

The 32-bit data or 32-bit equivalent constant specified by S1 and S2 are added together. The added result is stored in D+1 and D.

| Augend data |
| :---: | :---: | :---: |
| $(S 1+1, S 1)$ |$+$| Addend data |
| :---: |
| $(S 2+1, S 2)$ |$\longrightarrow(D+1, D)$

When processing 32-bit data, the higher 16-bit areas (S1+1, S2+1, $\mathrm{D}+1$ ) are automatically determined once the lower 16-bit areas (S1, S2, D) are specified.

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow or underflow will result.
Under normal circumstances, do not allow an overflow or underflow to occur.
If an overflow or underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 32-bit data (overflows or underflows).

Outline Subtracts 16-bit data from the minuend.
For the FPOR/FPE/FP-X/FPO/FP-e, the P type high-level instruction "P25 (P-)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \text { LD } \\ (* 1) \\ \hline \end{gathered}$	$\begin{gathered} \text { FL } \\ (* 2) \end{gathered}$	$\underset{(* 3)}{ }$	$\underset{(* 4)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available
N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPL, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Subtracts the contents of data register DT10 from the contents of data register DT20 when trigger R0 turns on.

Example 1: When the decimal number 16 is in DT20 and the decimal number 4 is in DT10.


## Example 2: When the decimal number 3 is in DT20 and the decimal number 5 is in DT10.



## Description

Subtracts the 16 -bit equivalent constant or 16 -bit area specified by $S$ from the 16 -bit area specified by D .

Minuend data
(D)

Subtrahend data
(S)

Result
(D)

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow or underflow will result.
Under normal circumstances, do not allow an overflow or underflow to occur.
If the calculated result accidentally overflows or underflows, use of the F26 (D-) instruction (32-bit data subtraction) is recommended.
When you use the F26 (D-) instruction instead of F25 (-), be sure to convert the 16-bit subtrahend and minuend into 32-bit data using the F89 (EXT) instruction.
If an overflow or underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 16 -bit data (overflows or underflows).

Outline Subtracts 32-bit data from the minuend.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P26 (PD-)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{gathered} \hline F L \\ \hline(* 2) \end{gathered}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Subtracts the contents ( 32 bits) of data registers DT11 and DT10 from the contents ( 32 bits) of data registers DT21 and DT20 when trigger R0 turns on.


Store to DT21 Store to DT20
$\leftarrow$ The lower 16 bits of subtracted result is stored in DT20 and the higher 16 bits of the result is stored in DT21.

## Description

Subtracts the 32-bit equivalent constant or the 32-bit data specified by S from the 32-bit data specified by D.

Minuend data	Subtrahend data		
$(\mathrm{D}+1, \mathrm{D})$		$\mathrm{O} \quad(\mathrm{S}+1, \mathrm{~S}) \quad \longrightarrow$	Result
:---:			
$(\mathrm{D}+1, \mathrm{D})$			

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow or underflow will result.
Under normal circumstances, do not allow an overflow or underflow to occur.
If an overflow or underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 32-bit data (overflows or underflows).

Outline Subtracts 16-bit data from the minuend and stores the result in the specified area.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P27 (P-)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & (* 1) \end{aligned}$	$\begin{gathered} \hline \text { FL } \\ \hline(* 2) \end{gathered}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\prime \text { (Y }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available
N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FP0R, FPD, FP-X.
(*3) With the FP0R, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Description

Subtracts the 16-bit data or 16-bit equivalent constant specified by S2 from the 16-bit data or 16-bit equivalent constant specified by S 1 . The subtracted result is stored in D.

Minuend data
(S1)

Subtrahend data
(S2)

Result
(D)

## Flag conditions

- Error flag (R9007):

Turns on and stays on when the area specified using the index modifier exceeds the limit.

- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 16-bit data (overflows or underflows).


## Explanation of example

Subtracts the contents of data register DT20 from the contents of data register DT10 when trigger R0 turns on. The subtracted result is stored in data register DT30.

##  <br> Example 1: When the decimal number 16 is in DT10 and the decimal number 4 is in DT20.

Minuend [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): K16

DT10	0	0	00	0	0		0	0							
Subtrahend [S2](WXO): K4															
Bit position	1		1211				8	7							0
DT20	0	0	0	0	0		0	0							

Result [D](DT100): K12

Bit position	15	.	.	1	11	.	.	8	7	.	.	4	3	.	.	0
DT30	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0

## Example 2: When the decimal number 3 is in DT10 and the decimal number 5 is in DT20.

Minuend [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): K3

$$
\begin{array}{|c|ccc|ccc|cccc|cccc|}
\hline \text { Bit position } & 15 & \cdot & \cdot & 1 & 11 & \cdot & \cdot & 8 & 7 & \cdot & \cdot & 4 & 3 & \cdot \\
\hline
\end{array}
$$

Bit position	15	$\cdot$	$\cdot$	1	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$
DT20	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Result [D](DT100): K-2

Bit position	15	.	.	1	11	.	.	8	7	.	.	4	3	.

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow or underflow will result.

Under normal circumstances, do not allow an overflow or underflow to occur.
If the calculated result accidentally overflows or underflows, use of the F28 (D-) instruction (32-bit data subtraction) is recommended.
When you use the F28 (D-) instruction instead of F27 (-) be sure to convert the 16-bit subtrahend and minuend into 32-bit data using the F89 (EXT) instruction.
If an overflow or underflow occurs, the carry flag (special internal relay R9009) will turn on.

Outline Subtracts 32-bit data from the minuend and stores the result in the specified area.
For the FPOR/FPD/FP-X/FP0/FP-e, the P type high-level instruction "P28 (PD-)" is not available.

## Program example

Ladder Diagram					Boolean				
					Address	Instruction			
					10		T	R	0
					11		28		(D-)
							DT		10
							DT		20
							DT		30


S1	32-bit equivalent constant or lower 16-bit area of 32-bit data (for minuend)
S2	32-bit equivalent constant or lower 16-bit area of 32-bit data   (for subtrahend)
D	Lower 16-bit area of 32-bit data (for result)

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \hline \text { LD } \\ \left.\mathbf{N}^{*} 1\right) \end{gathered}$	$\begin{aligned} & \mathrm{FL} \\ & (* 2) \end{aligned}$	$\underset{(* 3)}{ }$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Subtracts the contents of data registers DT21 and DT20 from the contents of data registers DT11 and DT10 when trigger R0 turns on. The subtracted result is stored in data registers DT31 and DT30.

$\leftarrow$ The lower 16 bits of subtracted result is stored in DT30 and the higher 16 bits of the result is stored in DT31.

## Description

Subtracts the 32-bit data or 32-bit equivalent constant specified by S 2 from the 32-bit data or 32-bit equivalent constant specified by S 1 . The subtracted result is stored in $\mathrm{D}+1$ and D .

Minuend data	Subtrahend data		
$(S 1+1, S 1)$		$\quad-\quad(S 2+1, S 2) \quad$	Result
:---:			

When processing 32-bit data, the higher 16-bit areas ( $\mathrm{S} 1+1, \mathrm{~S} 2+1 \mathrm{D}+1$ ) are automatically determined once the lower 16-bit areas (S1, S2, D) are specified.

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow or underflow will result.

Under normal circumstances, do not allow an overflow or underflow to occur. If an overflow or underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 32-bit data (overflows or underflows).


## F30 ${ }^{(*)}$

Outline Multiplies two 16-bit data items.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instructions are not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Indexregister register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \hline \text { LD } \\ (* 1) \end{gathered}$	$\begin{array}{\|c\|} \hline F L \\ (* 2) \end{array}$	$\underset{(* 3)}{ }$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is I0 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Multiplies the contents of data register DT10 and DT20 when trigger R0 turns on.
The result is stored in data registers DT 31 and DT 30.
When the decimal number 8 is in DT10 and the decimal number 2 is in DT20.

## Multiplicand [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): K8

Bit position	15	.	.1	11	.	.	8	7	.	.	4	3	.	.	0
DT10	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Multiplier [S2](WXO): K2
$x$

Bit position	15	.	.	1	11	.	.	8	7	.	.	4	3	.	.
DT20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

## Result [D+1, D]: K16



Higher 16-bit area


Lower 16-bit area

The lower 16 bits of the 32-bit multiplication result are stored in the specified memory area (DT30), and the higher16 bits are stored in the area following the specified area (DT31).

## Description

Multiplies the 16-bit data or 16-bit equivalent constant specified by S1 and the 16-bit data or 16-bit equivalent constant specified by S2. The multiplied result is stored in $D+1$ and $D$ (32-bit area).


The multiplied result is stored in the 32-bit area.
The higher 16-bit area ( $D+1$ ) is automatically determined once the lower 16-bit area ( $D$ ) is specified.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".

32-bit data multiplication
$[(S 1+1, S 1) \times(S 2+1, S 2) \rightarrow(D+3, D+2, D+1, D)]$

Outline Multiplies two 32-bit data items.
For the FPOR/FPS/FP-X/FP0/FP-e, the P type high-level instructions are not available.

## Program example



S1	32-bit equivalent constant or lower 16-bit area of 32-bit data (for multiplicand)
S2	32-bit equivalent constant or lower 16-bit area of 32-bit data (for multiplier)
D	Lower 16-bit area of 64-bit data (for result)

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & \hline \text { WL } \\ & (* 1) \end{aligned}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|c\|} \hline \text { FL } \\ \hline(* 2) \end{array}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPD, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example



## Description

Multiplies the 32-bit data or 32-bit equivalent constant specified by S1 and the one specified by S2. The multiplied result is stored in D+3, D+2, D+1 and D.

Multiplicand data
$(\mathrm{S} 1+1, \mathrm{~S} 1)$
:---:
$(\mathrm{S} 2+1, \mathrm{~S})$
:---:
$(\mathrm{D}+3, \mathrm{D}+2, \mathrm{D}+1, \mathrm{D})$

The multiplied result is stored in the 64-bit area.
When processing 32-bit data, the higher 16-bit areas ( $\mathrm{S} 1+1, \mathrm{~S} 2+1$ ) are automatically determined once the lower 16-bit areas ( $\mathrm{S} 1, \mathrm{~S} 2$ ) are specified.
The areas ( $D+3, D+2, D+1$ ) other than the lowest 16-bit area (D) are automatically determined once the lowest 16-bit area is specified.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".


## Outline Divides 16-bit data by the divisor.

 For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instructions are not available.
## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & \hline W L \\ & (* 1) \end{aligned}$	SV	EV	DT	$\begin{gathered} \hline \text { LD } \\ \hline(* 1) \end{gathered}$	$\begin{gathered} \hline \text { FL } \\ (* 2) \end{gathered}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	$\begin{gathered} \text { IY } \\ (* 4) \end{gathered}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FP0 and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Divides the contents of data register DT10 by decimal constant DT20 when trigger R0 turns on. The quotient is stored in data register DT30 and the remainder is stored in special data register DT9015/DT90015.
When the decimal number 15 is in DT10 and the decimal number 4 is in DT20, as shown below.
Dividend [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): K15

Bit position			. 12			8	7							
DT10	0	00	00	0	0	0	0		0				1	
Divisor [S2](WXO): K4														
Bit position	15	5 . . 1211 . . 8					7							
DT20	0	00		0	00		0			0			0	

Quotient [D](DT100): K3

Bit position	15	$\cdot$	$\cdot$	211	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Remainder: K3

Bit position	15	$\cdot$	$\cdot$	1	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3
.	.	0											
DT9015/	0	0	0	0	0	0	0	0	0	0	0	0	0

## Description

The 16-bit data or 16-bit equivalent constant specified by S1 is divided by the 16-bit data or 16-bit equivalent constant specified by S2.
The quotient is stored in D and the remainder is stored in the special data register DT9015 (DT90015 for FP0 T32/FP0R/FP $/$ /FP-X/FP2/FP2SH/FP10SH).

| Dividend data <br> Divisor <br> $(\mathbf{S} 1)$$\div$ | $(\mathbf{S} 2)$ |  | Quotient | Remainder |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (D) | $\cdots$ | $($ DT9015/DT90015) |  |  |

With the FP0 T32/FP0R/FP5/FP-X/FP2/FP2SH/FP10SH and FP0 C10, C14, C16, C32/FP-e, the numbers of the special data registers are different.

Type	Special data register
FP0 C10, C14, C16, C32/   FP-e	DT9015
FP0 T32/FPOR/FP $\Sigma /$ FP-X/   FP2/FP2SH/FP10SH	DT90015

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the negative minimum value K-32768 (H8000) is divided by K-1 (HFFFF).

32-bit data division
[(S1+1, S1)/(S2+1, S2)
(D+1, D)...(DT9016, DT9015)/ (DT90016, DT90015)]

Outline Divides 32-bit data by the divisor.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P33 (PD\%)" is not available.

## Program example

Ladder Diagram			Boolean			
			Address		ucti	
			10		R	0
			11	F 33		(D\%)
				DT		10
				DT		20
				DT		30
S1 $\quad$ 32-bit equivalent constant or low			32-bit equivalent constant or lower 16-bit area of 32-bit data (for dividend)			
S2		32 -bit equivalent constant or lower 16-bit area of 32-bit data (for divisor)				
D		Lower 16-bit area of 32-bit data (for quotient) (Remainder is stored in special data registers DT9016 and DT9015/DT90016 and DT90015.)				

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \text { LD } \\ (* 1) \\ \hline \end{gathered}$	$\begin{gathered} \text { FL } \\ (* 2) \end{gathered}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FP0R, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example



## Description

The 32-bit data or 32-bit equivalent constant specified by S1 is divided by the 32-bit data or 32-bit equivalent constant specified by S2. The quotient is stored in $D+1$ and $D$ and the remainder is stored in the special data registers DT9016 and DT9015 (DT90016 and DT90015 for FP0 T32/FP0R/FP $2 / F P-X / F P 2 / F P 2 S H /$ FP10SH).

## Dividend data

## Divisor

## Quotient

Remainder
$\binom{$ S1: lower 16-bit }{ S1+1: higher 16-bit }$\div\binom{$ S2: lower 16-bit }{ S2+1: higher16-bit }$\longrightarrow\binom{$ D: lower 16-bit }{ D+1: higher 16-bit }$\binom{$ DT9015/DT90015 }{ DT9016/DT90016 }

When processing 32-bit data, the higher 16-bit areas (S1+1, S2+1, $D+1$ ) are automatically determined once the lower 16-bit areas (S1, S2, D) are specified.
With the FP0 T32/FP0R/FP $/$ /FP-X/FP2/FP2SH/FP10SH and FP0 C10, C14, C16, C32/FP-e, the numbers of the special data registers are different.

Type	Special data register
FP0 C10, C14, C16, C32/   FP-e	DT9016, DT9015
FP0 T32/FP0R/FP $\Sigma / F P-X / ~$   FP2/FP2SH/FP10SH	DT90016, DT90015

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when negative minimum value K-2147483648 (H80000000) is divided by K-1 (HFFFFFFFF).


## F34 (*W)

16-bit data multiplication (result in 16 bits)

Outline Multiplies two 16-bit data items and stores the result in the specified 16-bit area.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P34 ( $\mathrm{P} * \mathrm{~W}$ )" is not available.
Program example

	Ladder Diagram	Boolean			
		Address	Instruction		
Trigger	$\begin{array}{ccc}\text { DT10, } & \text { DT20, } & \text { DT30 } \\ \text { S1 } \\ \text { S1 } & \text { S2 } & \text { D }\end{array}$	10	ST	R	0
$\stackrel{\square}{\text { ¢ }}$		11	F34		(*W)
RO			DT		10
$10-\mathrm{F} 34$ *W,			DT		20
			DT		30
S1	16-bit equivalent constant or 16-bit area (for multiplicand)				
S2	16-bit equivalent constant or 16-bit area (for multiplier)				
D	16-bit area for storing multiplied result				

## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{array}{\|c\|} \hline \text { FL } \\ (* 1) \end{array}$	I	K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

(*1) This cannot be used with the FPOR, FPE and FP-X.

A: Available
N/A: Not Available

## Explanation of example

Multiplies the contents of data register DT10 and data register DT20 when trigger R0 turns on. The multiplied result is stored in data register DT30.

## Multiplicand [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): K8

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT10	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0

Multiplier [S2](WXO): K2
$\left.\begin{array}{|c|ccc|cccc|cccc|cccc|}\hline \text { Bit position } & 15 & \cdot & \cdot & 12 & 11 & \cdot & \cdot & 8 & 7 & \cdot & \cdot & 4 & 3 & \cdot & \cdot \\ \hline \text { DT20 } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

Result [D](DT100): K16
RO: on

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT30	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

## Description

Multiplies the 16-bit data or 16-bit equivalent constant specified by S1 and the 16-bit data or 16-bit equivalent constant specified by S2 when the trigger turns on. The multiplied result is stored in D (16-bit area).

| Multiplicand data |
| :---: | :---: | :---: | :---: | :---: |
| S1 |$\times$| Multiplier data |
| :---: |
| S2 |$\xrightarrow{\text { Trigger turns on }} \quad$| Result |
| :---: |

The multiplied result is stored in the 16-bit area.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The calculated result exceeds the 16-bit area specified by D.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".


## Precautions during programming

Keep the calculated result D within the range K-32768 to K32767.

## F35(+1)

16-bit data increment
P35(P+1)

Outline Adds 1 to 16-bit data.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P35 ( $\mathrm{P}+1$ )" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & \mathrm{WL} \\ & \left({ }^{*} 1\right) \end{aligned}$	SV	EV	DT	$\begin{aligned} & \text { LD } \\ & (* 1) \end{aligned}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\text { IY }}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Adds 1 to the contents of data register DT0 when trigger R0 turns on.
Original data [D](DT100): K9

Bit position	15	.	.	12	11	.	.	8	7	.	.	4	3	.	.	0
DT0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1

Result [D](DT100): K10

Bit position	15	.	.1	1	1	.	.	8	7	.	.	4	3	.	.
DT0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1

## Description

Adds 1 to the 16 -bit data specified by D . The result is stored in D .

## Original data

(D) $+$ 1 $\qquad$

Result
(D)

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow will result.

Under normal circumstances, do not allow an overflow to occur.
If the operation result accidentally overflows, use of the F36 (D+1) instruction (32-bit data increment) is recommended.

If an overflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 16-bit data (overflows).


## F36(D+1)

## P36(PD+1)

Outline Adds 1 to 32-bit data.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P36 (PD+1)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c} \text { LD } \\ (* 1) \end{array}$	$\begin{aligned} & \mathrm{FL} \\ & (* 2) \end{aligned}$	$\underset{\left({ }^{*}\right)_{3}}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Adds 1 to the content of data registers DT1 and DT0 when trigger R0 turns on.


## Description

Adds 1 to the 32-bit data specified by D . The result is stored in $\mathrm{D}+1$ and D .

Original data
$(\mathrm{D}+1, \mathrm{D})+1 \longrightarrow(\mathrm{D}+1, \mathrm{D})$

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow will result.
Under normal circumstances, do not allow an overflow to occur.
If an overflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 32-bit data (overflows).

Outline Subtracts 1 from 16-bit data.
For the FPOR/FPS/FP-X/FP0/FP-e, the P type high-level instructions are not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & (* 1) \end{aligned}$	$\begin{aligned} & \mathrm{FL} \\ & (* 2) \end{aligned}$	$\underset{(* 3)}{I X}$	$\begin{aligned} & \text { IY } \\ & (* 4) \end{aligned}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available
N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FP 5, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Subtracts 1 from the contents of data register DT0 when trigger R0 turns on.
Original data [D](DT100): K10

Bit position	15	.	.	1	11	.	.	8	7	.	.	4	3	.	.	0
DTO	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0

Result [D](DT100): K9

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$
DTO	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

## Description

Subtracts 1 from the 16 -bit data specified by D . The result is stored in D .

## Original data

(D)
$-\quad 1$ 1

Result
(D)

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an underflow will result.

Under normal circumstances, do not allow an underflow to occur.
If the operation result accidentally underflows, use of the F38 (D-1) instruction (32-bit data decrement) is recommended.

If an underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 16-bit data (underflows).

Outline Subtracts 1 from 32-bit data.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P38 (PD-1)" is not available.

## Program example



## Operands

| Operand | Relay |  |  |  | Timer/Counter |  | Register |  |  | Index <br> register |  | Constant |  | Index <br> modifier |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WX | WY | WR | WL <br> $(* 1)$ | SV | EV | DT | LD <br> $(* 1)$ | FL <br> $(* 2)$ | IX <br> $(* 3)$ | IY | K | H |  |
|  | N/A | A | A | A | A | A | A | A | A | A | N/A | N/A | N/A | A |

(*1) This cannot be used with the FPO and FP-e.
A: Available
N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FP工, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.

## Explanation of example

Subtracts 1 from the content of data registers DT1 and DT0 when trigger R0 turns on.


## Description

Subtracts 1 from the 32 -bit data specified by D . The result is stored in $\mathrm{D}+1$ and D .
Original data
Result
(D+1, D)
1
(D+1, D)

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an underflow will result.
Under normal circumstances, do not allow an underflow to occur.
If an underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 32-bit data (underflows).

P39(PD*D)

## 32-bit data multiplication

 (result in 32 bits)Outline $\quad$ Multiplies two 32-bit data items and stores the result in the specified 32-bit area.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P39 (PD*D)" is not available.
Program example

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{\multirow[b]{2}{*}{Ladder Diagram}} \& \multicolumn{4}{|c|}{Boolean} <br>
\hline \& \& \& \& \& \& \& \& \& \& \& \& \multicolumn{2}{|l|}{Address} \& \multicolumn{2}{|l|}{Instruction} <br>
\hline 10 \& Trig \& ger
H \& 39 \& )*D \& DT

S \& , D \& 20 \& D \& W0 \&  \& \& 10

11 \& \& | ST |
| :--- |
| F39 |
| DT |
| DT |
| DT | \&  <br>

\hline \multicolumn{5}{|c|}{S1} \& \multicolumn{11}{|l|}{32-bit equivalent constant or lower 16-bit area of 32-bit data (for multiplicand)} <br>
\hline \multicolumn{5}{|c|}{S2} \& \multicolumn{11}{|l|}{32-bit equivalent constant or lower 16-bit area of 32-bit data (for multiplier)} <br>
\hline \multicolumn{5}{|c|}{D} \& \multicolumn{6}{|l|}{Lower 16-bit area of 32-bit data (for result)} \& \& \& \& \& <br>
\hline \multicolumn{16}{|l|}{Operands} <br>

\hline \multirow{2}{*}{Operand} \& \multicolumn{4}{|c|}{Relay} \& \multicolumn{2}{|l|}{Timer/Counter} \& \multicolumn{3}{|c|}{Register} \& $$
\begin{gathered}
\text { Index } \\
\text { register }
\end{gathered}
$$ \& \multicolumn{3}{|c|}{Constant} \& \multirow[b]{2}{*}{Index modifier} \& \multirow[b]{2}{*}{Integer device} <br>

\hline \& WX \& WY \& WR \& WL \& SV \& EV \& DT \& LD \& $$
\begin{gathered}
\mathrm{FL} \\
(* 1)
\end{gathered}
$$ \& I \& K \& H \& f \& \& <br>

\hline S1 \& A \& N/A \& A \& N/A <br>
\hline S2 \& A \& N/A \& A \& N/A <br>
\hline D \& N/A \& A \& N/A \& N/A \& N/A \& N/A \& A \& N/A <br>
\hline
\end{tabular}

(*1) This cannot be used with the FPOR, FPE and FP-X.

A: Available
N/A: Not Available

## Explanation of example

Multiplies the contents of data registers DT11 and DT10 and the contents of data registers DT21 and DT20 when trigger R0 turns on. The multiplied result is stored in data registers DT31 and DT30.

16 bits	16 bits
DT11	DT10
X	
16 bits	16 bits
DT21	DT20
	R0: on
16 bits	16 bits
DT31	DT30

## Description

Multiplies the 32-bit data or 32-bit equivalent constant specified by S 1 and the one specified by S 2 when the trigger turns on.
The multiplied result is stored in $\mathrm{D}+1$ and D (32-bit area).

## Multiplicand data Multiplier data Trigger turns on Result (32-bit)

$\left(\begin{array}{ll}\text { S1: } & \text { lower 16-bit } \\ \text { S1+1: } & \text { higher 16-bit }\end{array}\right) \times\left(\begin{array}{ll}\text { S2: } & \text { lower 16-bit } \\ \text { S2+1: } & \text { higher 16-bit }\end{array}\right) \longrightarrow\binom{D}{\mathrm{D}+1}$

The multiplied result is stored in the 32-bit area (2 words).

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The calculated result exceeds the 32-bit area specified by D.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".


## Precautions during programming

Keep the calculated result D within the range K-2147483648 to K2147483647.

## F40 (B+)

Outline Adds two BCD data items that express 8-digit decimal numbers (8-digit BCD H codes).
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction " P 40 ( $\mathrm{PB}+$ )" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ \hline(* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ \left.\mathbf{N}^{*} 1\right) \end{array}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	K	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

A: Available
N/A: Not Available
K: K0 to K9

## Explanation of example

The contents of data register DT10 and data register DT1 are added together when trigger R0 turns on. When H 4 (BCD) is in DT1 and H 8 (BCD) is in DT10, as shown below.
Augend [D](DT100): H8 (BCD)

Bit position	15	.	.	12	11	.	.	8	7	.	.	4	3	.	.
DT10	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Addend [S]: H4 (BCD) (Addition)

Bit position	15 . . 1211 . . 8		7 . . 4	3 . . 0
DT1	0000	0000	0000	0100
BCD H code	0	0	0	4

Result [D](DT100): H12 (BCD)

Bit position   DT10   BCD													
	0	00	0	0	0	0	0		0				1
BCD H code		0			0			1				2	

## Description

The 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by $S$ and the 16-bit area for 4-digit BCD data specified by $D$ are added together.

Augend data			
Addend data			
(D)	(S)	$\longrightarrow$	Result
:---:			

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow will result.

Under normal circumstances, do not allow an overflow to occur.
If the calculated result accidentally overflows, use of the F41 (DB+) instruction (8-digit BCD data addition) is recommended.

If an overflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 4-digit BCD data (overflows).

Outline Adds two BCD data items that express 8-digit decimal numbers (8-digit BCD H codes).
For the FPOR/FPD/FP-X/FP0/FP-e, the P type high-level instruction "P41 (PDB+)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & \mathbf{N}^{*} \text { ( } \end{aligned}$	$\begin{gathered} \text { FL } \\ (*) \end{gathered}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	N/A	K	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FP $2, ~ F P-X, ~ F P 2, ~ F P 2 S H, ~ a n d ~ F P 10 S H, ~ t h i s ~ i s ~ I 0 ~ t o ~ I C . ~$

A: Available $\mathrm{N} / \mathrm{A}$ : Not Available K: K0 to K9
(*4) With the FPOR, FPD, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The contents of data registers DT11 and DT10 and the contents of data registers DT1 and DT0 are added together when trigger R0 turns on.



Store to DT11 Store to DT10

## Description

The 8-digit BCD equivalent constant or 8-digit BCD data specified by S and the 8-digit BCD data specified by D are added together.

## Augend data

$\binom{$ D: lower 4-digit }{ D+1: higher 4-digit }$+$

Addend data

## Result

S: lower 4-digit
S+1: higher 4-digit
$\qquad$ (D: lower 4-digit D+1: higher 4-digit

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow will result.
Under normal circumstances, do not allow an overflow to occur.
If an overflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 8 -digit BCD data (overflows).

Outline Adds two BCD data items that express 4-digit decimal numbers (4-digit BCD H codes) and stores the result in the specified area.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P42 (PB+)" is not available.

## Program example



S1	4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data   (for augend)
S2	4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data   (for addend)
D	16-bit area for 4-digit BCD data (for result)

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \hline \text { LD } \\ \left.\mathbf{N}^{*} 1\right) \end{gathered}$	$\begin{gathered} \hline \text { FL } \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	K	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	K	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available N/A: Not Available
K: K0 to K9
(*3) With the FP0R, FPD, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

The contents of data register DT10 and data register DT20 are added together when trigger R0 turns on. The added result is stored in data register DT30.
When $H$ (BCD) 8 is in DT10 and $H$ (BCD) 4 is in DT20, as shown below.
Augend [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): H8 (BCD)
$\left.\begin{array}{|c|ccc|ccc|cccc|cccc|}\hline \text { Bit position } & 15 & . & . & 1 & 11 & . & . & 8 & 7 & . & . & 4 & 3 & .\end{array}\right)$

Addend [S2](WXO): H4 (BCD) (Addition)

Bit position	15	$\cdot$	$\cdot$	1	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3
	$\cdot$	0											
DT20	0	0	0	0	0	0	0	0	0	0	0	0	0

## Result [D](DT100): H12 (BCD)

Bit position	15	$\cdot$	$\cdot$	1	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3

## Description

The 4-digit BCD equivalent constants or 16-bit areas for 4-digit BCD data specified by S1 and S2 are added together. The added result is stored in D.

## Augend data

(S1)

Addend data
(S2)

## Result

(D)

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow will result.

Under normal circumstances, do not allow an overflow to occur.
If the calculated result accidentally overflows, use of the F43 (DB+) instruction (8-digit BCD data addition) is recommended.

If an overflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 4-digit BCD data (overflows).


## E A B (DB+)

8-digit BCD data addition
$[(S 1+1, S 1)+(S 2+1, S 2) \rightarrow(D+1, D)]$ P43 (PDB+)

Outline Adds two BCD data items that express 8-digit decimal numbers (8-digit BCD H codes) and stores the result in the specified area. For the FPOR/FP $/$ /FP-X/FP0/FP-e, the $P$ type high-level instruction "P43 (PDB+)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \text { LD } \\ (* 1) \end{gathered}$	$\begin{gathered} \text { FL } \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	IY	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	K	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	K	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FP0 and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available $\mathrm{N} / \mathrm{A}$ : Not Available K: K0 to K9
(*3) With the FP0R, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

## Explanation of example

The contents of data registers DT11 and DT10 and the contents of data registers DT21 and DT20 are added together when trigger R0 turns on. The added result is stored in data registers DT31 and DT30.



Store to DT31 Store to DT30
$\leftarrow$ The lower 16 bits of added result is stored in DT30 and the higher 16 bits of the result is stored in DT31.

## Description

The 8-digit BCD equivalent constants or 8-digit BCD data specified by S 1 and S 2 are added together. The added result is stored in $\mathrm{D}+1$ and D .

## Augend data

S1: lower 4-digit S1+1: higher 4-digit

## Addend data

 S2: lower 4-digit S2+1: higher 4-digit
## Result

D: lower 4-digit
D+1: higher 4-digit

When processing 8-digit BCD data, the higher 16-bit areas for 8-digit BCD data ( $S+1, D+1$ ) are automatically determined once the lower 16-bit areas (S, D) are specified.

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow will result.

Under normal circumstances, do not allow an overflow to occur.
If an overflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 8-digit BCD data (overflows).

Outline Subtracts one BCD data item that expresses a 4-digit decimal number (4-digit BCD H codes) from another (minuend).
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P45 (PB-)" is not available.

## Program example



S	4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data (for subtrahend)
D	16-bit area for 4-digit BCD data (for minuend and result)

Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & \hline W L \\ & \left({ }^{*} 1\right) \end{aligned}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & \left.\mathbf{N}^{*} 1\right) \end{aligned}$	$\begin{gathered} \hline F L \\ (* 2) \end{gathered}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	K	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
A: Available N/A: Not Available
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC. K: K0 to K9
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Subtracts the contents of data register DT10 from the contents of data register DT20 when trigger R0 turns on. When $\mathrm{H}(\mathrm{BCD}) 16$ is in DT20 and $\mathrm{H}(\mathrm{BCD}) 4$ is in DT10, as shown below.
Minuend [D](DT100): H16 (BCD)

Bit position	15	.	.1211	.	.	8	7	.	.	4	3	.	.	0
DT20	0	0	0	0	0	0	0	0	0	0	0	1	0	1

(Subtraction)

## Subtrahend [S]: H4 (BCD)

Bit position	15	$\cdot$	$\cdot$	1211	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT10	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Result [D](DT100): H12 (BCD)

Bit position	15	.	.	12	11	.	.	8	7	.	.	4	3	.	.
DT20	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1

## Description

Subtracts the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by S from the 16-bit area for 4-digit BCD data specified by D.

Minuend data   (D)	Subtrahend data   (S)	$\longrightarrow$	Result
(D)			

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an underflow will result.

Under normal circumstances, do not allow an underflow to occur.
If the calculated result accidentally underflows, use of the F46 (DB-) instruction (8-digit BCD data subtraction) is recommended.

If an underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 4-digit BCD data (underflow).

Outline Subtracts one BCD data item that expresses an 8-digit decimal number (8-digit BCD H code) from another (minuend).
For the FPOR/FP $\Sigma /$ FP-X/FPO/FP-e, the P type high-level instruction "P46 (PDB-)" is not available.

## Program example

Ladder Diagram			Boolean		
			Address	Instruction	
			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F 46   DT   DT	$\begin{array}{lr} \mathrm{R} & 0 \\ & \text { (DB-) } \\ & 10 \\ & 20 \end{array}$
S		8-digit BCD equivalent constant or lower 16-bit area for 8-digit BCD data (for subtrahend)			
	D	Lower 16-bit area for 8-digit BCD data (for minuend and result)			

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & \mathbf{N}^{*} \text { ( } \end{aligned}$	$\begin{gathered} \hline \text { FL } \\ \hline(* 2) \end{gathered}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	IY	K	H	
S	A	A	A	A	A	A	A	A	A	A	N/A	K	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.

A: Available N/A: Not Available K: K0 to K9

## Explanation of example

Subtracts the contents of data registers DT11 and DT10 from the contents of data registers DT21 and DT20 when trigger R0 turns on.


Store to DT21 Store to DT20
$\leftarrow$ The lower 16 bits of subtracted result is stored in DT20 and the higher 16 bits of the result is stored in DT21.

## Description

Subtracts the 8-digit BCD equivalent constant or 8-digit BCD data specified by S from the 8-digit BCD data specified by D.

Augend data

## Addend data

## Result

D: lower 4-digit
D+1: higher 4-digit

## S: lower 4-digit

D: lower 4-digit
D+1: higher 4-digit)

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an underflow will result.

Under normal circumstances, do not allow an underflow to occur.
If an underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 8-digit BCD data (underflows).

Outline Subtracts one BCD data item that expresses a 4-digit decimal number (4-digit BCD H code) from another (minuend) and stores the result in the specified area.
For the FP0R/FPE/FP-X/FP0/FP-e, the $P$ type high-level instruction "P47 (PB-)" is not available.

## Program example



S1	4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data (for minuend)
S2	4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data (for subtrahend)
D	16-bit area for 4-digit BCD data (for result)

Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{aligned} & \hline \text { FL } \\ & \hline(* 2) \end{aligned}$	$\underset{(* 3)}{\text { IX }}$	$\begin{gathered} \text { IY } \\ (* 4) \end{gathered}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	K	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	K	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.

A: Available N/A: Not Available K: K0 to K9
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FP $, ~ F P-X, ~ F P 2, ~ F P 2 S H, ~ a n d ~ F P 10 S H, ~ t h i s ~ i s ~ I D . ~$

## Explanation of example

Subtracts the contents of data register DT20 from the contents of data register DT10 when trigger R0 turns on. The subtracted result is stored in data register DT30.
When $H(B C D) 16$ is in DT10 and $H(B C D) 4$ is in DT20, as shown below.
Minuend [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): H16 (BCD)

| Bit position | 15 | . | . | 1211 | . | . | 8 | 7 | . | . | 4 | 3 | . | . | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DT10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
| BCD H code | 0 | 0 |  | 0 |  |  | 1 |  |  |  | 6 |  |  |  |  |  |

Subtrahend [S2](WXO): H4 (BCD)


Result [D](DT100): H12 (BCD)

Bit position	15	$\cdot$	$\cdot$	1	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3

## Description

Subtracts the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by S 2 from the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by S1.
The subtracted result is stored in D .

| Minuend data |
| :---: | :---: | :---: | :---: | :---: |
| (S1) |$\quad-\quad$ Subtrahend data $\quad \longrightarrow$| Result |
| :---: |

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an underflow will result.

Under normal circumstances, do not allow an underflow to occur.
If the calculated result accidentally underflows, use of the F48 (DB-) instruction (8-digit BCD data subtraction) is recommended.

If an underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 4-digit BCD data (underflows).

Outline Subtracts one BCD data item that expresses an 8-digit decimal number (8-digit BCD H code) from another (minuend) and stores the result in the specified area.
For the FP0R/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P48 (PDB-)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	$\underset{(* 4)}{\operatorname{IY}}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	K	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	K	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available N/A: Not Available
K: K0 to K9
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Subtracts the contents of data registers DT21 and DT20 from the contents of data registers DT11 and DT10 when trigger R0 turns on. The subtracted result is stored in data registers DT31 and DT30.

$\leftarrow$ The lower 16 bits of subtracted result is stored in DT30 and the higher 16 bits of the result is stored in DT31.

## Description

Subtracts the 8 -digit BCD equivalent constant or 8 -digit BCD data specified by S 2 from the 8 -digit BCD equivalent constant or the 8 -digit BCD data specified by S 1 . The subtracted result is stored in $\mathrm{D}+1$ and D .

Minuend data

## Subtrahend data

## Result



When processing 8 -digit BCD data, the higher 16 -bit areas for 8 -digit BCD data ( $\mathrm{S}+1, \mathrm{D}+1$ ) are automatically determined once the lower 16 -bit areas ( $\mathrm{S}, \mathrm{D}$ ) are specified.

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an underflow will result.

Under normal circumstances, do not allow an underflow to occur.
If an underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 8-digit $B C D$ data (underflows).

Outline Multiplies two BCD data items that express 4-digit decimal numbers (4-digit BCD H codes).
For the FPOR/FP $/$ /FP-X/FP0/FP-e, the P type high-level instruction "P50 (PB*)" is not available.

## Program example



S1	4-digit BCD equivalent constant or 16-bit area for BCD data (for multiplicand)
S2	4-digit BCD equivalent constant or 16-bit area for BCD data (for multiplier)
D	Lower 16-bit area for 8-digit BCD data (for result)

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & (* 1) \end{aligned}$	$\begin{gathered} \hline F L \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FP 2 , FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

When $\mathrm{H}(\mathrm{BCD}) 8$ is in DT10 and $\mathrm{H}(\mathrm{BCD}) 2$ is in DT20, as shown below.

# Multiplicand [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): H8 (BCD) 

Bit position	15 . : 1211 . . 8		7 . . 4	3 . . 0
DT10	0000	0000	0000	1000
BCD H code	0	0	0	8
Multiplier [S2](WXO): H2 (BCD)				
Bit position	15 . . 12	11 . . 8	7 . . 4	3 . . 0
DT20	0000	0000	0000	0010
BCD H code	0	0	0	2

Result [D+1, D]: H16 (BCD)

Bit position	$15 \cdot 12$	$1 \cdot \mathrm{P}$	$7 \cdot \cdots$	$3 \cdot 10$
DT30	0000	0000	0001	0110
BCD H code	0	0	1	6

The lower 16 bits of the 32-bit multiplication result are stored in the specified memory area (DT30), and the higher16 bits are stored in the area following the specified area (DT31).

## Description

Multiplies the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by S1 and S2. The multiplied result is stored in $\mathrm{D}+1$ and D .

Multiplicand data
(S1)
:---:
(S2)
:---:
$(\mathrm{D}+1, \mathrm{D})$

The multiplied result is stored in the 8-digit area (32-bit area).
The higher 16 -bit area $(D+1)$ is automatically determined once the lower 16-bit area (D) is specified.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".

Outline Multiplies two BCD data items that express 8-digit decimal numbers (8-digit BCD H codes).
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P51 (PDB*)" is not available.

## Program example



S1	8-digit BCD equivalent constant or lower 16-bit area for 8-digit BCD data (for   multiplicand)
S2	8-digit BCD equivalent constant or lower 16-bit area for 8-digit BCD data (for   multiplier)
D	Lowest 16-bit area for 16-digit BCD data (for result)

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL   $*$   $\star * * *$   $)$	SV	EV	DT	$\begin{gathered} \text { LD } \\ (* \\ * * * \\ \text { ( } \end{gathered}$	$\begin{aligned} & \mathrm{FL} \\ & \text { (*2) } \end{aligned}$	$\underset{(* 3)}{\text { IX }}$	IY	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

## Explanation of example



## Description

Multiplies the 8-digit BCD equivalent constant or 8-digit BCD data specified by S1 and the one specified by S 2 . The multiplied result is stored in $\mathrm{D}+3, \mathrm{D}+2, \mathrm{D}+1$, and D .

Multiplicand data
$(\mathrm{S} 1+1, \mathrm{~S} 1)$
:---:
$(\mathrm{S} 2+1, \mathrm{~S} 2)$
:---:
$(\mathrm{D}+3, \mathrm{D}+2, \mathrm{D}+1, \mathrm{D})$

The multiplied result is stored in the 64-bit area (16-digit BCD).
When processing 8 -digit $B C D$ data, the higher 16 -bit areas ( $S 1+1, S 2+1$ ) are automatically determined once the lower 16 -bit areas ( $\mathrm{S} 1, \mathrm{~S} 2$ ) are specified. The areas ( $\mathrm{D}+3, \mathrm{D}+2, \mathrm{D}+1$ ) other than the lowest 16 -bit area ( D ) are automatically determined when the lowest 16 -bit area is specified.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".

Outline Divides one BCD data item that expresses a 4-digit decimal number (4-digit BCD H code) by another (divisor).
For the FPOR/FP $/$ /FP-X/FPO/FP-e, the $P$ type high-level instruction "P52 (PB\%)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			$\begin{gathered} \text { Index } \\ \text { register } \end{gathered}$		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & (* 1) \end{aligned}$	$\begin{gathered} \hline F L \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	K	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	K	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FP0 and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available N/A: Not Available
K: K0 to K9
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is I0 to IC.
(*4) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Divides the contents of data register DT10 by the contents of data register DT20 when trigger R0 turns on. The quotient is stored in data register DT30 and the remainder is stored in special data register DT9015 (DT90015 for FP2/FP2SH/FP10SH).
When $\mathrm{H}(\mathrm{BCD}) 15$ is in DT10 and $\mathrm{H}(\mathrm{BCD}) 4$ is in DT20, as shown below.
Dividend [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): H15 (BCD)

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT10	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1
BCD H code	0				0			1				5				

Divisor [S2](WXO): H4 (BCD)

| Bit position | 15 | $\cdot$ | $\cdot$ | 12 | 11 | $\cdot$ | $\cdot$ | 8 | 7 | $\cdot$ | $\cdot$ | 4 | 3 | $\cdot$ | $\cdot$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DT20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| BCD H code | 0 |  |  |  | 0 |  |  | 0 |  |  | 4 |  |  |  |  |  |

## Quotient [D](DT100): H3 (BCD)

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
BCD H code		0			0			0			3					

Remainder: H3 (BCD)

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT9015/DT90015	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
BCD H code		0			0			0				3				

## Description

The 4-digit BCD equivalent constant or the 16-bit area for 4-digit BCD data specified by S1 is divided by the 4 -digit BCD equivalent constant or the 16 -bit area for 4 -digit BCD data specified by S2. The quotient is stored in the area specified by $D$ and the remainder is stored in a special data register DT9015 (DT90015 for FP0 T32/FP0R/FPE/FP-X/FP2/FP2SH/FP10SH).

Dividend data			
$(\mathrm{S} 1)$	Divisor		
$(\mathrm{S} 2)$		$\longrightarrow$	Quotient
:---:			
$(\mathrm{D})$	$\cdots \quad$	Remainder	
:---:			
$($ DT9015/ DT90015)			

With the FP0 T32,FP0R, FPI, FP-X, FP2, FP2SH, FP10SH and FP0 C10, C14, C16, C32/ FP-e, the numbers of the special data registers are different.

Type	Special data register
FP0 C10, C14, C16, C32/FP-e	DT9015
FP0 T32/FP0R/FP2/FP-X/FP2/FP2SH/FP10SH	DT90015

## Flag conditions

- Error flag (R9007):
- Error flag (R9008):

Turns on for an instant when:

- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- The 4-digit BCD equivalent constant or 4-digit BCD data for the divisor (specified by S 2 ) is 0 .
- = flag (R900B): Turns on for an instant when the calculated result (quotient) is recognized as "0".

Outline Divides one BCD data item that expresses an 8-digit decimal number (8-digit BCD H code) by another (divisor).
For the FPOR/FP $/$ /FP-X/FPO/FP-e, the $P$ type high-level instruction "P53 (PDB\%)" is not available.

## Program example

Ladder Diagram				Boolean		
				Address	Instruction	
10	Trigger			10	ST	R 0
				11	F 53	(DB\%)
					DT	10
					DT	20
					DT	30


S1	8-digit BCD equivalent constant or lower 16-bit area for 8-digit BCD data (for   dividend)
S2	8-digit BCD equivalent constant or lower 16-bit area for 8-digit BCD data (for   divisor)
D	Lower 16-bit area for 8-digit BCD data (for quotient)   (Remainder is stored in special data registers DT9016 and DT9015 or   DT90016 and DT90015)

## Operands

Operand	Relay				Timer/Counter		Register			$\begin{aligned} & \text { Index } \\ & \text { register } \\ & \hline \end{aligned}$		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & \hline \text { WL } \\ & (* 1) \end{aligned}$	SV	EV	DT	$\begin{gathered} \hline \text { LD } \\ \left.\mathbf{N}^{*} 1\right) \end{gathered}$	$\begin{aligned} & \hline \text { FL } \\ & (* 2) \end{aligned}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	IY	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available $\mathrm{N} / \mathrm{A}$ : Not Available
K: K0 to K9
(*3) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

## Explanation of example



## Description

The 8-digit BCD equivalent constant or the 8-digit BCD data specified by S 1 is divided by the 8 -digit BCD equivalent constant or the 8-digit BCD data specified by S2. The quotient is stored in the areas specified by D+1 and D, and the remainder is stored in special data registers DT9016 and DT9015 (DT90016 and DT90015 for FP0 T32/FP0R/FP $2 / F P-X / F P 2 / F P 2 S H / F P 10 S H)$.

## Dividend data

## Divisor

Quotient

## Remainder

$\binom{\boldsymbol{S} 1:$ lower 4-digit }{$\mathbf{S} 1+1:$ higher 4-digit }$\div\binom{\boldsymbol{S} 2:$ lower 4-digit }{$\mathbf{S} 2+1:$ higher 4-digit }$\longrightarrow\binom{\mathbf{D}$ : lower 4-digit }{$\mathbf{D}+1:$ higher 4-digit }$\cdots \begin{aligned} & \text { DT9015/DT90015 } \\ & \text { DT9016/DT90016 }\end{aligned}$

When processing 8-digit BCD data, the higher 16-bit areas (S1+1, S2+1, $D+1$ ) are automatically determined once the lower 16-bit areas (S1, S2, D) are specified.
With the FP0 T32/FP0R/FP5/FP-X/FP2/FP2SH/FP10SH and FP0 C10, C14, C16, C32/FP-e, the numbers of the special data registers are different.

Type	Special data register
FP0 C10, C14, C16, C32/FP-e	DT9015
FP0T32/FP0R/FPE/FP-X/FP2/FP2SH/FP10SH	DT90015

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- The 8-digit BCD equivalent constant or the 8-digit BCD data for the divisor (specified by S 2 ) is 0 .
- = flag (R900B): Turns on for an instant when the calculated result (quotient) is recognized as "0".


## F55 (B+1)

## 4-digit BCD data increment

P55(PB+1)

Outline Adds 1 to BCD data that expresses a 4-digit decimal number (4-digit BCD H code).
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P55 (PB+1)" is not available.

## Program example

Ladder Diagram	Boolean	
	Address	Instruction
	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{array}{\|lrr} \hline \text { ST } & \text { R } & 0 \\ \text { F } 55 & (B+1) \\ \text { DT } & & 0 \end{array}$


D	16-bit area for 4-digit BCD data to be increased by 1

Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & (* 1) \end{aligned}$	$\begin{gathered} \hline \text { FL } \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Adds 1 to the contents of data register DT0 when trigger R0 turns on.
Original data [D](DT100): H9 (BCD)
$\left.\begin{array}{|c|ccccccc|ccc|cccc|}\hline \text { Bit position } & 15 & \cdot & \cdot & 211 & \cdot & \cdot & 8 & 7 & \cdot & \cdot & 4 & 3 & \cdot & \cdot \\ \hline \text { DTO } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$

Result [D](DT100): H10 (BCD)

Bit position	15	$\cdot$	$\cdot$	1211	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$
DT0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

## Description

Adds 1 to the 4 -digit BCD data specified by D . The result is stored in D .

## Original data

(D) $\quad+\quad 1$

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow will result.
Under normal circumstances, do not allow an overflow to occur.
If the calculated result accidentally overflows, use of the F56 (DB+1) instruction (8-digit BCD data increment) is recommended.
If an overflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 4 -digit $B C D$ data (overflows).


## F56 (DB+1) <br> P56(PDB+1)

8-digit BCD data increment

Outline Adds 1 to BCD data that expresses an 8-digit decimal number (8-digit BCD H code).
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P56 (PDB+1)" is not available.

## Program example

Ladder Diagram	Boolean	
	Address	Instruction
	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{array}{\|lrr} \hline \text { ST } & \text { R } & 0 \\ \text { F } 56 & (\mathrm{DB}+1) \\ \text { DT } & 0 \end{array}$


D	Lower 16-bit area for 8-digit BCD data to be increased by 1

Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & \left.\mathbf{N}^{*} 1\right) \end{aligned}$	$\begin{gathered} \hline \text { FL } \\ (* 2) \end{gathered}$	$\underset{(* 3)}{I X}$	IY	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

## Explanation of example

Adds 1 to the contents (8-digit BCD data) of data registers DT1 and DT0 when trigger R0 turns on.


## Description

Adds 1 to the 8 -digit BCD data specified by D . The result is stored in $\mathrm{D}+1$ and D .

## Original data <br> Result <br> $(\mathrm{D}+1, \mathrm{D}) \quad \mathrm{C} \longrightarrow(\mathrm{D}+1, \mathrm{D})$

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an overflow will result.

Under normal circumstances, do not allow an overflow to occur.
If an overflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 8 -digit $B C D$ data (overflows).

Outline Subtracts 1 from BCD data that expresses a 4-digit decimal number (4-digit BCD H code).
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P57 (PB-1)" is not available.

## Program example



D	16-bit area for BCD data to be decreased by 1

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \text { LD } \\ (* 1) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { FL } \\ \text { (*2) } \\ \hline \end{array}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	$\begin{gathered} \text { IY } \\ (* 4) \end{gathered}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Subtracts 1 from the contents of data register DT0 when trigger R0 turns on.
Original data [D](DT100): H10 (BCD)

Bit position	15 • 12111 • 8				7			,	3			
DTO	000	0	00	00	0	0	0	1	0	0		
BCD H code	0		0				1				0	

Result [D](DT100): H9 (BCD)

Bit position	15	$\cdot$	$\cdot$	1	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3

## Description

Subtracts 1 from the 4-digit BCD data specified by D. The result is stored in D.

## Original data

Result
(D) $\quad 1 \quad \longrightarrow \quad$ (D)

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an underflow will result.
Under normal circumstances, do not allow an underflow to occur.
If the calculated result accidentally underflow, use of the F58 (DB-1) instruction (8-digit BCD data decrement) is recommended.
If an underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 4-digit $B C D$ data (underflows).

Outline Subtracts 1 from BCD data that expresses an 8-digit decimal number (8-digit BCD H code).
For the FPOR/FPS/FP-X/FP0/FP-e, the P type high-level instruction "P58 (PDB-1)" is not available.

## Program example



D	Lower 16-bit area for 8-digit BCD data to be decreased by 1

Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & (* 1) \end{aligned}$	$\begin{gathered} \text { FL } \\ (* 2) \end{gathered}$	$\underset{(* 3)}{ }$	$\underset{(* 4)}{\text { IY }}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

## Explanation of example

Subtracts 1 from the contents (8-digit BCD data) of data registers DT1 and DT0 when trigger R0 turns on.


## Description

Subtracts 1 from the 8 -digit BCD data specified by D . The result is stored in $\mathrm{D}+1$ and D .
Original data
Result
(D+1, D) - $1 \longrightarrow(D+1, D)$

## Precautions during programming

If the result of an arithmetic operation instruction does not fall within the range of values which can be handled, an underflow will result.

Under normal circumstances, do not allow an underflow to occur.
If an underflow occurs, the carry flag (special internal relay R9009) will turn on.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data is not BCD data.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".
- Carry flag (R9009): Turns on for an instant when the calculated result exceeds the range of 8 -digit $B C D$ data (underflows).

Outline The two specified 16-bit data are compared and the result is output to the special internal relay.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P60 (PCMP)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{gathered} \hline \text { FL } \\ (* 2) \end{gathered}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.
(*3) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPD, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Compares decimal constant K100 with the contents of data register DT0 when trigger R0 turns on.
When DT0 > K100, R900A turns on and external output relay Y10 turns on.
When DT0 = K100, R900B turns on and external output relay Y11 turns on.
When DT0 < K100, R900C turns on and external output relay Y12 turns on.

## Description

Compares the 16-bit data specified by S1 with that specified by S2. The comparison result is output to the special internal relays R9009, R900A, R900B and R900C.
The following table lists the states of the carry flag (R9009), > flag (R900A), = flag (R900B), and < flag (R900C), depending on the relative sizes of S1 and S2.

Comparison between   S1 and S2	Flag			
	R900A   (> flag)	R900B   (= flag)	R900C   (< flag)	R9009   (carry flag)
S1 < S2	off	off	on	$\imath$
S1 = S2	off	on	off	off
S1 > S2	on	off	off	$\imath$

" $\uparrow$ ": turns on or off according to the conditions

## Execution condition (Trigger)

In this program example, the comparison will be performed only when R0 turns on.
If ongoing comparison is necessary, relay R9010, which is always on, should be used in the execution conditions (trigger).


You can also program the above using the PSHS, RDS, and POPS instructions.


This is a program in which operation is the same as the above program example.

## Precautions when using two or more comparison instructions

The comparison instruction flags R900A to R900C are updated with each execution of the comparison instruction.
If you use two or more comparison instructions in your program, be sure to use the flags immediately after each comparison instruction, by employing output relays or internal relays.

Example: Compares DT0 with K100, and DT1 with K200.


The comparison result for $a$ ) is output to the output relays (Y10, Y11, and Y12) of program b).
The comparison result for c ) is output to the output relays (Y13, Y14, and Y15) of program d).

## Precautions when comparing BCD or external data

When comparing special data, such as BCD or unsigned binary ( 0 to FFFF), construct your program as shown in the program example below, using special internal relays R900B and R9009.

Example: Compares BCD data in DTO and DT1.

(1)....When DT0 < DT1, internal relay R1 turns on
(2)....When DT0 = DT1, internal relay R2 turns on
(3)....When DT0 > DT1, internal relay R3 turns on

Flag operation when comparing BCD data or unsigned 16-bit data (0 to FFFF)

Comparison between   S1 and S2	Flag			
	R900A   (> flag)	R900B   ( f flag)	R900C   (< flag)	R9009   (carry flag)
S1 < S2	$\imath$	off	$\imath$	on
S1 = S2	off	on	off	off
S1 > S2	$\imath$	off	$\imath$	off

" $\downarrow$ ": turns on or off according to the conditions
For example, when $\mathrm{S} 1=\mathrm{H} 8000$ and $\mathrm{S} 2=\mathrm{H} 1000$, R900A will turn off and R 900 C will turn on. For this reason, the correct comparison result will not be obtained in a program which uses R900A and R900C.

S1	$1{ }^{1} 00$	0	0	0	0	0	0	0	0	0	0	0
BCD	8			0			0				0	



## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## 32-bit data comparison

Outline The two specified 32-bit data are compared and the result is output to the special internal relay.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P61 (PDCMP)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			$\begin{aligned} & \text { Index } \\ & \text { register } \end{aligned}$		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & \left.\mathbf{N}^{*} 1\right) \end{aligned}$	$\begin{gathered} \hline F L \\ (* 2) \end{gathered}$	$\underset{(* 3)}{I X}$	IY	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.
(*3) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

## Explanation of example

Compares the content (32-bit data) of data registers DT11 and DT10 with the content (32-bit data) of data registers DT1 and DT0 when trigger R0 turns on.
When (DT1 and DT0) > (DT11 and DT10), R900A turns on and external output relay Y10 turns on.
When (DT1 and DT0) $=($ DT11 and DT10), R900B turns on and external output relay Y11 turns on.
When (DT1 and DT0) < (DT11 and DT10), R900C turns on and external output relay Y12 turns on.

## Description

Compares the 32-bit data or 32-bit equivalent constant specified by S 1 with that specified by S 2 . The comparison result is output to special internal relays R9009, R900A, 900B, and R900C.
The following table lists the states of the carry flag (R9009), > flag (R900A), = flag (R900B), and < flag (R900C), depending on the relative sizes of ( $\mathrm{S} 1+1, \mathrm{~S} 1$ ) and ( $\mathrm{S} 2+1, \mathrm{~S} 2$ ).

Comparison between   (S1+1, S1) and (S2+1, S2)	Flag			
	R900A   (> flag)	R900B   (= flag)	R900C   (< flag)	R9009   (carry flag)
(S1+1, S1) < (S2+1, S2)	off	off	on	$\imath$
(S1+1, S1) = (S2+1, S2)	off	on	off	off
(S1+1, S1) > (S2+1, S2)	on	off	off	$\imath$

" $\uparrow$ ": turns on or off according to the conditions
When processing 32-bit data, the higher 16-bit areas (S1+1, $\mathrm{S} 2+1$ ) are automatically determined once the lower 16-bit areas (S1, S2) are specified.

## Execution condition (Trigger)

In this program example, the comparison will be performed only when R0 turns on.
If ongoing comparison is necessary, relay R9010, which is always on, should be used in the execution conditions.


You can also program the above using the PSHS, RDS, and POPS instructions.


This is a program in which operation is the same as the above program.

## Precautions when using two or more comparison instructions

The comparison instruction flags R900A to R900C are updated with each execution of the comparison instruction.

If you use two or more comparison instructions in your program, be sure to use the flags immediately after each comparison instruction, by employing output relays or internal relays.

Example: Compares DT1 and DT0 with DT11 and DT10, and DT3 and DT2 with DT21 and DT20.


The comparison result for $a$ ) is output to the output relays (Y10, Y11, and Y12) of program b).
The comparison result for c ) is output to the output relays (Y13, Y14, and Y15) of program d).

## Precautions when comparing BCD or external data

When comparing special data, such as BCD or unsigned binary (0 to FFFFFFFF), flags R9009, R900A, R900B, and R900C work as shown in the table below. In this case, construct your program as shown in the program example below, using special internal relays R900B and R9009.

## Example: Compares BCD data in (DT1, DTO) and (DT11, DT10).


e)....When (DT1, DT0) < (DT11, DT10), internal relay R1 turns on f)....When (DT1, DT0) = (DT11, DT10), internal relay R 2 turns on g)....When (DT1, DT0) > (DT11, DT10), internal relay R3 turns on

Flag operation when comparing BCD data or unsigned 32-bit data ( 0 to FFFFFFFF)

Comparison between   (S1+1, S1) and (S2+1, S2)	Flag			
	R900A   (> flag)	R900B   (= flag)	R900C   (< flag)	R9009   (carry flag)
(S1+1, S1) < (S2+1, S2)	$\imath$	off	$\imath$	on
$\mathbf{( S 1 + 1 , ~ S 1 ) ~ = ~ ( S 2 + 1 , ~ S 2 ) ~}$	off	on	off	off
(S1+1, S1) > (S2+1, S2)	$\hat{\downarrow}$	off	$\imath$	off

" $\downarrow$ ": turns on or off according to the conditions
For example, if an F61 (DCMP) instruction is executed when $\mathrm{S} 1=\mathrm{H} 80000000(\mathrm{~K}-2147483648)$ and $\mathrm{S} 2=$ H10000001 ( $\mathrm{K}+268435457$ ), the result will be $\mathrm{S} 1<\mathrm{S} 2$. Thus R900A will turn off and R900C will turn on. In a program which uses R900A and R900C, the correct comparison result will not be obtained.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

P62(PWIN)

## 16-bit data band comparison

Outline Compares one 16-bit data item with the data band specified by two other 16-bit data items and the comparison result is output to the special internal relay.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P62 (PWIN)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	$\begin{gathered} \text { IY } \\ (* 4) \end{gathered}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S3	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FP0R, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FP $, ~ F P-X, ~ F P 2, ~ F P 2 S H, ~ a n d ~ F P 10 S H, ~ t h i s ~ i s ~ I D . ~$

## Explanation of example

Compares the contents of data register DT10 with the contents of data register DT20 (lower limit of the data band) and data register DT30 (upper limit of the data band) when trigger RO turns on.
$\stackrel{y}{c}$
Example: When K-500 is in DT20 and K500 is in DT30, as shown below.


> When DT10 is K-680, R900C turns on and external output relay Y12 goes on.
> When DT10 is K-500, R900B turns on and external output relay Y11 goes on.
> When DT10 is K256, R900B turns on and external output relay Y11 goes on.
> When DT10 is K680, R900A turns on and external output relay Y10 goes on.

## Description

Compares the 16-bit equivalent constant or 16-bit data specified by S1 with the data band specified by S2 and S3. This instruction checks whether S1 is in the data band between S2 (lower limit) and S3 (upper limit), larger than S3, or smaller than S2. The comparison result is output to special internal relays R9009, R900A, R900B, and R900C.

The following table lists the states of the R9009, R900A, R900B and R900C.

Comparison between   S1, S2 and S3	Flag			
	R900A   (> flag)	R900B   (= flag)	R900C   (< flag)	R9009   (carry flag)
S1 < S2	off	off	on	-
S2 $\leqq$ S1 S3	off	on	off	-
S3 < S1	on	off	off	-

## Precaution during programming

Set it so that the value of the lower limit is less than the value of the upper limit (S2§S3).

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S2 > S3.

P63(PDWIN)

## 32-bit data band comparison

Outline Compares one 32-bit data item with the data band specified by two other 32-bit data items and the comparison result is output to the special internal relay.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P63 (PDWIN)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ \hline(* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \hline \text { LD } \\ (* 1) \end{gathered}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
S3	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A

[^2]
## Explanation of example

Compares the contents of data registers DT11 and DT10 with the contents of data registers DT21 and DT20 (lower limit of the data band) and data registers DT31 and DT30 (upper limit of the data band), when trigger R0 turns on.

When K-50000 is in DT21 and DT20 and K50000 is in DT31 and
DT30, as shown below.


> When (DT11, DT10) is K-68000, R900C turns on and external output relay Y12 goes on.
> When (DT11, DT10) is K-50000, R900B turns on and external output relay Y11 goes on.
> When (DT11, DT10) is K25600, R900B turns on and external output relay Y11 goes on.
> When (DT11, DT10) is K68000, R900A turns on and external output relay Y10 goes on.

## Description

Compares the 32-bit equivalent constant or 32-bit data specified by S1 with the data band specified by S2 and S3. This instruction checks whether S1 is in the data band between S2 (lower limit) and S3 (upper limit), larger than S3, or smaller than S2. The comparison result is output to the special internal relays R9009, R900A, R900B, and R900C.

The following table lists the states of the R9009, R900A, R900B and R900C.

Comparison between   (S1+1, S1), (S2+1, S2)   and (S3+1, S3)	Flag			
	R900A   (> flag)	R900B   (= flag) $)$	R900C   (< flag)	R9009   (carry flag)
(S1+1, S1) < (S2+1, S2)	off	off	on	-
(S2+1, S2) $\leqq(S 1+1, ~ S 1) ~$   (S3+1, S3)	off	on	off	-
(S3+1, S3) < (S1+1, S1)	on	off	off	-

## Precaution during programming

Set it so that the value of the lower limit (S2 +1, S2) is less than the value of the upper limit (S3 $+1, \mathrm{~S} 3$ ) $[(\mathrm{S} 2+1, \mathrm{~S} 2) \leqq(\mathrm{S} 3+1, \mathrm{~S} 3)]$.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
$-(S 2+1, S 2)>(S 3+1, S 3)$.

Outline Compares one specified data block with another in byte units.
For the FPOR/FPE/FP-X/FPO/FP-e, the P type high-level instruction "P64 (PBCMP)" is not available.

## Program example



S1	16-bit equivalent constant or 16-bit area (specifies starting byte positions and   number of bytes to be compared)
S2	Starting 16-bit area to be compared
S3	Starting 16-bit area to be compared

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \hline \text { LD } \\ (* 1) \end{gathered}$	$\begin{gathered} \text { FL } \\ \text { (*2) } \end{gathered}$	$\underset{(* 3)}{ }$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S3	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPI, FP-X.
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FP 5, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Compares the data block of data register DT10 (4 bytes from DT10 lower order byte) with data register DT20 (4 bytes from DT20 higher order byte) according to the comparison condition in data register DT0 when trigger R0 turns on. When the contents of the two data blocks are the same, internal relay R1 turns on. If H 1004 is entered in DT0, the two blocks are as follows.


Area compared

## Description

Compares the contents of the data block specified by S2 with the contents of the data block specified by S3 according to content specified by S 1 .
When the comparison result is $\mathrm{S} 2=\mathrm{S} 3$, special internal relay R900B (=flag) turns on.
S 1 is the control data that determines factors such as the size of the comparison.

## How to specify control data "S1"

S1 specifies the starting byte position and the number of bytes to be compared using 4-digit BCD data as follows:

S1 = H $\qquad$
Starting byte position for data block specified by S2
1: Starting from higher order byte
0 : Starting from lower order byte
Starting byte position for data block specified by S3
1: Starting from higher order byte
0 : Starting from lower order byte

## Setting example:

To specify the 4 bytes beginning with the lower byte of the data block specified by S 2 and the 4 bytes beginning with the upper byte of the data block specified by S3, set S 1 to H 1004 .

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data specified by S 1 is not BCD data.
- The specified data block area exceeds the limit.
* For FP2SH and EP10SH, the error flag (R9007) turns on only when these operation errors occurs.


## Precautions during programming

The flag R900B used for the compare instruction is renewed each time a compare instruction is executed. Accordingly:

- The program that uses R900B should be just after the F64 (BCMP) instruction.
- Output to an output relay or internal relay and save the result.


Note
As shown in the above program, be sure to have the comparison internal relay before flag R900B. However, if you are using R9010 (on all the time), then it is unnecessary to have the comparison internal relay before R900B.

## F65(WAN)

P65(PWAN)

## 16-bit data AND

Outline Performs bit-wise AND operation on two 16-bit data items.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction
"P65 (PWAN)" is not available.

## Program example

Ladder Diagram			Boolean		
			Address		uction
			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F } \quad 65 \\ & \text { DT } \\ & \text { DT } \\ & \text { DT } \end{aligned}$	R $\left.\begin{array}{r}0 \\ \text { (WAN) }\end{array}\right)$.
S1 ${ }^{\text {a }}$ (6-bit equivalent constant or 16-bit area					
S2		16-bit equivalent constant or 16-bit area			
D		16-bit area for storing AND operation result			

Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & (* 1) \end{aligned}$	$\begin{gathered} \hline \text { FL } \\ \hline(* 2) \end{gathered}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FP0 and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Performs AND operation on each bit in data registers DT10 and DT20 when trigger R0 turns on.
The AND operation result is stored in data register DT30.

> [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D)

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT10	0	1	0	0	1	1	0	1	1	0	1	1	1	0	0	1

[S2](WXO)

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT20	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1



RO: on
[D](DT100)

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT30	0	0	0	0	0	0	0	0	1	0	1	1	1	0	0	1

## Description

Performs AND operation on each bit in the 16-bit equivalent constant or 16-bit data specified by S1 and S2.
The AND operation result is stored in the 16-bit area specified by D.
$(\mathrm{S} 1) \wedge(\mathrm{S} 2) \rightarrow(\mathrm{D})$
You can use this instruction to turn off certain bits of the 16-bit data.

## AND operation

The AND operation is shown below.

S1	S2	$\mathbf{D}$
0	0	$\mathbf{0}$
0	1	$\mathbf{0}$
1	0	$\mathbf{0}$
1	1	$\mathbf{1}$

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".


## F66(WOR)

P66(PWOR)

## 16-bit data OR

Outline Performs bit-wise OR operation on two 16-bit data items.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P66 (PWOR)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			$\begin{aligned} & \text { Index } \\ & \text { register } \end{aligned}$		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ \hline(* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ \hline(* 1) \end{array}$	$\begin{aligned} & \mathrm{FL} \\ & \text { (*2) } \end{aligned}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available
N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FP0R, FP $2, ~ F P-X, ~ F P 2, ~ F P 2 S H, ~ a n d ~ F P 10 S H, ~ t h i s ~ i s ~ I O ~ t o ~ I C . ~$
(*4) With the FPOR, FPD, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Performs OR operation on each bit in data registers DT10 and DT20 when trigger R0 turns on.
The OR operation result is stored in data register DT30.
[S2](WXO)

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	
DT20	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1

[D](DT100)

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT30	0	1	0	0	1	1	0	1	1	1	1	1	1	1	1	1

## Description

Performs OR operation on each bit in the 16-bit equivalent constant or 16-bit data specified by S1 and S2.
The OR operation result is stored in the 16-bit area specified by D .
$(S 1) \vee(S 2) \rightarrow(D)$
You can use this instruction to turn on certain bits of the 16-bit data.

## OR operation

The OR operation is shown below.

S1	S2	$\mathbf{D}$
0	0	$\mathbf{0}$
0	1	$\mathbf{1}$
1	0	$\mathbf{1}$
1	1	$\mathbf{1}$

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".


## 16-bit data exclusive OR

Outline Performs bit-wise exclusive OR operation on two 16-bit data items. For the FPOR/FPE/FP-X/FPO/FP-e, the $P$ type high-level instruction "P67 (PXOR)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \text { LD } \\ (* 1) \end{gathered}$	$\begin{gathered} \text { FL } \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FP0 and FP-e.

A: Available
N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Performs exclusive OR operation on each bit in data registers DT10 and DT20 when trigger R0 turns on. The exclusive OR operation result is stored in data register DT30.

[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) | Bit position | 15 | $\cdot$ | $\cdot$ | 12 | 11 | $\cdot$ | $\cdot$ | 8 | 7 | $\cdot$ | $\cdot$ | 4 | 3 | $\cdot$ | $\cdot$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DT10 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |

[S2](WXO) | Bit position | 15 | $\cdot$ | $\cdot$ | 12 | 11 | $\cdot$ | $\cdot$ | 8 | 7 | $\cdot$ | $\cdot$ | 4 | 3 | $\cdot$ | $\cdot$ | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DT20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |


[D](DT100)

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT30	0	1	0	0	1	1	0	1	0	1	0	0	0	1	1	0

## Description

Performs exclusive OR operation on each bit in the 16-bit equivalent constant or 16 -bit data specified by S1 and S 2 . The exclusive OR operation result is stored in the 16 -bit area specified by D .
$\{(\mathbf{S} 1) \wedge(\overline{\mathbf{S} 2})\} \vee\{(\overline{\mathbf{S} 1}) \wedge(\mathbf{S} 2)\} \rightarrow \mathbf{( D )}$
Detects the bits whose on and off states do not match.
If the values of S 1 and S 2 are equal, all the bits of the data specified by D become 0 .

## Exclusive OR operation

The exclusive OR operation is shown below.

S1	S2	$\mathbf{D}$
0	0	$\mathbf{0}$
0	1	$\mathbf{1}$
1	0	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".


## F68 (XNR)

P68(PXNR)

## 16-bit data exclusive NOR

Outline Performs bit-wise exclusive NOR operation on two 16-bit data items. For the FPOR/FP $\Sigma /$ FP-X/FPO/FP-e, the $P$ type high-level instruction "P68 (PXNR)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{aligned} & \mathrm{FL} \\ & (* 2) \end{aligned}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FP0 and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

When the trigger R0 is on, if the values of the bits for the same positions with regard to the contents of data registers DT10 and DT20 are equal, the bit for that position is turned on (1) for data register DT30. If the values are not equal, the bit is turned off (0).
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D)

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT10	0	1	0	0	1	1	0	1	1	0	1	1	1	0	0	1

[S2](WXO)

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT20	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1



RO: on
[D](DT100)

Bit position	15	$\cdot$	$\cdot$	12	11	$\cdot$	$\cdot$	8	7	$\cdot$	$\cdot$	4	3	$\cdot$	$\cdot$	0
DT30	1	0	1	1	0	0	1	0	1	0	1	1	1	0	0	1

## Description

Performs exclusive NOR operation on each bit in the 16-bit equivalent constant or 16-bit data specified by S1 and S2. The exclusive NOR operation result is stored in the 16-bit area specified by D.
$\{(\mathbf{S} 1) \wedge(\mathbf{S} 2)\} \vee\{(\overline{\mathbf{S} 1}) \wedge(\mathbf{S 2})\} \rightarrow \mathbf{( D )}$
Detects the bits whose on and off states match.
If the values of $S 1$ and S 2 are equal, all the bits of the data specified by D become 1 .

## Exclusive NOR operation

The exclusive NOR operation is shown below.

S1	S2	$\mathbf{D}$
0	0	$\mathbf{1}$
0	1	$\mathbf{0}$
1	0	$\mathbf{0}$
1	1	$\mathbf{1}$

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".

P69(PWUN)

## 16-bit data unite

Outline Unites two 16-bit data.
For the FPOR/FP $/$ /FP-X, the P type high-level instruction "P69 (PWUNI)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{array}{\|c\|} \hline \text { FL } \\ (* 1) \end{array}$		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S3	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

(*1) This cannot be used with the FPOR, FPE and FP-X.

A: Available
N/A: Not Available

## Explanation of example



## Description

The two groups of word data specified by S1 and S2 are combined by bit unit processing using the mask data specified by S 3 and stored in the area specified by D .
$(\mathbf{S} 1 \wedge \mathbf{S} 3) \vee(\mathbf{S} 2 \wedge \mathbf{S} 3) \rightarrow(\mathrm{D})$
When S3 is HO , the contents of S 2 stored in the D .
When S3 is HFFFF, the contents of S1 stored in the D.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".


## F70(BCC)

P70(PBCC)
Block check code calculation

Outline Calculates Block Check Code (BCC).
For the FPOR/FPE/FP-X/FPO/FP-e, the P type high-level instruction "P70 (PBCC)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & \hline W L \\ & (* 1) \end{aligned}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{gathered} \hline F L \\ (* 2) \end{gathered}$	$\underset{(* 3)}{ }$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S3	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.
N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Calculates the Block Check Code (BCC) of 12 bytes of ASCII data starting from data register DT0, via an exclusive OR operation, when trigger R0 turns on. The Block Check Code (BCC) is stored in the lower byte of data register DT6.

## Description

Creates Block Check Code (BCC) from the starting position for the calculation specified by "S1" and "S2" using the calculation method specified by "S1", and stores the result at the position specified by "D" and "S1" according to the conversion method specified by "S1".


Note 1) If CRC-16 is specified as the calculation method, ASCII code cannot be specified for the conversion data.
How to specify control data "S1"
Note 2) This can be used with the FP0R, FP-X (V2.00 or more) and FPE (V3.10 or more).

## How to calculate the Block Check Code (BCC)

If BCC calculation method specified by " S 1 " is CRC,
The following generation polynomial is used and calculated (The same as MODBUS-RTU).
The generation polynomial : $\mathrm{X}^{\wedge} 15+\mathrm{X}^{\wedge} 13+1$ (H A001)

## Flag conditions

$\Sigma$ Error flag (R9007): Turns on and stays on when:
$\Sigma$ Error flag (R9008): Turns on for an instant when:

- BCC calculation method specified by " S 1 " is outside the specification range
- Conversion data specified by " S 1 " is outside the specification range


## Application example 1

In this example, the block check code of the message being sent, "\%01\#RCSX0000", is calculated and is added after the message.
Transmission is done using ASCII codes.
$B C C$ is calculated as an exclusive logical OR.
The message should be stored in the memory area as shown below.


The F70 (BCC) instruction is as shown below.

S1: Exclusive logical OR $\qquad$
S2: Start of target data $\qquad$
S3: Length of target data
D: Calculation results
$\qquad$

When this is executed, BCC (H1D) is stored in the last byte of DT6 of D.

High-level Instructions

## How to calculate the Block Check Code (BCC)

Exclusive ORing calculates the Block Check Code (BCC) with each ASCII character.

0	ASCII HEX code	2				5		
	ASCII BIN code	0	0	1	0	0	1	0


0	ASCII HEX code	3			0
	ASCII BIN code	0	0	1	1
		0	0	0	


1	ASCII HEX code	3		1				
	ASCII BIN code	0	0	1	0	0	0	1


$\#$	ASCII HEX code	2		3			
	ASCII BIN code	0	0	1	0	0	0



	ASCII HEX code	4		3				
	ASCII BIN code	0	1	0	0	0	0	1


	ASCII HEX code	5			3				
	ASCII BIN code	0	1	0	1	0	0	1	1



0	ASCII HEX code	3		0			
	ASCII BIN code	0	1	1	0	0	0



0	ASCII HEX code	3		0			
	ASCII BIN code	0	0	1	1	0	0




Exclusive OR operation		
$\mathbf{S 1}$	$\mathbf{S 2}$	$\mathbf{D}$
0	0	0
0	1	1
1	0	1
1	1	0

## Application example 2

In this example, the block check code of the message being sent, "\%01\#RCSX0000", is calculated and is added at the end of the message.

Calculation method: Addition, conversion data: Binary data

DT9	DT8	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0
0000	0000	0000	0000	3030	3030	5853	4352	2331	3025
00									

DT10 = H 0C00


DT9	DT8	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0
0000	0000	0000	00A9	3030	3030	5853	4352	2331	3025
00									00
XS	CR	$\# 1$	$0 \%$						

Calculation method: Addition, conversion data: ASCII codes

DT9	DT8	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0
0000	0000	0000	0000	3030	3030	5853	4352	2331	3025
$\begin{array}{llllll} \hline 00 & 00 & \text { XS } & \text { CR } & \# 1 & 0 \% \end{array}$									

DT10 $=\mathrm{H} 1 \mathrm{C} 00$


DT9	DT8	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0
0000	0000	0000	3941	3030	3030	5853	4352	2331	3025
9 9									00

Calculation method: Addition, conversion data: ASCII codes

DT9	DT8	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0
0000	0000	0030	3030	3058	5343	5223	3130	2500	0000

DT10 = H 1F30 0000

DT9	DT8	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0
0000	0039	4130	3030	3058	5343	5223	3130	2500	0000
9		AO	00	0X	SC	R\#	10	\%	

Calculation method: CRC, conversion data: Binary data

DT9	DT8	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0											
0000	0000	0000	0000	3030	3030	5853	4352	2331	3025											
00																00	XS	CR	$\# 1$	$0 \%$

DT10 $=\mathrm{H} 0 \mathrm{COA}$


DT9	DT8	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0
0000	0000	0000	2E0A	3030	3030	5853	4352	2331	3025
00									
									XS
CR	CR	$\# 1$	$0 \%$						

High-level Instructions

## Hexadecimal data $\rightarrow$ ASCII code

P71(PHEXA)

Outline Converts 16-bit data to ASCII code that expresses the equivalent hexadecimals.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P71 (PHEXA)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|c\|} \hline F L \\ \hline(* 2) \end{array}$	$\underset{(* 3)}{\prime \operatorname{IX}}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPL, FP-X.

A: Available N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Converts 2 bytes of data stored in data register DTO to ASCII codes that express the equivalent hexadecimals when trigger R0 turns on. The converted data is stored in data registers DT11 and DT10.

	DTO			
Bit position	15.	11 . . 8	7 . . 4	3 . . 0
Binary data	1010	1011	1100	11001
Hexadecimal	A	B	C	D


	DT11				DT10			
ASCII HEX code	4	2	4	1	4	4	4	3
ASCII character	B		A		D		C	

## Description

Converts the data starting from the 16-bit area specified by S1 to ASCII codes that express the equivalent hexadecimals.
The converted result is stored in the area starting from the 16 -bit area specified by $D$.
S2 specifies the number of source data bytes to be converted.
Since ASCII code requires eight bits (one byte) to express one hexadecimal character, the data length when converted to ASCII code becomes double the source data.

## Precautions during programming

The two characters that make up one byte are interchanged when stored.
Two bytes are converted as one segment of data.


## Flag conditions

$\Sigma$ Error flag (R9007): Turns on and stays on when:
$\Sigma$ Error flag (R9008): Turns on for an instant when:

- The area specified using the index modifier exceeds the limit.
- The number of bytes specified by S2 exceeds the area specified by S1.
- The converted result exceeds the area specified by D.
- The data specified by S 2 is recognized as " 0 ".


## Conversion example

The following shows conversion of hexadecimal data to ASCII codes.
Conversion of four bytes of data (S2 = K4)

Hexadecimal data		S1+1	S1	
		EF - 12	AB $\cdot C D$	
Converted result D+3		4 bytes		
		D+2	F71 (HEXA) instru$D+1 \quad D$	
	46:45	$32 \cdot 31$	42: 41	44:43
	F E	21	B A	D C
	Result of S1 + 1 conversion		Result of S1 conversion	

## Conversion of three bytes of data (S2 = K3)

Since "byte" is specified as the unit, it is possible to convert only the last byte of the data for one word if desired.


Converted result		$\mathrm{D}+2$			$\mathrm{D}+1$		D	
		32	31	42	41	44	43	
			1	B	A	D	C	

## ASCII HEX codes to express hexadecimal characters

Hexadecimal   number	ASCII HEX   code
0	H30
1	H31
2	H32
3	H33
4	H34
5	H35
6	H36
7	H37
8	H38
9	H39
A	H41
B	H42
C	H43
D	H44
F	H45
	H46

P72(PAHEX)

## ASCII code $\rightarrow$ Hexadecimal data

Outline Converts ASCII code that expresses hexadecimal characters to hexadecimal data.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P72 (PAHEX)" is not available.

## Program example

Ladder Diagram		Boolean	
		Address	Instruction
Trigger		$\begin{array}{\|l} 10 \\ 11 \end{array}$	ST R   F 72 (AHEX)   DT 0   K 4   DT 40
S1	Starting 16-bit area for ASCII code (source)		
S2	16-bit equivalent constant or 16 -bit area to specify number of source data bytes to be converted		
D	Starting 16-bit area for storing converted data (destination)		

## Operands

Operand	Relay				Timer/Counter			Register			Index   register		Constant	Index   modifier
	WX	WY	WR	WL   $(* 1)$	SV	EV	DT	LD   $(* 1)$	FL   $(* 2)$	IX   $(* 3)$	IY   $(* 4)$	K		
	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Converts 4 ASCII codes stored in data registers DT0 and DT1 to hexadecimal numbers when trigger R0 turns on. The converted data is stored in data register DT40.

	DT1				DTO			
ASCII HEX code	4	4	4	3	4	2	4	1
ASCII character	D	C		B		A		


	DT40			
Bit position	15. . 12	11.8	7 . . 4	3.
Binary data	1100	1101	1010	1011
Hexadecimal	C	D	A	B

## Description

Converts ASCII code that expresses hexadecimal characters, starting from the 16-bit area specified by S1, to hexadecimal numbers as specified by S2. The converted result is stored in the area starting from the 16-bit area specified by D.
The volume of the results (hexadecimal numeric data) is half that of the converted ASCII code.

## Precautions during programming

The data for two ASCII code characters is converted to two numeric digits for one word. When this takes place, the characters of the upper and lower bytes are interchanged.

Four characters are converted as one segment of data.
ASCII code character


## Flag conditions

$\Sigma$ Error flag (R9007): Turns on and stays on when:
$\Sigma$ Error flag (R9008): Turns on for an instant when:

- The area specified using the index modifier exceeds the limit.
- The number of bytes specified by S 2 exceeds the area specified by S 1 .
- The converted result exceeds the area specified by D.
- The data specified by S 2 is recognized as " 0 ".
- ASCII code, not a hexadecimal number ( 0 to $F$ ), is specified.


## Conversion Example

The following shows conversion of ASCII codes to hexadecimal data.

## Conversion of eight characters (S2 = K8)

ASCII code

S1+3		S1+2		S1+1		S1	
32	31	46	45	44	43	42	41
2	1	F	E	D	C	B	A
8 characters (8 bytes)							



Result of $S$ 1 + 3, Result of $S 1+1, S 1$ S1 + 2 conversion conversion

Conversion of $\mathbf{7}$ characters $(\mathbf{S} 2=K 7)$
ASCII code



## Conversion of 6 characters (S2 = K6)

ASCII code


## Note

In the conversion results, only the data for the lower byte is stored in $\mathrm{D}+1$ word. The data for the higher byte is left as it is, and does not change.

The converted results are stored in byte units.
If an odd number of characters is being converted, " 0 " will be entered for bit position 0 to 3 of the final data (byte) of the converted results.


## ASCII HEX code/Hexadecimal characters

ASCII HEX   code	Hexadecimal   characters
H30	0
H31	1
H32	2
H33	3
H34	4
H35	5
H36	6
H37	7
H38	8
H39	9
H41	A
H42	B
H43	C
H44	D45
H46	E

## F73(BCDA)

P73(PBCDA)

## BCD data $\rightarrow$ ASCII code

Outline Converts BCD code to ASCII code that expresses the equivalent decimals.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P73 (PBCDA)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter			Register			Index   register		Constant	Index   modifier
	WX	WY	WR	WL   $(* 1)$	SV	EV	DT	LD   $(* 1)$	FL   $(* 2)$	IX   $(* 3)$	IY   $(* 4)$	K		
	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Converts BCD code that express a 4-digit decimal number (4-digit BCD H code) stored in data register DTO to ASCII code when trigger R0 turns on. The converted data is stored in data registers DT10 and DT11.
When S2 = H2 (normal direction, 2 bytes conversion)


When S2 = H1002 (reverse direction, 2 bytes conversion)

	DTO				
BCD   data	1	2	3	4	



## Description

Converts the BCD code starting from the 16-bit area specified by S1 to ASCII code that expresses the equivalent decimals as specified by S 2 . The converted result is stored in the area starting from the 16 -bit area specified by D.
A maximum of four bytes (8-figure of data) can be converted.
S2 specifies the number of source data bytes and the direction of converted data (normal/reverse).
The data length when converted to ASCII code becomes double the BCD source data.

## How to specify S2

## $\mathrm{S} 2=\mathrm{H} \mathrm{C}$

H1: 1 byte (BCD code that expresses a 2-digit decimal)
H2: 2 bytes (BCD code that expresses a 4-digit decimal)
H3: 3 bytes (BCD code that expresses a 6 -digit decimal)
H4: 4 bytes (BCD code that expresses a 8 -digit decimal)

## Direction of converted data

HO: Normal direction
H1: Reverse direction
Since you can specify source data in byte units, it is possible to convert only the lower byte of S1 to ASCII code.

## Precautions during programming

The two characters that make up one byte are interchanged when stored.
Two bytes are converted as one segment of data.

Normal direction


Reverse direction


## Flag conditions

$\Sigma$ Error flag (R9007): Turns on and stays on when:
$\Sigma$ Error flag (R9008): Turns on for an instant when:

- The area specified using the index modifier exceeds the limit.
- The data specified by S 1 is not BCD data.
- The number of bytes specified by S2 exceeds the area specified by S1.
- The converted result exceeds the area specified by D.
- The data specified by S 2 is recognized as " 0 ".
- The number of bytes specified by S 2 is more than H 4 .


## Conversion Example

The following shows conversion from BCD data to ASCII codes.
Normal direction conversion of 4 bytes ( $\mathrm{S} 2=\mathrm{H} 0004$ )
BCD data


Converted	ult							
ASCII HEX	32		34	33		35	38	37
ASCII	2	1	4	3	6	5	8	7
	Result of S1 + 1 conversion				Result of S1 conversion			

Reverse direction conversion of 4 bytes $(S 2=H 1004)$
BCD data


Converted								D
ASCII HEX code		37	36	35	34	33	32	31
ASCII	8	7	6	5	4	3	2	1
		$\begin{aligned} & \text { Result } \\ & \text { onve } \end{aligned}$	on			ver	S1	

## ASCII HEX code to express BCD character

BCD character	ASCII HEX   code
0	$H 30$
1	H31
2	$H 32$
3	$H 33$
4	$H 34$
5	$H 35$
6	$H 36$
7	$H 37$
8	$H 38$
9	H39

## ASCII code $\rightarrow$ BCD data

Outline Converts ASCII code that expresses decimal characters to BCD code. For the FPOR/FPE/FP-X/FPO/FP-e, the $P$ type high-level instruction "P74 (PABCD)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ \hline(* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \hline \text { LD } \\ \hline(* 1) \end{gathered}$	$\begin{gathered} \hline \text { FL } \\ (* 2) \end{gathered}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FP $5, ~ F P-X, F P 2, ~ F P 2 S H$, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Converts ASCII codes stored in data registers DT1 and DT0 to BCD data when trigger R0 turns on. The converted data is stored in data register DT40.

## When S2 = H4 (normal direction, 4 bytes)

	DT1		DTO	
$\begin{gathered} \text { ASCII } \\ \text { HEX code } \end{gathered}$	3,4	3 , 3	3,2	3 , 1
ASCII character	4	3	2	1



When S2 = H1004 (reverse direction, 4 bytes)

	DT1				DT0		
ASCII   HEX code	3	4	3	3	3	2	3



## Description

Converts ASCII codes that express decimal characters, starting from the 16-bit area specified by S1, to BCD data as specified by S2. The converted result is stored in the area starting from the 16-bit area specified by D. A maximum of eight characters of data can be converted.

S2 specifies the number of source data bytes and the direction of converted data (normal/reverse).
The data length when converted to a BCD number becomes half the ASCII code source data.

## How to specify S2

S2 = H $\quad \begin{array}{r}\text { Number of bytes for ASCII character } \\ \text { H1: } 1 \text { byte (1 ASCII character) } \\ \text { H2: } 2 \text { bytes (2 ASCII characters) } \\ \text { H3: } 3 \text { bytes (3 ASCII characters) } \\ \text { H4: } 4 \text { bytes (4 ASCII characters) } \\ \text { H5: } 5 \text { bytes (5 ASCII characters) } \\ \text { H6: } 6 \text { bytes (6 ASCII characters) } \\ \text { H7: } 7 \text { bytes (7 ASCII characters) } \\ \text { H8: } 8 \text { bytes (8 ASCII characters) }\end{array}$

## Direction converted data

H0: Normal direction
H1: Reverse direction

## Precautions during programming

The data for two ASCII code characters is converted to two numeric digits for one byte. When this takes place, the characters of the upper and lower bytes are interchanged.
Four characters are converted as one segment of data.
The converted results are stored in byte units.
If an odd number of characters is being converted, " 0 " will be entered for bit position 0 to 3 of the final data (byte) of the converted results if data is sequenced in the normal direction, and " 0 " will be entered for bit position 4 to 7 if data is being sequenced in the reverse direction.

Normal direction


Reverse direction


## Conversion Example

The following shows conversion from ASCII codes to BCD data.

## 8 ASCII characters conversion (S2=H0008)

ASCII code

	S1+3		S1+2		S1+1		S1	
code	38	37				33	32	31
ASCII character	8	7	6	5	4	3	2	1
	8 ASCII characters (8 bytes)							


F74 (ABCD) instruction ex
Converted result
BCD H code

## 7 ASCII characters (S2=H1007)

ASCII code

ASCII HEXcode		S1+2		S1+1		S1	
	37	36	35		33	32	31
ASCII character	7	6	5	4	3	2	1

This position is
filled with " 0 ".


F74 (ABCD) instruction execution


## BCD character to express ASCII HEX code

ASCII HEX   code	BCD character
H30	0
H31	1
H32	2
H33	3
H34	4
H35	5
H36	6
H37	7
H38	8
H39	9

## Flag conditions

$\Sigma$ Error flag (R9007): Turns on and stays on when:
$\Sigma$ Error flag (R9008): Turns on for an instant when:

- The area specified using the index modifier exceeds the limit.
- ASCII code not corresponding to decimal numbers (0 to 9 ) is specified.
- The number of bytes specified by S 2 exceeds the area specified by S1.
- The converted result exceeds the area specified by D.
- The data specified by S2 is recognized as " 0 ".
- The number of bytes for ASCII characters in S2 is more than H 8 .

P75 (PBINA)
16-bit binary data $\rightarrow$ ASCII code

Outline Converts 16-bit data to ASCII code that expresses the equivalent decimals.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P75 (PBINA)" is not available.

## Program example

Ladder Diagram			Boolean		
			Address		uction
			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F 75   DT   K   DT	
	S1	16-bit equivalent constant or 16-bit area to be converted (source)			
	S2	16-bit equivalent constant or 16-bit area to specify number of bytes used to express destination data (ASCII codes)			
	D	Starting 16-bit area for storing ASCII codes (destination)			

## Operands

Operand	Relay				Timer/Counter		Register			Indexregister register		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & \hline W L \\ & (* 1) \end{aligned}$	SV	EV	DT	$\begin{aligned} & \hline \text { LD } \\ & \left({ }^{*} 1\right) \end{aligned}$	$\begin{gathered} \hline F L \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	$\begin{aligned} & \text { IY } \\ & (* 4) \end{aligned}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is I0 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Converts the 16-bit data stored in data register DTO to ASCII codes that express the equivalent decimals when trigger R0 turns on. The converted data is stored in data registers DT52 to DT50.



## Description

Converts the 16-bit data specified by S1 to ASCII codes that express the equivalent decimals. The converted result is stored in the area starting from the 16 -bit area specified by D as specified by S 2 .
Specify the number of bytes in decimal number in the S 2 . (This specification cannot be made with BCD data.)

## Precautions during programming

If a positive number is converted, the " + " sign is not converted.
When a negative number is converted, the "-" sign is also converted to ASCII code (ASCII HEX code: H2D). If the area specified by S 2 is more than that required by the converted data, the ASCII code for "SPACE" (ASCII HEX code: H2O) is stored in the extra area.
Data is stored in the direction towards the final address, so the position of the ASCII code may change, depending on the size of the data storage area.
When S2=K8 (8 bytes)

D+3		D+2		D+1		D		
30					20			
0	0	1	- (Space) (Space) (Space) (Space)					
ASCII code					Extra	bytes		

Range specified by S2
If the number of bytes of ASCII codes following conversion (including the minus sign) is larger than the number of bytes specified by the S2, an operation error occurs. Make sure the sign is taken into consideration when specifying the object of conversion for the S2.

## Conversion Example

The following shows conversion from 16-bit decimal data to ASCII codes.
When a negative number is converted


When a positive number is converted


Decimal characters to express ASCII HEX code

Decimal   characters	ASCII HEX   code
SPACE	H2O
-	H2D
0	H30
1	H31
2	H32
3	H33
4	H34
5	H35
6	H36
7	H37
8	H38
9	H39

High-level Instructions

## Flag conditions

$\Sigma$ Error flag (R9007): Turns on and stays on when:
$\Sigma$ Error flag (R9008): Turns on for an instant when:

- The area specified using the index modifier exceeds the limit.
- The number of bytes specified by S 2 exceeds the area specified by $D$.
- The data specified by S 2 is recognized as " 0 ".
- The converted result exceeds the area specified by D.
- The number of bytes of converted result exceeds the number of bytes specified by S2.


## F76(ABIN)

P76(PABIN)

## ASCII code $\rightarrow$ 16-bit binary data

Outline Converts ASCII code that expresses decimal digits to 16-bit data that expresses the equivalent number.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P76 (PABIN)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \hline \text { LD } \\ \left.\mathbf{N}^{*} 1\right) \end{gathered}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FP0 and FP-e.

A: Available
N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FP0R, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Converts ASCII codes (6 bytes) that express decimal digits in data registers DT2 to DT0 to 16-bit data when trigger R0 turns on. The converted data is stored in data register DT50.


## Description

Converts the ASCII codes that express the decimal digits, starting from the 16-bit area specified by S1 to 16 -bit data as specified by S 2 . The converted result is stored in the area specified by D .
S 2 specifies the number of source data bytes to be converted using decimal number. (This specification cannot be made with BCD data.)

## Precautions during programming

The ASCII codes being converted should be stored in the direction of the last address in the specified area. If the area specified by S1 and S2 is more than that required for the data you want to convert, place " 0 " (ASCII HEX code: H30) or "SPACE" (ASCII HEX code: H20) into the extra bytes.
ASCII codes with signs (such as + : H2B and - : H2D) are also converted. The + codes can be omitted.

## Flag conditions

$\Sigma$ Error flag (R9007): Turns on and stays on when:
$\Sigma$ Error flag (R9008): Turns on for an instant when:

- The area specified using the index modifier exceeds the limit.
- The number of bytes specified by S 2 exceeds the area specified by S 1 .
- The data specified by S 2 is recognized as " 0 ".
- The converted result exceeds the 16-bit area specified by D.
- The converted result exceeds the 16-bit data.
- ASCII code not corresponding to decimal numbers (0 to 9) or ASCII characters (+, - , and SPACE) is specified.


## Conversion Example

The following shows conversion from ASCII codes to decimal data in a 16-bit configuration.

## Example of converting an ASCII code indicating a negative number

ASCII code



## Example of converting an ASCII code indicating a positive number

## Example 1:



## Example 2:

ASCII code


Range specified by S2


ASCII HEX code to express decimal characters

ASCII HEX   code	Decimal   characters
H20	SPACE
H2B	+
H2D	-
H30	0
H31	1
H32	2
H33	3
H34	4
H35	5
H36	6
H37	7
H38	8
H39	9

(PDBIA)

## 32-bit binary data $\rightarrow$ ASCII code

Outline Converts 32-bit data to ASCII code that expresses the equivalent decimals.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P77 (PDBIA)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|l\|} \hline F L \\ (* 2) \end{array}$	$\underset{(* 3)}{I X}$	IY	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available N/A: Not Available
(*3) With the FPOR, FP 2, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Converts the 32-bit data stored in data registers DT1 and DT0 to ASCII code that expresses the equivalent decimals when trigger R0 turns on. The converted data is stored in data registers DT54 to DT50 (10 bytes).

Source	DT1							DT0										
Bit position	15 • 1211	8	7	4	3		01	15	- 12\|11		8	7			4	3	-	0
Decimal	K12345678																	


Destination	DT54				DT53				DT52				DT51				DT50			
ASCII HEX code	3	8	3	7	3	6	3	5	3	4	3	3	3	2	3	1	2	0	20	
ASCII character	8		7		6		5		4		3		2		1					

## Description

Converts the 32 -bit data specified by S1 to ASCII code that expresses the equivalent decimals. The converted result is stored in the area starting from the 16 -bit area specified by D as specified by S 2 .
S2 specifies the number of bytes used to express the destination data using decimal.

## Precautions during programming

When a positive number is converted, the " + " sign is not converted.
When a negative number is converted, the "-" sign is also converted to ASCII code (ASCII HEX code: H2D).
If the area specified by S 2 is more than that required by the converted data, the ASCII code for "SPACE" (ASCII HEX code: H 20 ) is stored in the extra area.
Data is stored in the direction of the last address, so the position of the ASCII code may change depending on the size of the data storage area.
If the number of bytes of ASCII codes following conversion (including the minus sign) is larger than the number of bytes specified by the S 2 , an operation error occurs. Make sure the sign is taken into consideration when specifying the object of conversion for the S2.

## Flag conditions

$\Sigma$ Error flag (R9007): Turns on and stays on when:
$\Sigma$ Error flag (R9008): Turns on for an instant when:

- The area specified using the index modifier exceeds the limit.
- The number of bytes specified by S 2 exceeds the area specified by $D$.
- The data specified by S 2 is recognized as " 0 ".
- The converted result exceeds the area specified by D.
- The number of bytes of converted result exceeds the number of bytes specified by S 2 .
- For FP2SH and FP10SH, the error flag (R9007) turns on only when these operation errors occurs.

High-level Instructions

## Conversion Example

The following shows conversion from 32-bit decimal format data to ASCII codes.

## Example of converting a negative number



Range specified by S2 (10 bytes)

Example of converting a positive number



ASCII code

Range specified by S2 (8 bytes)
Decimal characters to express ASCII HEX code

Decimal   characters	ASCII HEX   code
SPACE	H2O
+	H2B
-	H2D
0	H30
1	H31
2	H32
3	H33
4	H34
5	H35
6	H36
7	H37
8	H38
9	H39

## ASCII code $\rightarrow$ 32-bit binary data

Outline Converts ASCII code that expresses decimal digits to 32-bit data that expresses the equivalent number.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P78 (PDABI)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{gathered} \hline F L \\ (* 2) \end{gathered}$	$\underset{(* 3)}{I X}$	IY	K	H	
S1	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.

## Explanation of example

Converts ASCII codes (10 bytes) that express decimal digits in data registers DT4, DT3, DT2, DT1 and DT0 to 32-bit data when trigger R0 turns on. The converted data is stored in data registers DT51 and DT50.


## Description

Converts ASCII code that expresses the decimal digits, starting from the 16-bit area specified by S1 to 32-bit data as specified by S2. The converted result is stored in the area starting from the 16 -bit area specified by D.
S 2 specifies the number of bytes used to express the destination data using decimals.

## Precautions during programming

The ASCII codes being converted should be stored in the direction of the last address in the specified area. If the area specified by S1 and S2 is more than that required by the data you want to convert, place " 0 " (ASCII HEX code: H30) or "SPACE" (ASCII HEX code: H20) in the extra bytes.
ASCII codes with signs (such as + : H2B and - : H2D) are also converted. The + codes can be omitted.

## Flag conditions

$\Sigma$ Error flag (R9007): Turns on and stays on when:
$\Sigma$ Error flag (R9008): Turns on for an instant when:

- The area specified using the index modifier exceeds the limit.
- The number of bytes specified by S2 exceeds the area specified by S1.
- The data specified by S 2 is recognized as " 0 ".
- The converted result exceeds the area specified by D.
- The converted result exceeds the 32-bit data.
- ASCII code not corresponding to decimal numbers (0 to 9 ) or ASCII characters (+, - , and SPACE) is specified.


## Conversion Example

The following shows conversion from ASCII codes to decimal data in a 32-bit configuration.

## Example of converting an ASCII code indicating a negative number

ASCII code


Range specified by S2 (10 bytes)


F78 (DABI) instruction execution


## Example of converting an ASCII code indicating a positive number

## Example 1:

ASCII code

	S1+3		S1+2		S1+1		S1	
'	38	37		35	34		32	
	7	8	6	5	4	3	2	1
	ASCII code							
	Range specified by S2 (8 bytes)							

## Example 2:

ASCll code

		S1+3		S1+2		S1+1		S1	
38	37	36		34	33	32	31		, 20
8	7	6	5	4	3	2	1	+	(Space)
ASCII code Extra by									

Range specified by S2 (10 bytes)


ASCII HEX code to express decimal characters

ASCII HEX   code	Decimal   characters
H20	SPACE
H2B	+
H2D	-
H30	0
H31	1
H32	2
H33	3
H34	4
H35	5
H36	6
H37	7
H38	8
H39	9

High-level Instructions

16-bit binary data $\rightarrow$ 4-digit BCD data

Outline Converts 16-bit binary data to BCD code the expresses a 4-digit decimal.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P80 (PBCD)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|c\|} \hline F L \\ \hline(* 2) \\ \hline \end{array}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available
N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPD, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Converts the contents of data register DT10 to BCD code that expresses a 4-digit decimal when trigger R0 turns on. The converted data is stored in data register DT20.
If DT10 is 16 using decimal number conversion, the following will be stored in DT20.

## Source [S]: K16



Destination [D](DT100): H16 (BCD)

Bit position	15	.	.	12	11	.	.	8	7	.	.	4	3	.	.
DT20	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1

## Description

Converts the 16-bit binary data specified by S to BCD code that expresses a 4-digit decimal. The converted data is stored in $D$.

## Precautions during programming

The maximum value of 16-bit binary data that can be converted to BCD code is K9999 (H270F).

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The range that binary data can be BCD converted is exceeded. (When minus or when K9999 is exceeded)

High-level Instructions

## 581 (BIN) P81 (PBIN)

## 4-digit BCD data $\rightarrow$ 16-bit binary data

Outline Converts BCD code that expresses a 4-digit decimal to 16-bit binary data.
For the FPOR/FPD/FP-X/FP0/FP-e, the P type high-level instruction "P81 (PBIN)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			$\begin{aligned} & \text { Index } \\ & \text { register } \end{aligned}$		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|l\|} \hline F L \\ (* 2) \end{array}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	K	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPD, FP-X, FP2, FP2SH, and FP10SH, this is ID.

A: Available N/A: Not Available
K: K0 to K9

## Explanation of example

Converts the contents of data register DT10 to 16-bit binary data when trigger R0 turns on. The converted data is stored in data register DT20.
If DT10 is BCD data consisting of H15, the following will be stored in DT20.
Source [S]: H15 (BCD)
$\left.\begin{array}{|c|cccccc|cccc|cccc|}\hline \text { Bit position } & 15 & . & . & 12 & 11 & . & . & 8 & 7 & . & . & 4 & 3 & .\end{array}\right)$


DT20	0	0	00	0	0	0	0	0	0	0	0	1	1		
Decimal								15							

## Description

Converts BCD code that expresses a 4-digit decimal specified by S to 16-bit binary data. The converted data is stored in $D$.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data specified by S is not BCD data.

High-level Instructions

## F82(DBCD)

P82(PDBCD)
32-bit binary data $\rightarrow$ 8-digit BCD data

Outline Converts 32-bit binary data to BCD code that expresses an 8-digit decimal.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P82 (PDBCD)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ \left(*_{1}\right) \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline L D \\ \left({ }^{*} 1\right) \end{array}$	$\begin{array}{\|l\|} \hline F L \\ (* 2) \end{array}$	$\underset{(* 3)}{\text { IX }}$	IY	K	H	
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.
A: Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
N/A: Not Available

## Explanation of example

Converts the contents of data registers DT11 and DT10 to BCD code that expresses an 8-digit decimal when trigger R20 turns on. The converted data is stored in data registers DT21 and DT20.

## Description

Converts the 32-bit data specified by $S$ to $B C D$ code that expresses an 8-digit decimal. The converted data is stored in D+1 and D.

## Precaution during programming

The maximum value of binary data that can be converted to BCD code is K99999999 (H5F5E0FF).

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- When the range that binary data can be BCD converted is exceeded. (When minus or when K99999999 is exceeded)

Outline Converts BCD code that expresses an 8-digit decimal to 32-bit binary data.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P83 (PDBIN)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ \left.\mathbf{N}^{*} 1\right) \end{array}$	$\begin{array}{\|l\|} \hline F L \\ (* 2) \end{array}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	IY	K	H	
S	A	A	A	A	A	A	A	A	A	A	N/A	K	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
$\mathrm{N} / \mathrm{A}$ : Not Available
K: K0 to K9

## Explanation of example

Converts BCD code that expresses an 8-digit decimal of data registers DT11 and DT10 to 32-bit binary data when trigger R20 turns on. The converted data is stored in data registers DT21 and DT20.

## Description

Converts BCD code that expresses an 8-digit decimal specified by $S$ to 32 -bit binary data. The converted data is stored in $\mathrm{D}+1$ and D .

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data specified by $S$ is not BCD data.


## 584 (INV)

P84(PINV)

## 16-bit data invert

Outline Inverts all bits in the 16-bit area.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P84 (PINV)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			$\begin{gathered} \text { Index } \\ \text { register } \end{gathered}$		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|c\|} \hline W L \\ (* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{gathered} \hline \text { FL } \\ \hline(* 2) \end{gathered}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\text { IY }}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available
N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.
(*3) With the FPOR, FP $5, ~ F P-X, F P 2, ~ F P 2 S H$, and FP10SH, this is 10 to IC.
(*4) With the FP0R, FPD, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Inverts the contents of data register DT0 when trigger R20 turns on.

## Destination

Bit position	15	.	.	12	11	.	.	8	7	.	.	4	3	.	.	0
DTO	0	1	0	1	1	1	1	0	1	0	1	1	1	1	0	1



Bit position	15	.	.	1	11	.	.	8	7	.	.	4	3	.	.	0
DTO	1	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0

## Description

Inverts each bit (0 or 1) of the 16-bit data specified by D.
This instruction is useful for controlling an external device (7-segment display) that uses negative logic operation.

## Flag conditions

- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.


## F85(NEG)

P85(PNEG)

## 16-bit data complement of 2

Outline Takes complement of 2 in 16-bit data.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P85 (PNEG)" is not available.

## Program example



## Operands

| Operand | Relay |  |  |  | Timer/Counter |  | Register |  |  | Index <br> register |  | Constant | Index <br> modifier |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WX | WY | WR | WL <br> $(* 1)$ | SV | EV | DT | LD <br> $(* 1)$ | FL <br> $(* 2)$ | IX <br> $(* 3)$ | IY <br> $(* 4)$ |  |  |  |
|  | N/A | A | A | A | A | A | A | A | A | A | A | N/A | N/A | A |

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPL, FP-X.

A: Available N/A: Not Available
(*3) With the FPOR, FPD, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Takes two's complement of data register DT0 when trigger R20 turns on.

## Destination


$\left.\begin{array}{|c|cccc|ccc|ccc|cccc|}\hline \text { Bit position } & 15 & \cdot & \cdot & 1 & 11 & \cdot & \cdot & 8 & 7 & \cdot & \cdot & 4 & 3 & \cdot \\ \hline \text { DTO } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right)$

## Description

Takes two's complement of 16 -bit data specified by D.
The two's complement is obtained by inverting all bits and adding 1 to the inverted result.
This instruction is useful for changing the sign of 16-bit data from positive to negative or from negative to positive.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

High-level Instructions

## F86(DNEG)

## 32-bit data complement of 2

Outline Takes complement of 2 in 32-bit data.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P86 (PDNEG)" is not available.

## Program example

Ladder Diagram	Boolean	
	Address	Instruction
	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST R   F 86 (DNEG)   DT 0


D	Lower 16-bit area of 32-bit data for storing original data and its two's   complement

## Operands

	Relay				Timer/Counter		Register			Indexregister register		Constant		Index modifier
Oper	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ (* 1) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline F L \\ \hline(* 2) \end{array}$	$\underset{(* 3)}{\prime \operatorname{IX}}$	IY	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FP0 and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

## Explanation of example

Takes two's complement of data registers DT1 and DT0 when trigger R20 turns on.

Destination	DT1													DT0														
Bit position	$15 \cdot 12$		211	1 . . 8			7 . . 4			3 . . 0				15	. 12			8			7			4	3	. . 0		
Binary data	1	111	1	11	1	1	1	1	1	1	11	1	11	11	11	11	1	1	1	1	1	1	1	1	1	1	0	
Decimal data													K-3															

Higher 16-bit area
Lower 16-bit area

- R20: on


Higher 16-bit area
Lower 16-bit area

## Description

Takes two's complement of 32-bit data specified by D.
The two's complement is obtained by inverting all bits and adding 1 to the inverted result.
This instruction is useful for changing the sign of 32-bit data from positive to negative or from negative to positive.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

Outline Takes absolute value of signed 16-bit data.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P87 (PABS)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			$\begin{aligned} & \text { Index } \\ & \text { register } \end{aligned}$		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ \hline(* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ \hline \text { (*1) } \\ \hline \end{array}$	$\begin{array}{\|l\|l} \mathrm{FL} \\ (* 2) \end{array}$	$\underset{(* 3)}{ }$	$\underset{(* 4)}{\text { IY }}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPD, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Takes absolute value of data register DT0 when trigger R20 turns on.
For instance, regardless of whether the value of DT0 is K 1 or $\mathrm{K}-1$, it will be K 1 when the instruction is executed.

## Description

Takes absolute value of signed 16-bit data specified by D . The absolute value of the signed 16 -bit data is stored in D.

This is effective for processing data in which the polarity (+ or -) changes.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The 16-bit data is the negative minimum value "K-32768 (H8000)."
- Carry flag (R9009): Turns on for an instant when 16-bit data is the negative value "range: K-1 to K-32767 (HFFFF to H8001)."


## 32-bit data absolute value

Outline Takes absolute value of signed 32-bit data.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P88 (PDABS)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \hline \text { LD } \\ \left.\mathbf{n}^{*} 1\right) \end{gathered}$	$\begin{gathered} \mathrm{FL} \\ (* 2) \end{gathered}$	$\underset{(* 3)}{\text { IX }}$	IY	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD , FP-X.
$\mathrm{N} / \mathrm{A}$ : Not Available
(*3) With the FPOR, FP 5, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

## Explanation of example

Takes absolute value of data registers DT1 and DT0 when trigger R20 turns on. The absolute value of DT1 and DT0 is stored in data registers DT1 and DT0.

## Description

Takes the absolute value of signed 32 -bit data specified by D . The absolute value of the 32 -bit data is stored in $\mathrm{D}+1$ and D .
This is effective for processing data in which the polarity (+ or -) changes.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The 32-bit data is the negative minimum value "K-2147483648 (H80000000)."
- Carry flag (R9009): Turns on for an instant when 32-bit data is negative value "range K-1 to K-2147483647 (HFFFFFFFF to H80000001)."


## F89 (EXT)

P89(PEXT)

## 16-bit data sign extension

Outline Copies the sign bit of the specified 16-bit data to all the bits of the higher 16-bit area (extended 16-bit area).
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P89 (PEXT)" is not available.

## Program example

Ladder Diagram	Boolean	
	Address	Instruction
	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST R 20   F 89 (EXT)   DT 0


D	16-bit area for storing original 16-bit binary data

## Operands

| Operand | Relay |  |  |  | Timer/Counter |  | Register |  |  | Index <br> register |  | Constant |  | Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | modifier |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | WX | WY | WR | WL <br> $(* 1)$ | SV | EV | DT | LD <br> $(* 1)$ | FL <br> $(* 2)$ | IX <br> $(* 3)$ | IY | K | H |  |
| D | N/A | A | A | A | A | A | A | A | A | A | N/A | N/A | N/A | A |

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
A: Available
(*3) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

## Explanation of example

Copies the sign bit of data register DT0 to all the bits of data register DT1 when trigger R20 turns on. If $\mathrm{K}-2$ is stored in DTO, the data will be as follows.


Higher 16-bit area Lower 16-bit area (extended 16-bit area)

## 32-bit data

## Description

16 -bit data is converted to 32 -bit data, without signs and values being changed.
If the sign bit (bit position 15) of the 16-bit data specified by $D$ is 0 , all 16 bits of the next area of $D$ will be set to 0 . If the sign bit is 1 , all 16 bits will be set to 1 .
By doing this, the 16-bit data is converted to 32 -bit data, without the sign or the values changing.
Double word data with $D$ as the first data can be used as the operand of 32-bit operation instructions following execution of the F89 (EXT) instruction.

Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

High-level Instructions

## F90(DECO)

P90(PDECO)

## Decode

## Outline Decodes the specified data.

For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P90 (PDECO)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & \hline \text { WL } \\ & (* 1) \end{aligned}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ \left.\mathbf{N}^{*} 1\right) \end{array}$	$\begin{array}{\|c\|} \hline \text { FL } \\ \hline(* 2) \end{array}$	$\underset{(* 3)}{I X}$	$\begin{gathered} \text { IY } \\ (* 4) \end{gathered}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.

A: Available
N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Decodes data register DT10 according to the $\mathrm{n}=\mathrm{H} 404$ when trigger R20 turns on. The decoded result is stored in data register DT20.

## $\stackrel{y}{c}$

Example: When n: H404


## Description

Decodes the contents of 16 -bit data specified by $S$ according to the contents of $n$. The decoded result is stored in the area starting from 16 -bit area specified by D.
The length of the area required to store decoding results changes depending on the length of the data being decoded.
How to specify control data " $n$ "
n specifies the starting bit position and the number of bits to be decoded using hexadecimal data.


The bits of "-" mark are invalid.

Starting bit position to be decoded (set range: HO to HF )

Set value	Starting bit   position
H0	0
H1	1
H2	2
H3	3
H4	4
H5	5
H6	6
H7	7
H8	8
H9	9
HA	10
HB	11
HC	12
HD	13
HE	14
HF	15

Number of bits to be decoded
(set range: H 0 to H 8 )

Set value	Number of   bits
H0	0
H1	1
H2	2
H3	3
H4	4
H5	5
H6	6
H7	7
H8	8

High-level Instructions

Relationship between number of bits and occupied data area for decoded result

Number of bits to be   decoded	Data area required for the   result	Valid bits in the area for the   result
1	1-word	2-bit*
2	1-word	4-bit*
3	1-word	8-bit*
4	1-word	16-bit
5	2-word	32-bit
6	4-word	64-bit
7	8-word	128-bit
8	16-word	256-bit

* Invalid bits in the data area required for the result are set to " 0 ".


## Decoded example

When decoding 4-bit data, 16 -bit data for the decoded result is shown below.
Decoding conditions (n)
Starting bit position: H0 (bit position 0)
Number of bits to be decoded: H4 (4 bits)

Data to be decoded [Binary (decimal)]	Decoded result															
	15		-	12	11	.	.	8	7	-		4	3	-		0
0000 (K0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0001 (K1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0010 (K2)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0011 (K3)	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0100 (K4)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0101 (K5)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0110 (K6)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0111 (K7)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1000 (K8)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1001 (K9)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1010 (K10)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1011 (K11)	0	0	0	0	1	0	0	0	0	0	0	0		0	0	0
1100 (K12)	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1101 (K13)	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1110 (K14)	0	1	0	0	0	0	0	0	0	0	0	0		0	0	0
1111 (K15)	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The number of bits to be decoded is outside the range of 1 to 8 .
- The sum of the number of bits to be decoded and the starting bit position to be decoded is outside the range of 1 to 16 .
- The last data area for the decoded result exceeds the limit.

High-level Instructions

## 7-segment decode

Outline Converts 16-bit data to 4-digit data for 7-segment indication. For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P91 (PSEGT)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{aligned} & \hline \text { FL } \\ & (* 2) \end{aligned}$	$\underset{(* 3)}{ }$	$\underset{(* 4)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available
N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPI, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Converts the contents of data register DTO to 4-digit data for 7-segment indication when trigger R20 turns on.
The converted data is stored in word internal relays DT11 and DT10.
For example, to display "ABCD", the following would be entered.


## Description

Converts the 16-bit equivalent constant or 16-bit data specified by $S$ to 4-digit data for 7 -segment indication. The converted data is stored in the area starting from the 16 -bit area specified by D.
The relationship between the displayed contents and the contents specified for $S$, and the data of the 7-segment display is shown below.


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The last data area for the converted result exceeds the limit.

High-level Instructions

## F92(ENCO)

## Encode

Outline Encodes the specified data.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P92 (PENCO)" is not available.

## Program example

Ladder Diagram			Boolean		
			Address		uction
			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F } 92 \\ & \text { DT } \\ & \text { H } \\ & \text { DT } \end{aligned}$	$\begin{array}{r} \text { R } \quad 20 \\ \text { (ENCO) } \\ 10 \\ 5 \\ 20 \end{array}$
S $\quad$ Starting 16-bit area to be encoded (source)					
n		16-bit equivalent constant or 16-bit area to specify starting bit position and number of bits to be encoded			
		16-bit area for storing encoded data (destination)			

## Operands

Operand	Relay				Timer/Counter		Register			$\begin{gathered} \text { Index } \\ \text { register } \end{gathered}$		Constant		Index modifier
	WX	WY	WR	$\begin{aligned} & \hline W L \\ & (* 1) \end{aligned}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|c\|} \hline F L \\ (* 2) \end{array}$	$\underset{(* 3)}{I X}$	$\begin{gathered} \text { IY } \\ (* 4) \end{gathered}$	K	H	
S	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available N/A: Not Available
(*3) With the FPOR, FP $5, ~ F P-X, ~ F P 2, ~ F P 2 S H, ~ a n d ~ F P 10 S H, ~ t h i s ~ i s ~ I 0 ~ t o ~ I C . ~ . ~$
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Encodes contents of data register DT11 and DT10 according to the n: H5 when trigger R20 turns on. The encoded result is stored in 8 bits of data register DT20 starting from bit position 0 .
When n: H0005


Number of bits to be encoded: $2^{5}=32$ bits
Starting bit position to be encoded for destination data: bit position 0
The 8th bit of 32-bit


The encoded result K8 (decimal) is stored in DT20.

Bit position 8 to 15 Encoded result:K8 are filled with 0 .

## Description

Encodes the contents of data specified by $S$ according to the contents of $n$. The encoded result is stored in the 16 -bit area specified by $D$ starting from the specified bit position.
If more than one bit is on in a segment being decoded, the uppermost bit is effective.
The contents of the $2 n L$ segment at the beginning of the area specified by the $S$ are encoded. The encoded results are stored as decimal data, in the eight bits starting from the bit specified as the nH bit.
Invalid bits in the specified area for the result are set to 0 .

## How to specify control data "n"

n specifies the starting bit position of destination data and the number of bits to be decoded using hexadecimal data.


The bits of "-" mark are invalid.
Number of bits to be encoded (set range: H 1 to H 8 )
Starting bit position of destination data to be encoded (set range: H0 to HF)

Set value	Starting bit   position
H0	0
H1	1
H2	2
H3	3
H4	4
H5	5
H6	6
H7	7
H8	8
H9	9
HA	10
HB	11
HC	12
HD	13
HE	14
HF	15


Set value	Number of   bits
H1	2
H2	4
H3	8 (1 byte)
H4	16 (1 word)
H5	32 (2 words)
H6	64 (4 words)
H7	128 (8 words)
H8	256 (16 words)

## Encoded example

When encoding 16 -bit data ( $\mathrm{nL}=4$ ), the encoded results are shown below.

Data to be encoded																Encoded result [Binary (decimal)]				
15	-	-		11			8	7			4	3			0					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0		(K0)
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0		(K1)
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	(K2)
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0			(K3)
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	(K4)
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1			(K5)
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	(K6)
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1			(K7)
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	(K8)
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0		(K9)
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0		0	1	0	(K10)
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1		(K11)
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	(K12)
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1		0		(K13)
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		1	0	(K14)
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1		(K15)

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The number of bits to be encoded is outside the range of 1 to 8 .
- The sum of the number of bits to be encoded and the starting bit position to be encoded is outside the range of 1 to 16 .
- The data to be encoded is 0 .

Outline Extracts the lower 4 bits (bit positions 0 to 3 ) of the specified 16-bit areas and combines them into one word.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P93 (PUNIT)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ \left.\mathbf{n}^{*} 1\right) \end{array}$	$\begin{array}{\|c\|} \hline \text { FL } \\ (* 2) \end{array}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Extracts lower 4 bits of data registers DT12 to DT10, combines the extracted data, and stores it in data register DT20 when trigger R20 turns on.


## Description

Extracts the lower 4 bits (bit positions 0 to 3 ) of each specified area, starting from the 16 -bit area specified by $S$ and combines the extracted data into one word. The result is stored in the 16-bit area specified by D.
n specifies the number of data areas to be extracted.
(range of n : K0 to K4)
When K0 is specified for n , this instruction is not executed.
When $n<K 4$, " 0 " is automatically set to positions at $D$ where the corresponding 16-bit source data does not exist.


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The number of data areas to be combined " $n$ " is K 5 or more.

High-level Instructions

Outline Divides the specified 16-bit data into four 4-bit units and distributes the divided data into the lower 4 bits of the specified 16-bit areas.
For the FPOR/FP $/$ /FP-X/FP0/FP-e, the P type high-level instruction "P94 (PDIST)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			$\begin{aligned} & \text { Index } \\ & \text { register } \end{aligned}$		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ \hline(* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ \hline(* 1) \end{array}$	$\begin{array}{\|c\|} \hline F L \\ \hline(* 2) \end{array}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.

A: Available
N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Divides the 16-bit data of data register DT10 into 4-bit units and the divided data is stored in the lower 4 bits (bit positions 0 to 3 ) of data registers DT20 to DT23 when trigger R20 turns on.


## Description

Divides the 16-bit data specified by $S$ into 4-bit units and distributes the divided data into the lower 4 bits (bit positions 0 to 3 ) of 16-bit areas starting from D .
n specifies the number of data divisions. (range of n : K 0 to K 4 )
When K0 is specified for $n$, this instruction is not executed.


Bit positions 4 to 15 are filled with 0 s.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The number n is 5 or more.
- Transferring address specified by D to n data, and when area is exceeded.

High-level Instructions

## Character $\rightarrow$ ASCII code

Outline Converts character constants to ASCII code. For the FPOR/FPE/FP-X/FPO/FP-e, the P type high-level instruction "P95 (PASC)" is not available.

Program example


## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant			Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{gathered} \hline \operatorname{LD} \\ \left(*_{1}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline F L \\ (* 2) \end{array}$	$\underset{(* 3)}{ }$	IY	K	H	M	
S	N/A	A	N/A												
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
N/A: Not Available
(*3) With the FPOR, FP 2, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

## Explanation of example

Converts the character constants "ABC1230_DEF" to ASCII code when trigger R20 turns on. The ASCII code is stored in data registers DT2 to DT7.


When the number of character constants specified by S is less than 12 , the ASCII code H 20 (SPACE) is stored in the extra destination area.

## Description

Converts the character constants specified by S to ASCII code. The converted ASCII code is stored in 6 words starting from the 16 -bit area specified by D .

## Precautions during programming

The character constant $M$ can be input with the programming tool software.
Conversion example of one character constant " $A$ "

$\mid \stackrel{\text { R20 }}{\mid}$ [ F95 ASC, MA , DT 2] $\mid$

		$\downarrow$ R20: on		
DT2:	H20	(-)	H41	(A)
DT3:	H20	(-)	H20	(■)
DT4:	H20	(-)	H2O	(-)
DT5:	H20	(-)	H20	(-)
DT6:	H20	(-)	H2O	(■)
DT7:	H20	(■)	H2O	(■)

Higher byte Lower byte


R20: on

DT3:
DT4:
DT5:
DT6:
DT7:

	$\downarrow$ R20: on		
H2O	(-)	H20	(-)
H2O	(-)	H20	(-)
H2O	(-)	H2O	(-)
H2O	(-)	H20	(-)
H2O	(-)	H20	(-)
H41	(A)	H2O	(-)



R20
$\longrightarrow$ [F95 ASC, M A , DT 2$]$

DT2:		$\downarrow$ R20: on		
	H2O	(-)	H2O	(-)
DT3:	H2O	(-)	H2O	(-)
DT4:	H2O	(-)	H2O	(-)
DT5:	H2O	(-)	H41	(A)
DT6:	H2O	(-)	H2O	(-)
DT7:	H2O	(-)	H2O	(-)

High-level Instructions

## Flag conditions

- Error flag (R9007): Turns on and stays on when the last area for ASCII code exceeds the limit (6 words: six 16-bit areas).
- Error flag (R9008): Turns on for an instant when the last area for ASCII code exceeds the limit (6 words: six 16-bit areas).


## ASCII HEX code



High-level Instructions

## 16-bit data search

Outline Searches for a specified value in a block of 16-bit areas. For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P96 (PSRC)" is not available.

## Program example

Ladder Diagram			Boolean		
			Address		uction
10			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F } 96 \\ & \text { DT } \\ & \text { DT } \\ & \text { DT } \end{aligned}$	$\begin{array}{r} \text { R } \begin{array}{r} 0 \\ \text { (SRC) } \\ \\ \\ \\ \\ \\ 20 \\ 40 \end{array} \text { } 00 \end{array}$
	S1	16-bit equivalent constant or 16-bit area to store the searched value			
	S2	Starting 16-bit area of the block			
	S3	Ending 16-bit area of the block			

Operands

Operand	Relay				Timer/Counter			Register			Index   register		Constant	Index   modifier
	WX	WY	WR	WL   $(* 1)$	SV	EV	DT	LD   $(* 1)$	FL   $(* 2)$	IX   $(* 3)$	IY   $(* 4)$	K		
	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S3	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is I0 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Searches for the value given in data register DT10 in the block of data register DT20 through DT40 when trigger RO turns on.
For example, to search the area of the value called H1234, "H1234" would be written to DT10.


If DT22, DT39, and DT40 match the searched data, the following occurs.

- If the number of registers matching the searched data $=3$
"K3" is stored in DT9037 (with the FP0 T32, FP0R, FPE, FP-X, FP2, FP2SH and FP10SH: DT90037).
- If the position of the first matching data (the relative position number) $=2$
"K2" is stored in DT9038 (with the FP0 T32, FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH:
DT90038).


## Description

Searches for values matching S1 in the block of 16-bit areas specified by S2 (starting area) through S3 (ending area).
When the search operation is performed, the search results are stored as follows.

- The number of data items that match S1 is stored in special data register DT9037 (with the FP0 T32, FPOR, FPI, FP-X, FP2, FP2SH and FP10SH: DT90037).
- The position of the first matching data item, counting from the starting 16-bit area S2, is stored in special data register DT9038 (with the FPO T32, FPOR, FP亡, FP-X, FP2, FP2SH and FP10SH: DT90038).
Starting area S2 and ending area S3 should:
- Be the same type of operand.
- Satisfy S2 § S3.

Data is searched from S2 to S3.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S2 > S3.


## 32-bit data search

Outline Searches for a specified value in a block of 32-bit areas.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P97 (PDSRC)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant		Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{array}{\|c\|} \hline F L \\ (* 1) \\ \hline \end{array}$		K	H		
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	N/A
S2	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S3	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

(*1) This cannot be used with the FPOR, FPE and FP-X.

A: Available N/A: Not Available

## Explanation of example

Searches for the value given in data registers DT10 and DT11 in the block of data register DT20 through DT40 when trigger R0 turns on.
For example, to search the area of the value called H 01234567 , " H 01234567 " would be written to DT10 and DT11.


If "DT24 and DT25", "DT38 and DT39", and "DT40 and DT41" match the searched data, the following occurs.

- The number "K3" of data items that match the searched data (DT10 and DT11) is stored in special data register DT90037.
- The position "K2" of the first matching data item, counting from data register DT20, is stored in special data register DT90038.


## Description

Searches for values matching S1 in the block of 32-bit areas specified by S2 (starting area) through S3 (ending area) when the trigger turns on.
When the search operation is performed, the search results are stored as follows.

- The number of data items that match S1 is stored in special data register DT90037.
- The position of the first matching data item, counting from the starting 32-bit area S2, is stored in special data register DT90038.
The starting area S2 and ending area S3 should:
- Be the same type of operand.
- Satisfy S2 § S3.

Data S 1 is searched from S 2 to S 3 .

## Precautions during programming

If "0" or an even number is specified in S2, specify an even number in S3 as well.
If an odd number is specified in S2, specify an odd number in S3 as well.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S2 > S3.

High-level Instructions

## F98 (CMPR)

P98(PCMPR)

## Data table shift-out and compress

Outline Shifts out non-zero data stored at the highest address of the table to the specified area and compresses the data in the table to the higher address.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P98 (PCMPR)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter			Register		Index   register		Constant	Index   modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL   $(* 1)$	I	K	H	
D1	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
D2	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
D3	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPOR, FPE and FP-X.

A: Available
N/A: Not Available

## Explanation of example

If the execution condition (trigger) R0 is on, the contents of data register DT5 are sent to data register DT10. Also, in the range from DT0 to DT5, non-zero contents are stored in sequential order, starting from DT5. The " 0 (zero)" is set in the other areas of the data table.


## Description

The data in the table specified by D1 and D2 is rearranged as follows:

- Contents of D2 (highest address) is shifted out to the area specified by D3.
- Non-zero data is shifted (compressed) in sequential order, in the direction of the higher address in the specified range.


Starting area D1 and ending area D2 should be the same type of operand.
Be sure to specify D1 and D2 with "D1 § D2".
If all data in the data table specified by D1 and D2 is 0,0 is set in D3.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- D1 > D2
- D1 and D2 are not in the same memory area.


## Application example

In combination with the F99 (CMPW)/P99 (PCMPW) instruction, this can be used to construct an optional buffer.
(1) Executing the F99 (CMPW)/P99 (PCMPW) instruction

When data items are written to the first address of the buffer (the area of the specified range), they are stored and accumulated in the buffer in sequential order. The oldest data will be stored in the last address of the buffer.

(2) Executing the F98 (CMPR)/P98 (PCMPR) instruction

When the data in the last address of the buffer (the area of the specified range) has been read, data can be extracted in sequential order, starting from the oldest data.
The rest of the data in the buffer is shifted in the direction of the first address, so normally, the oldest data at that point is stored in the last address of the buffer.


This can be used to extract valid non-zero data from the data written in random order.


Each time the F98 (CMPR) instruction is executed, data is extracted in sequential order, from (1) to (3).

## Data table shift-in and compress

Outline $\quad$ Shifts in data to the smallest address of the specified data table and compresses the data in the table toward the higher address.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P99 (PCMPW)" is not available.

## Program example



## Operands

| Operand | Relay |  |  |  | Timer/Counter |  | Register |  |  | Index <br> register |  | Constant | Index <br> modifier |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WX | WY | WR | WL | SV | EV | DT | LD | FL <br> $(* 1)$ | IX <br> $(* 2)$ | IY <br> $(* 3)$ |  |  |  |
|  | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
| D1 | N/A | A | A | A | A | A | A | A | A | N/A | N/A | N/A | N/A | A |
| D2 | N/A | A | A | A | A | A | A | A | A | N/A | N/A | N/A | N/A | A |

(*1) This cannot be used with the FPOR, FPE and FP-X.
(*2) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is I0 to IC.

A: Available N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

If the execution condition (trigger) R0 is on, the contents of data register DT10 are sent to data register DTO. Also, in the range from DT0 to DT5, non-zero contents are stored in sequential order, starting from DT5. The " 0 (zero)" is set in the other areas of the data table.
[S]
F99 (CMPW)
DT10 32 [D1]
Specified data range

## Note

## Because the contents of $S$ are written to DTO, the original contents of DTO (for example, " 555 ") are overwritten.

## Description

The data in the table specified by D1 and D2 is rearranged as follows:

- Data specified by $S$ is shifted in to the area specified by D1 (starting address).
- Non-zero data is shifted (compressed) in sequential order, in the direction of the higher address in the specified range.


Starting area D1 and ending area D2 should be the same type of operand.
Be sure to specify D1 and D2 with "D1 $\leqq$ D2".
If the content of $S$ is " 0 ", only a compressed shift is carried out.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- D1 > D2
- Starting area D1 and ending area D2 are not in the same memory area.


## Application example

In combination with the F98 (CMPR)/P98 (PCMPR) instruction, this can be used to construct an optional buffer.
(1) Executing the F99 (CMPW)/P99 (PCMPW) instruction When data items are written to the first address of the buffer (the area of the specified range), they are stored and accumulated in the buffer in sequential order. The oldest data will be stored in the last address of the buffer.

(2) Executing the F98 (CMPR)/P98 (PCMPR) instruction

When the data in the last address of the buffer (the area of the specified range) has been read, data can be extracted in sequential order, starting from the oldest data.
The rest of the data in the buffer is shifted in the direction of the first address, so normally, the oldest data at that point is stored in the last address of the buffer.


This can be used to extract valid non-zero data from the data written in random order.


Executing the F99 (CMPW) instruction causes only the valid data to be stored.

## F100 (SHR)

P100(PSHR)

Outline Shifts a specified number of bits to the right in bit units.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P100 (PSHR)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ \left(\mathbf{N}^{*}\right) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline F L \\ (* 2) \end{array}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\operatorname{IY}}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.

A: Available
N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Shifts 4 bits in data register DTO to the right when trigger R0 turns on.
The data in bit position 3 is transferred to special internal relay R9009 (carry flag).

Bit position	15	.	.	12	1	.	.	8	7	.	.	4	3	.	.
DTO	0	0	0	0	1	0	1	0	0	1	1	0	1	1	0

In this case, the higher 4 bits
of DTO are filled with 0s.

The data in bit position 3 is transferred to R9009 (carry flag).

## Description

Shifts $n$ bits of the 16 -bit data area specified by D to the right (to the lower bit position).


The higher $n$ bits of $D$ are filled with $0 s$.
When n bits are shifted to the right,

- The higher $n$ bits of the 16 -bit data area are filled with 0 s.
- The data in the $n$th bit is transferred to special internal relay R9009 (carry flag).

The $n$ is effective only for the lower 8 bits of the 16 -bit data. The amount of the shift can be specified within a range of 1 bit to 255 bits.


Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Turns on for an instant when the content of bit transferred to R9009 ( n th bit) is recognized as 1 .

High-level Instructions

## F101(SHL)

Left shift of multiple bits (n bits) in a 16-bit data

Outline Shifts a specified number of bits to the left in bit units. For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P101 (PSHL)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			$\begin{aligned} & \text { Index } \\ & \text { register } \end{aligned}$		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ \hline(* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ \hline(* 1) \end{array}$	$\begin{array}{\|c\|} \hline F L \\ \hline(* 2) \\ \hline \end{array}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available
N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Shifts 4 bits in data register DT0 to the left when trigger R0 turns on.
The data in bit position 12 is transferred to special internal relay R9009 (carry flag).

In this case, the lower
4 bits of DTO are filled with 0s.

## Description

Shifts $n$ bits of the 16 -bit area specified by $D$ to the left (to the higher bit position).


When the n bits are shifted to the left,

- The n bits starting from bit position 0 are filled with 0 s.
- The data in the n th bit is transferred to special internal relay R9009 (carry flag).

The n is effective only for the lower 8 bits of the 16-bit data. The amount of the shift can be specified within a range of 1 bit to 255 bits.


## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Turns on for an instant when the content of bit transferred to R9009 ( n th bit) is recognized as 1 .

High-level Instructions

## F102(DSHR)

 P102(PDSHR)Outline Shifts a specified number of bits to the right in bit units.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P102 (PDSHR)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			$\begin{array}{\|c\|} \hline \text { Index } \\ \text { register } \end{array}$	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \hline F L \\ (* 1) \end{gathered}$	I	K	H	f		
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A

(*1) This cannot be used with the FPOR, FPE and FP-X.

A: Available N/A: Not Available

## Description

Shifts n bits of the 32-bit data area specified by D to the right (to the lower bit position) when the trigger turns on.


The data in the nth bit is transferred to R9009 (carry flag).
The [ n bits] are filled with 0 s .

When n bits are shifted to the right,

- The higher $n$ bits of the 16-bit data area specified by $D$ are filled with $0 s$.
- The data in the nth bit is transferred to special internal relay R9009 (carry flag).

Only the lower eight bits of the 16-bit data [ $n$ ] are effective. Select the amount of the shift within the range 1 to 255 bits.
[n](K1) $\underbrace{15} \underbrace{-----\mid-----100000000} 0$
Upper 8 bits K0 to K255(H00 to HFF)
are invalid

When [ $n$ ] is specified using K0, the contents of $D$ and $D+1$ and the special internal relay R9009 (carry flag) do not change.
When $[n]$ is specified using K32 or higher, the contents of $D$ and $D+1$ change to 0 .

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Content in the nth bit from LBS (least significant bit) turns on for an instant when the bit transferred to R9009 is recognized as 1.


## F103(DSHL)

P103(PDSHL)

## Left shift of $n$ bits in a 32-bit data

Outline Shifts a specified number of bits to the left in bit units.
For the FPOR/FP $\Sigma /$ FP-X/FPO/FP-e, the $P$ type high-level instruction "P103 (PDSHL)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \hline F L \\ (* 1) \end{gathered}$	I	K	H	f		
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A

(*1) This cannot be used with the FPOR, FPE and FP-X.

A: Available $\mathrm{N} / \mathrm{A}$ : Not Available

## Description

Shifts n bits of the 32-bit area specified by D to the left (to the higher bit position) when the trigger turns on.


When the n bits are shifted to the left,

- The n bits starting from bit position 0 are filled with 0s.
- The data in the nth bit is transferred to special internal relay R9009 (carry flag).

Only the lower eight bits of the 16-bit data [ $n$ ] are effective. Select the amount of the shift within the range 1 to 255 bits.
[n](K1) $\stackrel{1}{4}------10000000^{0}$
Upper 8 bits K0 to K255(H00 to HFF) are invalid

When $[\mathrm{n}]$ is specified using K0, the contents of D and $\mathrm{D}+1$ and the carry flag do not change.
When $[\mathrm{n}]$ is specified using K32 or higher, the contents of D and $\mathrm{D}+1$ change to 0 .

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Content in the nth from LSB (least significant bit) turns on for an instant when the bit transferred to R9009 is recognized as 1.

High-level Instructions

## F105(BSR)

Right shift of one hexadecimal digit (4 bits)
P105(PBSR)
Outline Shifts one hexadecimal digit (4 bits) of the specified 16 -bit data to the right.
For the FPOR/FPE/FP-X/FPO/FP-e, the $P$ type high-level instruction "P105 (PBSR)" is not available.

## Program example



## Operands

| Operand | Relay |  |  |  | Timer/Counter |  | Register |  |  | Index <br> register |  | Constant |  | Index <br> modifier |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WX | WY | WR | WL <br> $(* 1)$ | SV | EV | DT | LD <br> $(* 1)$ | FL <br> $(* 2)$ | IX <br> $(* 3)$ | IY <br> $(* 4)$ | K | H |  |
|  | N/A | A | A | A | A | A | A | A | A | A | A | N/A | N/A | A |

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.

A: Available
N/A: Not Available
(*3) With the FPOR, FP 2, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPD, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Shifts one hexadecimal digit (4 bits) in data register DTO to the right when trigger R0 turns on.
The data in hexadecimal digit position 1 (bit positions 0 to 3 ) is shifted out and transferred to the lower digit position (bit positions 0 to 3) of special data register DT9014 (with the FP0 T32, FP5, FP-X, FP2, FP2SH and FP10SH: DT90014).

	Bit position 1	15 • $12111 \cdot 8$		$7 \cdot 14$	$3 \cdot \cdots 0$	(H9999)
DTO	Binary	1001	1001	1001	1001	
	Hexadecimal	9	9	9	9	
	Bit position	$15 . .12$	11 . . 8	7 . . 4	3.	
DTO	Binary	0000	1001	1001	1001	
DT0	Hexadecimal	0	9	9	9	(H999)



## Description

Shifts one hexadecimal digit ( 4 bits) of the 16 -bit area specified by $D$ to the right (to the lower digit position).


When one hexadecimal digit (4 bits) is shifted to the right,

- The data in hexadecimal digit position 1 (bit positions 0 to 3 ) of the 16-bit area specified by $D$ is shifted out and is transferred to the lower digit (bit positions 0 to 3) of special data register DT9014 (with the FP0 T32, FP0R, FP5, FP-X, FP2, FP2SH and FP10SH: DT90014).
- The hexadecimal digit 4 (bit positions 12 to 15 ) of the 16 -bit area specified by $D$ becomes 0 .


## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

High-level Instructions

## F106(ESL)

Shifts one hexadecimal digit (4 bits) of the specified 16 -bit data to the left.
For the FPOR/FP $2 /$ FP-X/FPO/FP-e, the $P$ type high-level instruction "P106 (PBSL)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ \left({ }^{*} 1\right) \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{FL} \\ (* 2) \end{array}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\text { IY }}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is I0 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Shifts one hexadecimal digit (4 bits) in data register DT0 to the left when trigger R0 turns on.
The data in hexadecimal digit position 4 (bit positions 12 to 15) is shifted out and transferred to the lower digit position (bit positions 0 to 3) of special data register DT9014 (with the FP0 T32, FP0R, FP5, FP-X, FP2, FP2SH and FP10SH: DT90014).



## Description

Shifts one hexadecimal digit (4 bits) of the 16-bit area specified by $D$ to the left (to the higher digit position).


When one hexadecimal digit (4 bits) is shifted to the left,

- The data in hexadecimal digit position 4 (bit positions 12 to 15 ) of the 16-bit data specified by $D$ is shifted out and is transferred to the lower digit (bit positions 0 to 3) of special data register DT9014 (with the FP0 T32, FP0R, FP5, FP-X, FP2, FP2SH and FP10SH: DT90014).
- The hexadecimal digit position 1 (bit positions 0 to 3 ) of the 16 -bit data specified by $D$ becomes 0 .


## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## F108(BITR)

 P108(PBITR)Outline Shifts multiple bits of a specified 16-bit data range to the right. For the FPOR/FPE/FP-X/FPO/FP-e, the P type high-level instruction "P108 (PBITR)" is not available.

## Program example

Ladder Diagram			Boolean		
			Address		uction
Trigger			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F108   DT   DT   K	(BITR)   10   12   4
D1		Starting 16-bit area			
D2		Ending 16-bit area			
n		16-bit equivalent constant or 16-bit area to specify number of shifted bits			

## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \mathrm{FL} \\ (* 1) \end{gathered}$		K	H	f		
D1	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D2	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A

(*1) This cannot be used with the FPOR, FPE and FP-X.

A: Available N/A: Not Available

## Explanation of example

Shifts 4 bits in data range ( 3 words) from DT10 through DT12 to the right when trigger R0 turns on.


## Description

Shifts $n$ bits of the data range specified by D1 (starting) and D2 (ending) to the right (to the lower bit position) when the trigger turns on.


D1 and D2 should be:

- The same type of operand.
- D1 §D2.

When n bits are shifted to the right,

- The n bits of starting 16-bit area D1 are shifted out.
- The $n$ bits in the ending 16 -bit area D2 becomes 0 .

0 to 15 can be specified for $n$. When 0 is specified, no operation takes place.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- D1 > D2.
- The number n is 16 or more.

Outline Shifts multiple bits of a specified 16-bit data range to the left.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P109 (PBITL)" is not available.

## Program example

Ladder Diagram		Boolean		
		Address	Instruction	
Trigger		10	ST	R 10
		11	F109	(BITL)
	K		DT	10
10	DT10, DT12, K $\underbrace{\text { - }}$		DT	12
	D1 D2 n		K	4
D1	Starting 16-bit area			
D2	Ending 16-bit area			
n	16-bit equivalent constant or 16 -bit area to specify number of shifted bits			

## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{array}{\|c\|} \hline \text { FL } \\ (* 1) \end{array}$		K	H	f		
D1	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D2	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A

(*1) This cannot be used with the FPOR, FPE and FP-X.

A: Available N/A: Not Available

## Explanation of example

Shifts 4 bits in the data range (3 words) from DT10 through DT12 to the left when trigger R0 turns on.


## Description

Shifts n bits of the data range specified by D1 (starting) and D2 (ending) to the left (to the higher bit position) when the trigger turns on.


D1 and D2 should be:

- The same type of operand.
-D1 § D2.
When $n$ bits are shifted to the left,
- The $n$ bits of ending 16-bit area D2 is shifted out.
- The n bits in the starting 16 -bit area D1 becomes 0 .

0 to 15 can be specified for $n$. When 0 is specified, no operation takes place.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- D1 > D2.
- The number n is 16 or more.

High-level Instructions

## F110(wsHR)

 P110(PWSHR)Right shift of one word (16 bits) of 16-bit data range

Outline Shifts one word (16 bits) of a specified 16-bit data range to the right. For the FPOR/FPI/FP-X/FP0/FP-e, the P type high-level instruction "P110 (PWSHR)" is not available.

## Program example

Ladder Diagram			Boolean		
			Address		uction
			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F110   DT   DT	$\begin{aligned} & \text { R } \quad 0 \\ & \text { (WSHR) } \\ & 0 \\ & 2 \end{aligned}$
D1 $\quad$ Starting 16-bit area					
D2 $\quad$ Ending 16-bit area					

## Operands

Operand	Relay				Timer/Counter		Register			Index   register		Constant	Index   modifier
	WX	WY	WR	WL   $(* 1)$	SV	EV	DT	LD   $(* 1)$	FL   $(* 2)$	I	K		
	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
D2	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
N/A: Not Available

## Explanation of example

Shifts one word (16 bits) of the data range (3 words) from DT0 through DT2 to the right when trigger R0 turns on.

Specified data range (3 words)


## Description

Shifts one word (16 bits) of the data range specified by D1 (starting) and D2 (ending) to the right (to the lower word address).

Specified data range


The data in the ending
word becomes 0 .
Starting area D1 and ending area D2 should be:

- The same type of operand.
- D1 § D2.

When one word (16 bits) is shifted to the right,

- The starting word (D1) is shifted out.
- The data in the ending word (D2) becomes 0 .


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- D1 > D2.

High-level Instructions

## F111 (wSHL) P111 (PWSHL)

Left shift of one word (16 bits) of 16-bit data range

Outline Shifts one word (16 bits) of a specified 16-bit data range to the left. For the FPOR/FP $\Sigma /$ FP-X/FPO/FP-e, the P type high-level instruction (PWSHL)" is not available.

## Program example

Ladder Diagram			Boolean		
			Address		uction
			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F111   DT   DT	R 0   (WSHL)   0   2
D1 $\quad$ Starting 16-bit area					
D2 ${ }^{\text {D }}$ Ending 16-bit area					

## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ \hline(* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ \hline(* 1) \end{array}$	$\begin{array}{\|c\|} \hline F L \\ \hline(* 2) \\ \hline \end{array}$		K	H	
D1	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
D2	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.

N/A: Not Available

## Explanation of example

Shifts one word (16 bits) of the data range (3 words) from DT0 through DT2 to the left when trigger R0 turns on.
Specified data range (3 words)

Data register	DT2	DT1	DT0			
Hexadecimal	0212	0030	0232		Dhe data in	
:---	:---					
DT2 is shifted out.						
Hexadecimal	0030					

## Description

Shifts one word (16 bits) of the data range specified by D1 (starting) and D2 (ending) to the left (to the higher word address).


Starting area D1 and ending area D2 should be:

- The same type of operand.
-D1 § D2.
When one word (16 bits) is shifted to the left,
- The ending word (D2) is shifted out.
- The data in the starting word (D1) becomes 0 .


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- D1 > D2.

High-level Instructions

Outline Shifts one hexadecimal digit (4 bits) of a specified 16-bit data range to the right.
For the FP0R/FPE/FP-X/FP0/FP-e, the P type high-level instructions are not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|c} \mathrm{FL} \\ (* 2) \end{array}$		K	H	
D1	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
D2	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPI, FP-X.
N/A: Not Available

## Explanation of example

Shifts one hexadecimal digit (4 bits) of the data range ( 10 words) from DT0 through DT9 to the right when trigger R0 turns on.


## Description

Shifts one hexadecimal digit (4 bits) of the data range specified by D1 (starting) and D2 (ending) to the right (to the lower digit position).

Specified data range


The data in the lower hexadecimal digit (bit position 0 to 3 ) is shifted out.

The higher hexadecimal digit
(bit position 12 to 15) becomes 0.
Starting area D1 and ending area D2 should be:

- The same type of operand.
- D1 § D2.

When the hexadecimal digit (4 bits) is shifted to the right,

- The data at the lower hexadecimal digit (bit positions 0 to 3 ) of the 16 -bit data specified by D1 is shifted out.
- The data at the higher hexadecimal digit (bit positions 12 to 15) in the 16-bit data specified by D2 becomes 0 .


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- D1 > D2.

Outline Shifts one hexadecimal digit (4 bits) of a specified 16-bit data range to the left.
For the FPOR/FPE/FP-X/FPO/FP-e, the $P$ type high-level instruction "P113 (PWBSL)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|c\|} \hline F L \\ (* 2) \\ \hline \end{array}$		K	H	
D1	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
D2	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available
N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPL, FP-X.

## Explanation of example

Shifts one hexadecimal digit ( 4 bits) of the data range ( 10 words) from DT0 through DT9 to the left when trigger RO turns on.

The data " 0 " in the higher hexadecimal digit (bit positions 12 to 15) is shifted out.

$$
\text { Specified data range (10 words }=40 \text { digits) }
$$



## Description

Shifts one hexadecimal digit (4 bits) of the data range specified by D1 (starting) and D2 (ending) to the left (to the higher digit position).


Starting area D1 and ending area D2 should be:

- The same type of operand.
- D1 $\leqq$ D2.

When the hexadecimal digit (4 bits) is shifted to the left,

- The data at the higher hexadecimal digit (bit positions 12 to 15 ) of the 16 -bit data specified by D2 is shifted out.
- The data at the lower hexadecimal digit (bit positions 0 to 3 ) in the 16 -bit data specified by D1 becomes 0 .


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- D1 > D2.

High-level Instructions

## F115(FIFI)

P115(PFIFT)
FIFO buffer definition

Outline Defines the FIFO buffer conditions. For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P115 (PFIFT)" is not available.

Program example

Ladder Diagram		Boolean		
		Address	Instruction	
	115 FIFT, ${ }_{\text {cole }}^{\text {K 256, }}$	$\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$	ST DF F115 K DT	$\begin{array}{r} 0 \\ \text { (FIFT) } \\ 256 \\ 0 \end{array}$
n	16-bit equivalent constant or 16-bit area for specifying the memory size of FIFO buffer			
D	Starting 16-bit area of FIFO buffer			

## Operands

| Operand | Relay |  |  |  | Timer/Counter |  | Register |  |  | Index <br> register |  | Constant | Index <br> modifier |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WX | WY | WR | WL | SV | EV | DT | LD <br> $(* 1)$ | FL | IX <br> $(* 2)$ | IY <br> $(* 3)$ |  |  |  |
|  | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
| D | N/A | A | A | A | A | A | A | A | A | N/A | N/A | N/A | N/A | A |

(*1) This cannot be used with the FPOR, FPE and FP-X.
(*2) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.

A: Available
$\mathrm{N} / \mathrm{A}$ : Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

When the execution condition (trigger) R0 is on, the area headed by DT0 is defined in the FIFO buffer area. The size of the FIFO buffer (K256) is stored in DT0, the number of data items stored is stored in DT1 (with a default value of K0), and the FIFO pointer (with a default value of H 0000 ) is stored in DT2.
When $\mathrm{n}=\mathrm{K} 256$, the 256 words from DT3 to DT258 are defined as the data storage area.


## Description

This defines the area used as the FIFO buffer. A data storage area of $n$ words ( $n=K 1$ to K256) is defined for the area specified by D.
Definition of the area using the F115 (FIFT) instruction should be carried out only once, before writing to or reading from the FIFO buffer. Normally, reading and writing are disabled while this instruction is being executed.
When the F115 (FIFT) instruction is executed, the FIFO buffer area is defined as follows.


When the F115 (FIFT) instruction is executed, the following are stored as default values: $\mathrm{D}=\mathrm{n}$ (the value specified by the F115 (FIFT) instruction), $\mathrm{D}+1=\mathrm{KO}$, and $\mathrm{D}+2=\mathrm{H} 0000$.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
$-\mathrm{n}=0$.
$-\mathrm{n}>256$.
- The area specified by $n$ exceeds the limit.


## F116(FIFR) P116(PFIFR)

## Data read from FIFO buffer

Outline Reads data from the FIFO buffer.
For the FPOR/FPE/FP-X/FPO/FP-e, the P type high-level instruction "P116 (PFIFR)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{aligned} & \text { FL } \\ & (* 1) \end{aligned}$	$\underset{(* 2)}{\text { IX }}$	$\underset{(* 3)}{\text { IY }}$	K	H	
S	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPOR, FPE and FP-X.
(*2) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.

A: Available
N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

When the execution condition (trigger) R10 is on, data is read from the FIFO buffer area headed by DT0, and is stored in DT100.

When the reading pointer is 2


The contents of DT5, which is indicated by the reading pointer 2 are sent to DT100.
After the data has been read, 1 is subtracted to the contents of DT1 (the number of stored data items), and the reading pointer moves to 3 .
(The next time that reading is carried out, the contents of DT100 are sent to DT6, indicated by the 3.)

## Description

These instructions read data from the FIFO buffer headed by the area specified by $S$, and store it in the area specified by D.
S should specify the beginning of the FIFO buffer defined by the F115 (FIFT) instruction.
Reading of data is done starting from the address specified by the reading pointer when the instruction is executed.


The reading pointer is stored in the upper eight bits of the third word of the FIFO buffer area, and is indicated by an address in the data storage area.
The actual address is the value of the leading address in the FIFO buffer area specified by S, plus 3, plus the value of reading pointer (the value of which only the first byte is a decimal value).
When the reading is executed, 1 is subtracted from the number of stored data items, and the reading pointer is incremented by 1 .

## Notes

- An error occurs if this is executed when the number of stored data items is 0 . No data is set for $D$.
- Reading is only carried out when the reading pointer is not equal to the writing pointer.
- If this is executed when the reading pointer is indicating the final address in the FIFO buffer (the $\mathbf{n}$ defined by the FIFO instruction minus 1 ), the reading pointer is set to 0 .


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The size ( n ) of the FIFO specified by S is $\mathrm{n}=0$, or when $\mathrm{n}>256$.
- The number of stored data items of the FIFO $=0$.
- The number of stored data items of the FIFO >FIFO size (n).
- The final address of the FIFO based on the FIFO size ( $n$ ) exceeds the area.
- The FIFO reading pointer > FIFO size (n).
- The FIFO reading pointer is K256 (H100) or higher after the data has been read.


## Precautions during programming

An error occurs if the F116 (FIFR) instruction is executed when the number of stored data items ( $\mathrm{S}+1$ ) is 0 . In the program noted below, the F116 (FIFR) instruction is not executed if the number of stored data items is 0 .


## How the FIFO buffer is used

The FIFO buffer is a buffer area in which data is stored in the order in which it is written to the buffer, and from which it is then read out in the stored order, starting from the first data item stored. It is convenient for storing objects on carrier lines and buffer lines in sequential order.

## Usage procedure

The area to be used is defined as the FIFO buffer using the F115 (FIFT) instruction. (This should be done only once, before reading or writing is done.)
Data should be written using the F117 (FIFW) instruction, and read using the F116 (FIFR) instruction.

## Writing data

When data is written, the data items are stored in sequential order, starting from the first data storage area. The writing pointer indicates the next area to which data is to be written.
If the data storage area becomes full, further data writing is inhibited.

## Reading data

When data is read, data is transferred starting from the first data item stored. The reading pointer indicates the next area from which data is to be read.
An error occurs if an attempt is made to read data when no data has been written to the data storage area.

## Example of data storage area

Reading pointer	0	
	K100	0
	K101	1
	K102	2
		3 - Writing pointer
		4

If data is written in the status shown above, the data will be stored in the area indicated by 3 . The writing pointer moves to 4 (the next data item will be written to 4).
If data is read, it will be read from the area indicated by 0 . The reading pointer moves to 1 (the next data item will be read from 1).

## Data write to FIFO buffer

Outline Writes data to the FIFO buffer.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P117 (PFIFW)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{array}{c\|} \hline \text { FL } \\ (* 1) \end{array}$	$\underset{(* 2)}{ }$	$\underset{(* 3)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPOR, FPE and FP-X.
(*2) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
A: Available
(*3) With the FPOR, FP $\Sigma$, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

When the execution condition (trigger) R10 is on, the contents of DT110 are written to the FIFO buffer area headed by DTO.
When the writing pointer is 3


The contents "103" of DT110 are sent to DT6, which is indicated by the pointer 3.
After the data has been written, 1 is added to the contents of DT1 (the number of stored data items), and the writing pointer moves to 4.
(The next time that writing is carried out, the contents of DT110 are written to DT7, indicated by the 4.)

## Description

The 16-bit data specified by S will be stored in the FIFO buffer headed by the area specified by D. D should specify the beginning of the FIFO buffer defined by the F115 (FIFT) instruction.
The specified data is written to the address indicated by the writing pointer when the instruction is executed.


- (0), ( $\mathrm{n}-2$ ) and ( $\mathrm{n}-1$ ) are addresses assigned to the data storage areas.
- n is the value specified by the F115 (FIFT) instruction.

The writing pointer is stored in the lower eight bits of the third word of the FIFO buffer area, and is indicated by a relative position in the data storage area.
The actual address is the value of the leading address in the FIFO buffer area specified by D, plus 3, plus the value of writing pointer (the value of which only the lower byte is a decimal value).
When the writing is executed, 1 is added to the number of stored data items, and the writing pointer is incremented by 1 .

## Notes

- An error occurs if this is executed when the FIFO buffer is full (the number of stored data items = the size $\mathbf{n}$ of the FIFO defined by the FIFT instruction). Writing is inhibited.
- If this is executed when the writing pointer is indicating the final address in the FIFO buffer (the "n" value defined by the FIFT instruction), the writing pointer will be set to 0 .


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The size ( $n$ ) of the FIFO specified by $D$ is $n=0$, or when $n>256$.
- The number of stored data items of the FIFO > FIFO size (n).
- The final address of the FIFO based on the FIFO size (n) exceeds the area.
- The writing pointer of the FIFO > FIFO size ( $n$ ).
- The FIFO writing pointer is $\mathrm{K} 256(\mathrm{H} 100)$ or higher after the data has been written.


## How the FIFO buffer is used

The FIFO buffer is a buffer area in which data is stored in the order in which it is written to the buffer, and from which it is then read out in the stored order, starting from the first data item stored. It is convenient for storing objects on carrier lines and buffer lines in sequential order.

## Usage procedure

The area to be used is defined as the FIFO buffer using the F115 (FIFT) instruction. (This should be done only once, before reading or writing is done.)
Data should be written using the F117 (FIFW) instruction, and read using the F116 (FIFR) instruction.

## Writing data

When data is written, the data items are stored in sequential order, starting from the first data storage area. The writing pointer indicates the next area to which data is to be written.
If the data storage area becomes full, further data writing is inhibited.

## Reading data

When data is read, data is transferred starting from the first data item stored. The reading pointer indicates the next area from which data is to be read.
An error occurs if an attempt is made to read data when no data has been written to the data storage area.
Example of data storage area


If data is written in the status shown above, the data will be stored in the area indicated by 3 . The writing pointer moves to 4 (the next data item will be written to 4).
If data is read, it will be read from the area indicated by 0 . The reading pointer moves to 1 (the next data item will be read from 1).

## Precautions when using this instruction

If data is received which exceeds the capacity of the buffer, an operation error will occur.
Example: If the writing pointer is at the end of the FIFO buffer


When the F117 (FIFW) instruction is executed, after data is written to the final address (4) in the buffer, the writing pointer becomes the first address (0).

Example: When the writing pointer has made one complete cycle


An error occurs, and processing is not carried out.
Because the number of data items stored in the FIFO buffer (DT1=5) exceeds the size of the FIFO buffer (DT0=5), the operation is not executed, and an operation error occurs.

## Measures to avoid operation errors

Do not execute the F117 (FIFW) instruction using the comparison instruction. Avoid executing the F117 (FIFW) instruction when the size of the FIFO buffer (DTO) is equal to the number of data items stored in the buffer (DT1).


Execute the F117 (FIFW) instruction after executing the F116 (FIFR) instruction.


## F118 (UDC) UP/Down counter

Outline Sets the UP/DOWN counter.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|c\|} \hline F L \\ (* 2) \end{array}$		K	H	
S	A	A	A	A	A	A	A	A	A	N/A	A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available
N/A: Not Available

## Explanation of example

The program on the preceding page shows an example in which initial values are set, and when the target value is 0 , external output Y 50 goes on.

This can be used, for example, in programs such as those that cause a display lamp to light when the work being added or subtracted has reached a certain quantity.

1) When the trailing edge of rest input X 2 is detected (on $\rightarrow$ off), data (target value) in data register DT10 is transferred to DTO.
2) One is subtracted from value of DT0 when the count input R1 turns on while R0 is in the off state. (DOWN counter operation) One is added to DT0 when the count input R1 turns off while the UP/DOWN input R0 is in the on state. (Up counter operation)
3) If the counter elapsed value area $\mathrm{DTO}=\mathrm{K} 0$, external output Y 50 turns on.


## Description

The counter is switched between an incremental count (addition) or decremental count (subtraction) by turning the relay specified for up/down input on or off.
When the up/down input is on, the incremental counter $(+1)$ is effective, and when it is off, the decremental counter $(-1)$ is effective. The elapsed value is stored in the area specified by the D.
The preset value in $S$ is transferred to $D$ when the trailing edge of the reset input is detected (on $\rightarrow$ off). Set value range $\mathrm{K}-32768$ to K 32767 (H8000 to H7FFF)
When the count input is switched from off to on (the reset input is in "off" state), the value specified for the D is initialized, and the counting operation begins.
The elapsed value area of $D$ is cleared when the reset input turns on.
The results of the counting operation can be determined by comparing the elapsed value of $D$ with the specified value, using the data comparison instruction.
The data comparison instruction should be executed immediately following execution of F118 (UDC) instruction.

## Precautions during programming

If the elapsed value area has been specified as a hold type memory area, the elapsed value acts in accordance with the contents being retained.
Be aware that, when an operation is begun, the set values are not automatically preset to the elapsed value area. To preset these values, the reset input must be switched from the "on" to the "off" state.
When combining the F118 (UDC) instruction with an AND stack instruction or POP stack instruction, be careful that the programming is correct.

## Cautions on count input detection

In a F118 (UDC) instruction, the increment or decrement takes place when the rise of the count input from off to on is detected.
If the count input remains continuously on, since counting will only take place at the rise, no further counting will take place.
In cases where the count input is initially on such as when the mode is changed to RUN or the power is turned on with the mode set to RUN, increment or decrement operation will not take place at the first scan.

RUN


When you use the F118 (UDC) instruction with one of the following instructions that changes the order of the execution of instructions, be aware that the operation of the instructions will differ depending on the timing of their execution and their count input.

- MC to MCE instructions
- JP to LBL instructions
- F19 (SJP) to LBL instructions
- LOOP to LBL instructions
- CNDE instruction
- Step ladder instructions
- Subroutine instructions


## F119 (LRSR) Left/right shift register

Outline Shifts one bit of the 16-bit data range to the left or right.
Program example


## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline L D \\ \left({ }^{*} 1\right) \end{array}$	$\begin{gathered} \hline F L \\ (* 2) \\ \hline \end{gathered}$	IX	IY	K	H	
D1	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A
D2	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.

A: Available
N/A: Not Available

## Explanation of example

Left shift operation


Right shift operation


## Description

- This shift register changes direction, either left (direction of MSB) or right (direction of LSB), in which a shift of one bit is made, based on the on/off status of the relay specified by the left/right shift input.
- The shift operation is made to the left when the left/right shift input is on, and to the right when off.

Specify D1 and D2 so they are in the same type data area and be sure to set the data area addresses so that D1 § D2.
When the shift input changes from off to on (the reset input is off), the contents of the area specified by D1 and D2 are shifted one bit to the left or right.
When the data is shifted, 1 will be set in the empty bit left by the shift (the uppermost or lowermost bit) if the data input is on, and 0 if the data input is off. Also, the bit extracted by the shift (the uppermost bit for a shift to the left, and the lowermost bit for a shift to the right) will be set in the special internal relay R9009 (carry flag).
If the reset input is on, the contents of the specified area are cleared to 0 .

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the starting 16-bit area (D1) is larger than the area specified by the ending 16-bit area (D2) (when D1 > D2).
- Error flag (R9008): Turns on for an instant when the area specified using the starting 16-bit area (D1) is larger than the area specified by the ending 16-bit area (D2) (when D1 > D2).
- Carry flag (R9009): Turns on for an instant when the bit shifted-out is "1".


## Cautions on shift input detection

In a F119 (LRSR) instruction, shift takes place when the off-on rise of the shift input is detected.
If the shift input remains continuously on, a shift will only take place at the rise. No further shifts will take place. In cases where the shift input is initially on such as when the mode is changed to RUN or when the power is turned on with the mode set to RUN, a shift will not take place at the first scan.


When you use the F119 (LRSR) instruction with one of the following instructions that changes the order of the execution of instructions, be aware that the operation of the instructions will differ depending on the timing of their execution and their shift input.

- MC to MCE instructions
- JP to LBL instructions
- F19 (SJP) to LBL instructions
- LOOP to LBL instructions
- CNDE instruction
- Step ladder instructions
- Subroutine instructions


## Precautions during programming

When combining the F119 (LRSR) instruction with an AND stack instruction or POP stack instruction, be careful that the programming is correct.

High-level Instructions

## F120(fOR) <br> P120(PROR)

16-bit data right rotation

Outline Rotates a specified number of bits in specified 16-bit data to the right. For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P120 (PROR)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ (* 1) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FL } \\ (* 2) \\ \hline \end{array}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	$\begin{gathered} \text { IY } \\ (* 4) \\ \hline \end{gathered}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available N/A: Not Available
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Rotates 4 bits in data register DT0 to the right when trigger R0 turns on.


## Description

Rotates " $n$ " bits of the 16-bit data specified by $D$ to the right.

## Example: Rotates 1 bit to the right



When " $n$ " bits are rotated to the right,

- The data in bit position $\mathrm{n}-1$ ( n th bit starting from bit position 0 ) is transferred to special internal relay R9009 (carry flag).
- " n " bits starting from bit position 0 are shifted out to the right and then shifted into the higher bit positions of the 16-bit data specified by D.
For "n", only the lower 8 bits in the 16 bit data are valid.



## Precaution during programming

If the specified n is a multiple of 16 bits, the data will be the same as that before the operation.
e.g.,
$\mathrm{n}=\mathrm{K} 16$ : same operation as $\mathrm{n}=\mathrm{K} 0$ (The carry flag does not change, either.)
$\mathrm{n}=\mathrm{K} 17$ : same operation as $\mathrm{n}=\mathrm{K} 1$
$\mathrm{n}=\mathrm{K} 32$ : same operation as $\mathrm{n}=\mathrm{K} 0$ (The carry flag does not change, either.)
$\mathrm{n}=\mathrm{K} 33$ : same operation as $\mathrm{n}=\mathrm{K} 1$

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Turns on for an instant when the data in bit position n-1 is recognized as 1.

High-level Instructions

## F121(ROL) <br> P121(PROL)

16-bit data left rotation

Outline Rotates a specified number of bits in specified 16-bit data to the left.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P121 (PROL)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			$\begin{aligned} & \text { Index } \\ & \text { register } \end{aligned}$		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ \left({ }^{*} 1\right) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ \text { (*1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FL } \\ \hline(* 2) \end{array}$	$\underset{(* 3)}{\text { IX }}$	$\begin{gathered} \text { IY } \\ (* 4) \end{gathered}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.

A: Available
N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Rotates 4 bits in data register DT0 to the left when trigger R0 turns on.


## Description

Rotates " $n$ " bits of the 16 -bit data specified by D to the left.

## を <br> Example: Rotates 1 bit to the left



When " n " bits are rotated to the left,

- The data in bit position 16-n ( n th bit starting from bit position 15) is transferred to special internal relay R9009 (carry flag).
- " n " bits starting from bit position 15 are shifted out to the left and then shifted into the lower bit positions of the 16 -bit data specified by D .
For " $n$ ", only the lower 8 bits in the 16 bit data are valid.



## Precaution during programming

If the specified " $n$ " is a multiple of 16 bits, the data will be the same as that before the operation.
e.g.,
$\mathrm{n}=\mathrm{K} 16$ : same operation as $\mathrm{n}=\mathrm{K} 0$ (The carry flag does not change, either.)
$\mathrm{n}=\mathrm{K} 17$ : same operation as $\mathrm{n}=\mathrm{K} 1$
!
$\mathrm{n}=\mathrm{K} 32$ : same operation as $\mathrm{n}=\mathrm{K} 0$ (The carry flag does not change, either.)
$\mathrm{n}=\mathrm{K} 33$ : same operation as $\mathrm{n}=\mathrm{K} 1$

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Turns on for an instant when the data in bit position 16-n is recognized as 1.

High-level Instructions

## F122(RCR)

P122(PRCR)
16-bit data right rotation with carry flag data

Outline Rotates a specified number of bits in the specified 16-bit data to the right together with carry flag data.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P122 (PRCR)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|c\|} \hline W L \\ (* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|c\|} \hline F L \\ (* 2) \end{array}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\text { IY }}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.
A: Available
N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Rotates 4 bits in data register DT0 together with carry flag data " 1 " to the right when trigger R0 turns on.


## Description

Rotates " $n$ " bits of the 16-bit data specified by $D$, including carry flag data, to the right.

## 1 Example: Rotates 1 bit to the right



When " $n$ " bits with carry flag data are rotated to the right,

- The data in bit position $\mathrm{n}-1$ ( n th bit starting from bit position 0 ) is transferred to special internal relay R9009 (carry flag).
- "n" bits starting from bit position 0 are shifted out to the right and then carry flag data and the n-1 bits starting from bit position 0 are shifted into the higher bit positions of the 16-bit data specified by D .
For $n$, only the lower 8 bits in the 16 bit data are valid.



## Precaution during programming

If the specified " n " is a multiple of 17 bits, the data will be the same as that before the operation.
e.g., $n=K 17$ : same operation as $n=K 0$
$\mathrm{n}=\mathrm{K} 18$ : same operation as $\mathrm{n}=\mathrm{K} 1$
!
$\mathrm{n}=\mathrm{K} 34$ : same operation as $\mathrm{n}=\mathrm{K} 0$
$\mathrm{n}=\mathrm{K} 35$ : same operation as $\mathrm{n}=\mathrm{K} 1$

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Turns on for an instant when the data in bit position n-1 is recognized as 1.

High-level Instructions

## F123(RCL)

P123(PRCL)

## 16-bit data left rotation with carry flag data

Outline
Rotates a specified number of bits in the specified 16-bit data to the left together with carry flag data.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P123 (PRCL)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Indexregister		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \\ \hline \end{array}$	$\begin{gathered} \hline F L \\ (* 2) \\ \hline \end{gathered}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	$\underset{(* 4)}{\text { IY }}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPD, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Rotates 4 bits in data register DT0 together with carry flag data " 1 " to the left when trigger R0 turns on.


## Description

Rotates " $n$ " bits of the 16 -bit data specified by $D$, including carry flag data, to the left.

## Example: Rotates 1 bit to the left



When " $n$ " bits with carry flag data are rotated to the left,

- The data in bit position 16-n ( $n$th bit starting from bit position 15) is transferred to special internal relay R9009 (carry flag).
- "n" bits starting from bit position 15 are shifted out to the left and then carry flag data and the n-1 bits starting from bit position 15 are shifted into the lower bit positions of the 16-bit data specified by D.
For $n$, only the lower 8 bits in the 16 bit data are valid.



## Precaution during programming

If the specified " $n$ " is a multiple of 17 bits, the data will be the same as that before the operation.
e.g., $n=K 17$ : same operation as $n=K 0$
$\mathrm{n}=\mathrm{K} 18$ : same operation as $\mathrm{n}=\mathrm{K} 1$
$\mathrm{n}=\mathrm{K} 34$ : same operation as $\mathrm{n}=\mathrm{K} 0$
$\mathrm{n}=\mathrm{K} 35$ : same operation as $\mathrm{n}=\mathrm{K} 1$

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Turns on for an instant when the data in bit position 16-n is recognized as 1.


## F125(DROR)

 P125(PDROR)
## 32-bit data right rotation

Outline Rotates a specified number of bits in specified 32-bit data to the right. For the FPOR/FP $\Sigma /$ FP-X/FPO/FP-e, the P type high-level instruction "P125 (PDROR)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \text { FL } \\ (* 1) \end{gathered}$		K	H	f		
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A

(*1) This cannot be used with the FPOR, FPE and FP-X.

A: Available N/A: Not Available

## Explanation of example

Rotates 4 bits in data registers DT11 and DT10 to the right when trigger R0 turns on.
When 4 bits are rotated to the right, the data in bit position 3 is transferred to special internal relay R9009 (carry flag).
[DT11, DT10]


RO: on
[DT11,DT10]


## Description

Rotates " n " bits of the 32 -bit data specified by D to the right when the trigger turns on.


When "n" bits are rotated to the right,

- The data in bit position $\mathrm{n}-1$ (nth bit starting from bit position 0 ) is transferred to special internal relay R9009 (carry flag).
- " n " bits starting from bit position 0 are shifted out to the right and then shifted into the higher bit positions of the 32-bit data specified by D.
Only the lower eight bits of the 16 -bit data " $n$ " are effective.

$n \underbrace{0}_{$| $\begin{array}{l}\text { Upper } 8 \text { bits } \\ \text { are invalid }\end{array}$ |
| :--- |
| $\underbrace{15}---------100000000$ |
| $-255(H 00 \text { to HFF) }$ |$}$

When " n " is specified using K0, the contents of " $\mathrm{D}+1, \mathrm{D}$ " and the special internal relay R9009 (carry flag) do not change.

## Precautions during programming

If the specified " $n$ " is a multiple of 32 bits, the data will be the same as that before the operation.
e.g., $\mathrm{n}=\mathrm{K} 32$ : same operation as $\mathrm{n}=\mathrm{KO}$

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Content in the nth bit from LSB (least significant bit) turns on for an instant when the data in bit position $\mathrm{n}-1$ is recognized as 1 .


## F126(DROL)

 P126(PDROL)
## 32-bit data left rotation

Outline Rotates a specified number of bits in specified 32 -bit data to the left. For the FPOR/FP $/$ /FP-X/FPO/FP-e, the $P$ type high-level instruction "P126 (PDROL)" is not available.

## Program example

Ladder Diagram		Boolean	
		Address	Instruction
Trigg		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST R   F126 (DROL)   DT 10   K 4
D	Lower 16-bit area of 32-bit data		
n	16-bit equivalent constant or 16-bit area to specify number of bits to be rotated Range of n: K0 to K255 (H0 to HFF)		

## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{array}{\|c\|} \hline F L \\ (* 1) \end{array}$	1	K	H	f		
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A

(*1) This cannot be used with the FPOR, FPE and FP-X.

A: Available N/A: Not Available

## Explanation of example

Rotates 4 bits in data registers DT11 and DT10 to the left when trigger R0 turns on.
The data in bit position 28 is transferred to special internal relay R9009 (carry flag).
[DT11, DT10]


RO: on

[DT11, DT10]


## Description

Rotates " $n$ " bits of the 32-bit data specified by D to the left when the trigger turns on.


When " $n$ " bits are rotated to the left,

- The data in bit position 32-n (nth bit starting from bit position 31) is transferred to special internal relay R9009 (carry flag).
- " n " bits starting from bit position 31 are shifted out to the left and then shifted into the lower bit positions of the 16 -bit data specified by $D$.
Only the lower eight bits of the 16 -bit data " $n$ " are effective.
$\mathrm{n} \underbrace{\square--------100000000}$
Upper 8 bits K0 to K255(H00 to HFF) are invalid

When "n" is specified using K0, the contents of "D+1, D" and the special internal relay R9009 (carry flag) do not change.

## Precautions during programming

If the specified " n " is a multiple of 32 bits, the data will be the same as that before the operation.
e.g., $n=$ K32: same operation as $n=K 0$

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Content in the nth bit from MBS (most significant bit) turns on for an instant when the data in bit position $32-\mathrm{n}$ is recognized as 1 .

Outline Rotates a specified number of bits in the specified 32-bit data to the right together with carry flag data.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P127 (PDRCR)" is not available.

## Program example

Ladder Diagram		Boolean	
		Address	Instruction
		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST R 0   F127 (DRCR)    DT 10    K 4
D	Lower 16-bit area of 32-bit data		
n	16-bit equivalent constant or 16-bit area to specify number of bits to be rotated Range of n : K0 to K255 (H0 to HFF)		

## Operands

Operand	Relay				Timer/Counter		Register			Index   register   1	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \mathrm{FL} \\ (* 1) \end{gathered}$		K	H	f		
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A

(*1) This cannot be used with the FPOR, FPE and FP-X.

A: Available N/A: Not Available

## Explanation of example

Rotates 4 bits in data registers DT11 and DT10 together with carry flag data to the right when trigger R0 turns on.
The data in bit position 3 is transferred to the carry flag (special internal relay R9009).
The data of the carry flag (special internal relay R9009) is transferred to the bit position 28.


## Description

Rotates " $n$ " bits of the 32-bit data specified by $D$, including carry flag data, to the right when the trigger turns on.


When " $n$ " bits with carry flag data are rotated to the right,

- The data in bit position n-1 (nth bit starting from bit position 0 ) is transferred to special internal relay R9009 (carry flag).
- "n" bits starting from bit position 0 are shifted out to the right and then carry flag data and the n-1 bits starting from bit position 0 are shifted into the higher bit positions of the 32-bit data specified by D .
Only the lower eight bits of the 16 -bit data " $n$ " are effective.


Upper 8 bits K 0 to $\mathrm{K} 255(\mathrm{H} 00$ to HFF ) are invalid

When " $n$ " is specified using K0, the contents of " $D+1$ and $D$ " and the carry flag do not change.

## Precautions during programming

If the specified " n " is a multiple of 33 bits, the data will be the same as that before the operation. e.g., $\mathrm{n}=\mathrm{K} 33$ : same operation as $\mathrm{n}=\mathrm{K} 0$

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Content in the nth bit from LSB (least significant bit) turns on for an instant when the data in bit position $\mathrm{n}-1$ (nth bit starting from bit position 0 ) is recognized as 1 .


## F128(DRCL)

 P128(PDRCL)
## 32-bit data left rotation with carry flag data

Outline Rotates a specified number of bits in the specified 32-bit data to the left together with carry flag data.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P128 (PDRCL)" is not available.

## Program example

Ladder Diagram		Boolean		
		Address	Ins	uction
Trigg	L, $\underset{\text { D }}{\text { DT10, }}, \underbrace{K}_{n}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F128 } \\ & \text { DT } \\ & \text { K } \end{aligned}$	(DRCL)   10
D	Lower 16-bit area of 32-bit data			
n	16-bit equivalent constant or 16-bit area to specify number of bits to be rotated Range of n : K0 to K255 (H0 to HFF)			

## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \mathrm{FL} \\ (* 1) \end{gathered}$		K	H	f		
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A

(*1) This cannot be used with the FPOR, FPD and FP-X.
A: Available N/A: Not Available

## Explanation of example

Rotates 4 bits in data registers DT11 and DT10 together with carry flag data to the left when trigger R0 turns on.
The data in bit position 28 is transferred to carry flag (special internal relay R9009).
The data of the carry flag is transferred to the bit position 3.


## Description

Rotates " $n$ " bits of the 32-bit data specified by D, including carry flag data, to the left when the trigger turns on.


When " $n$ " bits with carry flag data are rotated to the left,

- The data in bit position 32-n (nth bit starting from bit position 31) is transferred to special internal relay R9009 (carry flag).
- " n " bits starting from bit position 31 are shifted out to the left and then carry flag data and the $\mathrm{n}-1$ bits starting from bit position 31 are shifted into the lower bit positions of the 32-bit data specified by D.
Only the lower eight bits of the 16 -bit data " $n$ " are effective.


When " n " is specified using K0, the contents of " $\mathrm{D}+1$ and D " and the carry flag do not change.

## Precautions during programming

If the specified " $n$ " is a multiple of 33 bits, the data will be the same as that before the operation.
e.g., $n=K 33$ : same operation as $n=K 0$

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Content in the nth bit from MSB (most significant bit) turns on for an instant when the data in bit position 31-n is recognized as 1 .

High-level Instructions

## F130(BTS) <br> P130(PBTS)

## 16-bit data bit set

Outline Turns on a specified bit of 16-bit data.
For the FPOR/FPE/FP-X/FPO/FP-e, the P type high-level instruction "P130 (PBTS)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FL } \\ (* 2) \\ \hline \end{array}$	$\begin{gathered} \mathrm{IX} \\ (* 3) \end{gathered}$	$\begin{gathered} \text { IY } \\ (* 4) \end{gathered}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Turns on bit position specified by DT2 in data register DT0 when trigger R0 turns on.
When the DT2 = K7, as shown below.
[n](K1) DT2: K7

[D](DT100) | Bit position | 5 | . | . | 1 | 11 | . | . | 8 | 7 | . | . | 4 | 3 | . | . | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DT0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |

RO: on
[D](DT100)


Bit position 7 is turned on (1) when RO turns on.
(Bits other than the specified bit do not change.)

## Description

Turns on the bit of 16-bit data specified by D and n .
Bits other than the specified bit do not change.
The " $n$ " is decimal data specifying the bit position to be turned on. Range of " $n$ ": K0 to K15


## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

High-level Instructions

## F131 (BTR)

P131 (PBTR)

## 16-bit data bit reset

Outline Turns off a specified bit of 16-bit data.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P131 (PBTR)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|l\|} \hline \text { WL } \\ (* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FL } \\ (* 2) \\ \hline \end{array}$	$\begin{gathered} \text { IX } \\ (* 3) \\ \hline \end{gathered}$	$\begin{gathered} \text { IY } \\ (* 4) \\ \hline \end{gathered}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $5, ~ F P-X$.

A: Available N/A: Not Available
(*3) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Turns off the bit specified by DT2 of data register DT0 when trigger R0 turns on.
When the DT2 = K7, as shown below.
[n](K1) DT2: K7

[D](DT100) | Bit position | 15 | . | . | 1 | 11 | . | . | 8 | 7 | . | . | 4 | 3 | . | . | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DTO | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | RO: on



Bit position 7 is turned off (0) when R0 turns on.
(Bits other than the specified bit do not change.)

## Description

Turns off the bit of 16-bit data specified by $D$ and $n$.
Bits other than the specified bit do not change.
The " $n$ " is decimal data specifying the bit position to be turned off. Range of " $n$ ": K0 to K15


## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

High-level Instructions

## F132(BTi)

P132(PBTI)

## 16-bit data bit invert

Outline Inverts a specified bit in 16-bit data.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P132 (PBTI)" is are not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ (* 1) \\ \hline \end{array}$	$\begin{array}{\|l\|l} \mathrm{FL} \\ (* 2) \end{array}$	$\begin{gathered} \hline \text { IX } \\ (* 3) \end{gathered}$	$\underset{(* 4)}{\text { IY }}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FPO and FP-e.

A: Available N/A: Not Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.
(*3) With the FPOR, FP 2 , FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Inverts the state of bit specified by DT10 in data register DT0 when trigger R0 turns on.
When the $\mathrm{DT} 10=\mathrm{K} 7$, as shown below.
[n](K1) DT10: K7

[D](DT100) | Bit position | 15 | $\cdot$ | $\cdot$ | 12 | 11 | $\cdot$ | $\cdot$ | 8 | 7 | $\cdot$ | $\cdot$ | 4 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DT0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |

RO: on

Condition of bit position 7 is inverted [off (0) $\rightarrow$ on (1)] when R0 turns on.
(Bits other than the specified bit are not changed.)

## Description

Inverts [off (0) $\rightarrow$ on (1) or on (1) $\rightarrow$ off (1)] the state at bit position specified by " $n$ " in the 16 -bit area specified by D.
Bits other than the specified bit are not inverted.
The " n " is decimal data specifying the bit position to be inverted. Range of "n": K0 to K15


## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

High-level Instructions

## F133(BTD)

P133(PBTI)

## 16-bit data bit test

Outline Checks the state [on (1) or off (0)] of the specified bit in 16-bit data. For the FPOR/FPS/FP-X/FP0/FP-e, the P type high-level instruction "P133 (PBTT)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|l\|} \hline \text { LD } \\ \left({ }^{*} 1\right) \end{array}$	$\begin{array}{\|l\|l} \mathrm{FL} \\ (* 2) \end{array}$	$\underset{(* 3)}{I X}$	$\underset{(* 4)}{\text { IY }}$	K	H	
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available N/A: Not Available
(*3) With the FPOR, FP $5, ~ F P-X, ~ F P 2, ~ F P 2 S H, ~ a n d ~ F P 10 S H, ~ t h i s ~ i s ~ I 0 ~ t o ~ I C . ~$.
(*4) With the FPOR, FPD, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Checks the state [on (1) or off (0)] of bit specified by DT2 in data register DT0 when trigger R0 turns on. If bit specified by DT2 is in the off (0) state, internal relay R10 goes on.
When the DT2 = K7, as shown below.

## [n](K1) DT2:K7

[D](DT100)


If bit position 7 is in the off state (0), R900B turns on and internal relay R10 goes on.

## Description

Checks the state [on (1) or off (0)] of bit position specified by $n$ in the 16 -bit data specified by $D$. The judgment result is output to special internal relay R900B (=flag).
The specified bit is checked by special internal relay R900B.

- When the specified bit is on (1), special internal relay R900B (= flag) turns off.
- When the specified bit is off (0), special internal relay R900B (= flag) turns on.

The " $n$ " is decimal data specifying the bit position to be checked. Range of " n ": K0 to K15


## Precaution when the judgement flag R900B is used two or more times

The judgment flag R900B is updated each time an operation instruction or comparison instruction is executed.
If the judgment flag is used two or more times,

- the program in which the judgment flag is used should be input immediately following the instruction which executes the judgment.
- the flag should be output to output relays or internal relays for each separate instruction.


## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the specified bit to be checked is in the off (0) state.

High-level Instructions

## F135(BCU)

P135(PBCU)

## Number of on (1) bits in 16-bit data

Outline
Counts the number of bits in the on (1) state in the specified 16-bit data. For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P135 (PBCU)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|l\|} \hline F L \\ (* 2) \end{array}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available
N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

Counts the number of bits in the on (1) state in data register DT10 when trigger R0 turns on. The number of on (1) bits is stored in data register DT20.


The number of on (1) bits is " 5 ".
The K5 is stored in data register DT20 when R0 turns on.

## Description

Counts the number of bits in the on (1) state in the 16 -bit data specified by S . The counted result (number of on (1) bits) is stored in the 16-bit area specified by $D$.

The results are stored in decimal number.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

High-level Instructions

## F136(DBCU) P136(PDBCU)

## Number of on (1) bits in 32-bit data

Outline Counts the number of bits in the on (1) state in specified 32-bit data. For the FPOR/FPI/FP-X/FP0/FP-e, the P type high-level instruction "P136 (PDBCU)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|c\|} \hline F L \\ (* 2) \\ \hline \end{array}$	$\underset{(* 3)}{\text { IX }}$	IY	K	H	
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.

A: Available
N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.

## Explanation of example

Counts the number of bits in the on (1) state in data register DT11 and DT10 when trigger R0 turns on. The number of on (1) bits is stored in data register DT20.

	DT11										DT10														
Bit position	$15 \cdot 12$	11.	8	7	.	.	4	3		. 0	15	5	. 1	12	11		8			4	4				0
Binary data	00111	001	0	0	0	0	0	0	0	11	0	0	0	0	0	0	01		00	(1) 1	1	0		1	0

The number of on (1) bits is " 9 ".
The K9 is stored in data register DT20 when R0 turns on.

## Description

Counts the number of bits in the on (1) state in the 32-bit data specified by S. The counted result (number of on (1) bits) is stored in the 16 -bit area specified by D .

The results are stored in decimal number.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## F137 (STMR) Auxiliary timer (16-bit)

Outline Sets the 16-bit on-delay timer for 0.01 s units ( 0.01 to 327.67 s )

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{array}{\|c\|} \hline F L \\ (* 2) \\ \hline \end{array}$	$\underset{(* 3)}{\text { IX }}$	$\underset{(* 4)}{\text { IY }}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
N/A: Not Available
(*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.
(*4) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is ID.

## Explanation of example

When the execution condition (trigger) has been fulfilled, the auxiliary timer is activated, and when the value stored in DT10 $\times 0.01$ seconds has elapsed, R5 goes on.

## Description

This functions as a 0.01 -second unit on delay timer. When the execution condition (trigger) is on, subtraction is carried out for the specified time, and when the elapsed value D reaches 0 , the special internal relay R900D turns on. (The special internal relay R900D turns off when the execution condition (trigger) is off, and while subtraction is being carried out.)
With FP2/FP2SH/FP10SH, the OT instruction can be stated immediately following the auxiliary timer. When the execution condition (trigger) goes on, the set time is subtracted, and when the elapsed value D reaches 0 , the relay being used with the OT instruction goes on at the same time that the special internal relay R900D goes on.
When the execution condition (trigger) is off, the elapsed value area is cleared to 0 , and relays being used are turned off by the OT instruction.

When the time set for the special internal relay R900D has elapsed, the relay is turned on.
R900D can also be used as a timer contact. (The relay is off when the execution condition (trigger) is off, and while subtraction is being carried out.)


Operation is the same as that in the program example.

## Timer set time

The timer setting is entered as a value of $0.01 \times$ (timer set value).
The timer set value is specified as a K constant within the range of K 1 to K 32767 .
STMR is set between 0.01 and 327.67 seconds, in units of 0.01 seconds.
If the set value is K 500 , the set time will be $0.01 \times 500=5$ seconds.

## Precautions during programming

The area in which the set value is stored must be set so that the area specified for the elapsed value does not overlap any areas reserved for other timer or counter instructions, or memory areas used for high-level instruction operations.
Because subtraction is carried out when operations are carried out, the program should be set up so that operations are carried out every scan.
(In cases such as programs where interrupt operation is carried out, or for jump or loop instructions, where several operations are carried out during one scan, or where it was not possible to carry out any operation during the scan, correct results cannot be obtained.)

## How the Auxiliary Timer Works

(1) When the execution condition (trigger) R0 changes from off to on, the set value specified by the $S$ is sent to the elapsed value area D.

(2) If the execution condition (trigger) R0 stays on, every scan, the value in the elapsed value area $D$ is subtracted.

(3) If the value in the elapsed value area $D$ reaches 0 , relay being used is turned on by the OT instruction which comes next in the program. The special internal relay R900D also goes on at this point.

(3) Subtraction completed

## Precautions When Using R900D

If R900D is used and multiple auxiliary timers are being used, always use R900D in the line following the auxiliary timer instruction.
(a)


When timer (a), which is activated by R0 turns on, expires, Y 10 goes on. When timer (b), which is activated by R1 turns on, expires, Y11 goes on.

Describe the program as shown below will result in incorrect operation.


Hours, minutes, and seconds data to seconds data

Outline Converts hour, minute, and second data to seconds data.
For the FPOR/FP $/$ /FP-X, the $P$ type high-level instruction "P138 (PHMSS)" is not available.

## Program example

Ladder Diagram			Boolean		
			Address		uction
			10	ST	R 0
			11	F138	(HMSS)
				DT	0
				DT	10
S		Starting 16-bit area for storing hours, minutes, and seconds data (source)			
		Starting 16-bit area for storing converted seconds data (destination)			

Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline \text { WL } \\ (* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{array}{\|c\|} \hline \text { LD } \\ (* 1) \end{array}$	$\begin{aligned} & \mathrm{FL} \\ & \text { (*2) } \end{aligned}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	IY	K	H	
S	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
${ }^{(* 2)}$ ) This cannot be used with the FPO, FP-e, FPOR, FP亡, FP-X. N/A: Not Available
(*3) With the FPOR, FP 2, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

## Explanation of example

Converts the hour, minute, and second data stored in data registers DT1 and DT0 to seconds data when trigger R0 turns on. The converted seconds data is stored in data registers DT11 and DT10.
7: 45' 30" [H00074530 (BCD) (DT1 = H7, DT0 = H4530)]

DT1				DT0			
0	0	0	7	4	5	3	0


Hours data				Minutes data		Seconds data	
27930" [H00027930 (BCD) (DT11 = H2, DT10 = H7930)]							
DT11				DT10			
0	0	0	2	7	9	3	0

Seconds data

## Description

Converts the hour, minute, and second data stored in the 32-bit area specified by S to seconds data. The converted seconds data is stored in the 32-bit area specified by D.

## Composition of data

## Format of S+1 and S

32 bits ( 2 words) " $\mathrm{S}+1$ and S " are allocated to express hour, minute, and second data. The data is expressed in BCD format.
The BCD H data should be used for setting the hour (4 digits), minute (2 digits), and second (2 digits) data as follows. (The max. time data that can be specified is 9,999 hours, 59 minutes and 59 seconds.)


## 1 <br> Example: $3: 45$ '19" (S+1: H0003, S: H4519)

## Format of $D+1$ and $D$

32 bits (2 words) are allocated to express the converted seconds data.
The converted seconds data is expressed in BCD format as follows:


N
Example: 35,999,999" (D+1: 3599, D: H9999)

## Note

The maximum time data that can be specified is 9,999 hours, 59 minutes and 59 seconds, so the maximum value of the time data

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data specified by $S$ is not BCD data.
- The minutes and seconds data specified by $S$ exceeds the set range ( 00 to 59 ).

Seconds data to hours, minutes, and seconds data

Outline Converts seconds data to hour, minute, and second data.
For the FPOR/FP $/$ /FP-X, the P type high-level instruction "P139 (PSHMS)" is not available.

## Program example

Ladder Diagram			Boolean		
			Address		uction
			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F139   DT   DT	(SHMS)
	S	Starting 16-bit area for storing seconds data (source)			
	D	Starting 16-bit area for storing converted hours, minutes, and seconds data (destination)			

Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	$\begin{array}{\|l\|} \hline W L \\ (* 1) \\ \hline \end{array}$	SV	EV	DT	$\begin{gathered} \text { LD } \\ (* 1) \\ \hline \end{gathered}$	$\begin{aligned} & \text { FL } \\ & \text { (*2) } \end{aligned}$	$\begin{gathered} \text { IX } \\ (* 3) \end{gathered}$	IY	K	H	
S	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO and FP-e.
A: Available
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.
N/A: Not Available
(*3) With the FP0R, FPI, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

## Explanation of example

Converts the seconds data stored in data registers DT1 and DT0 to hour, minute, and second data when trigger R0 turns on. The converted hour, minute, and second data is stored in data registers DT11 and DT10.
4000 " [H00004000 (BCD) (DT1 = H0, DT0 = H4000)]

DT1				DT0			
0	0	0	0	4	0	0	0

Seconds data

1: 6' 40 " [H00010640 (BCD) (DT11 = H0001, DT10 = H0640)]

DT11				DT10			
0	0	0	1	0	6	4	0

Hours data Minutes data Seconds data

## Description

Converts the seconds data stored in the 32-bit area specified by S to hour, minute, and second data. The converted hour, minute, and second data is stored in the 32-bit area specified by D .

## Composition of data

## Format of $\mathrm{S}+1$ and S

32 bits (2 words) " $\mathrm{S}+1$ and S " are allocated to express the seconds data. The data is expressed in BCD format.
The BCD H data (8 digits) should be used for setting seconds data as follows:
BCD 8 digits (2 words)

$\stackrel{y}{c}$
Example: 35,999,999" (S+1: H3599, S: H9999)

## Note

The maximum value that can be stored in $\mathbf{D}$ is 9,999 hours, 59 minutes and 59 seconds, so the maximum value that can be specified for the time data for the seconds unit is 35,999,999 seconds.

## Format of $D+1$ and $D$

32 bits (2 words) " $\mathrm{D}+1$ and D " are allocated to express the converted hours, minutes and seconds data.
The converted hours (4 digits), minutes (2 digits) and seconds (2 digits) data is expressed in BCD format as follows:

BCD 8 digits (2 words)


Example: 3:45’19" (D+1: H0003, D: H4519)

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data specified by $S$ is not BCD data.
- The data specified by $S$ exceeds the set range $(35,999,999)$.


## F140 (STC)

## P140(PSTC)

Outline Turns on special internal relay R9009 (carry flag).
For the FPOR/FP $\Sigma / F P-X / F P 0 / F P-e$, the $P$ type high-level instruction "P140 (PSTC)" is not available.

## Program example



## Description

Special internal relay R9009 (carry flag) goes on.

## Flag condition

Carry flag (R9009): Turns on when this instruction is executed.

## F141 (CLC)

P141 (PCLC)

## Carry flag (R9009) reset

Outline Turns off special internal relay R9009 (carry flag).
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P141 (PCLC)" is not available.

## Program example

Ladder Diagram		Boolean		
		Address		uction
		10	ST	R 0
		11	F141	(CLC)

## Description

Special internal relay R9009 (carry flag) goes off.

## Flag condition

Carry flag (R9009): Turns off when this instruction is executed.

## F142 (WDT)

## P142(PWDT)

## Watching dog timer update

Outline Updates the time-out time of watching dog timer.

## Program example



## Operands

| Operand | Relay |  |  |  | Timer/Counter |  | Register |  | Index <br> register |  | Constant |  | Index <br> modifier |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WX | WY | WR | WL | SV | EV | DT | LD | FL | IX | IY | K |  |  |
| S | N/A | A | A | N/A |

A: Available N/A: Not Available

## Explanation of example

The watching dog timer value is changed to $\mathrm{K} 128(12.8 \mathrm{~ms})$ when R0 turns on.

## Description

This is a set value specified by S , and presets the time-out time for the operation delay watching dog timer. Operation processing blocks which occur after a preset specified by this instruction will be monitored at the time-out time specified here.
S can be specified within the ranges given below.
K4 to K6400
The time-out time is $S \times 0.1(\mathrm{~ms})$

## $\stackrel{y}{s}$ <br> Example: If $S$ is K 100 , the time-out time is 10 ms

The time-out time of operation delay watching dog timer is updated at the start of each scan by referring to system register 30.
If you need to change the time-out time of watching dog timer for all scans, change the value in system register 30.
Using the F142 (WDT)/P142 (PWDT) instruction, you can change the time-out time (watching dog timer value) only for that scan.

## Precautions during programming

The F142 (WDT) instruction may be used any number of times.
To change the time-out time through operation, use the process described below.

1) Execute the F142 (WDT) instruction immediately prior to the block to be processed, and specify the preset.
2) When the processing has been completed, execute the F142 (WDT) instruction again, and enter a preset with a new value.
If the time required for one scan exceeds 640 ms , the system watching dog timer will be activated, regardless of the time-out time set with the F142 (WDT) instruction, and operation will be interrupted and output turned off.
If you want to reset an erroneous condition caused by the system watching dog timer, clear that condition using one of the following methods:

- Using programming tool software.
- Turning the TEST/INITIALIZE switch to the INITIALIZE side.


## F143 (IORF)

Partial I/O update

Availability
FPO/FPOR/FP-e/
FPP/FP-X

Outline Updates specified partial I/O points.

## Program example



## Operands

Operand	Relay			Timer/Counter		$\begin{array}{\|c} \hline \text { Register } \\ \hline \text { DT } \\ \hline \end{array}$	Index register$1$	Constant		Index modifier
	WX	WY	WR	SV	EV			K	H	
D1	A	A	N/A	A						
D2	A	A	N/A	A						

A: Available
$\mathrm{N} / \mathrm{A}$ : Not Available

## Explanation of example

Updates external input relays WX0 (X0 to XF) immediately when the execution condition (trigger) R10 turns on and updates external output relays WYO (YO to YF) immediately when the execution condition (trigger) R20 turns on.

## Description

Updates the external inputs $X$ and external outputs $Y$ specified by D1 and D2 immediately even in the program execution stage.
Refreshing (Updating) initiated by the F143 (IORF) instruction is done only for the control unit.
With input refreshing (updating), WX0 should be specified for [D1] and [D2].
With output refreshing (updating), WY0 should be specified for [D1] and [D2].
The allowable I/O range for the partial update varies depending on the models.

## Availability of the partial I/O update for various models

	Control unit	FP0   Expansion	FP $\Sigma$   Expansion	Add-on   cassette	FP-X   Expansion	FP0   Adapter
FP0	A	N/A	-	-	-	-
FPOR	A	$\mathrm{A}^{*}$	-	-	-	-
FP-e	A	-	-	-	-	-
FP $\Sigma \mathbf{1 2 k}$	A	$\mathrm{N} / \mathrm{A}$	A	-	-	-
FP $\Sigma \mathbf{3 2 k}$	A	$\left.\mathrm{A}^{*}\right)$	A	-	-	-
FP-X	A	-	-	A	$\mathrm{N} / \mathrm{A}$	N/A

A: Available, N/A: Not Available
*) For FPE 32k type and FPOR, partial I/O update is possible with FPO expansion units, however, it takes approx. 1 ms for 1 unit.

## F143 (IORF)

Partial I/O update

## Availability <br> FP2/FP2SH/FP10SH

Outline Updates specified partial I/O points.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	IX	IY	K	H	
D1	N/A	A	A	A										
D2	N/A	A	A	A										

A: Available
N/A: Not Available

## Explanation of example

Updates the input and output relay of word no. 0 to 1 ( 2 words, 32 points) immediately when the trigger R10 turns on.
When the configuration shown below is being used:
When the instruction is executed, the WX0 (X0 to XF) input processing and the WY1 (Y10 to Y1F) output processing are carried out.

Outline Updates specified partial I/O points.

		0	1	2	3	4	(Slot no.)
	$\stackrel{\rightharpoonup}{0}$						

## Description

Updates the input and output relays ( X and Y ) specified by D1 and D2 immediately even in the program execution stage.
Refreshing (updating) initiated by the F143 (IORF) instruction is done only for the unit on the master and expansion backplanes. No update is performed for the input/output relay of the MEWNET-F (remote I/O) system slave station.
How to specify D1 and D2:

- Set the starting address D1 and the ending address D2 (D1 § D2).
- Specify the word address with K0 $\leqq \mathrm{D} 1 \leqq \mathrm{D} 2 \leqq \mathrm{~K} 255$.
- Set the same word address in both D1 and D2 to update only one word.


## F144(TRNS) Serial data communication

## Availability

Outline Communicates with an external device using the RS232C port.

## Program example



## Operands

Operand	Relay			Timer/Counter		Register	Index   register	Constant		Index   modifier
	WX	WY	WR	SV	EV	DT	I	K	H	
S	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A

A: Available N/A: Not Available

## Description

Use this instruction for communication (transmission and reception) of command and data when an external device (personal computer, measuring instrument, bar code reader, etc.) is connected to the RS232C port.

## Transmission

The " $n$ " bytes of the data stored in the data table with the starting area specified by $S$ are transmitted from the RS232C port to an external device by serial transmission.
A start code and end code can be automatically added before transmission.

## Reception

Reception is controlled by the reception completed flag (R9038) being turned on and off.
When the reception completed flag (R9038) is off, the data sent to the RS232C port is stored in the reception buffer specified in system registers 417 and 418.
When an F144 (TRNS) instruction is executed, the reception completed flag (R9038) goes off.

## Switching the use of RS232C port

To switch between "computer link communication" and "serial data communication" (general purpose port), execute an F144 (TRNS) instruction.
Set "n" (the number of transmission bytes) to H8000, and then execute the instruction.
When executed when "general purpose port" is selected, the setting will change to "computer link."


When executed when "computer link" is selected, the setting will change to "general purpose port."


R9032: COM. (RS232C) port selection flag
This flag turns on when "General purpose port" is selected.

## Note

> When the power is turned on, the port use will revert to the setting of system register 412 .

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The number of bytes specified by " $n$ " exceeds the source data area range.


## Program and operation during transmission

To transmit, write the transmission data to the data table, select it with an F144 (TRNS) instruction, and execute.

## Data table for transmission

Data register areas beginning with the area selected by $S$ are used as the data table for transmission.


Write the transmission data to the transmission data storage area selected with S (from the second word on) using an F0 (MV) or F95 (ASC) instruction.

- Do not include an end code in the transmission data as it will be added automatically.
- If the start code is set to "Yes", do not include a start code in the transmission data as it will be added automatically.
- There is no restriction on the number of bytes [ $n$ ] that can be transmitted. Following the initial area of the data [S], transmission is possible up to the data range that can be used by the data register. However, if the FPOR is used as the FPO (FPO compatibility mode), the maximum number is 2048 bytes.
When the F144 (TRNS) instruction is executed, the number of data bytes not yet transmitted is stored in the starting area of the data table. *1


## Note

Take care that the transmission data table and reception buffer areas (set in system registers 417 and 418) do not overlap.

## Example:

Transmitting the eight characters A, B, C , D, E, F, G and H (8 bytes of data)
In this example, the data table is DT100 to DT104.


## Program

Select the starting address of the transmission data table with $S$ and the number of transmission data bytes with " n ".


Write the transmission data to the data table

Transmit the data in the data table

## Operation

If the execution condition (trigger) for the F144 (TRNS) instruction is on when sending completed flag (R9039) goes on, operation will proceed as follows:

1) The " $n$ " is preset in $S$ (the number of bytes not yet transmitted). Furthermore, reception completed flag (R9038) is turned off and the reception data number is cleared to zero.
2) The data in the data table is transmitted in order from the lower byte in $\mathrm{S}+1$.

- As each byte is transmitted, the value in $S$ (the number of bytes not yet transmitted) decrements by 1. *1
- During transmission, the sending completed flag (R9039) goes off.
- If the start code STX is set to "Yes" using system register 413, the start code will be automatically added to the beginning of the data.
- The end code selected is automatically added to the end of the data.

execution execution

During transmission (F144 (TRNS) instruction cannot be executed.)
3) When the specified quantity of data has been transmitted, the value in $S$ (the number of bytes not yet transmitted) will be zero and the sending completed flag (R9039) will go on.
${ }^{*} 1$ When the FPOR is used as the FPO (FPO compatibility mode), the number of transmitted bytes will be set when the transmission starts, and it will not decrease until the completion. It will be cleared to 0 when the transmission completes.

## Transmission without an end code

Specify the number of transmission bytes with a negative number.
Set the end code to "Note" for transmission and reception.

## il Example:

Program for transmitting 8 bytes of data without an end code


## Setting the reception buffer: System register 417 and 418

All areas of the data register are initially set for use as the reception buffer. To change the reception buffer, set the starting area number in system register 417 and the size (number of words, Max. 1,024 words) in system register 418.
The reception buffer will be as follows:


## Program and operation during reception

Data sent from the external device connected to the RS232C port will be stored in the data register areas set as the reception buffer.

## Reception buffer



Area used for<br>number of bytes<br>received

Area used for storing received data (the circled numbers indicate the storing order)

Each time data is received, the amount of data received (number of bytes) is stored as a count in the leading address of the reception buffer. The initial value is zero.
The data received is stored in order in the reception data storage area beginning from the lower byte of the second word of the area.

## 1 Example:

Reception of the eight characters A, B, C, D, E, F, G, and H (8 bytes of data) from an external device
The reception buffer is DT200 to DT204 in this example.
System register settings are as follows:

- System register 417: K200
- System register 418: K5



## Program

When reception of data from an external device has been completed, the reception completed flag (R9038) goes on and further reception of data is not allowed.
To receive more data, an F144 (TRNS) instruction must be executed to turn off the reception completed flag (R9038) and clear the byte number to zero.


[^3]
## Operation

When the reception completed flag (9038) is off and data is sent from an external device, operation will proceed as follows. (After RUN, R9038 is off during the first scan.)

1) The data received is stored in order in the reception data storage area of reception buffer beginning from the lower byte of the second word of the area.
Start and end codes will not be stored.
With each one byte received, the value in the leading address of the reception buffer is incremented by 1 .

2) When an end code is received, the reception completed flag (R9038) goes on. After this, no further reception of data is allowed.
3) When an F144 (TRNS) instruction is executed, the reception completed flag (R9038) goes off and the number of received data bytes is cleared to zero. Further data received is stored in order in the reception data storage area beginning from the lower byte of the second word of the area.

## Note

For repeated reception of data, refer to the following procedure 1) to 5 ).

1) Receive data
2) Reception completed (R9038: on, Reception: not allowed)
3) Process received data
4) Execute F144 (TRNS) instruction (R9038: off, Reception: enable)
5) Receive further data

## F144(TRNS) <br> Serial data communication

Availability
FP2/FP2SH/FP10SH

Outline Communicates with an external device using the COM. port of CPU.

## Program example

Ladder Diagram			Boolean		
			Address		uction
			$\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { DF } \\ & \text { F144 } \\ & \text { DT } \\ & \text { K } \end{aligned}$	(TRNS) $100$   8
S $\quad$ Starting 16-bit area for storing data to be sent					
n		16-bit equivalent constant or 16-bit area to specify number of bytes to be sent   - When the value is positive, an end code is added.   - When the value is negative, an end code is not added.   - When the value is H8000, the transmission mode of the RS232C port is changed.			

## Operands

Operand	Relay			Timer/Counter		$\begin{array}{\|c} \text { Register } \\ \hline \text { DT } \end{array}$	Index register	Constant		Index modifier
	WX	WY	WR	SV	EV			K	H	
S	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A

A: Available N/A: Not Available

## Explanation of example

When the trigger R0 turns on, 8 bytes of the data stored in data registers DT101 through DT104 are transmitted from the COM. port.

## Description

Use this instruction for communication (transmission and reception) of command and data when an external device (personal computer, measuring instrument, bar code reader, etc.) is connected to the COM. port of CPU.

## Transmission

The " $n$ " bytes of the data stored in the data table with the starting area specified by S are transmitted from the COM. port to an external device by serial transmission.
A start code and end code can be automatically added before transmission.

(Personal computer)

## Reception

Reception is controlled by the reception completed flag (R9038) being turned on and off.
When reception completed flag (R9038) is off, the data sent to the COM. port stored in the reception buffer selected in system registers 417 and 418 . When an F144 (TRNS) instruction is executed, reception completed flag (R9038) goes off.

FP10SH


External device

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The number of bytes specified by " $n$ " exceeds the source data area range.


## Preparation of transmission

## 1) Setting the transmission format

## For FP10SH

The initial settings for the transmission format are as follows:

- Data length: 8 bits
- Parity check: Yes, odd
- Stop bits: 1 bit
- End code: $\mathrm{C}_{\mathrm{R}}$
- Start code: No STX

To change the transmission format to match the external device connected to the COM. port, set the parameters with the upper row of operation mode switches.

Operation mode switches (using upper dip switch)


Upper dip switches
Lower dip switches

Functions		Settings							
		SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
MODEM control	Disabled	off							
	Enabled	on							
Start code	STX (H02) invalid		off						
	STX (H02) valid		on						
End code	None			off	off				
	$\begin{array}{\|l\|} \hline \mathrm{C}_{\mathrm{R}}(\mathrm{HOD}) \text { and } \mathrm{LF} \\ (\mathrm{HOA}) \end{array}$			on	off				
	$\mathrm{C}_{\mathrm{R}}$ (HOD)			off	on				
	EXT (H03)			on	on				
Stop bit	2 bits					off			
	1 bit					on			
Parity check	Invalid						off	off	
	Even parity						on	off	
	Odd parity						on	on	
Data length (character bit)	7 bits								off
	8 bits								on

## For FP2/FP2SH

Set the transmission format parameter so that the "Transmission Format Setting" of system register 413 matches the external device connected to the COM. port. The default setting is the same as that of the FP10SH.

The selected end code is automatically added during transmission. To disable the end code, set the number of transmission bytes using a negative value before the F144 (TRNS) instruction.
If the start code is set to "STX valid", STX will be automatically added.

## 2) Setting the baud rate

## For FP10SH

The baud rate (transmission speed) for serial transmission is initially set to 9600 bps.
To change the baud rate to match the external device connected to the COM. port, set the lower row of operation mode switches as shown below.

## Operation mode switches (using lower dip switch)

Functions		Settings							
		SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
Transmission speed	115,200 bps	-	-	-	-	-	off	off	off
	57,600 bps	-	-	-	-	-	on	off	off
	38,400 bps	-	-	-	-	-	off	on	off
	19,200 bps	-	-	-	-	-	on	on	off
	9,600 bps	-	-	-	-	-	off	off	on
	4,800 bps	-	-	-	-	-	on	off	on
	2,400 bps	-	-	-	-	-	off	on	on
	1,200 bps	-	-	-	-	-	on	on	on

## For FP2/FP2SH

Set the transmission speed so that the "COM Port Baud Rate Setting" of system register 414 matches the external device connected to the COM. port. The default setting is "19200 bps".

## 3) Setting the use of the COM. port

Set system register 412 for serial transmission (general purpose port).
To switch between "computer link communication" and "serial data communication" (general purpose port), execute an F144 (TRNS) instruction. Set "n" (the number of transmission bytes) to H8000, and then execute the instruction.

When executed when "computer link" is selected, the setting will change to "general purpose port."
 parameter is disabled regardless of the number.
When executed when "general purpose port" is selected, the setting will change to "computer link."


R9032: COM. port selection flag, this flag turns on when "General purpose port" is selected.

Note
When the power is turned on, the port use will revert to the setting of system register 412.

## Program and operation during transmission

To transmit, write the transmission data to the data table, select it with an F144 (TRNS) instruction, and execute.

## Data table for transmission

Data register areas beginning with the area selected by $S$ are used as the data table for transmission.

## [S]



Storage area for transmission data (the circled numbers indicate the order of transmission).

Write the transmission data to the transmission data storage area selected with S (from the second word on) using an F0 (MV) or F95 (ASC) instruction.

- Do not include an end code in the transmission data as it will be added automatically.
- If the start code is set to "Yes", do not include a start code in the transmission data as it will be added automatically.
When the $\mathbf{F 1 4 4}$ (TRNS) instruction is executed, the number of data bytes not yet transmitted is stored in the starting area of the data table.


## Note

Take care that the transmission data table and reception buffer areas (set in system registers 417 and 418) do not overlap.

## Example:

Transmitting the eight characters A, B, C , D, E, F, G and H (8 bytes of data)
In this example, the data table is DT100 to DT104.

DT100	K8		« The number of bytes not yet transmitted is stored at each transmission.
DT101	$\mathrm{H} 42$ (B)	$\mathrm{H} 41$ (A)	
DT102	H44   (D)	$\begin{gathered} \mathrm{H} 43 \\ \text { (C) } \end{gathered}$	Data is transmitted
DT103	$\begin{gathered} \mathrm{H} 46 \\ \text { (F) } \\ \hline \end{gathered}$	$\mathrm{H} 45$ (E)	in order from the lower byte.
DT104	$\begin{gathered} \mathrm{H} 48 \\ (\mathrm{H}) \end{gathered}$	$\begin{gathered} \mathrm{H} 47 \\ \text { (G) } \end{gathered}$	

## Program

Select the starting address of the transmission data table with $S$ and the number of transmission data bytes with "n".

R0
R0 $H[F 1$ DMV, H44434241, DT101 ]
$[$ F1 DMV, H48474645, DT103 ] R1
HH F144 TRNS, DT100, K 8 ]

Write the transmission data to the data table

Transmit the data in the data table

## Operation

If the execution condition (trigger) for the F144 (TRNS) instruction is on when sending completed flag (R9039) goes on, operation will proceed as follows:

1) The " $n$ " is preset in $S$ (the number of bytes not yet transmitted). Furthermore, reception completed flag (R9038) is turned off and the reception data number is cleared to zero.
2) The data in the data table is transmitted in order from the lower byte in $\mathrm{S}+1$.

- As each byte is transmitted, the value in $S$ (the number of bytes not yet transmitted) decrements by 1.
- During transmission, the sending completed flag (R9039) goes off.
- If the start code STX is set to "Yes" using system register 413, the start code will be automatically added to the beginning of the data.
- The end code selected is automatically added to the end of the data.
 execution During transmission (F144 (TRNS) instruction cannot be executed.)

3) When the specified quantity of data has been transmitted, the value in $S$ (the number of bytes not yet transmitted) will be zero and the sending completed flag (R9039) will go on.
The F144 (TRNS) instruction cannot be executed and the R9039 is not turned on unless pin number 5 of RS232C port is turned on.

## Transmission without an end code

Specify the number of transmission bytes with a negative number.
Set the end code to "Note" for transmission and reception.

## Example:

## Program for transmitting 8 bytes of data without an end code



## Preparation of reception

## 1) Setting the transmission format

## For FP10SH

The initial settings for the transmission format are as follows:

- Data length: 8 bits
- Parity check: Yes, odd
- Stop bits: 1 bit
- End code: $\mathrm{C}_{\mathrm{R}}$
- Start code: No STX

To change the transmission format to match the external device connected to the COM. port, set the parameters with the upper row of operation mode switches.

Operation mode switches (using upper dip switch)


Upper dip switches

Lower dip switches

Functions		Settings							
		SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
MODEM control	Disabled	off							
	Enabled	on							
Start code	STX (H02) invalid		off						
	STX (H02) valid		on						
End code	None			off	off				
	$\begin{array}{\|l} \hline \mathrm{C}_{\mathrm{R}} \text { (HOD) and LF } \\ \text { (HOA) } \\ \hline \end{array}$			on	off				
	$\mathrm{C}_{\mathrm{R}}$ (HOD)			off	on				
	EXT (H03)			on	on				
Stop bit	2 bits					off			
	1 bit					on			
Parity check	Invalid						off	off	
	Even parity						on	off	
	Odd parity						on	on	
Data length (character bit)	7 bits								off
	8 bits								on

## For FP2/FP2SH

Set the transmission format parameter so that the "Transmission Format Setting" of system register 413 matches the external device connected to the COM. port. The default setting is the same as that of the FP10SH.

When the start code is valid, the data from the reception of STX to the reception of the selected end code is considered to be one frame.

## 2) Setting the baud rate

## For FP10SH

The baud rate (transmission speed) for serial transmission is initially set to 9600 bps.
To change the baud rate to match the external device connected to the COM. port, set the lower row of operation mode switches as shown below.

## Operation mode switches (using lower dip switch)

Functions		Settings							
		SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
Transmission speed	115,200 bps	-	-	-	-	-	off	off	off
	57,600 bps	-	-	-	-	-	on	off	off
	38,400 bps	-	-	-	-	-	off	on	off
	19,200 bps	-	-	-	-	-	on	on	off
	9,600 bps	-	-	-	-	-	off	off	on
	4,800 bps	-	-	-	-	-	on	off	on
	2,400 bps	-	-	-	-	-	off	on	on
	1,200 bps	-	-	-	-	-	on	on	on

## For FP2/FP2SH

Set the transmission speed so that the "COM Port Baud Rate Setting" of system register 414 matches the external device connected to the COM. port. The default setting is "19200 bps".

## 3) Setting the use of the COM. port

Set system register 412 for serial transmission (general purpose port).
The use of the COM. port can be changed by executing an F144 (TRNS) instruction.

## 4) Setting the reception buffer: System register 417 and 418

All areas of the data register are initially set for use as the reception buffer. To change the reception buffer, set the starting area number in system register 417 and the size (number of words, Max. 1,024 words) in system register 418.
The reception buffer will be as follows:


## Program and operation during reception

Data sent from the external device connected to the COM port will be stored in the data register areas set as the reception buffer.

## Reception buffer



Area used for number of bytes received

Area used for storing received data (the circled numbers indicate the storing order)

Each time data is received, the amount of data received (number of bytes) is stored as a count in the leading address of the reception buffer. The initial value is zero.
The data received is stored in order in the reception data storage area beginning from the lower byte of the second word of the area.

## 1 <br> Example:

Reception of the eight characters A, B, C, D, E, F, G, and H (8 bytes of data) from an external device
The reception buffer is DT200 to DT204 in this example.
System register settings are as follows:

- System register 417: K200
- System register 418: K5



## Program

When reception of data from an external device has been completed, the reception completed flag (R9038) goes on and further reception of data is not allowed.
To receive more data, an F144 (TRNS) instruction must be executed to turn off the reception completed flag (R9038) and clear the byte number to zero.


To repeat reception only, set to K0.
R9038 will also go off when the number of transmission bytes is set and transmission is carried out.

## Operation

When the reception completed flag (9038) is off and data is sent from an external device, operation will proceed as follows. (After RUN, R9038 is off during the first scan.)

1) The data received is stored in order in the reception data storage area of reception buffer beginning from the lower byte of the second word of the area.
Start and end codes will not be stored.
With each one byte received, the value in the leading address of the reception buffer is incremented by 1 .

2) When an end code is received, the reception completed flag (R9038) goes on. After this, no further reception of data is allowed.
3) When an F144 (TRNS) instruction is executed, the reception completed flag (R9038) goes off and the number of received data bytes is cleared to zero. Further data received is stored in order in the reception data storage area beginning from the lower byte of the second word of the area.

Note
For repeated reception of data, refer to the following procedure 1) to 5).

1) Receive data
2) Reception completed (R9038: on, Reception: not allowed)
3) Process received data
4) Execute F144 (TRNS) instruction (R9038: off, Reception: enable)
5) Receive further data

Data send
(For MEWTOCOL master mode)

## Availability

## FPOR

FP-X: Ver 1.2 or more
FP $\Sigma$ : 32k

## Outline

Sends specified data to another PLC or computer from the serial port of the unit.

## Program example

Ladder Diagram			Boolean		
			Address		uction
Trigger			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F145   DT   DT   DT   K	R 0   (SEND)   10   20   0   100
S1 $\quad$ Starting 16-bit area for storing control data					
S2		Starting 16-bit area for storing source data (data area at the local unit)			
	D	16-bit area of destination to send (The device No. is fixed at 0).			
	N	Starting 16-bit address of the destination to send.			

## Operands

Operand	Relay				Timer/Counter		Register		Index   register   In (*1)	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD				K	H	
S1	A	A	A	A	A	A	A	A	N/A	A	A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	N/A	A	A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A	N/A
N	N/A	$\begin{gathered} \mathrm{A} \\ \text { (*2) } \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \text { (*2) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (* 2) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (* 2) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (* 2) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (* 2) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \text { (*2) } \end{gathered}$	N/A	N/A	N/A	A	A	A

N/A: Not Available
(*1) 10 to ID
(*2) It can be specified only for the FPOR, FPE V3.20 or later, FP-XV2.50 or later, however, an operation error will occur not a syntax error if K or H constant is specified as S 1 and D .

## Operation

- It is used to send commands to the serial port (COM1 or COM2) of the specified unit in the MEWTOCOL-COM mode connecting the unit that enables to receive the computer link command. Specify the computer link for the operation mode (system register setting) of the COM port to be used.
- The data of the local area specified by [S2](WXO) is written in the area of the remote unit specified by [D](DT100) and $[\mathrm{N}]$, according to the specification for the $2-$ word data stored in the control data with starting area specified by [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D).


## Specifications for each item

- The control data specified by [ S 1$][\mathrm{S} 1+1]$ is specified as follows.
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): Specifying transmission unit and transmission method
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

H0	,


Word unit	Specifies No. of transmission words
transmission	H001 to H1FB (1 to 507): when transmitting to Group A


Group A	FPE, FP-X, FPOR, FP2,   FP2SH, FP10SH
Group B	FP0, FP-e

available.
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

$\underbrace{}_{$|  Bit unit  |
| :--- |
|  transmission  |
|  Bit No. of remote  <br>  unit (H0 to HF)  |
| H 8 |$\underbrace{}_{$|  Bit No. of local  |
| :--- |
|  unit (H0 to HF)  |$} \text { H0 fixed }}$

* However, if either SV or EV is specified for the remote unit's device No. of [D](DT100), up to H19 (25) words is
[ $\mathrm{S} 1+1$ ]: Specifying the remote unit

(1) Specifying the transmission unit and transmission method [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D)

If data is to be sent in word units, specify the data volume, and if it is to be sent in bit units, specify the position of the target bit.
(2) Specifying the remote unit [ $\mathrm{S} 1+1$ ]

Specify the remote unit with the unit number. When H0O, it is global transmission. (No response)
Specify either the COM1 or COM2 port from which data is transmitted to the remote unit.
Specify H 1 if only one COM port is available.
(3) Specify the area of the local unit by [S2](WXO) in which the data to be transmitted is stored

Specify the memory area of the local unit in which the data to be transmitted is stored.
(4) Specify the area of the remote unit for storing by [D](DT100) and [N](K1).

Specify 0 for the device No. of [D](DT100).
Specify the memory area of the remote unit in which the data to be transmitted is stored, specifying the type $D$ and the address N in combination.


For the FPOR, FPE V3.20 or later, FP-X V2.50 or later, transmission can be performed without checking when DT0 or LDO is specified for $D$, and H constant is specified for N .
(Example) In case of DT0 and HFFFF, it is possible to access DT63353. It is convenient to access the data registers of an eco-power meter KW8M.

- The MEWTOCOL-COM command is created according to the operands specified by [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D),[S1+1], [S2](WXO), [D](DT100), and [N](K1).


## Flag conditions

$\Sigma$ Error flag (R9007) : Turns on and stays on when:
$\Sigma$ Error flag (R9008): Turns on for an instant when:

- The control data of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and [S1+1] is a value outside of the specified range.
- The number of words specified by S1 causes the area of S2 or D to be exceeded when word unit transmission is being used.
$-[D]+[N]$ exceeds the area of [D](DT100).
- The operation mode for the target COM port is other than compute link.
- Word unit

If [ D$]$ is $\mathrm{DT} / \mathrm{LD}$, it turns on when $[\mathrm{N}]$ is not 0 to 32767.
If [ D$]$ is WY/WR/WL/SV/EV, it turns on when $[\mathrm{N}]$ is not 0 to 9999.

- Bit unit

It turns on when [D](DT100) is not WY/WR/WL.
It turns on when $[\mathrm{N}]$ is not 0 to 999.

- The device No. of [D](DT100) is not 0 .
- The communication cassette has not been installed for the target COM port.


## Precautions during programming

- Specify the computer link for the operation mode (system register setting) of the COM port to be used.
- It is not possible to execute multiple F145 (SEND) instructions and F146 (RECV) instructions for the same communication port simultaneously.
The program should be set up so that these instructions are executed when the SEND/RECV execution enabled flag (R9044: COM1/R904A: COM2) is on.

R9044   (COM1)	0: Execution inhibited (SEND/RECV instruction being executed)   1: Execution enabled
R904A	0: Execution inhibited (SEND/RECV instruction being executed)
(COM2)	1: Execution enabled

- The SEND instruction only requests that the data be sent, but the actual processing takes place when the ED instruction is executed.
The SEND/RECV execution end flag (R9045: COM1/R904B: COM2) can be used to check whether or not the transmission has been completed.

R9045   (COM1)	0: Completed normally   1: Completed with error (The error code is stored in DT90124.)
DT90124   (COM1)	If the transmission has been completed with an error (R9045 is on), the contents of the error (error   code) are stored.
R904B   (COM2)	0: Completed normally   1: Completed with error (The error code is stored in DT90125.)
DT90125   (COM2)	If the transmission has been completed with an error (R904B is on), the contents of the error (error   code) are stored.

For information on the contents of error codes, refer to the manual. If the error code is H 73 , a communication time-out error has occurred.
The time-out time can be changed within a range of 10.0 ms to 81.9 seconds (in units of 2.5 ms ), using the setting of system register 32.
The default value is set to 10 seconds.

Error code (HEX)	Description
73	Time-out: Waiting for response

- For global transmission (the transmission performed by specifying H0O for the unit No.), the program should be set up so that the transmission is executed after a time of at least the maximum scan time elapsed.
- The F145 or F146 instruction cannot be executed if the target is a special internal relay (from R9000) or a special data register (from DT9000) or file register FL.

Availability
FPOR/FP-X
FP $\Sigma: 32 \mathrm{k}$

## Outline

Sends specified data to another PLC or computer from the serial port of the unit.

## Program example

Ladder Diagram			Boolean		
			Address		uction
Trigger			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F145 } \\ & \text { DT } \\ & \text { DT } \\ & \text { DT } \\ & \text { K } \end{aligned}$	
	S1	Starting 16-bit area for storing control data			
	S2	Starting 16-bit area for storing source data (data area at the local unit)			
	D	$16-$ bit area of destination to send (The device No. is fixed at 0).			
	N	Starting 16-bit address of the destination to send.			

## Operands

Operand	Relay				Timer/Counter		Register		$\begin{gathered} \hline \begin{array}{c} \text { Index } \\ \text { register } \end{array} \\ \hline \text { In (*1) } \end{gathered}$	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD				K	H	
S1	A	A	A	A	A	A	A	A	N/A	A	A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	N/A	A	A	N/A	N/A	A
D	N/A	A	A	N/A	N/A	N/A	A	N/A						
N	N/A	$\begin{gathered} \text { A } \\ (* 2) \end{gathered}$	$\begin{gathered} \text { A } \\ (* 2) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \text { (*2) } \end{gathered}$	$\begin{gathered} \text { A } \\ (* 2) \end{gathered}$	$\begin{gathered} \text { A } \\ (* 2) \end{gathered}$	$\begin{gathered} \text { A } \\ \text { (*2) } \end{gathered}$	$\begin{gathered} \text { A } \\ (* 2) \end{gathered}$	N/A	N/A	N/A	A	A	A

(*1) 10 to ID
(*2) It can be specified only for the FPOR, FPE V3.20 or later, FP-XV2.50 or later, however, an operation error will occur not a syntax error if K or H constant is specified as S 1 and D .

## Operation

- It is used to send commands to the serial port (COM1 or COM2) of the specified unit in the MODBUS mode connecting the unit that enables to receive the MODBUS command. (MODBUS command 05, 06, 15 and 16)
- The data of the local area specified by [S2](WXO) is written in the area of the remote unit specified by [D](DT100) and $[\mathrm{N}]$, according to the specification for the $2-$ word data stored in the control data with starting area specified by [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D).


## Specifications for each item

- The control data specified by [ S 1$][\mathrm{S} 1+1]$ is specified as follows.
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): Specifying transmission unit and transmission method
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

$\underbrace{$| HO | $\vdots$ |
| :---: | :---: |} Word unit Specifies No. of transmission words (H001 to H07F)

transmission *According to the restrictions on the MODBUS protocol.
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):


Bit unit transmis-Bit No. of remote
sion
unit ( H 0 to HF )

Bit No. of local
unit ( HO to HF )
[S1+1]: Specifying the remote unit

(1) Specifying the transmission unit and transmission method [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D)

If data is to be sent in word units, specify the data volume, and if it is to be sent in bit units, specify the position of the target bit.
*In word units, the maximum of 127 (7Fh) words can be transmitted as the transmission range is up to 254 bytes.
(2) Specifying the remote unit [ $\mathrm{S} 1+1$ ]

Specify the remote unit with the unit number. When H 00 , it is global transmission. (No response)
Specify either the COM1 or COM2 port from which data is transmitted to the remote unit.
Specify H 1 if only one COM port is available.
(3) Specify the area of the local unit by [S2](WXO) in which the data to be transmitted is stored

Specify the memory area of the local unit in which the data to be transmitted is stored.
(4) Specify the area of the remote unit for storing by $[\mathrm{D}]$ and $[\mathrm{N}]$.

Specify 0 for the device No. of [D](DT100).
Specify the memory area of the remote unit in which the data to be transmitted is stored, specifying the type $D$ and the address N in combination.
Example)
[D](DT100):DTO, [N](K1):K100
DT100

- The MODBUS command is created according to the operands specified by [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D),[S1+1], [S2](WXO), [D](DT100), and [ N ](K1).
When being transmitted in word units: The command 06 (DT1 word write), command 15 (Y, R multi-points write) and command 16 (DT multi-words write) can be transmitted.
When being transmitted in bit units: The command 05 ( $\mathrm{Y}, \mathrm{R}$ single point write) can be transmitted. The transmission is executed adding the 2 bytes of CRC at the end after the MODBUS command has been created.


## Explanation of command

## Command 05 (Y, R single write) send

Example) When the value of the bit 0 of WR3 is transmitted to the 1 st bit of WY1 of the unit No. 7 in the remote unit from the COM1.
[ F145 (SEND), DT10, WR3, WY0, K1]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):
 DT10

Bit unit Bit No. of remote unit Bit No. of local unit transmission ( H 0 to HF ) ( HO to HF)
*Bit units (H8) should be specified for the transmission method of the [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) to send the command 05.

$[\mathrm{S} 1+1]: \underbrace{$| H 1 | H 0  fixed  | H 0 | H 7 |
| :---: | :---: | :---: | :---: |
|  Unit No. (H00 to H63)  <br>  (0 to 99)  |  |  |  | DT11}\(_{\substack{Selects COM port <br>

(H1 or H2)}}\)
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): DT10 (DT10=8100H, DT11=1007H)
[S2](WXO): WR3 (WR3=0007H)
[D](DT100): WYO
[N](K1): K1

	MODBUS commands		
	1	Slave address	07
	2	Command (05H)	05
Command		Coil No. (H)	00
	4	Coil No. (L)	11
	5	Setting status (H)	FF
onversion	6	Setting status (L)	00
the condition	7	CRC16 (H)	DC
	8	CRC16 (L)	59

* Reads a value of the bit 0 of WR3 and sets the condition by selecting ON or OFF.
Specify ON=FF00, OFF=0000.


## Command 06 (DT1 word write) send

Example) When the 1-word data of WR3 is transmitted to the DT1000 of the unit No. 7 in the remote unit from the COM1.
[ F145 (SEND), DT10, WR3, DT0, K1000]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

*Word units $(\mathrm{HO})$ for the transmission method of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and (H1) for No. of transmission words should be specified to send the command 06.

[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):DT10(DT10 = 0001H, DT11 = 1007H)
[S2](WXO):WR3(WR3=1234H)
[D](DT100) :DTO
[N](K1): K1000

* Reads the word data of WR3 and sets in the write data.

MODBUS commands

1	Slave address	07
2	Command (06H)	06
3	Starting No. of write (H)	03
4	Starting No. of write (L)	E8
5	Write data (H)	12
6	Write data (L)	34
7	CRC16 (H)	04
8	CRC16 (L)	AB

## Command 15 (Y, R multi-points write) send

Example) When the 64-bit data from the bit 0 of the WR3 to the bit F of the WR6 is transmitted to the W0 to Y3F of the unit No. 7 in the remote unit from the COM1.
[ F145 (SEND), DT10, WR3, WY0, K0]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

*Word unit $(\mathrm{HO})$ should be specified for the transmission method of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) to send the command 15.

[S1+1]:	H1	H0 fixed	H0	H7	
$\underbrace{}_{\text {Selects COM port }}$			Unit No. (H00 to H63) ( 0 to 99 )		

[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):DT10(DT10 $=0004 \mathrm{H}, ~$ DT11 $=1007 \mathrm{H}$ )
[S2](WXO):WR3(WR3 $=3210 \mathrm{H}$
WR4 $=7654 \mathrm{H}$
$W R 5=B A 98 H$ $W R 6=F E D C H)$
[D](DT100) :WYO
[N](K1):KO


Command conversion
*Specify the coil No. of the destination for the starting No. of status change. (Remote unit)
The quantity of changed coils is that the No. of write bits is changed to HEX.
Max. quantity of changed coils is 2032 (07FOH). (due to the restrictions on the MODBUS protocol) No. of data (No. of bytes) is calculated regarded 8 coils as 1 data (1 byte). (Max. 254 (FEH) bytes)

MODBUS commands

1	Slave address	07
2	Command (0FH)	OF
3	Starting No. of status change (H)	00
4	Starting No. of status change (L)	00
5	Quantity of changed coils (H)	00
6	Quantity of changed coils (L)	40
7	No. of data (No. of bytes)	08
8	Setting data 1	10
9	Setting data 2	32
10	Setting data 3	54
11	Setting data 4	76
12	Setting data 5	98
13	Setting data 6	BA
14	Setting data 7	DC
15	Setting data 8	FE
16	CRC16 (H)	6C
17	CRC16 (L)	B3

## Command 16 (DT multi-words write) send

Example) When the 3-word data from WR3 to WR5 is transmitted to DT500 to DT502 of the unit No. 7 of the remote unit.
[ F145 (SEND), DT10, WR3, DT0, K500 ]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

$\underbrace{$|  S0  | H 0 | H 0 | H 3 |
| :---: | :---: | :---: | :---: |
|  Specifies No. of transmission words  |  |  |  |
|  (H1 to H7F)  |  |  |  |}$_{$|  Word unit  |
| :--- |
|  transmission  |$}$ DT10

*Word units (H0) should be specified for the transmission method of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) to send the command 16.

[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):DT10(DT10 $=0003 \mathrm{H}, \mathrm{DT11}=1007 \mathrm{H})$
[S2](WXO):WR3(WR3 $=0011 \mathrm{H}$
$W R 4=2233 \mathrm{H}$
$W R 5=4455 \mathrm{H}$ )
[D](DT100) :DTO
[N](K1):K500

*Max. quantity of write registers is 127 (7FH) (due to the restrictions on the MODBUS protocol).
No. of data (No. of bytes) is calculated regarded No. of write registers as 2 bytes. (Max. 254 (FEH) bytes)

MODBUS commands

1	Slave address	07
2	Command (10H)	10
3	Starting No. of write (H)	01
4	Starting No. of write (L)	F4
5	No. of write registers (H)	00
6	No. of write registers (L)	03
7	No. of data (No. of bytes)	06
8	Write data 1 (H)	00
9	Write data 1 (L)	11
10	Write data 2 (H)	22
11	Write data 2 (L)	33
12	Write data 3 (H)	44
13	Write data 3 (L)	55
14	CRC16 (H)	5A
15	CRC16 (L)	E7

## Flag conditions

$\Sigma$ Error flag (R9007) : Turns on and stays on when:
$\Sigma$ Error flag (R9008) : Turns on for an instant when:

- The control data of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and [S1+1] is a value outside of the specified range.
- The number of words specified by S 1 causes the area of S 2 or D to be exceeded when word unit transmission is being used.
$-[D]+[N]$ exceeds the area of [D](DT100).
- The MODBUS mode has not been specified for the COM port of the control data specified by [S1+1].
- The area of [D](DT100) is DT in bit unit transmission.
- The device No. of [D](DT100) is not 0 .


## Precautions during programming

- It is not possible to execute multiple F145 (SEND) instructions and F146 (RECV) instructions for the same communication port simultaneously.
The program should be set up so that these instructions are executed when the SEND/RECV execution enabled flag (R9044: COM1/R904A: COM2) is on.

R9044   (COM1)	0: Execution inhibited (SEND/RECV instruction being executed)   1: Execution enabled
R904A   (COM2)	0: Execution inhibited (SEND/RECV instruction being executed)   1: Execution enabled

- The SEND instruction only requests that the data be sent, but the actual processing takes place when the ED instruction is executed.
The SEND/RECV execution end flag (R9045: COM1/R904B: COM2) can be used to check whether or not the transmission has been completed.

R9045   (COM1)	0: Completed normally   1: Completed with error (The error code is stored in DT90124.)
DT90124	If the transmission has been completed with an error (R9045 is on), the contents of the error (error   code) are stored.
(COM1)	0: Completed normally   R904B   (COM2)
DT90125 Completed with error (The error code is stored in DT90125.)   (COM2) Ifansmission has been completed with an error (R904B is on), the contents of the error (error   codered.	

For information on the contents of error codes, refer to the manual. If the error code is H 73 , a communication time-out error has occurred.
The time-out time can be changed within a range of 10.0 ms to 81.9 seconds (in units of 2.5 ms ), using the setting of system register 32.
The default value is set to 10 seconds.

Error code (HEX)	Description
73	Time-out: Waiting for response

- For global transmission (the transmission performed by specifying H0O for the unit No.), the program should be set up so that the transmission is executed after a time of at least the maximum scan time elapsed.
- The F145 or F146 instruction cannot be executed if the target is a special internal relay (from R9000) or a special data register (from DT9000).

Outline Sends specified data to another PLC or computer from the serial port of the unit.
Feature: Data can be transmitted with this instruction only.

## Program example



S1	Specification of transmission port, transmission command and destination unit   No.
S2	Starting 16-bit area for storing source data
D	Specification of MODBUS address
N	Specification of No. of data to be sent (No. of words or bits)

Operands

Operand	Relay				Timer/Counter		Register		Index register	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	In (*1)			K	H	
S1	A	A	A	A	A	A	A	A	N/A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	N/A	A	A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A	N/A
N	N/A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A	A

(*1) 10 to ID
A: Available
(*2) This instruction is available only for FPOR/FP $\Sigma$ V3.20 or later/FP-X V2.50 or later.

## Description

The send data specified by [S2](WXO) is sent to the MODBUS address specified by [D](DT100) with the MODBUS command by specifying the transmission port, transmission command (5 or 6) and destination unit number. (MODBUS commands 05, 06, 15 and 16)
The feature is that data can be transmitted with this instruction only.

## Specifications for each item

- [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): Specifying port number, transmission command and destination unit number
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

$\underbrace{$|  Specifies  <br>  transmission  <br>  command  |
| ---: | :---: |}$_{$|  Selects COM  |
| :--- |
|  port  |$}$

(1) Specifying COM port

Specify H 1 for COM 1 port, and H 2 for COM2 port.
If only one COM port is available, specify H 1 .
(2) Specifying transmission command.

H5 (HD) = Bit data/H6 (HE) = Word data
When specifying multiple points by [ N ](K1), the command is automatically converted to the command 15 or 16 for sending multiple bits or multiple words.
On V1.06 or later version of FPOR, the command for writing multiple points ( 0 F or 10) can be issued by specifying HD or HE even if 1 bit or 1 word is transferred.
(3) Specifying destination unit number

- Specify the area by [S2](WXO) in which the data to be transmitted is stored.

Specify the starting number of the operation memory of the local unit in which the data to be transmitted is stored.
This instruction can be executed even if the transmission command specified by [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and the device type in the remote unit differs.
That means the contents of DT can be transmitted by specifying the bit data, or the contents of WR can be transmitted by specifying the word data.
When the bit data is specified by [ S 1 ], data is always transmitted from the bit 0 .

- Specifying the MODBUS address of the remote unit where data is transmitted by [D](DT100).

Settable address: H0 to HFFFF

- Specifying the number of data transmitted by [N](K1)

Settable number of data
For bit data: Max. 2040 (07F8H)
For word data: Max. 127 (7FH)

## Explanation of command

## Command 05 (Coil single-point forcing)

Example) When the value of the bit 0 of WR3 is transmitted to the bit of the bit address H 7788 of the unit No. 7 from the COM1.
[ F145(SEND), H1507, WR3, H7788, K1]

\hline H 1 \& H 5 \& H 0 \& H 7 <br>
Unit No. (H00 to HFF)
\end{tabular}}$_{\text {Selects COM port }}$

[S2](WXO): WR3 $(W R 3=0007 \mathrm{H})$
[D](DT100): H7788
[N](K1): K1

	MODBUS commands		
		Slave address	07
Command conversion		Command ( 05 H )	05
		Coil No. (H)	77
		Coil No. (L)	88
	5	Setting status (H)	FF
	6	Setting status (L)	00
the condition		CRC16 (H)	17
		CRC16 (L)	C2

[^4]MODBUS commands

## Command 06 (Register single preset)

Example) When the 1-word data of WR3 is transmitted to the address H 7788 of the unit No. 7 from the COM1.
[ F145(SEND), H1607, WR3, H7788, K1]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

$\underbrace{$| H 1 | H 6 | H 0 | H 7 |
| :---: | :---: | :---: | :---: |
|  Unit No. (H00 to HFF)  |  |  |  |}$_{\text {Selects COM port }}$

[S2](WXO):WR3(WR3 = 1234H)
[D](DT100) :H7788
[N](K1) :K1


* Reads the word data of WR3 and sets in the write data.

MODBUS commands	
1 Slave address	07
2 Command (06H)	06
3 Starting No. of write (H)	77
4 Starting No. of write (L)	88
5 Write data (H)	12
6 Write data (L)	34
7 CRC16 (H)	53
8 CRC16 (L)	C2

## Command 15 (Multi-point coil forcing)

Example) When the 64-bit data from the bit 0 of the WR3 to the bit F of the WR6 is transmitted to the bit address H 7788 of the unit No. 7 from the COM1.
[ F145(SEND), H1507, WR3, H7788, K64 ]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

H 1	H 5	H 0	H 7
Selects COM port	$\underbrace{}_{\text {Unit No. (H00 to HFF) }}$		

[S2](WXO):WR3 (WR3 $=3210 \mathrm{H}$

$$
\begin{aligned}
& \text { WR4 }=7654 \mathrm{H} \\
& W R 5=B A 98 \mathrm{H} \\
& W R 6=F E D C H
\end{aligned}
$$

[D](DT100) :H7788
[N](K1) :K64

* When specifying multiple points by [ N ](K1), the command is automatically corrected.
H 5 bit single write $=>\mathrm{H} 15$ bit multiple write The starting No. of status change is H 7788 . (Remote unit) The quantity of changed coils is that the No. of write bits is changed to HEX.
Max. quantity of changed coils is 2040 (07F8H). (due to the restrictions on the MODBUS protocol) No. of data (No. of bytes) is calculated regarded 8 coils as 1 data ( 1 byte). (Max. 255 (FFH) bytes)

MODBUS commands

1	Slave address	07
2	Command (0FH)	0F
3	Starting No. of status change (H)	77
4	Starting No. of status change (L)	88
5	Quantity of changed coils (H)	00
6	Quantity of changed coils (L)	40
7	No. of data (No. of bytes)	08
8	Setting data 1	10
9	Setting data 2	32
10	Setting data 3	54
11	Setting data 4	76
12	Setting data 5	98
13	Setting data 6	BA
14	Setting data 7	DC
15	Setting data 8	FE
16	CRC16 (H)	3B
17	CRC16 (L)	65

## Command 16 (Multi-point register preset) send

Example) When the 3-word data from DT3 to DT5 is transmitted to the address H7788 of the unit No. 7 from the COM1 port.
[ F145(SEND), H1607, DT3, H7788, K3 ]

\hline H 1 \& H 6 \& H 0 \& H 7 <br>
Unit No. (H00 to HFF)
\end{tabular}}$_{\text {Selects COM port }}$

[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) : H1607
[S2](WXO) : DT3 (DT3=0011H
DT4 $=2233 \mathrm{H}$
DT5 $=4455 \mathrm{H}$ )
[D](DT100): H7788
[N](K1): K3


* When specifying multiple points by [ N ](K1), the command is automatically corrected.
* Max. quantity of write registers is 127 (7FH). (due to the restrictions on the MODBUS protocol) No. of data (No. of bytes) is calculated regarded No. of write registers as 2 bytes. (Max. 254 (FEH) bytes)

MODBUS commands

		Slave address
2	Command (10H)	07
3	Cor	Starting No. of write (H)
4	77	
5	Starting No. of write (L)	88
6	No. of write registers (H)	00
7	No. of write registers (L)	03
8	No. of data (No. of bytes)	06
9	Write data 1 (H)	00
10	Write data 1 (L)	Write data 2 (H)
11	Write data 2 (L)	22
12	Write data 3 (H)	33
13	Write data 3 (L)	BA
14	CRC16 (H)	2 C
15	CRC16 (L)	

## Flag conditions

$\Sigma$ Error flag (R9007) :
$\Sigma$ Error flag (R9008) :

- Turns on when the control data of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) is a value outside of the specified range.
- Turns on when the MODBUS mode has not been specified for the COM port of the control data specified by [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D).
- Turns on when the number of transmission data is 0 .
- Turns on when the number of transmission data is negative.
- Turns on when the number of transmission data [ N ](K1) exceeds the operation memory area specified by [S2](WXO).
- Turns on when the number of transmission data [ N ](K1) exceeds the limit of the MODBUS specifications.


## Precautions during programming

- It is not possible to execute multiple F145 (SEND) instructions and F146 (RECV) instructions for the same communication port simultaneously.
The program should be set up so that these instructions are executed when the SEND/RECV execution enabled flag (R9044: COM1/R904A: COM2) is on.

R9044   (COM1)	0: Execution inhibited (SEND/RECV instruction being executed)   1: Execution enabled
R904A	0: Execution inhibited (SEND/RECV instruction being executed)
(COM2)	1: Execution enabled

- The SEND instruction only requests that the data be sent, but the actual processing takes place when the ED instruction is executed.
The SEND/RECV execution end flag (R9045: COM1/R904B: COM2) can be used to check whether or not the transmission has been completed.

R9045   (COM1)	0: Completed normally   1: Completed with error (The error code is stored in DT90124.)
DT90124	If the transmission has been completed with an error (R9045 is on), the contents of the error (error   (COM1)   code) are stored.
R904B   (COM2)	0: Completed normally   1: Completed with error (The error code is stored in DT90125.)
DT90125   (COM2)	If the transmission has been completed with an error (R904B is on), the contents of the error (error   code) are stored.

If the error code is H 73 , a communication time-out error has occurred.
The time-out time can be changed within a range of 10.0 ms to 81.9 seconds (in units of 10 ms ), using the setting of system register 32.
The default value is set to 10 seconds.

Error code (HEX)	Description
73	Time-out: Waiting for response

- For global transmission (the transmission performed by specifying H0O for the unit No.), the program should be set up so that the transmission is executed after a time of at least the maximum scan time elapsed.
- The F145 or F146 instruction cannot be executed if the target is a special internal relay (from R9000) on a special data register (DT90000).

High-level Instructions

## F145 (SEND)

P145(PSEND)

## Data send (MEWNET link)

Outline Sends data to another station through link modules in the network.

## Program example

Ladder Diagram			Boolean		
			Address	Ins	uction
Trigger			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F145 } \\ & \text { DT } \\ & \text { DT } \\ & \text { DT } \\ & \text { K } \end{aligned}$	$\begin{array}{rr} \text { R } & 0 \\ \text { (SEND) } \\ 10 \\ 20 \\ & 0 \\ 100 \end{array}$
	S1	Starting 16-bit area for storing control data			
	S2	Starting 16-bit area for storing source data (data area at the local station)			
	D	Type of destination operands for storing data in the remote station. Be sure to select the area by setting address 0 (destination data area at another station).			
	N	Starting 16-bit area address for the destination operand specified in D above (destination data area in another station).			

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	IX	IY	K	H	
S1	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A
N	N/A	A	A	A										

A: Available N/A: Not Available

## Explanation of example

(1) Example of word unit transmission

When the control data is as follows:

the 5 words of data from DT20 to DT24 are sent to DT100 to DT104 of unit No. 10, which is connected to route No. 1, when the execution condition (trigger) R0 turns on.
(2) Example of bit unit transmission

When the control data is as follows:


DT11 (S1+1) =H010A


Unit No. 10
Route No. 1
the on and off information of Bit No. 13 of DT20 is sent to Bit No. 5 of DT100 of Unit No. 10, which is connected to route No. 1, when the execution condition (trigger) R0 turns on.

If the network is configured only of the FP2, FP2SH, and FP10SH, specifying [FF] (HFF) for the unit number sends the same contents to all of the link stations on the same network.

## Description

This sends the local station data for the area specified by S 2 to the areas specified by the D and N of the remote stations connected with the MEWNET-W, MEWNET-P, and MEWNET-H.
The remote stations (routes and unit numbers), the transmission unit (bit unit or word unit), the transmission method, and other parameters are specified by the control data S1.


The remote station is specified by S 1 .
If general-purpose communication through the COM. port of the FP2, FP2SH, and FP10SH is being used, F144 (TRNS) instruction is used instead of this instruction.
Refer to the section describing the F144 (TRNS) instruction.

## Specifying the various items

## Control data (S1)

Specifying the remote station
Specify the remote station by means of a route number and unit number.
The setting is entered differently depending on whether the remote station is a PLC in the same network, or a PLC in a network on a different hierarchical level.

Specifying the transmission unit and transmission method
If data is to be sent in word units, specify the data volume, and if it is to be sent in bit units, specify the position of the target bit.

## Specifying the memory area of the local station (S2)

Specify the memory area of the local station in which the data to be transmitted is stored.

## Specifying the memory area of the remote station (D) and (N)

Specify the memory area of the remote station in which the data to be transmitted is stored, specifying the type D and the address N in combination.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The control data is a value outside of the specified range.
- The remote station does not exist.
- The number of words specified by S1 causes the area of S2 or D to be exceeded when word unit transmission is being used.


## Transmitting to a PLC within the same network

Specifying the control data ( $\mathrm{S} 1+1, \mathrm{~S} 1$ )
The control data should be specified as an H constant. The transmission unit, transmission method and other parameters are specified with S 1 , and the remote station is specified with $\mathrm{S} 1+1$.

$\overbrace{$|  Specifying the  |
| :--- |
|  remote station  |}$^{$|  Specifying the  <br>  transmission unit and  <br>  method  |
| :--- |
|  m1+1  |,$}$

## (1) Specifying word unit transmission

If word unit transmission is being used, the data for the specified number of words is sent from the memory area of the local station specified by S 2 , and is stored at the beginning of the memory area of the remote station specified by D and N .
If only the MEWNET-H network is being used, up to 1,020 words can be sent at one time, and if the network is using the MEWNET-P or MEWNET-W, up to 16 words can be sent at one time.


## y

## Example:

## If 10 words of data are being sent, K10(H000A) should be specified in S1.

## (2) Specifying bit unit transmission

If bit unit transmission is being used, the information of the specified bit in the memory area of the local station specified by S 2 is sent to the specified bit of the memory area of the remote station specified by D and N .


Example:
If the data of Bit No. 15 of the local station memory area is being sent to Bit No. 0 of the memory area in the remote station, H800F should be specified in S1.
(3) Specifying the remote station (common to both word/bit transmission)


The unit number should be converted to a hexadecimal number and specified.

- For MEWNET-W: H01 to H2O (1 to 32)
- For MEWNET-P: H01 to H3F (1 to 63)
- For MEWNET-H: H01 to H40 (1 to 64)


## Sending data to a PLC on a different hierarchical level

## What is a hierarchical link?

A hierarchical link functions as a relay station between two link units installed on the same backplane, enabling communication between CPUs belonging to different networks.

## Example: Communicating with a CPU at depth 1



In this way, by passing data through a relay station, communication is possible to a depth of 3 .

## Note

When using the MEWNET-P and MEWNET-W, data can only be relayed one network deeper in the hierarchy.

Example: Communicating with a CPU at depth 3 (sending data from CPU1 to CPU5)


The numbers CPU1 to CPU5 have been temporarily assigned, for the purpose of indicating the relay order of the hierarchical links.

## Specifying the control data (S1)

The control data should be specified as an H constant.
The transmission unit, transmission method and other parameters are specified with S1, and the remote station is specified with $\mathrm{S} 1+1$ and subsequent parameters (the relay source unit, relay destination unit, and unit targeted for communication). (depth +3 ) words are required.

Example: Control data when specifying a remote station which is at depth 3

——: Same network
-------:Same backplane
The relay source is specified by a unit No. in the network, and the relay destination is specified by a route number on the backplane.

## (1) Specifying word unit transmission

If word unit transmission is being used, the data for the specified number of words is sent from the memory area of the local station specified by S 2 , and is stored starting from the beginning of the memory area of the remote station specified by D and N .
If only the MEWNET-H network is being used, up to 1,020 words can be sent at one time, and ifthe network is using the MEWNET-P and MEWNET-W, up to 16 words can be sent at one time.


## $\stackrel{y}{c}$ <br> Example:

## If 10 words of data are being sent, K10(H000A) should be specified in S1.

## (2) Specifying bit unit transmission

If bit unit transmission is being used, the information of the specified bit in the memory area of the local station specified by S 2 is sent to the specified bit of the memory area of the remote station specified by D and N .


## Example:

If the data of Bit No. 15 of the local station memory area is being sent to Bit No. 0 of the memory area in the remote station, H800F should be specified in S1.
(3) Specifying the remote station (common to both word/bit transmission)
(1) Specifying the route No. and depth

S1+1:

(2) Specifying the relay station
$\mathrm{S}+1$ should be used to specify only the specified amount of depth, while ( $\mathrm{S} 1+3$ ) is used to specify depth 2 for the same item, and ( $\mathrm{S} 1+4$ ) is used to specify depth 3.

S1+2:

(3) Specifying the remote station

This should be specified right after the specification of the relay station.


Example: When using the program example shown on page 3-339 In this example, the 5 words of data from DT20 to DT24 of the local station (CPU1) are sent to DT100 and subsequent addresses of the CPU (CPU5) shown below.

## Connection diagram



In this example, the control data beginning with DT10 (depth $3 \rightarrow 6$ words) should be specified as shown below. To send the 5 words of data $\rightarrow$ DT10 $=\mathrm{H} 0005$


## Precautions during programming

It is not possible to execute multiple F145 (SEND) instructions and F146 (RECV) instructions at the same time.
The program should be set up so that these instructions are executed when the MEWNET send/receive execution enabled flag (R9030) is on.

R9030	0: Execution inhibited (F145 (SEND)/F146 (RECV) instruction being executed)   1: Execution enabled

The F145 (SEND) instruction only requests that the data be sent, but the actual processing takes place when the ED instruction is executed. The MEWNET send/receive completed flag (R9031) can be used to check whether or not the transmission has been completed.

R9031	0: Completed normally   1: Completed with error (The error code is stored in DT9039.)
DT9039   (DT90039)	If the transmission has been completed with an error (R9031 is on), the contents of the error (error   code) are stored.

For information on the contents of error codes, refer to the manual for that particular link unit. If the error code is H 71 to H 73 , a communication time-out error has occurred. The time-out time can be changed within a range of 10.0 ms to 81.9 seconds (in units of 10 ms ), using the setting of system register 32 . The default value is set to 10 seconds for FP2/FP2SH/FP10SH.

Error code (HEX)	Description
H71	Time out: Waiting for transmission answer
H72	Time-out: Waiting for transmission buffer to be emptied
H73	Time-out: Waiting for response

If there is any CPU other than the FP2SH and FP10SH connected to the network, global transmission (sending data using the HFF specification for the unit No.) should never be used.
The F145 (SEND) instruction cannot be executed if the target is a special internal relay (from R9000) or a special data register (from DT9000/DT90000).

## Additional information concerning the F145 (SEND) instruction

Sending the special data registers and special internal relays using the data transfer instruction
Special data registers and special internal relays cannot be sent using the F145 (SEND) instruction. Use a program like that shown below to send these types of data.
Sending FP2, FP2SH or FP10SH special data registers (source issuing the command: FP2/FP2SH/ FP10SH)
$10 \mid \underset{\sim}{\text { X10 }}$ - [F145 SEND, S, DT9****, DT0, Kn ] $\mid$

Sending special internal relays (source issuing the command: FP2/FP2SH/FP10SH)


## How to send FL (How to specify FL banks)

- How to specify the FL bank for destination units

The FL to communicate is specified like FL0 +H 10 . Specify FL1 + H10 to specify the FL of the bank 1 (FL2 + H10 for the bank 2)

- How to specify the FL bank for a local unit Normally, FLn is specified for the FL for the local unit. If specifying, the FL will be sent to the bank which has been selected in the execution of this instruction.


## Outline

Receives specified data from the serial port of another PLC or computer to the unit.

## Program example

Ladder Diagram			Boolean		
			Address		uction
Trigger			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F146   DT   DT   K   DT	$\begin{array}{r} \text { R } \quad 0 \\ \text { (RECV) } \\ \\ \\ \\ \\ \\ \\ \\ 10 \\ \\ \end{array}$
	S1	Starting 16-bit area for storing control data			
	S2	16-bit area of destination to receive (The device No. is fixed at 0).			
	N	Starting address of the destination to receive.			
	D	Starting 16-bit area address for storing data received (destination data area at local unit).			

## Operands

Operand	Relay				Timer/Counter		Register		Index register	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	In (*1)			K	H	
S1	A	A	A	A	A	A	A	A	N/A	A	A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A	N/A
N	N/A	$\begin{gathered} \text { A } \\ (* 2) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \text { (*2) } \end{gathered}$	$\begin{gathered} \text { A } \\ (* 2) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (* 2) \end{gathered}$	$\underset{(* 2)}{\text { A }}$	$\begin{gathered} \text { A } \\ (* 2) \end{gathered}$	$\begin{gathered} \text { A } \\ (* 2) \end{gathered}$	N/A	N/A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A	A
A: Available N/A: Not Availabl														

(*1) IO to ID
(*2) It can be specified only for the FPOR, FP V V3.20 or later, FP-XV2.50 or later, however, an operation error will occur not a syntax error if K or H constant is specified as S 1 and S 2 .

## Operation

- It is used to send commands to the serial port (COM1 or COM2) of the specified unit in the MEWTOCOL-COM mode connecting the unit that enables to receive the computer link command.
- The data is sent from the area of the remote unit specified by [S2](WXO) and [ N ](K1), and is stored in the area of the local unit that starts with [D](DT100), according to the specification for the 2-word data stored in the control data that starts with the area specified by [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D).


## Specifications for each item

The control data specified by [S1][S1+1] is specified as follows.
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): Specifying transmission unit and transmission method
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

H0	,
Word unit	Specifies No. of transmission words
transmission	H001 to H1FD (1 to 509 words): when transmitting to Group A
	H001 to H1B (1 to 27 words): when transmitting to Group B


Group A	FPD, FP-X, FPOR, FP2,   FP2SH, FP10SH
Group B	FPO, FP-e

[S1+1]: Specifying the remote unit

(1) Specifying the transmission unit and transmission method [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D)

If data is to be sent in word units, specify the data volume, and if it is to be sent in bit units, specify the position of the target bit.
(2) Specifying the remote unit [S1+1]

Specify the remote unit with the unit number.
Specify either the COM1 or COM2 port from which data is transmitted to the remote unit.
Specify H1 if only one COM port is available.
(3) Specifying the area of the remote unit which is received by [S2](WXO) and [ N ](K1).

Specify 0 for the device No. of [S2](WXO).
Specify the memory area of the remote unit in which the data to be transmitted is stored, specifying the type S2 and the address N in combination.
Example) [S2](WXO):DT0, [N](K1):K100
DT100

For the FPOR, FPE V3.20 or later, FP-X V2.50 or later, transmission can be performed without checking when DT0 or LDO is specified for D , and H constant is specified for N .
(Example) In case of DT0 and HFFFF, it is possible to access DT63353. It is convenient to access the data registers of an eco-power meter KW8M.
(4) Specifying the area of the local unit by [D](DT100) in which the data to be received is stored Specify the memory area of the local unit in which the data to be received is stored.

- The MEWTOCOL-COM command is created according to the operands specified by [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D),[S1+1], [S2](WXO), [D](DT100), and [N](K1).


## Flag conditions

$\Sigma$ Error flag (R9007): Turns on and stays on when
$\Sigma$ Error flag (R9008): Turns on for an instant when

- The control data of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and [S1+1] is a value outside of the specified range.
- The number of words specified by S1 causes the area of S2 or D to be exceeded when word unit transmission is being used.
$-[\mathrm{S} 2]+[\mathrm{N}]$ exceeds the area of [S2](WXO).
- The operation mode for the target COM port is other than compute link.
- Word unit

If [S2](WXO) is DT/LD, it turns on when [ N ](K1) is not 0 to 32767 .
If [S2](WXO) is WX/WY/WR/WL/SV/EV, it turns on when [ N ](K1) is not 0 to 9999.

- Bit unit

It turns on when [S2](WXO) is not WX/WY/WR/WL.
It turns on when [ N ](K1) is not 0 to 999.

- The device No. of [S2](WXO) is not 0 .
- The communication cassette has not been installed for the target COM port.


## Precautions during programming

- Specify the computer link for the operation mode (system register setting) of the COM port to be used.
- It is not possible to execute multiple F145 (SEND) instructions and F146 (RECV) instructions for the same communication port simultaneously.
The program should be set up so that these instructions are executed when the SEND/RECV execution enabled flag (R9044: COM1/R904A: COM2) is on.

R9044   (COM1)	0: Execution inhibited (SEND/RECV instruction being executed)   1: Execution enabled
R904A	0: Execution inhibited (SEND/RECV instruction being executed)   (COM2)

- The SEND instruction only requests that the data be sent, but the actual processing takes place when the ED instruction is executed.
The SEND/RECV execution end flag (R9045: COM1/R904B: COM2) can be used to check whether or not the transmission has been completed.

R9045   (COM1)	0: Completed normally   1: Completed with error (The error code is stored in DT90124.)
DT90124   (COM1)	If the transmission has been completed with an error (R9045 is on), the contents of the error (error   code) are stored.
R904B   (COM2)	0: Completed normally   1: Completed with error (The error code is stored in DT90125.)
DT90125   (COM2)	If the transmission has been completed with an error (R904B is on), the contents of the error (error   code) are stored.

For information on the contents of error codes, refer to the manual. If the error code is H 73 , a communication time-out error has occurred.
The time-out time can be changed within a range of 10.0 ms to 81.9 seconds (in units of 2.5 ms ), using the setting of system register 32.
The default value is set to 10 seconds.

Error code (HEX)	Description
73	Time-out: Waiting for response

- The F145 or F146 instruction cannot be executed if the target is a special internal relay (from R9000) or a special data register (from DT9000) or file register FL.


## Outline

Receives specified data from the serial port of another PLC or computer to the unit.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register		Index   register   In (*1)	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD				K	H	
S1	A	A	A	A	A	A	A	A	N/A	A	A	N/A	N/A	A
S2	A	A	A	A	N/A	N/A	A	A	N/A	N/A	N/A	N/A	N/A	N/A
N	N/A	$\begin{gathered} \text { A } \\ \text { (*2) } \end{gathered}$	$\begin{gathered} \text { A } \\ (* 2) \end{gathered}$	$\begin{gathered} \text { A } \\ \text { (*2) } \end{gathered}$	$\begin{gathered} \text { A } \\ (* 2) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (* 2) \end{gathered}$	$\begin{gathered} \text { A } \\ (* 2) \end{gathered}$	$\begin{gathered} \text { A } \\ (* 2) \end{gathered}$	N/A	N/A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A	A

(*1) 10 to ID
(*2) It can be specified only for the FPOR, FP V V3.20 or later, FP-XV2.50 or later, however, an operation error will occur not a syntax error if K or H constant is specified as S 1 and S 2 .

## Operation

- It is used to send commands to the serial port (COM1 or COM2) of the specified unit in the MODBUS mode connecting the unit that enables to receive the MODBUS command. (MODBUS command 01, 02,03 and 04)
- The data is sent from the area of the remote unit specified by [S2](WXO) and [ N ](K1), and is stored in the area of the local unit that starts with [D](DT100), according to the specification for the 2 -word data stored in the control data that starts with the area specified by [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D).


## Specifications for each item

The control data specified by [ S 1$][\mathrm{S} 1+1]$ is specified as follows.
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): Specifying transmission unit and transmission method
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):


Word unit Specifies No. of transmission words (H001 to H07F)
transmission *According to the restrictions on the MODBUS protocol.
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

[ $S 1+1]$ : Specifying the remote unit

(1) Specifying the transmission unit and transmission method [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D)

If data is to be sent in word units, specify the data volume, and if it is to be sent in bit units, specify the position of the target bit.

* For word units, the maximum of 127 (7Fh) words can be transmitted as the transmission range is up to 254 bytes.
(2) Specifying the remote unit [S1+1]

Specify the remote unit with the unit number.
Specify either the COM1 or COM2 port from which data is transmitted to the remote unit.
Specify H 1 if only one COM port is available.
(3) Specifying the area of the remote unit which is received by [S2](WXO) and [N](K1).

Specify 0 for the device No. of [S2](WXO).
Specify the memory area of the remote unit in which the data to be transmitted is stored, specifying the type S2 and the address N in combination.
Example) [S2](WXO):DT0, [N](K1):K100

(4) Specifying the area of the local unit by [D](DT100) in which the data to be received is stored

Specify the memory area of the local unit in which the data to be received is stored.

- The MODBUS command is created according to the operands specified by [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D),[S1+1], [S2](WXO), [D](DT100), and [N](K1).
When being transmitted in word units: The command 01 (Y, R coil read), command 02 (WL, LD read), command 03 (DT read) and command 04 (WL, LD read) can be transmitted.
When being transmitted in bit units: The command 01 ( $Y$, R coil read) and command 02 ( $X$ contact read) can be transmitted.
- The transmission is executed adding the 2 bytes of CRC at the end after the MODBUS command has been created.


## Explanation of command

## Command 01 (Y, R coil read) send

Example) When the 1 bit of Y 17 is readed from the unit No. 17 of the remote unit, and a command to transmit the readed bit data to the 5th bit of the DT100 in the local unit is sent from the COM1.
[ F146 (RECV), DT10, WY0, K1, DT100 ]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

$\underbrace{\text { H8 }}_{$|  Bit unit  |
| :--- |
|  transmission  |
|  Bit No. of local unit  |
|  H0 to HF)  |$}$

*Bit units (H8) should be specified for the transmission method of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) to read only 1 bit of data by the command 01.
\([\mathrm{S} 1+1]: \underbrace{\mathrm{H} 1}_{\substack{Selects COM port <br>

(H1 or H2)}} \mathrm{H} 0\) fixed $\underbrace{\mathrm{H} 1}_{$|  Unit No. (H01 to H63)  |
| :---: |
|  (1 to 99)  |$} \frac{\mathrm{H} 1}{}$ DT11

[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): DT10(DT10 $=8507 \mathrm{H}, \mathrm{DT} 11=1011 \mathrm{H}$ )
[S2](WXO): WYO
[N](K1) : K1
[D](DT100) : DT100

	1	Slave address	11
		Command (01H)	01
		Starting No. of read (H)	00
Command	4	Starting No. of read (L)	17
conversion	5	Quantity to read (H)	00
starting	6	Quantity to read (L)	01
	7	CRC16 (H)	DC
	8	CRC16 (L)	59

Example) When the 64 bits (4 words) of data from Y10 to Y4F is readed from the unit No. 17 of the remote unit, and a command data to the area starting with DT100 in the local unit is sent from the COM1.
[ F146 (RECV), DT10, WY0, K1, DT100 ]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

*Bit units (H0) should be specified for the transmission method of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) to read in word units by the command 01.

[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): DT10 (DT10 $=0004 \mathrm{H}, \mathrm{DT} 11=1011 \mathrm{H})$
[S2](WXO): WYO
[N](K1): K1
[D](DT100): DT100


MODBUS commands		
	Slave address	11
	Command (01H)	01
3	Starting No. of read (H)	00
4	Starting No. of read (L)	10
	Quantity to read (H)	00
6	Quantity to read (L)	40
7	CRC16 (H)	3 E
8	CRC16 (L)	AF

[^5]
## Command 02 ( $X$ contact read) send

Example) When the 1 bit of X 17 is readed from the unit No. 17 of the remote unit, and a command to transmit the readed bit data to the 5th bit of DT100 in the local unit is sent.
[ F146 (RECV), DT10, WX0, K1, DT100]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

*Bit units (H8) should be specified for the transmission method of the [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) to read only 1 bit of data by the command 02.

$[\mathrm{S} 1+1]: \underbrace{$| H 1 | H 0  fixed  | H 1 | H 1 |
| :---: | :---: | :---: | :---: |
| $\underbrace{(1 \text { to } 99)}_{\text {Unit No. (H01 to H63) }}$ |  |  |  |}$_{$|  Selects COM port  |
| :---: |
|  (H1 or H2)  |$}$ DT11

[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): DT10(DT10=8507H, DT11=1011H)

	MODBUS commands		
	1	Slave address	11
	2	Command (02H)	02
Command conversion	3	Starting No. of read (H)	00
	4	Starting No. of read (L)	17
	5	Quantity to read (H)	00
starting	6	Quantity to read (L)	01
	7	CRC16 (H)	OB
	8	CRC16 (L)	5E

Example) When the 64 bits ( 4 words) of data from X10 to X4F is readed from the unit No. 17 of the remote unit, and a command data to the area starting with DT100 in the local unit is sent from the COM1.
[ F146 (RECV), DT10, WX0, K1, DT100]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

$\underbrace{$| $\substack{\text { Specifies No. of transmission words } \\ \text { (H001 to H07F) }}$ |
| :---: | :---: | :---: | :---: |}$_{$|  Word unit  |
| :--- |
|  transmission  |$}$ DT10

*Bit units $(\mathrm{HO})$ should be specified for the transmission method of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) to read in word units by the command 02.
\([\mathrm{S} 1+1]: \underbrace{\mathrm{H} 1}_{\substack{Selects COM port <br>

(H1 or H2)}} \mathrm{H} 0\) fixed $\underbrace{\mathrm{H} 1}_{$|  Unit No. (H01 to H63)  |
| :---: |
|  (1 to 99)  |$} \frac{\mathrm{H} 1}{}$ DT11


	MODBUS commands		
	1	Slave address	11
	2	Command (02H)	02
	3	Starting No. of read (H)	00
Command	4	Starting No. of read (L)	10
conversion	5	Quantity to read (H)	00
starting	6	Quantity to read (L)	40
	7	CRC16 (H)	7A
f "No. of	8	CRC16 (L)	A0

*Specify the coil No. of the destination for the starting No. of read. (Remote unit: X10) The quantity to read should be the value of "No. of specified words $\times 16$ ". (64-bit read)

## Command 03 (DT read) send

Example) When the 6 words of data from DT500 to DT505 is readed from the unit No. 17 of the remote unit, and a command data to the area starting with DT100 in the local unit is sent from the COM1.
[ F146 (RECV), DT10, DT0, K500, DT100]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

*Word units $(\mathrm{HO})$ should be specified for the transmission method of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) to read in word units by the command 03.

[S1+1]:	H1	H0 fixed	H1	H1	DT11
Selects COM port			Unit No. (H01 to H63) (1 to 99)		

MODBUS commands
[S2](WXO): DT0
[N](K1): K500
[D](DT100): DT100


Selects COM port (H1 or H2) (1 to 99)


[^6]
## Command 04 (WL, LD read) send

Example) When the 6 words of data from WL20 to WL25 is readed from the unit No. 17 of the remote unit, and a command data to the area starting with DT100 in the local unit is sent from the COM1.
[ F146 (RECV), DT10, WL0, K20, DT100 ]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

*Word units $(\mathrm{HO})$ should be specified for the transmission method of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) to read in word units by the command 04.

[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): DT10 (DT10 $=0006 \mathrm{H}, \mathrm{DT} 11=1011 \mathrm{H}$ )
[S2](WXO): WLO
[N](K1): K20
[D](DT100): DT100

		MODBUS commands	
	1	Slave address	11
		Command (04H)	04
	3	Starting No. of read (H)	00
Command	4	Starting No. of read (L)	14
conversion	5	Quantity to read (H)	00
starting	6	Quantity to read (L)	06
	7	CRC16 (H)	32
pecified	8	CRC16 (L)	9C

[^7]Example) When the 6 words of data from LD100 to LD105 is readed from the unit No. 17 of the remote unit, and a command data to the area starting with DT100 in the local unit is sent from the COM1.
[ F146 (RECV), DT10, LD0, K100, DT100]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

*Word units (H0) should be specified for the transmission method of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) to read in word units by the command 04.

[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): DT10 (DT10 $=0006 \mathrm{H}, \mathrm{DT} 11=1011 \mathrm{H}$ )
[S2](WXO): LD0
[N](K1): K100
[D](DT100): DT100

* Specify the data No. of the destination for the starting No. of read. (Remote unit: LD100)
The quantity to read should be the No. of specified words. (6-word read)
*For specifying LD, it should be from 07DOH (LDO).


## Flag conditions

$\Sigma$ Error flag (R9007): Turns on and stays on when
$\Sigma$ Error flag (R9008) : Turns on for an instant when

- The control data of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and [S1+1] is a value outside of the specified range.
- The number of words specified by S1 causes the area of S2 or D to be exceeded when word unit transmission is being used.
$-[\mathrm{S} 2]+[\mathrm{N}]$ exceeds the area of [S2](WXO).
- The MODBUS mode has not been specified for the COM port of the control data specified by [ $\mathrm{S} 1+1$ ].
- The area of [S2](WXO) is DT, WL and LD in the bit unit transmission.
- The device No. of [S2](WXO) is not 0 .


## Precautions during programming

- It is not possible to execute multiple F145 (SEND) instructions and F146 (RECV) instructions for the same communication port simultaneously.
The program should be set up so that these instructions are executed when the SEND/RECV execution enabled flag (R9044: COM1/R904A: COM2) is on.

R9044   (COM1)	0: Execution inhibited (SEND/RECV instruction being executed)   $1:$ Execution enabled
R904A   (COM2)	0: Execution inhibited (SEND/RECV instruction being executed)   1: Execution enabled

- The SEND instruction only requests that the data be sent, but the actual processing takes place when the ED instruction is executed.
The SEND/RECV execution end flag (R9045: COM1/R904B: COM2) can be used to check whether or not the transmission has been completed.

R9045   (COM1)	0: Completed normally   1: Completed with error (The error code is stored in DT90124.)
DT90124	If the transmission has been completed with an error (R9045 is on), the contents of the error (error   code) are stored.
(COM1)	0: Completed normally    R904B Completed with error (The error code is stored in DT90125.)
DT90125 If the transmission has been completed with an error (R904B is on), the contents of the error (error   (COM2) code) are stored.	

For information on the contents of error codes, refer to the manual. If the error code is H 73 , a communication time-out error has occurred.
The time-out time can be changed within a range of 10.0 ms to 81.9 seconds (in units of 2.5 ms ), using the setting of system register 32.
The default value is set to 10 seconds.

Error code (HEX)	Description
73	Time-out: Waiting for response

- The F145 or F146 instruction cannot be executed if the target is a special internal relay (from R9000) or a special data register (from DT9000).

Outline Receives specified data from the serial port of another PLC or computer to the unit.
Feature: Data can be transmitted with this instruction only.

## Program example

Ladder Diagram			Boolean		
			Address		uction
Trigger			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F146   DT   H   H   DT	
	S1	Starting 16-bit area for storing control data			
	S2	Specification of MODBUS address			
	N	No. of received data			
	D	Starting 16-bit area address for storing data received			

Operands

Operand	Relay				Timer/Counter		Register		Index   register   In (*1)	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD				K	H	
S1	A	A	A	A	A	A	A	A	N/A	A	A	A	A	A
S2	A	A	A	A	N/A	N/A	A	A	N/A	N/A	N/A	A	A	N/A
N	N/A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A	A
A: Available N/A: Not Available														

(*1) 10 to ID
(*2) This instruction is available only for FPOR/FP $\Sigma$ V3. 20 or later/FP-X V. 250 or later.

## Description

The data of the volume specified by [ N ](K1) is received form the MODBUS address specified by [ S 2 ] with the specification of the transmission port, transmission command (1 or 2) and destination unit number, and stored in the operation memory specified by [D](DT100).
MODBUS commands are transmitted. (MODBUS commands 01, 02, 03 and 04)
The feature is that data can be transmitted with this instruction only.

## Specifications for each item

[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): Specifying port number, transmission command and destination unit number
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

$\underbrace{$|  Specifies  <br>  transmission  <br>  command  |
| :--- | :--- |}$_{$|  Selects COM  |
| :--- |
|  port  |$}$

(1) Specifying COM port

Specify H1 for COM 1 port, and H2 for COM2 port.
If only one COM port is available, specify H 1 .
(2) Specifying transmission command.

Any one of $\mathrm{H} 1, \mathrm{H} 2, \mathrm{H} 3$ and H 4 can be specified.
(3) Specifying destination unit number

Numbers in the range of H1 to HFF can be specified.

- Specifying the MODBUS address of the destination unit where data is transmitted by [S2](WXO).

Settable address: H0 to HFFFF

- Specifying the number of data received by [ N ](K1)

Settable number of data
For bit data: Max. 2040 (07F8H)
For word data: Max. 127 (7FH)

- Specifying the area by [ D ](DT100) in which the data to be received is stored.

Specify the starting number of the operation memory of the destination unit in which the data to be received is stored.
This instruction can be executed even if the transmission command specified by [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and the device type in the destination unit differs.
That means the contents of DT can be transmitted by specifying the bit data, or the contents of WR can be transmitted by specifying the word data.
When the command 1 or 2 is specified, data is always stored from the bit 0 of [D](DT100).

## Explanation of command

## Command 01 (Coil status read)

Example) When 1 bit is read from the bit address H 7788 of the unit No. 17 connected to the COM1 and written in the bit of DT100 of the local unit.
[ F146(RECV), H1111,H7788, K1, DT100 ]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

$\underbrace{$| H 1 | H 1 | H 1 | H 1 |
| :---: | :---: | :---: | :---: |
|  Unit No. (H01 to HFF)  |  |  |  |}$_{\text {Selects COM port }}$

S1]:H1111
[S2](WXO):H7788
[ N$]: \mathrm{K} 1$
[D](DT100) :DT100


Example) When 64 bits (4 words) are read from the bit address H 7788 of the unit No. 17 connected to the COM1 and written in the bit 0 of DT100 of the local unit.
[ F146(RECV), H1111,H7788, K64, DT100]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):


MODBUS commands
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):H1111
[S2](WXO):H7788
[N](K1) :K64
[D](DT100) :DT100

	MODBUS commands	
	Slave address	11
2	Command (01H)	01
$\bigcirc 3$	Starting No. of read (H)	77
Command	Starting No. of read (L)	88
conversion 5	Quantity to read (H)	00
6	Quantity to read (L)	40
7	CRC16 (H)	A4
8	CRC16 (L)	F4

## Command 02 (Input status read)

Example) When 1 bit is read from the bit address H 7788 of the unit No. 17 connected to the COM1 and written in the bit of DT100 of the local unit.
[ F146(RECV), H1211,H7788, K1, DT100]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

$\underbrace{$| H 1 | H 1 | H 1 | H 1 |
| :---: | :---: | :---: | :---: |
|  Unit No. (H01 to HFF)  |  |  |  |}$_{\text {Selects COM port }}$

[N](K1) :K1
[D](DT100) :DT100

	MODBUS commands	
1	Slave address	11
2	Command (02H)	02
3	Starting No. of read (H)	77
Command	Starting No. of read (L)	88
conversion 5	Quantity to read (H)	00
6	Quantity to read (L)	01
7	CRC16 (H)	20
8	CRC16 (L)	C4

Example) When 64 bits (4 words) are read from the bit address H 7788 of the unit No. 17 connected to the COM1 and written in the bit 0 of DT100 of the local unit.
[ F146(RECV), H1211,H7788, K64, DT100 ]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

$\underbrace{$| H 1 | H 1 | H 1 | H 1 |
| :---: | :---: | :---: | :---: |
|  Unit No. (H01 to HFF)  |  |  |  |}$_{\text {Selects COM port }}$

[N](K1) :K64
[D](DT100) :DT100

MODBUS commands


## Command 03 (Holding register read)

Example) When 6 words are read from the address H 7788 of the unit No. 17 connected to the COM1 and written in the area starting with DT100 in the local unit.
[ F146(RECV), H1311,H7788, K6, DT100 ]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):

$\underbrace{$| H 1 | H 3 | H 1 | H 1 |
| :---: | :---: | :---: | :---: |}$_{\text {Selects COM port }}$

MODBUS commands
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):H1311
[S2](WXO):H7788
[N](K1) :K6
[D](DT100) :DT100


## Command 04 (Input register read)

Example) When 6 words are read from the address H 7788 of the unit No. 17 connected to the COM1 and written in the area starting with DT100 in the local unit.
[ F146(RECV), H1411,H7788, K6, DT100 ]
[S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D):H1411
[S2](WXO):H7788
[N](K1) :K6
[D](DT100) :DT100


## Flag conditions

$\Sigma$ Error flag (R9007) :
$\Sigma$ Error flag (R9008) :

- Turns on when the control data of [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) is a value outside of the specified range.
- Turns on when the MODBUS mode has not been specified for the COM port of the control data specified by [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D).
- Turns on when the number of received data N is 0 .
- Turns on when the number of received data is negative.
- Turns on when the number of received data [ N ](K1) exceeds the limit of the MODBUS specifications.
- Turns on when the number of received data [ N ](K1) exceeds the operation memory area specified by [D](DT100).


## Precautions during programming

- It is not possible to execute multiple F145 (SEND) instructions and F146 (RECV) instructions for the same communication port simultaneously.
The program should be set up so that these instructions are executed when the SEND/RECV execution flag (R9044: COM1/R904A: COM2) is on.

R9044	
(COM1)	0: Execution inhibited (SEND/RECV instruction being executed)   $1:$ Execution enabled
R904A	0: Execution inhibited (SEND/RECV instruction being executed)
(COM2)	1: Execution enabled

- The SEND instruction only requests that the data be sent, but the actual processing takes place when the ED instruction is executed.
The SEND/RECV execution end flag (R9045: COM1/R904B: COM2) can be used to check whether or not the transmission has been completed.

R9045   (COM1)	0: Completed normally   1: Completed with error (The error code is stored in DT90124.)
DT90124	If the transmission has been completed with an error (R9045 is on), the contents of the error (error   (COM1)   code) are stored.
R904B   (COM2)	0: Completed normally   1: Completed with error (The error code is stored in DT90125.)
DT90125   (COM2)	If the transmission has been completed with an error (R904B is on), the contents of the error (error   code) are stored.

If the error code is H 73 , a communication time-out error has occurred.
The time-out time can be changed within a range of 10.0 ms to 81.9 seconds (in units of 10 ms ), using the setting of system register 32.
The default value is set to 10 seconds.

Error code (HEX)	Description
73	Time-out: Waiting for response

- For global transmission (the transmission performed by specifying H0O for the unit No.), the program should be set up so that the transmission is executed after a time of at least the maximum scan time elapsed.
- The F145 or F146 instruction cannot be executed if the target is a special internal relay (from R9000) on a special data register (DT90000).

High-level Instructions

## F146(RECV)

146(PRECV)

## Data receive (MEWNET link)

Outline Receives data from another station through link units in the network.

## Program example

Ladder Diagram			Boolean		
			Address	Ins	uction
Trigger			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F146   DT   DT   K   DT	(RECV)   10   0   100   50
	S1	Starting 16-bit area for storing control data			
	S2	Type of source operands for storing data in the remote station. Be sure to select the area by setting address 0 (source data area at another station).			
	N	Starting 16-bit area address for the source operand specified in S2 above (source data area at another station).			
	D	Starting 16-bit area address for storing data received (destination data area at local station).			

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	IX	IY	K	H	
S1	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A
N	N/A	A	A	A										
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

A: Available
N/A: Not Available

## Explanation of example

(1) Example of word unit reception

When the control data is as follows:

the data from DT100 to DT104 of the unit No. 10 connected to route No. 1 is sent to DT50 to DT54 of the local station when the execution condition (trigger) R0 turns on.
(2) Example of bit unit reception

When the control data is as follows:

Bit unit $\quad$| Bit No. 13 of remote station's memory area |
| :--- |
| Bit No. 5 of local station's memory area |

DT11 (S1+1) =H010A 4

Unit No. 10
Route No. 1
the on and off information of Bit No. 13 of DT100 of the unit No. 10 connected to route No. 1 is sent to Bit No. 5 of DT50 when the execution condition (trigger) RO turns on.

## Description

This reads the data in the area specified by S 2 and N of a remote station connection with the MEWNET-W, MEWNET-P, MEWNET-H, and stores it in the area specified by D of the local station.
The remote stations (routes and unit numbers), the transmission unit (bit unit or word unit), the transmission method, and other parameters are specified by the control data S1.


The remote station is specified by S 1 .
If general-purpose communication through the COM. port of the FP2, FP2SH, and FP10SH is being used, F144 (TRNS) instruction is used instead of this instruction.
Refer to the section describing the F144 (TRNS) instruction.

## Specifying the various items <br> Control data (S1)

Specifying the remote station
Specify the remote station by means of a route number and unit number.
The setting is entered differently depending on whether the remote station is a PLC in the same network, or a PLC in a network on a different hierarchical level.

Specifying the transmission unit and transmission method
If data is to be received in word units, specify the data volume, and if it is to be received in bit units, specify the position of the target bit.

## Specifying the memory area of the remote station (S2) and (N)

Specify the memory area of the remote station in which the data being received is to be stored, specifying the type S2 and the address N in combination.

Example: S2: DT10, N: K100


## Specifying the memory area of the local station (D)

Specify the memory area of the local station in which the data received from the remote station is to be stored.

## Flag conditions

$\Sigma$ Error flag (R9007): Turns on and stays on when:
$\Sigma$ Error flag (R9008): Turns on for an instant when:

- The control data is a value outside of the specified range.
- Tthe remote station does not exist.
- The number of words specified by S1 causes the area of S2 or D to be exceeded when word unit reception is being used.


## Receiving from a PLC within the same network

Specifying the control data (S1+1, S1)
The control data should be specified as an H constant. The transmission unit, transmission method and other parameters are specified with S 1 , and the remote station is specified with $\mathrm{S} 1+1$.

$\overbrace{$|  Specifying the  |
| :--- |
|  remote station  |}$^{\text {S1+1 }}$| Specifying the <br> transmission unit and <br> method |
| :--- |
| S1 |

## (1) Specifying word unit reception

If word unit reception is being used, the data for the specified number of words is sent from the memory area of the remote station specified by S 2 and N , and is stored in the memory area of the local station that starts with D. If only the MEWNET-H network is being used, up to 1,020 words can be received at one time, and if the network is using the MEWNET-P/W, up to 16 words can be received at one time.

S1:


## Example:

## If 10 words of data are being received, $\mathrm{K} 10(\mathrm{HOOOA})$ should be specified in S1.

## (2) Specifying bit unit reception

When data is being sent in bit units, the information for the specified bit of the memory area of the remote station specified by S 2 and N is stored in the specified bit of the memory area of the local station specified by D.


## Example:

If the data from Bit No. 0 of the memory area in the remote station is being sent to Bit No. 15 of the local station memory area, H8F00 should be specified in S1.
(3) Specifying the remote station (common to both word/bit transmission)


The unit number should be converted to a hexadecimal number and specified.

- For MEWNET-W: H01 to H2O (1 to 32)
- For MEWNET-P: H01 to H3F (1 to 63)
- For MEWNET-H: H01 to H40 (1 to 64)


## Sending data from a PLC on a different hierarchical level

## What is a hierarchical link?

A hierarchical link functions as a relay station between two link units installed on the same backplane, enabling communication between CPUs belonging to different networks.

## Example: Communicating with a CPU at depth 1



In this way, by passing data through a relay station, communication is possible to a depth of 3.

## Note

When using the MEWNET-P and MEWNET-W, data can only be relayed one network deeper in the hierarchy.

Example: Communicating with a CPU at depth 3 (reception from CPU5 to CPU1)


The numbers CPU1 to CPU5 have been temporarily assigned, for the purpose of indicating the relay order of the hierarchical links.

## Specifying the control data (S1)

The control data should be specified as an H constant.
The transmission unit, transmission method and other parameters are specified with S1, and the remote station is specified with $\mathrm{S} 1+1$ and subsequent parameters (the relay source unit, relay destination unit, and unit targeted for communication). (depth +3 ) words are required.

Example: Control data when specifying a remote station which is at depth 3

S1	Specifying the transmission unit and method		CPU1	Specifying the remote station
[S1+1]	Local station	Depth (H03)		
[S1+2]	Relay source -	$\cdots$ Relay destination	CPU2	
[S1+3]	Relay source - -	- - Relay destination	CPU3	
[S1+4]	Relay source - -	- - Relay destination	CPU4	
[S1+5]	Remote station	H0O	CPU5	

___ Same network
-------: Same backplane
The relay source is specified by a unit No. in the network, and the relay destination is specified by a route number on the backplane.

## (1) Specifying word unit reception

If word unit reception is being used, the data for the specified number of words is sent from the memory area of the remote station specified by S 2 and N , and is stored in the memory area of the local station beginning with D. If only the MEWNET-H network is being used, up to 1,020 words can be received at one time, and if the network is using the MEWNET-P and MEWNET-W, up to 16 words can be received at one time.


## Example: If 10 words of data are being received, $\mathrm{K} 10(\mathrm{HOOOA})$ should be specified in S1.

## (2) Specifying bit unit reception

When data is being sent in bit units, the information for the specified bit of the memory area of the remote station specified by S 2 and N is stored in the specified bit of the memory area of the local station specified by D.

$\stackrel{y}{c}$
Example: If the data from Bit No. 0 of the memory area in the remote station is being sent to Bit 15 of the local station memory area, H8F00 should be specified in S 1 .
(3) Specifying the remote station (common to both word/bit transmission)
(1) Specifying the route No. and depth

(2) Specifying the relay station
$\mathrm{S}+1$ should be used to specify only the specified amount of depth, while ( $\mathrm{S} 1+3$ ) is used to specify depth 2 for the same item, and ( $\mathrm{S} 1+4$ ) is used to specify depth 3.
S1+2:

(3) Specifying the remote station

This should be specified right after the specification of the relay station.


Example: When using the program example shown on page 3-376. In this example, the data from DT100 to DT104 of the CPU (CPU5) is received in DT50 to DT54 of the local station (CPU1) shown below.

## Connection diagram



In this example, the control data beginning with DT10 (depth $3 \rightarrow 6$ words) should be specified as shown below. To receive the 5 words of data $\rightarrow$ DT10 $=\mathrm{H} 0005$


## Precautions during programming

It is not possible to execute multiple F145 (SEND) instructions and F146 (RECV) instructions at the same time.
The program should be set up so that these instructions are executed when the MEWNET send/receive execution enabled flag (R9030) is on.

R9030	0: Execution inhibited F145 (SEND)/F146 (RECV) instruction being executed)   1: Execution enabled

The F146 (RECV) instruction only requests that the data be received, but the actual processing takes place when the ED instruction is executed. The MEWNET send/receive completed flag (R9031) can be used to check whether or not the reception has been completed.

R9031	0: Completed normally   1: Completed with error (The error code is stored in DT9039.)
DT9039   (DT90039)	If the transmission has been completed with an error (R9031 is on), the contents of the error (error   code) are stored.

For information on the contents of error codes, refer to the manual for that particular link unit. If the error code is H 71 to H 73 , a communication time-out error has occurred. The time-out time can be changed within a range of 10.0 ms to 81.9 seconds (in units of 10 ms ), using the setting of system register 32 . The default value is set to 10 seconds for FP2/FP2SH/FP10SH.

Error code (HEX)	Description
H71	Time out: Waiting for transmission answer
H72	Time-out: Waiting for transmission buffer to be emptied
H73	Time-out: Waiting for response

The F146 (RECV) instruction cannot be executed if the target is a special internal relay (from R9000) or a special data register (from DT9000/DT90000).

## Additional information concerning the F146 (RECV) instruction

Receiving the special data registers and special internal relays using the data transfer instruction
Special data registers and special internal relays cannot be transferred using the F146 (RECV) instruction. Use a program like that shown below to receive these types of data.
Receiving special data registers in the FP2, FP2SH or FP10SH (source issuing the command: FP2/FP2SH/FP10SH)
$10 \left\lvert\, \begin{gathered}\text { X10 } \\ - \\ \\ \\ \\ \text { [F146 RECV, S, DT90000, Kn, DTO }] \mid\end{gathered}\right.$

Receiving special internal relays (source issuing the command: FP2/FP2SH/FP10SH)


## How to receive FL (How to specify FL banks)

- How to specify the FL bank for destination units

The FL to communicate is specified like FL0 + H10. Specify FL1 + H10 to specify the FL of the bank 1 (FL2 + H10 for the bank 2)

- How to specify the FL bank for a local unit Normally, FLn is specified for the FL for the local unit. If specifying, the FL will be received at the FL bank which has been selected in the execution of this instruction.

High-level Instructions

## F147 (PB) <br> Printout

Outline Outputs ASCII codes to the printer (for transistor output type only).

## Program example



## Operands

Operand	Relay				Timer/Counter		Register		Index   register		Constant		Index
	WX	WY	WR	WL   $(* 1)$	SV	EV	DT	LD   $(* 1)$	FL   $(* 2)$	I	K	H	
	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A
D	N/A	A	N/A										

(*1) This cannot be used with the FPO and FP-e.
(*2) This cannot be used with the FPO, FP-e, FPOR, FPE, FP-X.

A: Available
N/A: Not Available

## Explanation of example

The ASCII codes stored in data registers DT0 to DT5 are output through word external output relay WYO when trigger R10 turns on.

## Source: ASCII code for 12 character A, B, C, D, E, F, G, H, I and J

| Data register | DT5 |  | DT4 |  | DT3 |  | DT2 | DT1 | DT0 |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASCII HEX code | OD | OA | 4 A | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 |
| ASCII character | $\mathrm{C}_{\mathrm{R}}$ | LF | J | I | H | G | F | E | D | C | B | A |

## Destination <br> 



## Description

Outputs the ASCII codes for 12 characters stored in the 6 -word area specified by S through the word external output relay WY specified by D.


If the specified output is connected to a commercial printer, the characters corresponding to the output ASCII code are printed.
Only bit positions 0 to 8 of $W Y$ are used in the actual printout.


ASCII code is output in order starting from the lower byte of the starting area.
Be sure to set the control code ( LF and $\mathrm{C}_{\mathrm{R}}$ ) for the printer as the final word of the data.
Three scans are required for 1 character constant output. Therefore, 37 scans are required until 12 character constants are output. (See "Time chart")

## Precautions during programming

Multiple F147 (PR) instructions cannot be executed at the same time. The program should be set up so that the printout flag (R9033) is used during execution of F 147 (PR) instruction to inhibit simultaneous execution.
The ASCII code conversion instruction [F95 (ASC)] can be used to convert character constants (M) to ASCII codes.
Character constants (M) can be input only with programming tool software.
A transistor-type output unit/board is necessary.
When this instruction is executed, of the WY area specified by D , zero <off> is set for $\mathrm{Y} _9$ to $\mathrm{Y} _$_F.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The ending area for storing ASCII codes exceeds the limit.
- The trigger of another F147 (PR) instruction turns on while one F147 (PR) instruction is being executed.
- Printout flag (R9033): Turns on and stays on while a F147 (PR) instruction is being executed.


## Connection example



## Data setting

Example: ASCII code for 10 character A, B, C, D, E, F, G, H, I and J

Data register	DT5		DT4		DT3		DT2		DT1		DT0	
ASCII HEX code	OD	OA	4 A	49	48	47	46	45	44	43	42	
ASCII character	CR	LF	J	I	H	G	F	E	D	C	B	

## Time chart



## Using printer output during 8-point output

When only eight output points are being used, connections should be made as shown below, and the program should be set up so that the strobe signal is output from Y 7 .

## Connection example



## Program example



High-level Instructions

## F148(ERF)

## Self-diagnostic error set

## P148 (PERR)

Outline Sets the specified condition as a self-diagnostic error. For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P148 (PERR)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	IX	IY	K	H	
n	N/A	A	A	N/A										

## Explanation of example

The self-diagnosis error 100 is set when the execution condition (trigger) R0 turns on. For FPO/FP-e/FPOR/FPE/FP-X, the ERROR (ERROR/ALARM) LED on the control unit blinks and for FP2/FP2SH/FP10SH, ERROR LED on CPU lights, and operation stops.
(If a situation occurs in which you wish to set the self-diagnosis error 100, set up the program so that input R0 turns on.)
When the execution condition (trigger) R1 turns on, self-diagnostic errors of error codes 43 and higher are cleared.

## Description

Along with self-diagnostic error codes specified by $n$ being stored in the special data register DT9000 on DT90000, the self-diagnostic error flag (R9000) is turned on. Also, for FP0/FP-e/FP0R/FP $/$ /FP-X, the ERROR/ALARM on the control unit blinks and for FP2/FP2SH/FP10SH, ERROR LED on the CPU lights.
The specified value " $n$ " is what determines whether operation stops or continues when the instruction is executed.

"n" setting	Operation when error   occurs
K100 to K199	Operation stops
K200 to K299	Operation continues

If " n " is set to a value between K200 and K299, if several F148 (ERR) instructions are processed at one time, codes are received in sequential order, starting with the lowest number.
If " n " is set to 0 and the F 148 (ERR) instruction is executed, self-diagnostic errors with error codes of 43 and higher are cleared.

- For FPO/FP-e/FPOR/FP $/$ /FP-X, ERROR/ALARM LED: turned off
- For FP2/FP2SH/FP10SH, ERROR LED: turned off
- R9000, R9005, R9006, R9007, R9008: off
- DT9000, DT9017, DT9018: Cleared to 0

DT90000, DT90017, DT90018: Cleared to 0
F148 (ERR) instructions which specify the same error code can be notated in duplicate in the program.

## Confirmation of self-diagnostic error

Self-diagnostic errors are checked in the normal way.

FP0 C10, C14, C16,C32/FP-e	FP0 T32/FP0R/FP $\Sigma / F P-X /$   FP2/FP2SH/FP10SH
DT9000	DT90000
DT9017	DT90017
DT9018	DT90018

## Flag conditions

- Error flag (R9007): Turns on and stays on when the value of $n$ exceeds the limit of specified range "K0, or K100 to K299."
- Error flag (R9008): Turns on and stays on when the value of $n$ exceeds the limit of specified range "K0, or K100 to K299."

High-level Instructions

## F149 (MsG)

P149(PMSG)

## Message display

Outline Displays the message "specified character constant" on the programming tool.
For the FPOR/FP $\Sigma / F P-X / F P 0 / F P-e$, the $P$ type high-level instruction "P149 (PMSG)" is not available.

## Program example

Ladder Diagram	Boolean	
	Address	Instruction
	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST R 10   F149 (MSG)    M TEST PROGRAM


$\mathbf{S}$	Character constant for message

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant			Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	IX	IY	K	H	M	
S	N/A	A	N/A												
A: Available N/A: Not Availab															

## Explanation of example

Displays the message "TEST PROGRAM" on the programming tool when trigger R10 turns on.

## Description

This instruction is used for displaying message specified by S on the programming tool.
The character constants ( $M$ ) can be input only with programming tool software.
When the $\mathbf{F 1 4 9}$ (MSG) instruction is executed, the message flag (R9026) turns on and the message specified by S is set in special data registers DT9030 to DT9035/DT90030 to DT90035.
$\left.\begin{array}{|c|c|}\hline \text { Type } & \text { Special data register } \\ \hline \text { FP0 C10, C14, C16, C32/FP-e } & \text { DT9030 to DT9035 } \\ \hline \text { FP0 T32/FP0R/FP5/FP-X/ } \\ \text { FP2/FP2SH/FP10SH }\end{array}\right]$ DT90030 to DT90035

Once the message is set in the special data registers, the message cannot be changed even if the F149 (MSG) instruction is executed again.
To clear the message in the special data registers, click on the "Cancel" button on "Display PLC Message" screen using the programming tool software.

## Specifying Slot Numbers

## With the FP $\Sigma$

The slot numbers of target intelligent unit are allocated automatically, based on the installation position.


## With the FP2 and FP2SH

The slot numbers of the target intelligent unit are allocated automatically, based on the installation position.

Slot numbers are allocated in the order of the board number.
With 7-, 9-, and 12-module type boards, slot numbers are specified in the same way as with the 14-module type.


## With the FP3 and FP10SH

The slot numbers of the target intelligent unit are allocated automatically, based on the installation position.
Slot numbers are allocated in the order of the board number.
With 3-slot and 5-slot boards, slot numbers are specified in the same way as with 8-slot boards.


Data read from intelligent unit

Outline Reads data from the shared memory in an intelligent unit.

## Program example



Operands

Operand	Relay				Timer/Counter		Register		Index   register		Constant	Index   modifier	
	WX	WY	WR	WL	SV	EV	DT	LD	FL   (*1)	I			
	N/A	A	A	A									
S2	N/A	A	A	A									
$\boldsymbol{n}$	N/A	A	A	A									
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPD.

A: Available N/A: Not Available

## Explanation of example

Reads four words of data stored in the addresses starting from K19 to K22 of the intelligent unit shared memory (located in slot 3) and stores them in data registers DT0 to DT3 of CPU when trigger R10 turns on.


## Description

The n words of the data stored in the shared memory of the intelligent unit/board specified by S 1 is read from the address specified by S2, and is stored in the area specified by D of the CPU.

## Specifying the various items

## Specifying the slot number and bank number (S1)

Specify the slot in which the intelligent unit has been installed. If the memory has a bank, enter a specification that matches the bank number.

## Initial readout address of the shared memory for the intelligent unit (S2)

Specify this referring to the shared memory tables for the various intelligent units.
To specify address 2 , specify "K2".

## Number of words to be read ( $n$ )

Specify this using a K constant.
To read 10 words of data, specify "K10".

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The value of S1 exceeds the limit of specified range.
- The area specified using the index modifier exceeds the limit.
- The read data exceeds the area of $D$.


## Specifying S1 <br> Intelligent unit without bank

Specify the slot number in which the target intelligent unit has been installed.


## Intelligent unit with bank

Specify the slot number (H constant) in which the target intelligent unit has been installed, and the bank number (H constant).


Reference: Intelligent unit with bank

Name	Order No.
FP3 expansion data memory unit	AFP32091   AFP32092
FPE expansion data memory unit	AFPG201

High-level Instructions

## ETET (NRT)

P151(PWRT)

## Data write into intelligent unit

Outline Writes data into the shared memory in an intelligent unit.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{array}{\|c\|} \hline F L \\ (* 1) \end{array}$	I	K	H	
S1	N/A	A	A	A									
S2	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
n	N/A	A	A	A									
D	N/A	A	A	A									

(*1) This cannot be used with the FPE.
A: Available N/A: Not Available

## Explanation of example

Five words of data stored in data registers DT10 to DT14 of CPU are written into the addresses starting from K0 to K4 of the intelligent unit shared memory (located in slot 0 ) when trigger R10 turns on.


## Description

Writes $n$ words of the initial data from the area specified by S 2 of the CPU to the address specified by D of the shared memory of the intelligent unit specified by S1.

## Specifying the various items Specifying the slot number and bank number (S1)

Specify the slot in which the intelligent unit has been installed. If the memory has a bank, enter a specification that matches the bank number.

## Number of words to be written ( $n$ )

Specify this using a K constant.
To write 10 words of data, specify "K10".

## Initial address written to the shared memory of the intelligent unit (D)

Specify this referring to the table of shared memories for the various intelligent units.
To specify address 2 , specify "K2".

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The value of S1 exceeds the limit of specified range.
- The area specified using the index modifier exceeds the limit.
- The range of writing data exceeds the area specified using S2.


## Specifying S1

## Intelligent unit without bank

Specify the slot number in which the target intelligent unit has been installed.


## Intelligent unit with bank

Specify the slot number (H constant) in which the target intelligent unit has been installed, and the bank number (H constant).


Reference: Intelligent unit with bank

Name	Order No.
FP3 expansion data memory unit	AFP32091   AFP32092
FP乏 expansion data memory unit	AFPG201

## E152(RMRD)

## P152(PRMRD

## Data read from MEWNET-F slave station

Outline Reads data from the specified intelligent unit of the MEWNET-F slave station

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Indexregister register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	$\begin{gathered} \text { IX } \\ (* 1) \end{gathered}$	$\begin{gathered} \text { IY } \\ (* 2) \end{gathered}$	K	H	
S1	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) With the FP2, FP2SH, and FP10SH, this is I0 to IC.
A: Available
(*2) With the FP2, FP2SH, and FP10SH, this is ID.

N/A: Not Available

## Explanation of example

Ten words of data stored at address 0 to 9 in the shared memory of the intelligent unit of the slave station specified by DT0 and DT1 are read and the read data stored in data registers DT10 to DT19 of the master station "CPU" when R10 turns on.


## Description

This reads $n$ words of the data stored in the shared memory of the intelligent unit of the slave station on the MEWNET-F (remote I/O system) specified by S1 and S1+1 from the address specified by S2, and stores it in the area of the master station CPU specified by D.

## Specifying the various items

## Control data (S1)

Specify the master station number, slave station number, and slot number (and the bank number, if there is a bank), and specify the memory of the intelligent unit (for detailed information, refer to the following page).

## Initial readout address of the shared memory for the intelligent unit (S2)

Enter the specification, referring to the shared memory tables for the various intelligent units. To specify address 2 , specify "K2".

## Number of words to be read ( n )

Specify this using a K constant.
To read 10 words of data, specify "K10".

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The control data S1 exceeds the limit of specified range.
- No MEWNET-F master unit is found.
- The area specified using the index modifier exceeds the limit.
- The read data exceeds the area of $D$.


## Specifying control data (S1+1 and S1)

Specify the master station number and the slave station number with S1, and the slot number of the target intelligent unit with $\mathrm{S} 1+1$.
Intelligent unit without bank


Intelligent unit with bank


Reference: Intelligent unit with bank

Name	Order No.
FP3 expansion data memory unit	AFP32091   AFP32092

## Example of setting

When specifying the intelligent unit installed in slot number 0 of the No. 5 slave station on the path of the No. 1 master station, using the program example on page $3-401$, the program will be structured as follows.
$\left|\begin{array}{ll}\text { R10 } & {[\text { F0 MV, H0105, DT0 }]} \\ & {\left[\begin{array}{ll}\text { F0 MV, H 0, DT1 }]\end{array}\right.} \\ & {\left[\begin{array}{ll}\text { F152 RMRD, DT0, K0, K10, DT10 }\end{array}\right]}\end{array}\right|$

The control data is specified as shown below.
DT0=H0105 (master station No. 1 and slave station No.5)
DT1=H0 (slot 0)

## Precautions during programming

It is not possible to execute multiple F152 (RMRD) instructions and F153 (RMWT) instructions at the same time.
The program should be set up so that these instructions are executed when the F152 (RMRD)/F153 (RMWT) instruction execution enabled flag (R9035) is on.

R9035	0: Execution inhibited (RMRD/RMWT instruction being executed)   1: Execution enabled

The F152 (RMRD) instruction only enables a request to be accepted. The actual processing is carried out with the ED instruction. The F152 (RMRD)/F153 (RMWT) instruction completed flag (R9036) can be used to confirm whether or not the instruction has been executed.

R9036	0: Completed normally   1: Completed with error (The error code is stored in DT9036/DT90036)
DT9036   (DT90036)	If the transmission has been completed with an error (R9036 is on), the contents of the error (error   code) are stored.

Reference: The error codes stored in the DT9036/DT90036

Error code (HEX)	Description
H5B	Time-out error (no intelligent unit found at the specified location.)
H68	No memory error (no memory exists at the specified address.)
H71	Send answer time-out error
H72	Send buffer full time-out error
H73	Response time-out error

If the error code is H 71 to H 73 , a communication time-out error has occurred. The time-out time can be changed within a range of 10.0 ms to 81.9 s (in units of 10 ms ), using the setting of system register 32 . The default value is set to 2 seconds for FP3 and 10 seconds for FP2/FP2SH/FP10SH.

## Data write into MEWNET-F slave station

## Outline Writes data into the specified intelligent unit of the MEWNET-F slave station.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	$\underset{(* 1)}{\text { IX }}$	$\underset{(* 2)}{\text { IY }}$	K	H	
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A	A
D	A	A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) With the FP2, FP2SH, and FP10SH, this is I0 to IC.
(*2) With the FP2, FP2SH, and FP10SH, this is ID.

A: Available N/A: Not Available

## Explanation of example

Twenty words of data stored in data registers DT250 to DT269 of the master station "CPU" are written into the shared memory of the intelligent unit of slave station starting from address 500 to 519 specified by DT0 and DT1 when R10 turns on.


## Description

This writes the initial $n$ words of the data from the area specified by 22 of the CPU to the address specified by D of the shared memory of the intelligent unit of the slave station on the MEWNET-F (remote I/O system) specified by S 1 and $\mathrm{S} 1+1$.

## Specifying the various items

Control data (S1)
Specify the master station number, slave station number, and slot number (and the bank number, if there is a bank), and specify the memory of the intelligent unit (for detailed information, refer to the following page).

## Specifying the address of the shared memory (S2)

Enter the specification, referring to the shared memory tables for the various intelligent units.
To specify address 2 , specify "K2".

## Number of words to be write ( $n$ )

Specify this using a K constant.
To write 10 words of data, specify "K10".

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The control data S 1 exceeds the limit of specified range.
- No MEWNET-F master unit is found.
- The area specified using the index modifier exceeds the limit.
- The range of writing data exceeds the area of S2.


## Specifying control data (S1+1 and S1)

Specify the master station number and the slave station number with S1, and the memory of the target intelligent unit with $\mathrm{S} 1+1$.
Intelligent unit without bank


Intelligent unit with bank


Reference: Intelligent unit with bank

Name	Order No.
FP3 expansion data memory unit	AFP32091   AFP32092

## Example of setting

When specifying the intelligent unit installed in slot number 2 of the No. 10 slave station on the path of the No. 2 master station, using the program example on page $3-405$, the program will be structured as follows.
$\left\lvert\, \begin{aligned} \text { R10 } & {[\text { F0 MV, H020A, DT0 }] } \\ & {\left[\begin{array}{ll}\text { F0 MV, H 2, DT1 }]\end{array}\right.} \\ & {[\text { F153 RMWT, DT0, DT250, K20, K500 }] }\end{aligned}\right.$
The control data is specified as shown below.
DTO=H020A (master station No.2, slave station No.10)
DT1 $=\mathrm{H} 2$ (slot 2)

## Precautions during programming

It is not possible to execute multiple F152 (RMRD) instructions and F153 (RMWT) instructions at one time. The program should be set up so that these instructions are executed when the F152 (RMRD)/F153 (RMWT) instruction execution enabled flag (R9035) is on.

R9035	0: Execution inhibited (RMRD/RMWT instruction being executed)   1: Execution enabled

The F152 (RMRD) instruction only enables a request to be sent. The actual processing is carried out with the ED instruction. The F152 (RMRD)/F153 (RMWT) instruction completed flag (R9036) can be used to confirm whether or not the instruction has been executed.

R9036	0: Completed normally   1: Completed with error (The error code is stored in DT9036/DT90036)
DT9036   (DT90036)	If the transmission has been completed with an error (R9036 is on), the contents of the error (error   code) are stored.

Reference: The error codes stored in the DT9036/DT90036

Error code (HEX)	Description
H5B	Time-out error (no intelligent unit found at the specified location.)
H68	No memory error (no memory exists at the specified address.)
H71	Send answer time-out error
H72	Send buffer full time-out error
H73	Response time-out error

If the error code is H 71 to H 73 , a communication time-out error has occurred. The time-out time can be changed within a range of 10.0 ms to 81.9 s (in units of 10 ms ), using the setting of system register 32 . The default value is set to 2 seconds for FP 3 and 10 seconds for FP2/FP2SH/FP10SH.

Sampling start

Availability
FP2/FP2SH/FP10SH FP-X (V2.00 or more) FP $\Sigma$ (V3.10 or more)/FPOR

Outline Starts sampling data which is preset in trace memory.

## Program example



## Explanation of example

When the execution condition (trigger) R10 turns on, sampling of a relay (contact) and register registered in advance is carried out.


Registration of the data to be sampled, specification of the sampling method (such as the cable and the time interval), and specification of the sampling trace can be done using only the programming tool software.

## Description

During a sampling trace, sampling of the specified data (relay contacts and registers) is carried out, and the data contents at the time of sampling are stored in the sampling trace memory.
If the sampling trace settings and the startup have not been specified using the programming tool software, processing will not be carried out, even if the execution condition (trigger) is fulfilled.

## Sampling traces

This is a function which samples the on/off status of the registered relay and the data stored in the register, either periodically or when the appropriate conditions have been fulfilled, and stores the results in memory. It can be used to confirm changes in the data.
16 relays points and 3 words of registers can be set.

## Procedure for executing a sampling trace

1. Specify registration of the data to be sampled and the sampling method (such as the number of times or the time interval).
2. Indicate that the sampling trace is to begin.
3. Sampling is carried out.

Sampling can be carried out using with periodic sampling or sampling based on the F155 (SMPL) instruction.
4. Stops a sampling trace

Programming tool software online operation or executing the F156 (STRG) instruction applies a stop command trigger. (When a trigger is applied, sampling of the specified delay is carried out, and then sampling stops.) (The programming tool software can also be used to initiate a forced stop.)
5. The programming tool software can be used to read the sampling results from the CPU, and to monitor and confirm them.

## F156(STRG)

## P156(PSTRG)

Sampling stop

Outline Stops sampling data.

## Program example

Ladder Diagram		Boolean		
		Address	Instruction	
Trigger		10	ST	R 10
		11	F156	(STRG)
10	- F156 STRG			

## Explanation of example

When the execution condition (trigger) R10 turns on, a sampling trace stop command trigger is applied.


Registration of the data to be sampled, specification of the sampling method (such as the cable and the time interval), and specification of the sampling trace can be done using only the programming tool software.

## Description

This instruction applies a sampling trace stop command trigger. When a trigger is applied, sampling of the specified delay is carried out, and then sampling trace stops.

If the sampling trace settings and the startup have not been specified using the programming tool software, processing will not be carried out, even if the execution condition (trigger) is fulfilled.

## Sampling traces

This is a function which samples the on/off status of the registered relay and the data stored in the register, either periodically or when the appropriate conditions have been fulfilled, and stores the results in memory. It can be used to confirm changes in the data.
16 relays points and 3 words of registers can be set.

## Procedure for executing a sampling trace

1. Specify registration of the data to be sampled and the sampling method (such as the number of times or the time interval).
2. Indicate that the sampling trace is to begin.
3. Sampling is carried out.

Sampling can be carried out using with periodic sampling or sampling based on the F155 (SMPL) instruction.
4. Stops a sampling trace

Programming tool software online operation or executing the F156 (STRG) instruction applies a stop command trigger. (When a trigger is applied, sampling of the specified delay is carried out, and then sampling stops.) (The programming tool software can also be used to initiate a forced stop.)
5. The programming tool software can be used to read the sampling results from the CPU, and to monitor and confirm them.

## E157(CADD)

## P157(PCADD)

## Time addition

Outline Adds specified time data (hours, minutes, and seconds) to date (years, months, and days) and clock (hours, minutes, and seconds) data.
For the FP0R/FP $/$ /FP-X, the P type high-level instruction "P157 (PCADD)" is not available.

## Program example

Ladder Diagram		Boolean	
		Address	Instruction
Trigger   (* When FPOR		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST R   F157 (CADD)   DT 9054   DT 10   DT 30
S1	Starting 16-bit area for storing date/clock data (3 words are occupied in form of BCD).		
S2	Starting 16-bit area for storing time data (2 words are occupied in form of BCD).		
D	Starting 16-bit area for storing result (3 words are occupied in form of BCD).		

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \mathrm{FL} \\ \mathbf{( *}_{* *}^{*} \\ \mathbf{)} \end{gathered}$	$\begin{gathered} \left.\begin{array}{c} \text { IX } \\ * * * * \\ (* \\ ) \end{array}\right) \end{gathered}$	IY	K	H	
S1	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO, FP-e, FPOR, FP $\Sigma$, FP-X.
(*2) With the FPOR, FP 2 , FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

A: Available N/A: Not Available

High-level Instructions

## Explanation of example

Adds the time data stored in data registers DT11 and DT10 to the clock/calendar data stored in special data registers DT9054 to DT9056 (DT90054 to DT90056) when trigger R0 turns on. The result is stored in data registers DT32, DT31, and DT30.

June 17, 1992 10: 30’ 24": H920617103024 (BCD)

DT9056 (DT90056)				DT9055 (DT90055)				DT9054 (DT90054)			
9	2	0	6	1	7	1	0	3	0	2	4
Years		Months		Days		Hours		Minutes		Seconds	

20: 45' 00": H00204500 (BCD)

DT11					DT10			
0	0	2	0	4	5	0	0	

Hours
Minutes
Seconds

June 18, 1992 7: 15’ 24": H920618071524 (BCD)

$\underbrace{$|  DT32  |  |  |  DT31  |  |  |  |  DT30  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 2 | 0 | 6 | 1 | 8 | 0 | 7 | 1 | 5 | 2 | 4 |}$_{\text {Years }}$

## Description

The date/clock data ( 3 words) specified by S1 and the time data ( 2 words) specified by S2 are added together. The result (time of elapsed value) is stored in the area ( 3 words) specified by D .

## Date/clock data

	S1+2		S1+1		S1	
BCD H code	H 00 to H99	H 01 to H 12	H01 to H31	H 00 to H 23	H 00 to H59	H00 to H59
	Years	Months	Days	Hours	Minutes	Seconds

Time data


## Date/clock data

	D+2		D+1		D	
BCD H code	$\underbrace{\text { H00 to H99 }}_{\text {Hears }}$	H01 to H12	H01 to H31	H00 to H23	$\underbrace{\text { H00 to H59 }}_{\text {Months }}$	H00 to H59

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data specified by S 1 and S 2 is not BCD data.
- The data specified by S1 is not the date/clock data.
- The data specified by S2 is not the time data.
- The specified data exceeds the area.


## Data configuration for the internal calendar timer

FPOR/FP $\Sigma /$ FP-X/FP2/FP2SH/FP10SH


## Precautions during programming

The special data registers DT9054 to DT9056/ DT90054 to DT90056, in which the values of the internal calendar timer are stored, cannot be specified directly for $D$. To change the value of the internal calendar timer, store the addition results in a separate memory area, and then use the F0 (MV) instruction to transfer the value to DT9054 to DT9056/DT90054 to DT90056.

High-level Instructions

## F158(CSUB)

P158(PCSUB)

## Time substruction

Outline Subtracts specified time data (hours, minutes, and seconds) from date (years, months, and days) and clock (hours, minutes, and seconds) data.
For the FP0R/FP5/FP-X, the P type high-level instruction "P158 (PCSUB)" is not available.

## Program example

Ladder Diagram		Boolean		
		Address	Instruction	
(* When FPOR/	2/FP2SH/FP10SH, S1 = DT90054)	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST F158 DT DT DT	(CSUB)   9054
S1	Starting 16-bit area for storing date/clock data (3 words are used in form of BCD).			
S2	Starting 16-bit area for storing time data (2 words are used in form of BCD).			
D	Starting 16-bit area for storing result (3 words are used in form of BCD).			

## Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{array}{\|l\|} \hline \text { FL } \\ (* 1) \end{array}$	$\underset{(* 2)}{\text { I* }^{\prime}}$	IY	K	H	
S1	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPO, FP-e, FPOR, FPD and FP-X.
(*2) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is IO to IC.

A: Available
N/A: Not Available

## Explanation of example

Subtracts the time data stored in data registers DT11 and DT10 from the date/clock data stored in data registers DT9054 to DT9056/ DT90054 to DT90056) when trigger R0 turns on. The result is stored in data registers DT32, DT31, and DT30.

June 17, 1992 10: 30’ 24": H920617103024 (BCD)

DT9056 (DT90056)				DT9055 (DT90055)				DT9054 (DT90054)			
9	2	0	6	1	7	1	0	3	0	2	4
Years		Months		Days		Hours		Minutes		Seconds	

3: 30' 30": H00033030 (BCD)


June 17, 1992 6: 59’ 54": H920617065954 (BCD)

DT32				DT31					DT30			
9	2	0	6	1	7	0	6	5	9	5	4	
Years	$\underbrace{}_{\text {Months }}$											
Days	Hours	Minutes	Seconds									

## Description

Subtracts time data ( 2 words) specified by S2 from the date/clock data ( 3 words) specified by S1. The result is stored in the area ( 3 words) specified by D.

## Date/clock data



Time data


## Date/clock data

	D+2		D+1		D	
BCD H code	$\underbrace{\text { H00 to H99 }}_{\text {Years }}$	$\underbrace{\text { H01 to H12 }}_{\text {Months }}$	H01 to H31	$\underbrace{H 00 \text { to H23 }}_{\text {Days }}$	$\underbrace{\text { H00 to H59 }}_{\text {Hours }}$	H00 to H59
Minutes	$\underbrace{}_{\text {Seconds }}$					

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data specified by S1 and S2 is not BCD data.
- The data specified by S1 is not the date/clock data.
- The data specified by S 2 is not the time data.
- The specified data exceeds tha area.


## Precautions during programming

The special data registers DT9054 to DT9056/DT90054 to DT90056 in which the values of the internal calendar timer are stored, cannot be specified directly for D . To change the value of the internal calendar timer, store the subtraction results in a separate memory area, and then use the FO (MV) instruction to transfer the value to DT9054 to DT9056/DT90054 to DT90056.

## Data configuration for the internal calendar timer

## FP2/FP2SH/FP10SH

$\underbrace{$|  DT90056  |  |  DT90055  |  |  DT90054  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  Months  |  |  |  |  |  |}$_{\text {Years }} \underbrace{}_{\text {Days }}$

## Usage example: Computing the elapsed time

The elapsed time can be computed using the F158 (CSUB) instruction.
Using the calendar timer, store the starting time and ending time in the data memory, and compute the elapsed time between the two values. An example in which operation was stopped at 08:02:15 and resumed at 10:30:25 will be used to show how the time that operation was stopped is computed.
The computation can be thought of as subtracting 08:02:15 from 10:30:25.
Starting time: December 23, 1994 8: 2' 15"

	S1+2				S1+1				S1			
BCD H code	9	4	1	2	2	3	0	8	0	2	1	5
	Years		Months		Days		Hours		Minutes		Seconds	

Ending time: December 23, 1994 10: 30' 25"

	S2+2				S2+1				S2			
BCD H code	9	4	1	2	2	3	1	0	3	0	2	5
	Years		Months		Days		Hours		Minutes		Seconds	

The data to be subtracted is taken from the starting time data, as shown below.
(8: 02' 15")
 - F158 (CSUB) execution

The results will be as follows.
Result: December 23, 1994 2: 28’ 10"

|  | DT32 |  |  |  | DT31 |  |  |  | DT30 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BCD H code | $\underbrace{9}_{\text {Years }} 2$ | 1 | 2 | 2 | 3 | 0 | 2 | 2 | 8 | 1 | 0 |
| Months |  |  |  |  |  |  |  |  |  |  |  |

The section indicating the hour, minutes and seconds is read as " 2 hours, 28 minutes, 10 seconds", and this is the elapsed time.

Outline $\quad$ This is used to send data to or receive data from an external device through the specified RS232C port.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register		Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \text { IX } \\ (* 1) \end{gathered}$	IY	K	H	
S	N/A	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	N/A	A									

(*1) 10 to ID.

A: Available
N/A: Not Available

## Description

This instruction is used to send and receive instructions and data when an external device (computer, measuring instrument, bar code reader, etc.) has been connected to the specified RS232C port.

## 1) Transmission

Transmits " n " bytes of the data stored in the data table that begins from the starting area specified in " S " through the communication port specified in "D" to an external device. A start code and end code can be automatically added to the transmission. The maximum number of bytes that can be transmitted is 2048.

## 2) Reception

Reception is controlled by the reception done flag (R9038/R9048) turning on and off. When the reception done flag is off, reception can take place at any time and data coming into the RS232C port is stored in the data register specified in system registers 416 to 419 .
The F159(MTRN) instruction is used to turn off (enable reception) the reception done flag (R9038/R9048). The maximum number of bytes that can be received is 4094.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area is exceeded when there is an index modifier.
- The data table exceeds the area because of the number of bytes specified in " $n$ ".


## 3) Changing the transmission mode of the RS232C port

An F159(MTRN) instruction can be executed to change between "general transmission mode" and "computer link mode". To do so, specify "H8000" in "n" (the number of transmission bytes) and execute the instruction.

Changing from "general port" to "computer link"


RS232C port selection flag in R9032 or R9042.
Turns on when "general port" is selected.

Changing from "computer link" to "general port"


When the power is turned on, the mode of use selected in system register 412 takes effect.
The FPOR, FP $\Sigma$ 32k, FP-X tool port is always set to the computer link mode in the PROG. mode.

## Programming and operation during transmission

To execute transmission, write the data to be transmitted to the data table and specify with an F158(MTRN) instruction.
Use an F0(MV) or F95(ASO) instruction to write the data to be transmitted to the transmission data storage area specified in "S".

- Do not include an end code in the transmission data. An end code is added automatically.
- When "yes" is specified for the start code in system register 413 or 414 , do not add a start code to the transmission data. A start code is added automatically.
- The maximum number of transmission bytes " $n$ " is 2048.


## Data table for transmission

This is used as a data table for transmission, starting at the data register specified in " S ".

iv Example:
Transmitting the eight characters A, B, C, D, E, F, G, H (8 bytes of data)
This example uses DT100 to DT104 as the data table.

DT100	K8		« When transmission begins: Nothing is set.
DT101	H42   (B)	H41   (A)	
DT102	H44   (D)	$\mathrm{H} 43$   (C)	Data is transmitted
DT103	H46   (F)	$\begin{gathered} \mathrm{H} 45 \\ (\mathrm{E}) \end{gathered}$	in order from the lower-order byte.
DT104	$\begin{gathered} \mathrm{H} 48 \\ (\mathrm{H}) \end{gathered}$	H47   (G)	

- When using a RS232C $\times 1$ ch type communication cassette, transmission does not take place until CS (Clear to Send) turns on. If you are not going to connect to the other device, connect to RS (Request to Send). (FPD, FP-X C14)
As for the FP-X C30/C60, it depends on the settings. Refer to the FP-X Manual.
*1. With the FP0R, FP $\Sigma$ V3.10 or later, FP-X V2.50 or later, the number of transmitted data is set.


## Program

Specify the starting address of the transmission data table in " S ", and the number of data bytes to be transmitted in " $n$ ".

RO $H$ F1 DMV, H44434241, DT101
[ F1 DMV, H48474645, DT103 ]
$\left.-\mathrm{H}^{\mathrm{R}} \mathrm{H} \text { (DF }\right) \longrightarrow 1$
1)-[ F159 MTRN, DT100, K 8, K 1 ]

Write the transmission data to the data table.

Transmit the data in the data table.

## Operation

When the execution condition of the F159(MTRN) instruction turns on, operation is as follows when the transmission done flag (R9039/R9049) is on:

1) " $n$ " is preset in " $S$ ". The reception done flag (R9038/R9048) is turned off, and the reception data number is cleared to " 0 ".
2) The set data is transmitted in order from the lower-order byte in "S+1" of the table.

- During transmission, the transmission done flag (R9039/R9049) turns off.
- If system register 413 or 414 is set to start code with STX, a start code is automatically added to the beginning of the data.
- The end code specified in system register 413 or 414 is automatically added to the end of the data.
 execution

During transmission
During this interval the F159(MTRN) instruction cannot be executed.
3) When all of the specified quantity of data has been transmitted, the " $S$ " value is cleared to " 0 " and the transmission done flag (R9039/R9049) turns on.

## When you do not wish to add an end code to transmissions, use one of the following methods:

Specify the number of bytes to be transmitted using a negative number.
If you also do not wish to add an end code to receptions, set system register 413 or 414 to "no end code".

## 1 <br> Example:

Program for transmitting 8 bytes of data without adding an end code


## Preparation for reception

## Setting of COM 1 port reception buffer

No. 416 and No. 417
The area of data registers DT0 up to DT2047 is the default reception buffer.
The maximum number of bytes that can be received is 4094 bytes.

Specify start area as No. 416.


No. of received bytes

Specified number of words for No. 417

## Setting of COM 2 port reception buffer

No. 418 and No. 419

## (This setting is not available for the FPOR.)

The area of data registers DT2048 up to DT4095 is the default reception buffer.
The maximum number of bytes that can be received is 4094 bytes.
Specify start area as
No. 418.

$\left[\begin{array}{l}\begin{array}{l}\text { No. of received } \\ \text { bytes }\end{array} \\ \begin{array}{l}\text { Reception } \\ \text { data } \\ \text { storage } \\ \text { area }\end{array} \\ \begin{array}{l}\text { Specified number of } \\ \text { words for No. } 419\end{array}\end{array}\right.$

## Setting of Tool port reception buffer

No. 420 and No. 421
The area of data registers DT4096 up to DT6143 is the default reception buffer.
The maximum number of bytes that can be received is 4094 bytes.

Specify start area as No. 420.


No. of received bytes

Reception data storage area

Specified number of words for No. 421

## Programming and operation during reception

Data sent from an external device connected to the RS232C port is stored in the data registers that have been set as the reception buffer.

Data registers are used for the reception buffer. Specify the data registers in system registers 416 to 419. The number of bytes of data received is stored in the starting address of the reception buffer. The initial value is " 0 ".

Received data is stored in the received data storage area in order from the lower-order byte.

## Reception buffer

Using a "reception buffer" data register Word (address)


Example:
Receiving eight bytes of data, A, B, C, D, E, F, G, H, from an external device through the COM1 port

DT200 to DT204 are used as the reception buffer.
System register settings are as follows:

- System register 416: K200
- System register 417: K5



## Table of related flags and system registers

Item	For COM1	For COM2	For Tool
Transmission mode flag	R9032	R9042	R9040
Reception done flag	R9038	R9048	R903E
Transmission done flag	R9039	R9049	R903F
Beginning of reception   buffer	Specified in 416	Specified in 418	Specified in 420
Reception buffer capacity	Specified in 417	Specified in 419	Specified in 421

## Program

The reception done flag (R9038/9048) turns on when data reception from the external device is completed. Reception of any further data is prohibited.
To receive subsequent data, you must execute an F159(MTRN) instruction to turn off the reception done flag (R9038/R9048) and clear the byte number to " 0 ".


To repeatedly perform only reception, specify KO.
R9038/R9048 also turn off when transmission is performed with a byte number specification.

## Operation

When the reception done flag (R9038/R9048) is off, operation takes place as follows when data is sent from an external device.
(R9038/R9048 are off during the first scan after RUN. "0" is set in the starting area of the reception buffer specified in the system registers.)

1) Incoming data is stored in order from the lower-order byte of the 2nd-word area of the reception buffer.
Start and end codes are not stored.

2) When the end code is received, the reception done flag (R9038/9048) turns on. Reception of any further data is prohibited.
3) When an F159(MTRN) instruction is executed, the reception done flag (R9038/9048) turns off, the number of received bytes is cleared, and subsequent data is stored in order from the lower-order byte.

- To perform repeated reception of data, refer to the following steps.

1) Receive data
2) Reception done (R9038/R9048: on, reception prohibited)
3) Process received data
4) Execute F159(MTRN) instruction (R9038/R9048: off, reception possible)
5) Receive subsequent data

- The reception done flag (R9038/R9048) also changes during scanning.

Outline Data is transmitted to external equipment via the COM port of the specified MCU.
This function is available from FP2/FP2SH Ver. 1.50 or later.

## Program example

Ladder Diagram

## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	$\underset{(* 1)}{I}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	A	A

(*1) 10 to ID.
A: Available N/A: Not Available

Reference: FP2 Multi Communication Unit Manual

## Description

1) It is used to transmit commands or data to the COM port (COM1 or COM2) of the specified MCU unit connecting with external equipment (such as PC, measuring instrument, barcode reader).
Note: The operation mode of the communication port of the MCU should be set to the general-purpose serial communication mode.
2) [ $n$ ] bytes of the data stored in the data table which is headed with the area specified by [S] is transmitted to external equipment from the communication port of the CPU or MCU unit specified by [D](DT100).

Data table (transmitted buffer)

*1: Nothing is specified for the initial address of the transmitted buffer.
3) The slot number and the communication port number specified by $[D]$ is set as below.
[D](DT100):


Specify slot number. Specify communication port number.
Specify from H00 to H1F. HC1/HD1: COM1 port
HC2/HD2: COM2 port

## * Caution:

1. Specify to $\mathrm{K} 1(\mathrm{H} 1)$ for the COM port of the CPU.
2. When specifying $[D]$ with the $K$ constant,
ex.) if the slot number is set to 3, and the COM2 (2) is selected for the communication port of the MCU,
set as follows.
H03C2 to K962 (*convert the content specified in hexadecimal to decimal)
4) The starting code and the terminal code can be added automatically in transmission.
5) The transmitted byte number is maximum of 2048 bytes (including starting code and terminal code).
6) When a negative value is specified for the transmitted byte number, the data will be transmitted without the terminal code.
7) When 8000 H is specified for the transmitted byte number, the operation mode of the specified communication port can be switched between the computer link and the general-purpose communication mode.
8) The communication parameter for the communication port can be set by specifying the communicating port number to HD1 or HD2.
When HD1 is designated: the communication parameter is registered for the COM 1 port.
When HD2 is designated: the communication parameter is registered for the COM 2 port.
Example

9) The communication parameter data consists of 11 words.
10) Unit number setting value (K1 to K99)
11) Baud rate setting value (K0 to K10) *2
*2. Baud rate setting value

Storage value	Baud rate
0	300
1	600
2	1200
3	2400
4	4800
5	9600
6	19200
7	38400
8	57600
9	115 K
10	230 K

3) Data length setting value ( $\mathrm{KO}=7$ bits, $\mathrm{K} 1=8$ bits)
4) Parity setting value ( $\mathrm{K} 0=$ no parity, $\mathrm{K} 1=$ parity $0, \mathrm{~K} 2=$ Odd, $\mathrm{K} 3=$ Even)
5) Stop bit length setting value (KO: 1 bit, K1: 2 bits)
6) $\mathrm{RS} / \mathrm{CS}$ setting ( $\mathrm{KO}=$ disable, $\mathrm{K} 1=\mathrm{able}$ )
7) Waiting time for starting transmission (K: $0=$ Time for about three characters/effective time $=\mathrm{Kn} * 0.01$ $\mathrm{ms}(0$ to 100 ms ))
8) Starting code STX setting value ( $\mathrm{K} 0=$ disable, $\mathrm{K} 1=\mathrm{able}$ )
9) Terminator setting value ( $\mathrm{K} 0=\mathrm{CR}, \mathrm{K} 1=\mathrm{cR}+\mathrm{Lf}, \mathrm{K} 2=$ time ( 24 bits), $\mathrm{K} 3=\mathrm{EXT}$ )
10) Reception done judgment time (K:0=immediate/effective time=Kn*0.01 ms ( 0 to 100 ms )
11) Modem initialization ( $\mathrm{K} 0=$ Not initialized when the power turns on, $\mathrm{K} 1=$ Initialized when the power turns on)

## Note

The execution for switching the operation mode of the communication (between the computer link and the general-purpose serial communication mode) or the setting for the communication parameter should be carried out when no communication is performed.
If these operations are executed in communicating, the data which is being transmitted will be cancelled, and the reception error will occur for the data which is being received and this data may not be received properly.
When the communication parameter is specified, the received byte number should be specified to the even data of $\mathbf{2 2}$ bytes or smaller. If it is specified to the value larger than 22 bytes or odd byte, an error occurs in the parameter settings of the MCU.

## Flag conditions

- Error flag (R9007) (R9008):
- It turns on, when the specified address using the index modifier exceeds a limit.
- It turns on, when the MCU unit does not exist in the slot No. specified by [D](DT100).
- It turns on, when the MCU unit does not exist in the slot No. specified by [D](DT100)
- It turns on, when the data device specified by [S] exceeds the area.
- It turns on, when the transmitted byte number specified by $[\mathrm{n}]$ is outside of the specified area.
- It turns on, when the transmitted byte number specified by [n](K1) exceeds the area of the data table.
- It turns on, when H8000 is designated in the PC link mode.
- It turns on, when an additional parameter is registered in executing the parameter registration.
- It turns on, when H8000 is designated in the parameter registration.
- It turns on, when a negative value is designated in the parameter registration.


## F161 (MRCV) <br> Serial data reception <br> (for MCU COM port) <br> P161(PMRCV)

## Availability

Data is received from external equipment via the COM port of the specified MCU.
This function is available from FP2/FP2SH Ver. 1.50 or later.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL	$\underset{(* 1)}{\prime}$	K	H	
S	A	A	A	A	A	A	A	A	A	A	A	A	A
D1	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
D2	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) 10 to ID.

A: Available
N/A: Not Available

## Explanation of example

When the reception done signal XO of the COM 1 port is on, the received data is readout, and stored in DT0 to DT100.

## Flag conditions

- Error flag (R9007) (R9008):
- It turns on, when the specified address using the index modifier exceeds a limit.
- It turns on, when the MCU unit does not exist in the slot No. specified by [S].
- It turns on, when the communication port specified by [S] does not exist.
- It turns on, when the data device specified by [D1] exceeds the area.
- It turns on, when the data device specified by [D2] exceeds the area.
- It turns on, when [D1] > [D2].

Reference: FP2 Multi Communication Unit Manual

## Description

1) It is used to receive commands or data for the COM port (COM1 or COM2) of the specified MCU unit connecting with external equipment (such as PC, measuring instrument, barcode reader).
Note: The operation mode of the communication port of the MCU should be set to the general-purpose communication mode.
2) The received data is readout to the communication port of the MCU unit in the slot No. specified by [S], and stored in the specified data area of [D1] to [D2].
3) The slot number and the communication port number specified by $[\mathrm{S}]$ is set as below.
[D](DT100):


Specify slot number. Specify communication port number.
Specify from H00 to H1F. HC1/HD1/HE1: COM1 port
HC2/HD2/HE2: COM2 port
4) The received byte number is set for the initial address of the data area specified by [D1].

* If the received data exceeds the ending address specified by [D2], the operation error is detected. At that time, the data which has been received up to the area of [D2] is stored.
Data table (received buffer)

<Reading of communication parameter and condition>

5) When the communication port numbers specified by [S] is HD1 or HD2, HE1 or HE2, the registered communication parameter and the monitoring data are read.

HD1:The communication parameter data in the COM 1 port is read.
HD2:The communication parameter data in the COM 2 port is read.
When HE1 or HE2 is designated, the operation mode of each communication port and the information on the communication cassette detection is read.

HE1:The monitoring data in the COM 1 port is read.
HE2:The monitoring data in the COM 2 port is read.
example:

example:

6) There are eight 2048-byte buffers in the received buffer of the MCU unit, and eight data can be received sequentially.

If nine or more data should be received, the MCU unit detects the received buffer full error.
If the received buffer FULL error is detected, the MCU unit prohibits the reception of data in that channel and inform about the error.
The byte number which can be received in one buffer is maximum of 2048 bytes (including terminal code).
However, the data which can be received with the MRCV do not include terminal code.

## <Configuration of communication parameter>

7) The communication parameter data consists of 11 words.
8) Unit number setting value (K1 to K99)
9) Baud rate setting value ( K 0 to K 10 ) *2
*2. Baud rate setting value

Storage value	Baud rate
0	300
1	600
2	1200
3	2400
4	4800
5	9600
6	19200
7	38400
8	57600
9	115 K
10	230 K

3) Data length setting value ( $\mathrm{KO}=7$ bits, $\mathrm{K} 1=8$ bits)
4) Parity setting value ( $K 0=$ no parity, $K 1=$ parity $0, K 2=O d d, K 3=E v e n$ )
5) Stop bit length setting value (K0: 1 bit, K1: 2 bits)
6) $\mathrm{RS} / \mathrm{CS}$ setting ( $\mathrm{KO}=$ disable, $\mathrm{K} 1=$ able)
7) Waiting time for starting transmission (K: 0=Time for about three characters/effective time $=\mathrm{Kn} * 0.01 \mathrm{~ms}$ ( 0 to 100 ms )
8) Starting code STX setting value ( $\mathrm{K} 0=$ disable, $\mathrm{K} 1=$ able)
9) Terminator setting value ( $\mathrm{K} 0=\mathrm{cR}, \mathrm{K} 1=\mathrm{cR}+\mathrm{Lf}, \mathrm{K} 2=$ time ( 24 bits), $\mathrm{K} 3=\mathrm{EXT}$ )
10) Reception done judgment time ( $\mathrm{K}: 0=$ immediate/effective time=$=\mathrm{Kn} * 0.01 \mathrm{~ms}$ ( 0 to 100 ms )
11) Modem initialization ( $\mathrm{K} 0=$ Not initialized, $\mathrm{K} 1=$ Initialized)
<Configuration of monitor data>
12) Operation mode ( K 0 to K 7 ) ( $K 0=$ computer link, $K 1=$ general-purpose serial, $K 2=P C$ link, $K 7=$ modem initialization)
13) Communication cassette detection (from KO ) (No communication cassette=0, RS232C=K232, RS422=K422, RS485=K485)
14) Reception error code (Lower byte: bit 0=received buffer overrun, bit 1=stop bit not detected, bit 2=parity unmatched) (Higher byte: bit 0=received buffer overflow, bit $1=$ received buffer full)
15) Number of times reception errors (number of times which the reception errors to be stored in the above lower byte are detected)
16) Setting error code
(Lowerbyte: bit0=error inthedipswitch setting oftheoperation mode, bit 1=operation mode setting which exceeds the usable limit of the unit)
(Higher byte: bit 0=error in the communication parameter setting, bit $1=$ error in the number of transmitted data)
17) Error parameter No. (K0 to K11)
18) Modem initialization
(h0000=deinitialized h0100=now initializing h0200=initialization completed. h02FF=initialization failed.)

## 32-bit data square root

## Outline Takes the square root of the specified 32-bit data.

For the FPOR, FP $\Sigma$ and FP-X, the P type high-level instruction "P160 (PDSQR)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register		Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \text { FL } \\ (* 1) \end{gathered}$	$\begin{gathered} \text { IX } \\ (* 2) \end{gathered}$	IY	K	H	
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) This cannot be used with the FPOR, FPE and FP-X.
(*2) With the FPOR, FP 2, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

A: Available N/A: Not Available

## Explanation of example

The square root of 32 -bit data stored in DT11 and DT10 is calculated and stored in DT21 and DT20 when R0 turns on.
When K64 is stored in DT11 and DT10, the following occurs.

## Source data [S+1, S]: K64



Higher 16-bit area
Lower 16-bit area
RO: on
Destination [D+1, D]: K8

	DT21											DT20													
Bit position	$15 \cdot 1211 \cdot$ • 8			$7 .$				$3 \cdot \cdots$				$15 \cdot 12$			8				$\begin{array}{\|cccc\|} \hline 7 & \cdot & \cdot & 4 \\ \hline 0 & 0 & 0 & 0 \end{array}$			$\begin{array}{\|lllll} \hline 3 & \cdot & \cdot & 0 \\ \hline 1 & 0 & 0 & 0 \end{array}$			
Binary data	0000	00	00	0	0	0	00	0	0	0	0	0	0	00	0	0	0	0							
Decimal data												K8													

## Description

The square root of 32-bit data specified by S 1 is calculated and stored in the 32-bit area specified by D . In the result, the digits beyond the decimal point are disregarded.

## $\sqrt{(S+1, S)} \rightarrow \mathbf{( D + 1 , D )}$

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The data specified by $S$ is a negative value.

Outline This instruction is used to perform control such as software reset, counter disabling, and high-speed counter instruction clearing.

## Program example



## Operands

Operand	Relay			Timer/Counter		Register	Index   register		Constant		Index   modifier
	WX	WY	WR	SV	EV	DT	IX   $(* 1)$	IY   $(* 2)$	K	H	
	A	A	A	A	A	A	A	A	A	A	A

A: Available
(*1) IO to IC on FPD/FP-X/FPOR
(*2) ID on FPE/FP-X/FPOR

## Description

Performs high-speed counter control according to the control code specified in "S".
This instruction is used to perform the following operations when using a high-speed counter:
<Function>

1) Performing a software reset
2) Disabling the count
3) Temporarily disables reset input setting using external inputs
4) Clearing control executed with high-speed counter and pulse output instructions F166 or F167.

Once written, a control code is retained until the next write operation.

## Precautions during programming

Hardware resets can only be disabled if a reset input is used.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area is exceeded when an index modifier is used
- The " $S$ " is outside specification range


## Using the FPO/FP-e

## High-speed counter and Pulse output controls flag area

Four bits are allocated to each high-speed counter channel for use as the control code write area DT9052 (DT90052 on the FPO T32)
A control code written using an F0(MV) instruction is stored in special data register DT9052 (DT90052 on the FPO T32).
High-speed counter and Pulse output controls flag area of FPO


Select control codes in units of one bit and specify with H .

Clears high-speed counter instruction
0: Continue
1: Clear
Reset input setting (See note.)
0: Enable
1: Disable
Count
0: Permit
1: Prohibit
Software reset
0: No
1: Yes

## Note:

At the reset input setting, you set whether the reset input (X2 or X 5 ), which was assigned by the system register high-speed counter setting, will be enabled or disabled.

Example:

- Perform software reset ..... H1(0001)
- Prohibit count ..... H2(0010)
- Clear high-speed counter instruction ..... H8(1000)
- Clear high-speed counter instruction and reset elapsed value ..... H9(1001)


## Program example

## Example: Software reset of channel 0 of high-speed counter.



## Using the FP $\Sigma$

## High-speed counter and Pulse output controls flag area

The area DT90052 for writing channels and control codes is allocated as shown below.
The control code written by the FO (MV) instruction is stored in the control code monitor area while it is written in the special register DT90052. (Refer to the table below.)
The written data is the data for lower 8 bits only.
High-speed counter and Pulse output controls flag area of FPE


## Note:

At the reset input setting, you set whether the reset input (X2 or X5), which was assigned by the system register high-speed counter setting, will be enabled or disabled.

## Program example

## Example 1: Software reset of channel 0 of high-speed counter



## $\stackrel{y}{s}$ <br> Example 2: Software reset of channel 2 of high-speed counter



## Using the FP-X

High-speed counter and Pulse output controls flag area
The area DT90052 for writing channels and control codes is allocated as shown below.
The control code written by the FO (MV) instruction is stored in the control code monitor area while it is written in the special register DT90052. (Refer to the table below.)
The written data is the data for lower 8 bits only.
High-speed counter and Pulse output controls flag area of FP-X


## Program example

## Example 1: Software reset of channel 0 of high-speed counter



## Example 2: Software reset of channel 1 of high-speed counter



Note: FP-X Ry type
At the reset input setting, you set whether the reset input (X2 or X5) of the pulse I/O cassette, which was assigned by the system register high-speed counter setting, will be enabled or disabled.
Note: FP-X Tr type
At the reset input setting, you set whether the reset input (X6 or X 7 ) assigned for the controller input will be enabled or disabled.

## Using the FPOR

High-speed counter and Pulse output controls flag area
The area DT90052 for writing channels and control codes is allocated as shown below.
The control code written by the $\mathbf{F 0}(\mathbf{M V})$ instruction is stored in the control code monitor area while it is written in the special register DT90052. (Refer to the table below.)
The written data is the data for lower 8 bits only.
High-speed counter and Pulse output controls flag area of FPOR


High-speed counter control for FPOR, FPE and FP-X

Channel No.	Control code monitor area			
	FP $\Sigma$	FP-X Ry type	FP-X Tr type	FP0R
ch0	DT90190	DT90360	DT90370	DT90370
ch1	DT90191	DT90361	DT90371	DT90371
ch2	DT90192	DT90362	DT90372	DT90372
ch3	DT90193	DT90363	DT90373	DT90373
ch4	-	DT90364	DT90374	DT90374
ch5	-	DT90365	DT90375	DT90375
ch6	-	DT90366	DT90376	-
ch7	-	DT90367	DT90377	-
ch8	-	DT90368	-	-
ch9	-	DT90369	-	-
chB	-	DT90370	-	-

Outline This instruction is used to perform control such as software reset, counter disabling, and stopping pulse output.

## Program example



$\mathbf{S}$	Area for storing pulse output control code or constant data

## Operands

Operand	Relay			Timer/Counter		Register	Index   register		Constant		Index   modifier
	WX	WY	WR	SV	EV	DT	IX   $(* 1)$	IY   $(* 2)$	K	H	
	A	A	A	A	A	A	A	A	A	A	A

A: Available
(*1) IO to IC on FPI/FP-X/FPOR
(*2) ID on FPE/FP-X/FPOR

## Description

Performs Pulse output control according to the control code specified in "S".
This instruction is used to perform the following operations when using a Pulse output:
<Function>

1) Performing a software reset
2) Disabling the count
3) Preemptively stopping positioning/pulse output
4) Clearing control executed with pulse output-related instructions F171 or F176.
5) Setting near home input when returning to home position and changing to deceleration.

Once written, a control code is retained until the next write operation.

## Precautions during programming

The near home processing is not possible when the count is prohibited during a return to home position, or when a software reset is performed.
The near home bit is retained; however, each time you wish to perform near home processing during a return to home position, "1" must be written to the respective bit.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area is exceeded when an index modifier is used
- The " $S$ " is outside specification range


## Using the FPO/FP-e

## High-speed counter and Pulse output controls flag area

Four bits are allocated to each Pulse output channel for use as the control code write area DT9052 (DT90052 on the FPO T32)
A control code written using an F0(MV) instruction is stored in special data register DT9052 (DT90052 on the FPO T32).
High-speed counter and Pulse output controls flag area of FPO


Select control codes in units of one bit and specify with H .

Stop pulse output
0: Continue
1: Stop
Near home input
0: Enable
1: Disable
Count
0: Permit
1: Prohibit
Software reset
0: No
1: Yes

## E Example:

- Perform software reset ..... H1(0001)
- Prohibit count ..... H2(0010)
- Stop pulse output ..... H8(1000)
- Turn off pulse output and reset elapsed value ..... H9(1001)


## Program example

## Example 1: Software reset of channel 0 of Pulse output.

$$
\left.\left\lvert\, \begin{array}{rr}
\text { RO } \\
\text { Н } & \text { (DF })-[F 0 \mathrm{MV}, \mathrm{H} 1, \text { DT9052 }
\end{array}\right.\right]
$$

Example 2: Enable near home input during pulse output control and change to deceleration.


## Using the FP $\Sigma$

High-speed counter and Pulse output controls flag area
The area DT90052 for writing channels and control codes is allocated as shown below.
The control code written by the FO (MV) instruction is stored in the control code monitor area while it is written in the special register DT90052. (Refer to the table below.)
The written data is the data for lower 8 bits only.
High-speed counter and Pulse output controls flag area of FPE


## Program example

Example 1: Software reset of Pulse output
(ch0)


(ch2)


Example 2: Enable near home input during pulse output control and change to deceleration.
(ch0)

(ch2)


## Using the FP-X

## High-speed counter and Pulse output controls flag area

The area DT90052 for writing channels and control codes is allocated as shown below.
The control code written by the FO (MV) instruction is stored in the control code monitor area while it is written in the special register DT90052. (Refer to the table below.)
The written data is the data for lower 8 bits only.
High-speed counter and Pulse output controls flag area of FP-X


Count
0: Permit
1: Prohibit
Software reset
0 : No
1: Yes

## Program example

## Example 1: Software reset of Pulse output



## を <br> Example 2: Enable near home input during pulse output control and change to deceleration.

(ch0)
$\left|\begin{array}{rr}\text { X3 } \\ \hline \text { [FO MV, H100, DT90052 }]\end{array}\right|$
(ch1)


## Using the FPOR

## High-speed counter and Pulse output controls flag area

The area DT90052 for writing channels and control codes is allocated as shown below.
The control code written by the $\mathbf{F 0}(\mathbf{M V})$ instruction is stored in the control code monitor area while it is written in the special register DT90052. (Refer to the table below.)
The written data is the data for lower 8 bits only.
High-speed counter and Pulse output controls flag area of FPOR

15	$11 \quad 8$	4	3
DT90052:			
Channel specification HO to H 3 : CHO to CH 3	H1 fixation (PLS)		
Near home input   0: Enable   1: Disable			
Stop pulse output   0 : Continue   1: Stop			
Clear of pulse output control   0: Continue,   1: Stop			
Count   0: Permit   1: Prohibit			
Software reset   0 : No   1: Yes			

* The pulse output control is available when controlling the pulse output ch with F166(HC1S) or F167(HC1R) instruction.


## Program example

Refer to the program example of FP-X.

## Pulse output control for FP $\Sigma$ and FP-X

Channel No.	Control code monitor area			
	FP $\Sigma$	FP-X Ry type	FP-X Tr type	FP0R
ch0	DT90190	DT90372	DT90380	DT90380
ch1	-	DT90373	DT90381	DT90381
ch2	DT90192	-	DT90382	DT90382
ch3	-	-	DT90383	DT90383

This instruction is used to write and read the elapsed value of the high-speed counter/pulse output.

## Program example



## Operands

Operand	Relay			Timer/Counter		Register   DT	Index register		Constant		Index modifier
	WX	WY	WR	SV	EV		$\underset{(* 1)}{\text { IX }}$	$\begin{gathered} \text { IY } \\ (* 2) \end{gathered}$	K	H	
S	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	N/A	N/A	N/A	A

A: Available N/A: Not Available
(*1) IO to IC on FPE/FP-X/FPOR
(*2) ID on FPE/FP-X/FPOR

## Writing the elapsed value

This instruction writes the 32-bit data specified in " S " to the elapsed value area of the high-speed counter and pulse output channel being used, and simultaneously sets the data in the elapsed value area of the high-speed counter used inside the system.
Make sure the 32-bit data value that is written to the elapsed value is within the following range.

Type	Allowed setting range
FP0/FP-e	$\mathrm{K}-8,388,608$ to $\mathrm{K} 8,388,607$
FP $/$ /FP-X/FPOR	$\mathrm{K}-2,147,483,648$ to K $2,147,483,647$

Writing is only possible using an F1 (DMV) instruction. Writing is not possible using other applied instructions such as the transfer instruction FO(MV) or arithmetic instructions.
When specifying the memory area in " S " or " D " (when reading), specify only the lower-order 16 bits of the memory area number.

## Explanation of example

When the execution condition RO is on, K3000 is written to the elapsed value area of ch0 of the high-speed counter and pulse output.

## Reading the elapsed value

The contents of the special data register that stores the elapsed value of the high-speed counter and pulse output is written to the area specified in "D".

## Explanation of example

When the execution condition R10 is on, the elapsed value of the high-speed counter and pulse output is transferred to data registers DT6 and DT7.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area is exceeded when an index modifier is used
- The " $S$ " is outside specification range


## Program examples

The elapsed value area varies depending on the model and channel number.
Example 1: On R0 input, the value in data register DT4 is set in the ch0 elapsed value area as the set value.



Example 2: On R1 input, the elapsed value of the ch0 is stored in data register DT100.
$\mid \stackrel{R 1}{-1}(D F)-[$ F1 DMV, DT9044, DT100 $] \mid$

Example 3: When the elapsed value of the ch0 is greater than K10000, the internal relay R0 turns on.


## Table of channel number and elapsed value area

For FPO/FP-e

High-speed counter   channel no.	Pulse output   channel no.	Elapsed value area
ch0	ch0	DT9044 to DT9045
ch1	ch1	DT9048 to DT9049
ch2	-	DT9104 to DT9105
ch3	-	DT9108 to DT9109

For FPO(T32)

High-speed counter   channel no.	Pulse output   channel no.	Elapsed value area
ch0	ch0	DT90044 to DT90045
ch1	ch1	DT90048 to DT90049
ch2	-	DT90104 to DT90105
ch3	-	DT90108 to DT90109

For FP:

High-speed counter   channel no.	Pulse output   channel no.	Elapsed value area
ch0	ch0	DT90044 to DT90045
ch1	-	DT90048 to DT90049
ch2	ch2	DT90200 to DT90201
ch3	-	DT90204 to DT90205

For FP-X Ry type

High-speed counter   channel no.	Pulse output   channel no.	Elapsed value area
ch0	-	DT90300 to DT90301
ch1	-	DT90304 to DT90305
ch2	-	DT90308 to DT90309
ch3	-	DT90312 to DT90313
ch4	-	DT90316 to DT90317
ch5	-	DT90320 to DT90321
ch6	-	DT90324 to DT90325
ch7	-	DT90328 to DT90329
ch8	-	DT90332 to DT90333
ch9	-	DT90336 to DT90337
chA	-	DT90340 to DT90341
-	-	DT90344 to DT90345
-	ch0	DT90348 to DT90349
	ch1	DT90352 to DT90353

For FP-X Tr type

High-speed counter   channel no.	Pulse output   channel no.	Elapsed value area
ch0	-	DT90300 to DT90301
ch1	-	DT90304 to DT90305
ch2	-	DT90308 to DT90309
ch3	-	DT90312 to DT90313
ch4	-	DT90316 to DT90317
ch5	-	DT90320 to DT90321
ch6	-	DT90324 to DT90325
ch7	-	DT90328 to DT90329
-	ch0	DT90348 to DT90349
-	ch1	DT90352 to DT90353
-	ch3	DT90356 to DT90357
-		DT90360 to DT90361

## For FPOR

High-speed counter   channel no.	Pulse output   channel no.	Elapsed value area
ch0	-	DT90300 to DT90301
ch1	-	DT90304 to DT90305
ch2	-	DT90308 to DT90309
ch3	-	DT90312 to DT90313
ch4	-	DT90316 to DT90317
ch5	-	DT90320 to DT90323
-	ch0	DT90400 to DT90401
-	ch1	DT90410 to DT90411
-	ch2	DT90420 to DT90421
-	ch3	DT90430 to DT90431

Cam control
(High-speed counter control)

Availability
FPOR

Outline This instruction enables the control according to the maximum of 31-point target values for the high-speed counter. [Feature] An interrupt program can be also executed whenever the elapsed value reaches each target value.

## Program example



## Operands

Operand	Relay				Timer/Counter		$\begin{array}{\|c} \hline \text { Register } \\ \hline \text { DT } \\ \hline \end{array}$	$\begin{gathered} \hline \begin{array}{c} \text { Index } \\ \text { register } \end{array} \\ \hline \ln \left({ }^{*} 1\right) \\ \hline \end{gathered}$	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WR	SV	EV					K	H	
S	N/A	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	N/A	N/A	A
10 to ID												A: Available N/A: Not Available	

## Description

It notifies that the elapsed value has reached a maximum of 31 target values in the pattern specified with the data table starting with the address specified by [S]. The internal relays corresponding to the target positions are turned on.
Also, the interrupt program INTn can be executed at the target position.
*It is necessary to allow the execution of the interrupt program with ICTL instruction.
(1) Check that the same value is not used for the target values of the control table and they are arranged in ascending order.
(2) Judge the position of the current value of high-speed counter, set 1 to the corresponding bit in the target position notification area of the internal relay, and clear the others to 0 .
(3) After that, in case of addition, the target position notification internal relay changes every time the elapsed value matches the target values.
However, in case of subtraction, (Target value -1) is used as the target position data.
[When the maximum value control is not performed]
When the maximum target value is 0 , and the reset input is not permitted,
(4) When the elapsed value matches the maximum target position " $m$ " in add operation, the next target position will be the negative minimum value.
(5) When the elapsed value matches the minimum (target position 1-1) in subtraction operation, the target position will be the positive maximum value.
The control with the maximum target value is available as well as the above control operation.
The maximum target value can be specified at the end of the table. When the elapsed value matches the maximum target value, the elapsed value is cleared to 0 , and The beginning of the internal relay in the position notification area is turned on.

To perform the control with the maximum target value, positive integer numbers must be specified for all the target position data.

## [When the maximum value control is performed]

Using the maximum target value of data table or hardware/software reset signal enables the value to return to the starting address of data table. (V1.06 or later)
In add operation, the elapsed value will be cleared to 0 when it reaches the maximum target value (when reset signal is detected), and the starting bit of position notification relay will be turned on.
In subtraction operation, when the elapsed value reaches -1, the maximum target value will be set as the elapsed value, and the bit corresponding to the target position " $m$ " will be turned on for position output.
Note: Hardware reset is CH0: X2, CH1: X2, CH2: X5, CH3: X5.

## Description of hardware reset signal operation

	When the maximum value control is   not performed	When the maximum value control is   not performed
V1.06 or later	The elapsed value is cleared to 0, and the   table pointer moves to the beginning.	Only the elapsed value is cleared to 0.
V1.05 or older	Only the elapsed value is cleared to 0.	Only the elapsed value is cleared to 0.

When the maximum value control has been specified, set the maximum target value to a large value which cannot be reached for returning the value to the starting address of data table using the hardware reset signal.
Sample operation: When controlling the high-speed counter CH 0 with the maximum target value
Example: If the instruction is executed on the leading edge of the trigger R3, and the elapsed value when the execution is started is smaller than the target position 1
The target position notification area is specified from R10.


## Precautions during programming

To use this instruction, the high-speed counter function must be used.
The high-speed counter control flag (R9110 to R9115) corresponding to the specified channel turns on when the execution condition of $\mathrm{F} 165(\mathrm{CAM})$ ) instruction turns on until the cam control is cleared.
When the high-speed counter control flag (R9110 to R9115) is on, the high-speed counter control instructions (F166(HC1S), F167(HC1R), F178(PLSM)) to the high-speed counter of the same channel cannot be executed.
To stop the control with this instruction, execute "Clears high-speed counter instruction".
If the elapsed value to be controlled with this instruction is rewritten, an unexpected operation might be performed.
When controlling with the main program, set the target value to be "Minimum travelling time between each target value" greater than "1 scan time".
When controlling with a interrupt program, set the target value to be "Minimum travelling time between each target value" greater than "Maximum execution time of interrupt program".
Set the interval between adjacent target values within 1 msec not to match them.
This instruction can be simultaneously executed for 2 channels only.
When the maximum value control and the hardware/software reset is used at the same time, do not operate them intensively in a short time.
When hardware/software reset is used, set the first target value to an integer value that is 1 or more.

## Channels of high-speed counter and areas used

High-speed counter   channel No.	Control flag	Elapsed value area	Target value area	Interrupt program
ch0	R9110	DT90300 to DT90301	DT90302 to DT90303	INT0
ch1	R9111	DT90304 to DT90305	DT90306 to DT90307	INT1
ch2	R9112	DT90308 to DT90309	DT90310 to DT90311	INT3
ch3	R9113	DT90312 to DT90313	DT90314 to DT90315	INT4
ch4	R9114	DT90316 to DT90317	DT90318 to DT90319	INT6
ch5	R9115	DT90320 to DT90321	DT90322 to DT90323	INT7

## Setting of data table

$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S}+1 \end{aligned}$	Specification of high-speed counter channel	(*1)
$\begin{aligned} & \mathrm{S}+2 \\ & \mathrm{~S}+3 \end{aligned}$	Word No. of internal relay for position notification	(*2)
$\begin{aligned} & S+4 \\ & S+5 \end{aligned}$	Specification of No. of target position $m$	(*3)
$\begin{aligned} & \mathrm{S}+6 \\ & \mathrm{~S}+7 \end{aligned}$	Target position 1	(*4)
$\begin{aligned} & \mathrm{S}+8 \\ & \mathrm{~S}+9 \end{aligned}$	Target position 2	(*4)
$\begin{aligned} & \mathrm{S}+10 \\ & \mathrm{~S}+11 \end{aligned}$	Target position 3	(*4)
	Target position m-1	(*4)
	Target position m	(*)
	Max. target value	(*5)

(*3) A maximum of 31 target positions can be specified.
(Note) Arrange the target values of the target positions 1 to m in ascending order. The same value cannot be specified.
*1: Specification of high-speed counter channel
Specify the channel of the high-speed counter/pulse output with H constant in the starting area (2 words) of the data table.

H $0 \quad 0 \quad 0 \quad 0$
<Specification of the channel of high-speed counter/pulse output>
Allowable range for specifying the high-speed counter: 0 to 5
Specification of maximum value control: $0=$ Not control with the maximum target value
1 = Control with the maximum target value
<Specification of high-speed counter/pulse output>
0 : Specification of high-speed counter
*2: Specify the word number of the internal relay where the target position is output. (Note1)
In the 3rd word and 4th word areas, specify the word number of the internal relay where the target position is output.
*3: Specification of the number of target positions (Note1)
Specify the number of target positions. Settable range: K1 to K31
<Method of target position notification>

*4: Specification of target position: Specify the target position after the 5th word.
Settable range: K-2147483648 to K2147483647
(H80000000 to H7FFFFFFF)
*5: Specification of maximum target value: Specify the maximum target value in the next address of the target value at the final target position.
Settable range: K-2147483648 to K2147483647
(H80000000 to H7FFFFFFF)
The interrupt program INTn corresponding to the specified high-speed counter channel can be executed at the target position.
The interrupt program corresponding to the channel to be controlled is programmed.
After this instruction is executed, interrupt will be permitted with ICTL instruction.
Note1) Specify numbers so that the total of them does not exceed the maximum area of the internal relay.

## Example of setting 1

[Condition]
(1) Target values: 4 points Position output from R10
(2) Each target value is as the table below.

Position output	Target value
1 (R11)	2000
2 (R12)	4000
3 (R13)	8000
4 (R14)	10000

(3) The maximum value is 14000 pulses.
(4) The elapsed value of the high-speed counter is cleared to 0 before starting the position output.

## Program

R9013	F1 DMV, H		DT100 ]	Specification of high-speed counter channel 0
	[F1 DMV, H	1,	DT102 ]	Specification of internal relay word No .
	[F1 DMV, H	4,	DT104 ]	4-point output
	[ F1 DMV, K	2000,	DT106 ]	Target value 1
	[F1 DMV, K	4000,	DT108 ]	Target value 2
	[ F1 DMV, K	8000,	DT110 ]	Target value 3
	[ F1 DMV, K	10000,	DT112 ]	Target value 4
	[F1 DMV, K	14000,	DT114 ]	Max. target value
	[F1 DMV, K	0 ,	DT90300	Reset of elapsed value
$\stackrel{\text { R3 }}{4}$	$-(D F)-[F 16$	CAMO	DT100]	Start of cam control

## Explanation of program operation

When adding elapsed values with the maximum target value When the internal relay R3 is on, the operation is as follows.

Elapsed value of high-speed counter


## Explanation of program operation

When adding + subtracting elapsed values with the maximum target value When the internal relay R3 is on, the operation is as follows.

Elapsed value of high-speed counter
Max. target value


## Example of setting 2

[Condition]
(1) Cam output: 4 points Output from R10 to R13
(2) The target values for each cam are as the table below.

Cam output	Target value
1 (R11)	-10000
2 (R12)	-4000
3 (R13)	4000
4 (R14)	8000

## Program



## Explanation of program operation

When adding + subtracting elapsed values with the maximum target value and interrupt control, the operation will be performed as below if the following conditions are met; Elapsed value when the instruction is executed: $\mathrm{K}-4000$ < Elapsed value < K4000 Internal relay R3: ON
*The operation can be started once the interrupt program is permitted to be started with ICTL instruction.


* The execution time in the interrupt program should be shorter than the travelling time between control positions.


## Flag conditions

- Error flag (R9007):
- Error flag (R9008):
- Turns on when the area specified using the index modifier exceeds the limit.
- Turns on when the specified channel is out of the setting range.
- Turns on when any other setting than the high-speed counter/pulse output is specified.
- Turns on when the word number of the internal relay where the target value is output is out of the setting range.
- Turns on when the specification of the number of target values exceeds the limit. (Up to 31)
- Turns on when the garge value is greater than the maximum target value.
- Turns on when the target value is 0 .
- Turns on when the targe values are not arranged in asceding order.
- Turns on ending 16-bito area used for this instruction exceeds the limit of data table.
- Turns on when the high-speed counter has not been set for the specified channel by the system register.


## F166(HC1S)

Target value match on (with channel specification)

## Availability <br> FP0/FPOR/FP-e/ <br> FP $\Sigma /$ FP- $X$

Outline When the elapsed value of the specified channel of the high-speed counter matches the target value, the specified output is turned on.

## Program example



$\mathbf{n}$	The channel number of the high-speed counter that corresponds to the match   output (FPO/FPS: H0 to H3, FP-X:H0 to HB).
S	The high-speed counter target value data or the starting address of the area   that contains the data.
D	The output coil that is turned on when the values match (Yn).

## Operands

Operand	Relay			Timer/Counter		Register   DT	Index register		Constant		Index modifier
	WX	WY	WR	SV	EV		$\underset{(* 1)}{\text { IX }}$	$\begin{gathered} \text { IY } \\ (* 2) \end{gathered}$	K	H	
n	N/A	A	A	N/A							
S	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A										

A: Available N/A: Not Available
(*1) 10 to IC on FPD/FP-X/FPOR
(*2) ID on FPE/FP-X/FPOR

## Explanation of example




## High-speed counter control flag varies

FP0, FP, FP-e	R903A
FP-X, FP0R	R9110

(Refer to next page)
The number of the high-speed counter control flag varies depending on the channel used.
Regarding the channel number and control flag for each model, refer to the table on the next page.

## Description

The number specified in " S " is set as the target value of the high-speed counter, and when the elapsed value matches the target value, the specified output "Yn" turns on (by interrupt processing).
The target value setting and target value match output control are cleared when the elapsed value matches the target value.
Specify a 32-bit data value for the target value " $S$ " within the following range:

```
FPO/FP-e K-8,388,608 to K8,388,607
FP \(\Sigma /\) FP-X-FPOR K-2,147,483,648 to K2,147,483,647
```

The " S " value is stored in the target value area when the instruction is executed.
Possible specification range for "Yn":
Devices specified for the match ON/OFF output

Type	Device area
FP0/FP-e	Y0 to Y7
FP $\Sigma$	Y0 to Y7
FP $\Sigma$ (V3.10 or more)	Y0 to Y1F
FP-X	Y0 to Y29F

However, for the device that is not implemented, only the memory turns ON/OFF.
However, when the output that is not implemented is specified, only the WY memory is set/reset.

## Precautions during programming

Set the high-speed counter by the system register before using this instruction.
The high-speed counter control flag turns on when the execution condition of the F166(HC1S) instruction turns on and remains on until the target value match output turns on. During this time, an instruction to the high-speed counter of the same channel ( $\mathbf{F} 166$ through $\mathbf{F} 176$ ) cannot be executed.
Before the elapsed value matches the target value, the target value and target value match output setting are not cleared even if a hardware reset is performed (the elapsed value is cleared to " 0 ").
A check for double output with OT instructions, KP instructions, and other applied instructions is not performed on the output $Y$ that is specified for target value match output.
To turn off the target value match output that was turned on with this instruction, reset using an RST instruction or $\mathrm{FO}(\mathrm{MV})$ instruction, or use as a pair with an F 167 (HC1R) instruction.
If both the normal program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.
The high-speed counter control flag also changes during scanning.
The interrupt program is able to be executed, when the high-speed counter elapsed value equals the set target value.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area is exceeded when an index modifier is used.
- The " $n$ " is outside specification range.
- The " $S$ " is outside specification range.
- The " $D$ " is outside specification range.
- The high-speed counter has not been set for the specified channel by the system register.

FPO, FP-e

Channel No.	Control flag	Elapsed value area	Target value area
ch0	R903A	DT9044 to DT9045	DT9046 to DT9047
ch1	R903B	DT9048 to DT9049	DT9050 to DT9051
ch2	R903C	DT9104 to DT9105	DT9106 to DT9107
ch3	R903D	DT9108 to DT9109	DT9110 to DT9111

## FP $\Sigma$

Channel No.	Control flag	Elapsed value area	Target value area
ch0	R903A	DT90044 to DT90045	DT90046 to DT90047
ch1	R903B	DT90048 to DT90049	DT90050 to DT90051
ch2	R903C	DT91200 to DT91201	DT91202 to DT91203
ch3	R903D	DT91204 to DT91205	DT91206 to DT91207

FP-X Ry type:ch0 to chB T type : ch0 to ch7 FP0R: ch0 to ch5

Channel No.	Control flag	Elapsed value area	Target value area
ch0	R9110	DT90300 to DT90301	DT90302 to DT90303
ch1	R9111	DT90304 to DT90305	DT90306 to DT90307
ch2	R9112	DT90308 to DT90309	DT90310 to DT90311
ch3	R9113	DT90312 to DT90313	DT90314 to DT90315
ch4	R9114	DT90316 to DT90317	DT90318 to DT90319
ch6	R9115	DT90320 to DT90321	DT90322 to DT90323
ch7	R9116	DT90324 to DT90325	DT90326 to DT90327
ch8	R9117	DT90328 to DT90329	DT90330 to DT90331
ch9	R9118	DT90332 to DT90333	DT90334 to DT90335
chB	R9119	DT90336 to DT90337	DT90338 to DT90339
	R911A	DT90340 to DT90341	DT90342 to DT90343

Target value match on (High-speed counter control)

## Availability

FPOR

Outline
When the elapsed value of the specified channel of the high-speed counter (HSC) matches the target value, the specified output is turned On.

## Program example



## Operands

Operand	Relay				Timer/Counter		$\begin{gathered} \text { Register } \\ \hline \text { DT } \end{gathered}$		SWR	SDT	Constant		Index modifier
	WX	WY	WR	WR	SV	EV					K	H	
n	N/A	A	A	N/A									
S	A	A	A	A	A	A	A	A	N/A	N/A	A	A	A
D	N/A												

(*1) 10 to ID

A: Available N/A: Not Available

## Description

The number specified in " $S$ " is set as the target value of the high-speed counter, and when the elapsed value matches the target value, the specified output "Yn" turns on (by interrupt processing).
Specify the channel number of the high-speed counter in " $n$ ".

<Specification of high-speed counter/pulse output>
0 : Specification of high-speed counter
The target value setting and target value match output control are cleared when the elapsed value matches the target value.
Specify a 32-bit data value for the target value " S " within the following range:
FPOR K-2,147,483,648 to K2,147,483,647
The " S " value is stored in the target value area when the instruction is executed.

Possible specification range for "Yn": Devices specified for the match ON/OFF output

Type	Device area
FPOR	Y0 to Y1F

However, for the device that is not implemented, only the memory turns ON/OFF.

## Example of target value match on setting

When specifying the high-speed counter

## Condition

(1) Specify the high-speed counter channel number 0.
(2) Set the target value to 10000.
(3) Set the output coil to be turned off when the values match to Y2.


## Execution of program



## FPOR <In case of high-speed counter>

Channel No.	Control flag	Elapsed value area	Target value area	Interrupt program
ch0	R9110	DT90300 to DT90301	DT90302 to DT90303	INT0
ch1	R9111	DT90304 to DT90305	DT90306 to DT90307	INT1
ch2	R9112	DT90308 to DT90309	DT90310 to DT90311	INT3
ch3	R9113	DT90312 to DT90313	DT90314 to DT90315	INT4
ch4	R9114	DT90316 to DT90317	DT90318 to DT90319	INT6
ch5	R9115	DT90320 to DT90321	DT90322 to DT90323	INT7

## Precautions during programming

Set the high-speed counter channel by the system register before using this instruction.
Without the setting, an operation error occurs.
The high-speed counter control flag (R9110 to R9115) turns on when the execution condition of this instruction turns on and remains on until the target value matches.
During this time, the high-speed counter control instructions (F165(CAM0), F166(HC1S), F167(HC1R), F178(PLSM)) to the high-speed counter of the same channel cannot be executed.
Before the elapsed value matches the target value, the target value and target value match output setting are not cleared even if a hardware reset is performed (the elapsed value is cleared to " 0 ").
A check for double output with OT instructions, KP instructions and other applied instructions is not performed on the output $Y$ that is specified for target value match output.
If the control is cleared with FO(MV) S, DT90052 instruction, the control of this instruction is cancelled and the high-speed control flag turns off.
If both the normal program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.
The interrupt program is able to be executed, when the high-speed counter elapsed value equals the set target value. The INT program description and the permission using ICTL instruction is required.

## Flag conditions

- Error flag (R9007):
- Error flag (R9008):
- Turns on when the area specified using the index modifier exceeds the limit.
- Turns on when $n$ is out of the specified range.
- Turns on when [S]n is out of the specified range.
- Turns on when [D](DT100)n is out of the specified range.
- Turns on when the high-speed counter has not been set for the specified channel by the system register.


## F166(HC1S)

Target value match on (Pulse output control)

Availability
FPOR

Outline When the elapsed value of the specified pulse output channel matches the target value, the specified output is turned on.

## Program example



Operands

Operand	Relay				Timer/Counter		RegisterDT	Index registerIn (*1)	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WR	SV	EV					K	H	
n	N/A	A	A	N/A									
S	A	A	A	A	A	A	A	A	N/A	N/A	A	A	A
D	N/A												

(*1) 10 to ID

## Description

The number specified in " $S$ " is set as the target value of the pulse output channel, and when the elapsed value matches the target value, the specified output "Yn" turns on (by interrupt processing).
Specify the channel number of the pulse output in " $n$ ".
H 0

<Specification of the channel of high-speed counter/pulse output>
Allowable range for specifying the pulse output: 0 to 3
<Specification of high-speed counter/pulse output>
1: Specification of pulse output
The target value setting and target value match output control are cleared when the elapsed value matches the target value. The control flag also turns off.
Specify a 32-bit data value for the target value " S " within the following range:
FPOR K-2,147,483,648 to K2,147,483,647
The " S " value is stored in the target value area when the instruction is executed.
Possible specification range for "Yn": Devices specified for the match ON/OFF output

Type	Device area
FPOR	Y0 to Y1F

However, for the device that is not implemented, only the memory turns ON/OFF.

## Example of target value match on setting

When specifying the pulse output

## Condition

(1) Specify the pulse output channel number 0 .
(2) Set the target value to 10000 .
(3) Set the output coil to be turned off when the values match to Y 2 .


## Execution of program



## FPOR <In case of pulse output>

Channel   No.	For pulse output			Pulse output   instruction flag	Elapsed   value area	Target   value area
	R9120	Control   flag	Target   value area	Interrupt   program		
ch1	R9121	DT90400 to   DT90401	DT90402 to   DT90403	R9130	DT90404 to   DT90405	INT8
ch2 to	R9122	DT90412 to   DT90413	R9131	DT90414 to   DT90415	INT9	
ch3	R9123	DT90420 to   DT90421	DT90422 to   DT90423	R9132	DT90424 to   DT90425	INT10

## Precautions during programming

Set the pulse output channel by the system register before using this instruction.
Without the setting, an operation error occurs.
The pulse control flag (R9130 to R9133) turns on when the execution condition of this instruction turns on and remains on until the target value matches.
During this time, the pulse output control instructions (F165(CAM0), F166(HC1S), F167(HC1R)) to the pulse output of the same channel cannot be executed.
This instruction is available for all the pulse output instructions except F173(PWMH) instruction.
This instruction can be executed before or after the execution of the above pulse output instruction.
A check for double output with OT instructions, KP instructions and other applied instructions is not performed on the output $Y$ that is specified for target value match output.
If the control is cleared with FO(MV) S, DT90052 instruction, the control of this instruction is cancelled and the high-speed control flag turns off, however, the pulse output continues.
If both the normal program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.
The interrupt program is able to be executed, when the high-speed counter elapsed value equals the set target value. The INT program description and the permission using ICTL instruction is required.

## Flag conditions

- Error flag (R9007):
- Error flag (R9008):
- Turns on when the area specified using the index modifier exceeds the limit.
- Turns on when n is out of the specified range.
- Turns on when [S]n is out of the specified range.
- Turns on when [D](DT100)n is out of the specified range.
- Turns on when the pulse output has not been set for the specified channel by the system register.


## F167(HC1R)

Target value match off (with channel specification)

Outline When the elapsed value of the specified channel of the high-speed counter matches the target value, the specified output is turned off.

## Program example



## Operands

Operand	Relay			Timer/Counter		Register   DT	$\begin{gathered} \text { Index } \\ \text { register } \end{gathered}$		Constant		Index modifier
	WX	WY	WR	SV	EV		$\underset{\left({ }^{*}\right)}{ }$	$\begin{gathered} \text { IY } \\ (* 2) \end{gathered}$	K	H	
n	N/A	A	A	N/A							
S	A	A	A	A	A	A	A	N/A	A	A	A
D	N/A										

A: Available
N/A: Not Available
(*1) IO to IC on FPD/FP-X/FPOR
(*2) ID on FPE/FP-X/FPOR

## Explanation of example



## High-speed counter control flag varies

FP0, FP, FP-e	R903A
FP-X, FP0R	R9110

(Refer to next page)
The number of the high-speed counter control flag varies depending on the channel used.
Regarding the channel number and control flag for each model, refer to the table on the next page.

## Description

The number specified in " S " is set as the target value of the high-speed counter, and when the elapsed value matches the target value, the specified output "Yn" turns off (by interrupt processing).
The target value setting and target value match output control are cleared when the elapsed value matches the target value.
Specify a 32-bit data value for the target value " $S$ " within the following range:
FPO/FP-e K-8,388,608 to K8,388,607
FP $\Sigma /$ FP-X/FPOR K-2,147,483,648 to K2,147,483,647
The " S " value is stored in the target value area when the instruction is executed.
Possible specification range for "Yn":
Devices specified for the match ON/OFF output

Type	Device area
FP0/FP-e	Y0 to Y7
FP $\Sigma$	Y 0 to Y7
FP $\Sigma$ (V3.10 or more)/FP0R	Y 0 to Y1F
FP-X	Y 0 to Y29F

However, for the device that is not implemented, only the memory turns ON/OFF.
However, when the output that is not implemented is specified, only the WY memory is set/reset.

## Precautions during programming

Set the high-speed counter by the system register before using this instruction.
The high-speed counter control flag turns on when the execution condition of the $\mathbf{F 1 6 7 ( H C 1 S}$ ) instruction turns on and remains on until the target value match output turns off. During this time, an instruction to the high-speed counter of the same channel (F166 through F173) cannot be executed.
Before the elapsed value matches the target value, the target value and target value match output setting are not cleared even if a hardware reset is performed (the elapsed value is cleared to " 0 ").
A check for double output with OT instructions, KP instructions, and other applied instructions is not performed on the output $Y$ that is specified for target value match output.
To turn on the target value match output that was turned off with this instruction, reset using an SET instruction or $\mathrm{FO}(\mathrm{MV})$ instruction, or use as a pair with an $\mathrm{F} 166(\mathrm{HC1S})$ instruction.
If both the normal program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.
The high-speed counter control flag also changes during scanning.
The interrupt program is able to be executed, when the high-speed counter elapsed value equals the set target value.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area is exceeded when an index modifier is used.
- The " $n$ " is outside specification range.
- The " S " is outside specification range.
- The " $D$ " is outside specification range.
- The high-speed counter has not been set for the specified channel by the system register.

FPO, FP-e

Channel No.	Control flag	Elapsed value area	Target value area
ch0	R903A	DT9044 to DT9045	DT9046 to DT9047
ch1	R903B	DT9048 to DT9049	DT9050 to DT9051
ch2	R903C	DT9104 to DT9105	DT9106 to DT9107
ch3	R903D	DT9108 to DT9109	DT9110 to DT9111

## FP $\Sigma$

Channel No.	Control flag	Elapsed value area	Target value area
ch0	R903A	DT90044 to DT90045	DT90046 to DT90047
ch1	R903B	DT90048 to DT90049	DT90050 to DT90051
ch2	R903C	DT91200 to DT91201	DT91202 to DT91203
ch3	R903D	DT91204 to DT91205	DT91206 to DT91207

## FP-X Ry type:ch0 to chB T type : ch0 to ch7 FP0R: ch0 to ch5

Channel No.	Control flag	Elapsed value area	Target value area
ch0	R9110	DT90300 to DT90301	DT90302 to DT90303
ch1	R9111	DT90304 to DT90305	DT90306 to DT90307
ch2	R9112	DT90308 to DT90309	DT90310 to DT90311
ch3	R9113	DT90312 to DT90313	DT90314 to DT90315
ch4	R9114	DT90316 to DT90317	DT90318 to DT90319
ch5	R9115	DT90320 to DT90321	DT90322 to DT90323
ch7	R9116	DT90324 to DT90325	DT90326 to DT90327
ch8	R9117	DT90328 to DT90329	DT90330 to DT90331
ch9	R9118	DT90332 to DT90333	DT90334 to DT90335
chA	R9119	DT90336 to DT90337	DT90338 to DT90339
chB	R911A	DT90340 to DT90341	DT90342 to DT90343

## F167(HC1R)

Target value match off (High-speed counter control)

Outline When the elapsed value of the specified channel of the high-speed counter (HSC) matches the target value, the specified output is turned off.

## Program example

Ladder Diagram	Boolean		
	Address		uction
	10	ST	R 0
	11	DF	
	12	F167	(HC1R)
		H	0
		K	10000
		Y	2


$\mathbf{n}$	The channel number of the high-speed counter that corresponds to the match   output.
S	The high-speed counter target value data or the starting address of the area   that contains the data.
D	The output coil that is turned on when the values match. (Yn)

## Operands

Operand	Relay				Timer/Counter		RegisterDT		SWR	SDT	Constant		Index modifier
	WX	WY	WR	WR	SV	EV					K	H	
n	N/A	A	A	N/A									
S	A	A	A	A	A	A	A	A	N/A	N/A	A	A	A
D	N/A												

(*1) 10 to ID

## Description

The number specified in " $S$ " is set as the target value of the high-speed counter, and when the elapsed value matches the target value, the specified output "Yn" turns off (by interrupt processing).
Specify the channel number of the high-speed counter in "n".

<Specification of high-speed counter/pulse output>
0 : Specification of high-speed counter
The target value setting and target value match output control are cleared when the elapsed value matches the target value.
Specify a 32-bit data value for the target value " S " within the following range:
FPOR K-2,147,483,648 to K2,147,483,647
The " S " value is stored in the target value area when the instruction is executed.

Possible specification range for "Yn": Devices specified for the match ON/OFF output

Type	Device area
FPOR	Y0 to Y1F

However, for the device that is not implemented, only the memory turns ON/OFF.

## Example of target value match OFF setting

When specifying the high-speed counter

## Condition

(1) Specify the high-speed counter channel number 0.
(2) Set the target value to 10000 .
(3) Set the output coil to be turned off when the values match to Y 2 .


## Execution of program



## FPOR <In case of high-speed counter>

Channel No.	Control flag	Elapsed value area	Target value area	Interrupt program
ch0	R9110	DT90300 to DT90301	DT90302 to DT90303	INT0
ch1	R9111	DT90304 to DT90305	DT90306 to DT90307	INT1
ch2	R9112	DT90308 to DT90309	DT90310 to DT90311	INT3
ch3	R9113	DT90312 to DT90313	DT90314 to DT90315	INT4
ch4	R9114	DT90316 to DT90317	DT90318 to DT90319	INT6
ch5	R9115	DT90320 to DT90321	DT90322 to DT90323	INT7

## Precautions during programming

Set the high-speed counter channel by the system register before using this instruction.
Without the setting, an operation error occurs.
The high-speed counter control flag (R9110 to R9115) turns on when the execution condition of this instruction turns on and remains on until the target value matches.
During this time, the high-speed counter control instructions (F165(CAM0), F166(HC1S), F167(HC1R), F178(PLSM)) to the high-speed counter of the same channel cannot be executed.
Before the elapsed value matches the target value, the target value and target value match output setting are not cleared even if a hardware reset is performed (the elapsed value is cleared to "0").
A check for double output with OT instructions, KP instructions and other applied instructions is not performed on the output $Y$ that is specified for target value match output.
If the control is cleared with FO(MV) S, DT90052 instruction, the control of this instruction is cancelled and the high-speed control flag turns off.
If both the normal program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.
The interrupt program is able to be executed, when the high-speed counter elapsed value equals the set target value. The INT program description and the permission using ICTL instruction is required.

## Flag conditions

- Error flag (R9007):
- Error flag (R9008):
- Turns on when the area specified using the index modifier exceeds the limit.
- Turns on when n is out of the specified range.
- Turns on when [S]n is out of the specified range.
- Turns on when [D](DT100)n is out of the specified range.
- Turns on when the high-speed counter has not been set for the specified channel by the system register.

Target value match off (Pulse output control)

When the elapsed value of the specified pulse output channel matches the target value, the specified output is turned off.

## Program example



## Operands


(*1) 10 to ID

## Description

The number specified in " $S$ " is set as the target value of the pulse output channel, and when the elapsed value matches the target value, the specified output "Yn" turns on (by interrupt processing).
Specify the channel number of the pulse output in " $n$ ".
H 0

<Specification of the channel of high-speed counter/pulse output> Allowable range for specifying the pulse output: 0 to 3
<Specification of high-speed counter/pulse output>
1: Specification of pulse output
The target value setting and target value match output control are cleared when the elapsed value matches the target value. The control flag also turns off.
Specify a 32-bit data value for the target value " S " within the following range:
FPOR K-2,147,483,648 to K2,147,483,647
The " $S$ " value is stored in the target value area when the instruction is executed.
Possible specification range for "Yn": Devices specified for the match ON/OFF output

Type	Device area
FPOR	Y0 to Y1F

## Example of target value match OFF setting

When specifying the pulse output

## Condition

(1) Specify the pulse output channel number 0.
(2) Set the target value to 10000.
(3) Set the output coil to be turned off when the values match to Y 2 .


## Execution of program



FPOR <In case of pulse output>

Channel   No.	For pulse output			Pulse instruction   in execution	Elapsed   value area	Target   value area
	R9120	Control   flag	Target   value area	Interrupt   program		
ch1	R9121	DT90400 to   DT90401	DT90402 to   DT90403	R9130	DT90404 to   DT90405	INT8
ch2	RT90410 to	DT90412 to   DT90413	R9131	DT90414 to   DT90415	INT9	
ch3	R9123	DT90420 to   DT90421	DT90422 to   DT90423	R9132	DT90424 to   DT90425	INT10

## Precautions during programming

Set the pulse output channel by the system register before using this instruction.
Without the setting, an operation error occurs.
The pulse control flag (R9130 to R9133) turns on when the execution condition of this instruction turns on and remains on until the target value matches.
During this time, the pulse output control instructions (F165(CAM0), F166(HC1S), F167(HC1R)) to the pulse output of the same channel cannot be executed.
This instruction is available for all the pulse output instructions except F173(PWMH) instruction.
This instruction can be executed before or after the execution of the above pulse output instruction.
A check for double output with OT instructions, KP instructions and other applied instructions is not performed on the output $Y$ that is specified for target value match output.
If the control is cleared with FO(MV) S, DT90052 instruction, the control of this instruction is cancelled and the high-speed control flag turns off, however, the pulse output continues.
If both the normal program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.
The interrupt program is able to be executed, when the high-speed counter elapsed value equals the set target value. The INT program description and the permission using ICTL instruction is required.

## Flag conditions

- Error flag (R9007):
- Error flag (R9008):
- Turns on when the area specified using the index modifier exceeds the limit.
- Turns on when $n$ is out of the specified range.
- Turns on when [S]n is out of the specified range.
- Turns on when [D](DT100)n is out of the specified range.
- Turns on when the pulse output has not been set for the specified channel by the system register.


## F168(SPD1) <br> Positioning control (trapezoidal control)

Outline Outputs a pulse from the specified output (Y0 or Y 1 ) according to the specified parameter.

## Program example

Ladder Diagram			Boolean		
			Address		uction
			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F168 } \\ & \text { DT } \\ & \text { K } \end{aligned}$	
S		Starting address for the area that contains the data table.			
n		Output Yn that corresponds to the pulse output (n: K0 or K1).			

Operands

Operand	Relay			Timer/Counter		Register	Index   register		Constant		Index   modifier
	WX	WY	WR	SV	EV	DT	IX	IY	K	H	
S	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	N/A	A
n	N/A	A	A	N/A							

A: Available N/A: Not Available

## Description

When the corresponding control flag is off and the execution condition (trigger) is in the on state, a pulse is output from the specified output (YO or Y1).
The control code, initial speed, maximum speed, acceleration/deceleration time, and target value, are specified by a user program with a data table as shown on the following page.
The frequency is switched by the acceleration/deceleration time specified for changing from the initial speed to the maximum speed. During deceleration (normally 30 steps), the frequency is changed based on the same slope as during acceleration.

Table of areas used

Channel   no.	Control   flag	Elapsed value area	Target value area	Directional   output
ch0	R903A	DT9044, DT9045   (For FP0 T32, DT90044, DT90045)	DT9046, DT9047   (For FP0 T32, DT90046, DT90047)	Y2
ch1	R903B	DT9048, DT9049   (For FP0 T32, DT90048, DT90049)	DT9050, DT9051   (For FP0 T32, DT90050, DT90051)	Y3

## Notes

- When this instruction is used, the setting for the channel corresponding to system register 400 should be set to "High-speed counter not used".
- By performing rewrite during RUN during pulse output, more than the set number of pulses may be output.


## Description of operating mode

Incremental <relative value control>
Outputs the pulses set with the target value.

Operation   mode   Target	Control code: H02   Forward off/Reverse on	Control code: H03   Forward on/Reverse off	Elapsed value
Positive	Pulse output on direction   output off	Pulse output on direction   output on	Addition
Negative	Pulse output on direction   output on	Pulse output on direction   output off	Subtraction

## Absolute <absolute value control>

Outputs a number of pulses equal to the difference between the set target value and the current value.

Operation   mode   Target	Control code: H12   vorward off/Reverse on	Control code: H13   Forward on/Reverse off	Elapsed value
Target value   greater than   current value	Pulse output on direction   output off	Pulse output on direction   output on	Addition
Target value   less than   current value	Pulse output on direction   output on	Pulse output on direction   output off	Subtraction

## Precautions during programming

If both the regular program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.
Run the program referring to page $3-487$, when controlling the motor in one direction using the pulse output function.

## Data table settings


(*1): Specify the control code by setting the constant H .

Pulse width specification
0: Duty $50 \%$
1: Fixed pulse width (approx. 80us)
Note: A specification of 2 or higher will result in 0 .
The pulse width is the output value from the
IC and the actual pulse width varies due to
the delay in the response of photocoupler.
Operation mode and directional output theory
00: Incremental
O2: Incremental not use directional output
forward off/reverse on
03: Incremental
forward on/reverse off    10: Absolute Does not use directional output   12: Absolute forward off/reverse on   13: Absolute forward on/reverse off

(*2): When the pulse width is set to duty $50 \%$, the maximum is 6 kHz .
When the pulse width is set to fixed pulse width (approx. $80 \mu \mathrm{~s}$ ), the maximum is 9.5 kHz . (Thermocouple input type of FP-e is removed.)

## Notes for using FPO compatiblity mode of FPOR

(1) The elapsed value and target value of high-speed counter and pulse output is signed 32 -bit values.
(2) The high-speed counter continues counting even if data exceeds the FPO range (signed 24-bit).
(3) The pulse output continues outputting even if data exceeds the FPO range (signed 24-bit).
(4) The waveforms of pulse output are a duty cycle of $25 \%$ regardless of the designation of instructions.
(5) Even if the no count setting is specified with a pulse output instruction, it counts in the addition mode.
(6) The maximum frequency of pulse output is 10000 Hz .
(7) When using the pulse output instruction, it is not used for the pulse ouput and normal output.

## Supplement to the operation in the case with the direction output

1: FP0
1: When specifying a duty of $50 \%$ : The pulse output will start approx. "Initial speed period/2" hours later after the direction output.

When the initial speed is 500 Hz , it is approx. 1 ms .
2: When specifying 80us fixedly: The pulse output will start approx. "Initial speed period - 25 us" hours later after the direction output.

When the initial speed is 500 Hz , it is approx. 1.98 ms .

## 2: For FPO compatibility mode

Pulses are output using a duty of $25 \%$ fixedly. (The setting is invalid.) The pulse output will start approx. 300us later after the direction output. (The characteristics of a motor driver is considered.)

## Application example




## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
-n is number except 0 and 1 .
- The value of $S$ exceeds the limit of specified range.
$-\mathrm{S}+1$ is less than K40
$-\mathrm{S}+1>\mathrm{S}+2$
- The value of " $S+5, S+4$ " exceeds the limit of specified range.


## F168(SPD1) <br> Positioning control (home position return)

Outline Outputs a pulse from the specified output (YO or Y 1 ) according to the specified parameter.

## Program example

Ladder Diagram			Boolean		
			Address		uction
			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F168 } \\ & \text { DT } \\ & \text { K } \end{aligned}$	
$\mathbf{S}$ S ${ }^{\text {Starting address for the area that contains the data table. }}$					
n		Output Yn that corresponds to the pulse output (n: K0 or K1).			

Operands


## Description

When the corresponding control flag is off and the execution condition (trigger) is in the on state, a pulse is output from the specified output (Y0 or Y1).
The control code, initial speed, maximum speed, and acceleration/deceleration time are specified by a user program with a data table as shown on the following page.
The frequency is switched by the acceleration/deceleration time specified for changing from the initial speed to the maximum speed. During deceleration (normally 30 steps), the frequency is changed based on the same slope as during acceleration.

Table of areas used

Channel   no.	Control   flag	Elapsed value area	Target value area	Directional   output	Near home input	Home   input
ch0	R903A	DT9044, DT9045   (For FP0 T32,   DT90044, DT90045)	DT9046, DT9047   (For FP0 T32,   DT90046, DT90047)	Y2	DT9052 bit2   (For FP0 T32,   DT90052)	X0
ch1	R903B	DT9048, DT9049   (For FPO T32,   DT90048, DT90049)	DT9050, DT9051   (For FP0 T32,   DT90050, DT90051)	Y3	DT9052   (For FP0 T32,   DT90052)	X1

## Notes

- When this instruction is used, the setting for the channel corresponding to system register 400 should be set to "High-speed counter not used".
- By performing rewrite during RUN during pulse output, more than the set number of pulses may be output.


## Description of operating mode

Until the home input (X0 or X 1 ) is entered, the pulse is continuously output. To decelerate the movement when near the home, set the bit corresponding to DT9052 to off $\rightarrow$ on $\rightarrow$ off $\rightarrow$ with the near home input. During operation, the elapsed value area and set value area will become insufficient. At the completion of operations, the elapsed value will become 0 .

## Home position return mode II

## Home position return by means of near home input and home input

Deceleration occurs when near home input occurs, and pulse output stops after home input. The control code (lower order) on the next page should be set to H 24 to H 27 .


## Home position return mode I

## Home position return using only home input

Pulse output stops when home input occurs. Use a control code (lower order) setting on the following page from H 20 to H 23 .


## Precautions during programming

When the control code (lower order) is H 20 to H 23 , the home input is enabled after near home input regardless of whether deceleration has ended or is still in progress.
When the control code (lower order) is H 24 to H 27 , the home input is only enabled following near home input after deceleration to the initial speed has been completed.

Even when home input has occurred, executing this instruction causes pulse output to begin.
If the near home input is enabled while acceleration is in progress, deceleration begins.
If both the regular program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.
Run the program referring to page $3-487$, when controlling the motor in one direction using the pulse output function.

## Data table settings


(*1): Specify the control code by setting the constant H .

Pulse width specification
0: Duty 50\%
1: Fixed pulse width (approx. 80 ms )
Note: A specification of 2 or higher will result in 0 .
The pulse width is the output value from the IC and the actual pulse width varies due to the delay in the response of photocoupler.

Operation mode and directional output theory
20: Home position return mode I No directional output
22: Home position return mode I directional output off
23: Home position return mode I directional output on
24: Home position return mode II No directional output
26: Home position return mode II output off
27: Home position return mode II output on
24,26 , and 27 are supported by CPU Ver. 2.0 and subsequent versions.
${ }^{(* 2)}$ : When the pulse width is set to duty $50 \%$, the maximum is 6 kHz . When the pulse width is set to fixed pulse width (approx. $80 \mu \mathrm{~s}$ ), the maximum is 9.5 kHz .
(Thermocouple input type of FP-e is removed.)

## Notes for using FPO compatiblity mode of FPOR

(1) The elapsed value and target value of high-speed counter and pulse output is signed 32-bit values.
(2) The high-speed counter continues counting even if data exceeds the FPO range (signed 24-bit).
(3) The pulse output continues outputting even if data exceeds the FPO range (signed 24-bit).
(4) The waveforms of pulse output are a duty cycle of $25 \%$ regardless of the designation of instructions.
(5) Even if the no count setting is specified with a pulse output instruction, it counts in the addition mode.
(6) The maximum frequency of pulse output is 10000 Hz .
(7) When using the pulse output instruction, it is not used for the pulse ouput and normal output.

## Supplement to the operation in the case with the direction output

1: FPO
1: When specifying a duty of $50 \%$ : The pulse output will start approx. "Initial speed period/2" hours later after the direction output.

When the initial speed is 500 Hz , it is approx. 1 ms .
2: When specifying 80us fixedly: The pulse output will start approx. "Initial speed period - 25us" hours later after the direction output.

When the initial speed is 500 Hz , it is approx. 1.98 ms .

## 2: For FPO compatibility mode

Pulses are output using a duty of $25 \%$ fixedly. (The setting is invalid.) The pulse output will start approx. 300us later after the direction output. (The characteristics of a motor driver is considered.)

## Application example



DT 0	H	22
DT 1	K	1000
DT 2	K	7000
DT 3	K	300

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
-n is number except 0 and 1 .
- The value of $S$ exceeds the limit of specified range.
$-\mathrm{S}+1$ is less than K40
$-\mathrm{S}+1>\mathrm{S}+2$


## Caution regarding pulse output function (F168 and F169)

Use a program such as the following when performing continuous motor rotation in one direction.


Pulse output stops when the upper limit of the internal elapse value is exceeded if rotation is in one direction only.
As a countermeasure, reset the elapsed value (zero clear) before executing F168 (SPD1) or F169 (PLS) instructions, as with the program, above.
The pulse output does not stop when the FPOR is used as the FPO (FPO compatibility mode).
The elapsed value is signed 32 -bit value.

Outline Outputs the pulse of the specified parameter from the specified output (Y0 or Y1).
Program example


## Operands

Operand	Relay			Timer/Counter		$\begin{array}{\|c} \hline \text { Register } \\ \hline \text { DT } \end{array}$	Index register		Constant		Index modifier
	WX	WY	WR	SV	EV		IX	IY	K	H	
S	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	N/A	A
n	N/A	A	A	N/A							

## Description

When the corresponding control flag is off and the execution condition (trigger) is in the on state, a pulse is output from the specified channel. The pulse is output while the execution condition (trigger) is in the on state.
By specifying either incremental counting or decremental counting in the control code, this instruction can be used as an instruction for JOG operations. For that situation, set the control code with combinations such as H 12 (incremental, directional output off) and H22 (decremental, directional output on).
The frequency and duty can be changed each scan. (This becomes effective with the next pulse output after this instruction is executed.)
See below for the corresponding areas.

Channel no.	Control flag	Data register for elapsed value
ch0	R903A	DT9044, DT9045   (For FP0 T32, DT90044, DT90045)
ch1	R903B	DT9048, DT9049   (For FP0 T32, DT90048, DT90049)

When using the incremental counting mode, the pulse stops when the elapsed value exceeds H7FFFFF.
When using the decremental counting mode, the pulse stops when the elapsed value exceeds HFF800000.

## Notes

- When this instruction is used, the setting for the channel corresponding to system register 400 should be set to "High-speed counter not used".
- By performing a rewrite during RUN while operating, the pulse output will stop during rewriting.


## Data table settings

S	Control code	(*1)
S+1	Frequency (Hz)	K40 to K10000 (Hz) (*2)

(*1): Specify the control code by setting the constant H .
Pulse width specification
0 : Fixed pulse width (approx. 80 $\mu \mathrm{s}$ )
(CPU ver. 2.1 or later)
1 to 9: Duty ration approx. 10 to $90 \%$ ( $10 \%$ increments)

Operation mode and directional output
00: No counting mode
10: Incremental counting mode with no directional output
12: Incremental counting mode with directional output off
13: Incremental counting mode with directional output on
20: Decremental counting mode with no directional output
22: Decremental counting mode with directional output on
23: Decremental counting mode with directional output off
(*2): When the pulse width is set to duty $50 \%$, the maximum is 6 kHz . When the pulse width is set to fixed pulse width (approx. $80 \mu \mathrm{~s}$ ), the maximum is 9.5 kHz .
(Thermocouple input type of FP-e is removed.)

## Notes for using FPO compatiblity mode of FPOR

(1) The elapsed value and target value of high-speed counter and pulse output is signed 32-bit values.
(2) The high-speed counter continues counting even if data exceeds the FPO range (signed 24-bit).
(3) The pulse output continues outputting even if data exceeds the FPO range (signed 24-bit).
(4) The waveforms of pulse output are a duty cycle of $25 \%$ regardless of the designation of instructions.
(5) Even if the no count setting is specified with a pulse output instruction, it counts in the addition mode.
(6) The maximum frequency of pulse output is 10000 Hz .
(7) When using the pulse output instruction, it is not used for the pulse ouput and normal output.

## Supplement to the operation in the case with the direction output

## 1: FP0

1: When specifying a duty of $50 \%$ : The pulse output will start approx. "Initial speed period/2" hours later after the direction output.

When the initial speed is 500 Hz , it is approx. 1 ms .
2. When specifying 80us fixedly: The pulse output will start approx. "Initial speed period - 25us" hours later after the direction output.

When the initial speed is 500 Hz , it is approx. 1.98 ms .

## 2: For FPO compatibility mode

Pulses are output using a duty of $25 \%$ fixedly. (The setting is invalid.) The pulse output will start approx. 300us later after the direction output. (The characteristics of a motor driver is considered.)

## Precautions during programming

If both the regular program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.
Run the program referring to page $3-487$, when controlling the motor in one direction using the pulse output function.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
-n is number except 0 and 1 .


Outline Outputs the PWM of the specified parameter from the specified output ( YO or Y 1 ).

## Program example

Ladder Diagram			Boolean		
			Address		uction
			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F170 } \\ & \text { DT } \\ & \text { K } \end{aligned}$	
$\mathbf{S}$ S ${ }^{\text {Starting address for the area that contains the data table. }}$					
	n	Output Yn that corresponds to the PWM output (n: K0 or K1).			

## Operands

Operand	Relay			Timer/Counter		Register	Index   register		Constant		Index   modifier
	WX	WY	WR	SV	EV	DT	IX	IY	K	H	
S	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	N/A	A
n	N/A	A	A	N/A							

A: Available N/A: Not Available

## Description

When the corresponding control flag is off and execution condition (trigger) is in the on state, a PWM is output from the specified channel. The PWM is output while the execution condition (trigger) is in the on state.

The frequency and duty are specified with the data table on the right made by a user program.
Since the output is delayed near the maximum and minimum levels, the set duty ratio will differ.
The duty can be changed each scan. The frequency settings is only effective at the start of the execution of the instruction (becomes effective after the next pulse output).
See below for the corresponding areas.

Channel no.	Control flag
ch0	R903A
ch1	R903B

## Notes

- When this instruction is used, the setting for the channel corresponding to system register 400 should be set to "High-speed counter not used".
- By performing a rewrite during RUN while operating, the pulse output will stop during rewriting.
- If both the regular program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.


## Data table settings

S	Control code	H 0 to $\mathrm{H} 16\left({ }^{*} 1\right)$
	Suty (\%)	K1 K999 (0.1\% to $99.9 \%)$

(*1): Control code contents (frequency settings)

	FPO		FP0 compatibility mode of FP0R	
Setting	Frequency (Hz)	Period (ms)	Frequency (Hz)	Period (ms)
H11	1000	1.0	1000	1.0
H12	714	1.4	750	1.3
H13	500	2.0	500	2.0
H14	400	2.5	400	2.5
H15	200	5.0	200	10.0
H16	100	10.0	100	25.0
H0	38	26.3	40	100.0
H1	19	52.6	105.3	16.7
H2	9.5	208.3	Cannot be specified	
H3	4.8	416.7	Cannot be specified	
H4	2.4	833.3	Cannot be specified	
H5	1.2	1666.7	Cannot be specified	
H6	0.6	3333.3	Cannot be specified	
H7	0.3	6666.7		
H8	0.15			

H 11 to H 16 are supported by CPU Ver. 2.0 and subsequent versions.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
-n is number except 0 and 1 .
- The frequency setting value set with $(\mathrm{S})$ is outside the specification range.
$-100 \%$ or higher is set with $(S+1)$


## Pulse output <br> (with channel specification) (trapezoidal control)

Availability
FP $\Sigma / F P-X$

Outline This instruction outputs pulses from the specified channel for the pulse output according to the specified parameters.

## Program example

Ladder Diagram			Boolean		
			Address		uction
10	Trigger	$\text { SPDH, } \underbrace{\mathrm{DT} 100}_{\mathrm{S}}, \underbrace{\mathrm{~K} 0}_{\mathrm{n}}]$	$\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$	ST   DF   F171   DT   K	$\begin{aligned} & \text { R } \quad 10 \\ & \text { (SPDH) } \\ & 100 \\ & 0 \end{aligned}$
	S	Starting address of area containing the data table.			
	n	Channel for pulse output.			

Operands

Operand	Relay			Timer/Counter			Register	Index   register	Constant	Index   modifier
	WX	WY	WR	SV	EV	DT	I	K		
S	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	A
$\mathbf{n}$	N/A	A	A	N/A						

A: Available
$\mathrm{N} / \mathrm{A}$ : Not Available

## Description

Pulses are output from the specified channel when the corresponding control flag turns off and the execution condition is in on state.

For FPE

Channel no.	Output	Output method	
ch0	$\mathrm{Y0}$	CW	PLS
	Y 1	CCW	SIGN
ch2	Y 3	CW	PLS
	Y 4	CCW	SIGN

For FP-X Ry type (AFPX-PLS)

Channel no.	Output	Output method	
ch0   Casette   mounting part 1	Y100	CW	PLS
ch1   Casette   mounting part 2 Y200	Y201	CWW	SIGN
	CCW	SIGN	

## For FP-X Tr type

Channel no.	Output	Output method	
ch0	Y 0	CW	PLS
	Y 1	CCW	SIGN
ch1	Y 2	CW	PLS
	Y 3	CCW	SIGN
ch2	Y 4	CW	PLS
	Y 5	CCW	SIGN
ch3	Y 6	CW	PLS
	Y 7	CCW	SIGN

Note) There is no ch3 for C14T and C14TD.
Note) The pulse I/O cassette (AFPX-PLS) cannot be installed on the FP-X Tr type.
Note) Use the ch2 and ch3 at up to 20 kHz .

The control code, initial speed, maximum speed, acceleration/deceleration time, and target value are specified by creating the data table " S " to " $\mathrm{S}+11$ " on the following page using the user program.
The frequency is changed using the specified acceleration/deceleration time from the initial speed to the maximum speed. During deceleration, the frequency is changed based on the same slope as during acceleration.

If the frequency is set to 50 kHz or more, specify a duty of $1 / 4(25 \%)$.
If the frequency for ch2 or ch3 of FP-X Tr type is set to 10 kHz or more, specify a duty of $1 / 4$ (25\%).

## Table of areas used

## For FPE

Channel no.	Control flag	Elapsed value area	Target value area
ch0	R903A	DT90044, DT90045	DT90046, DT90047
ch2	R903C	DT90200, DT90201	DT90202, DT90203

## For FP-X Ry type

Channel no.	Control flag	Elapsed value area	Target value area
ch0	R911C	DT90348, DT90349	DT90350, DT90351
ch1	R911D	DT90352, DT90353	DT90354, DT90355

Note) Ch1 cannot be used for C14R.

## For FP-X Tr type

Channel no.	Control flag	Elapsed value area	Target value area
ch0	R911C	DT90348	DT90350
		DT90349	DT90351
ch1	R911D	DT90352	DT90354
		DT90353	DT90355
ch2	R911E	DT90356	DT90358
		DT90357	DT90359
ch3	R911F	DT90360	DT90362
		DT90361	DT90363

Note) There is no ch3 for C14T and C14TD.
Note) The pulse I/O cassette (AFPX-PLS) cannot be installed on the FP-X Tr type.
Note) Use the ch2 and ch3 at up to 20 kHz .

## Operation modes

## Incremental <relative value control>

Outputs the pulses set with the target value.

Selected   mode	CW/CCW	PLS + SIGN   Forward off   Reverse on	PLS + SIGN   Forward on   Reverse off	Elapsed value
Positive	Pulse output   from CW	Pulse output on   direction output off	Pulse output on   direction output on	Addition
Negative	Pulse output   from CCW	Pulse output on   direction output on	Pulse output on   direction output off	Subtraction

## Absolute <absolute value control>

Outputs a number of pulses equal to the difference between the set target value and the current value.

Selected   mode	CW/CCW	PLS + SIGN   Forward off   Reverse on	PLS + SIGN   Forward on   Reverse off	Elapsed value
Target value   greater than   current value	Pulse output   from CW	Pulse output on   direction output off	Pulse output on   direction output on	Addition
Target value   less than   current value	Pulse output   from CCW	Pulse output on   direction output on	Pulse output on   direction output off	Subtraction

## Precautions during programming

If both the regular program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.

During the time that the circular interpolation control flag R904E is on, the pulse output instructions F166 to F176 cannot be executed.
When using this instruction for FP , set the channels corresponding to system registers 400 and 401 to "Not set as high-speed counter".
If you perform a rewrite during RUN when pulse output is taking place, more pulses than the setting may be output.
When using this instruction for FP-X, set the pulse output by the system register.

## Setting the data table


(*1): Specification of control code (specify with H constant)
0 : Fixed
Number of acceleration/deceleration steps
0: 30 steps
1: 60 steps (Can be specified for only FPE V1.4 or more and FP-X.)
Duty (on width)
0: Duty $1 / 2$ (50\%)
1: Duty $1 / 4$ (25\%)
Frequency range
$0: 1.5 \mathrm{~Hz}$ to 9.8 kHz
1: 48 Hz to 100 kHz
2: 191 Hz to 100 kHz
Operation mode and output method
00: Incremental CW/CCW
02: Incremental PLS + SIGN (forward off / reverse on)
03: Incremental PLS + SIGN (forward on / reverse off)
10: Absolute CW/CCW
12: Absolute PLS + SIGN (forward off/reverse on)
13: Absolute PLS + SIGN (forward on / reverse off)
(*2): Frequency ( Hz ) "K constant"
Frequency range
0: 1.5 Hz to 9.8 kHz [K1 to K9800 (units: Hz)] (Max. error near 9.8 kHz : approx. -0.9 kHz ) * Set "1" to specify 1.5 Hz .

1: 48 Hz to $100 \mathrm{kHz}[\mathrm{K} 48$ to K 100000 (units: Hz )] (Max. error near 100 kHz : approx. -3 kHz )
2: 191 Hz to 100 kHz [K191 to K100000 (units: Hz)] (Max. error near 100 kHz : approx. -0.8 kHz ) Initial speed: Set to 30 kHz or lower.
(*3): Acceleration/deceleration time (ms) "K constant"
With 30 steps: K30 to K32760 (Set in units of 30 ms .)
With 60 steps: K60 to K32760 (C32T2 and C28P2 only) (Set in units of 60 ms .)
(*4): Target value
K-2147483648 to K2147483647

## Application example




## Acceleration/deceleration time setting

When setting the acceleration/deceleration time, number of steps and initial speed, please use values that satisfy the following formula. When the acceleration/deceleration time has 30 steps please use 30 ms units. When it has 60 steps, please use 60 ms units. *5
Acceleration/deceleration time: $t[\mathrm{~ms}] \geqq$ (no. of steps $\times 1000$ ) / initial speed f0 $[\mathrm{Hz}]$
(*5): If they are set without using 30 ms units or 60 ms units, the values will be automatically corrected to the multiple values of 30 ms or 60 ms (larger value).

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area is exceeded when an index modifier is used.
- The " $n$ " is outside specification range.
- The data of " $S, S+1$ " to " $S+4, S+5$ " are outside specification range.
- The "S+2, S+3" > "S+4, S+5".
- The " $S+8, S+9$ " is outside specification range.
- With the FP-X, the pulse output has not been set by the system register.


## F171(SPDH)

## Pulse output <br> (with channel specification) (home position return)

Outline
This instruction outputs pulses from the specified channel for the pulse output according to the specified parameters.

## Program example



## Operands

Operand	Relay			Timer/Counter		$\begin{gathered} \text { Register } \\ \hline \text { DT } \\ \hline \end{gathered}$	Index register   I	Constant		Index modifier
	WX	WY	WR	SV	EV			K	H	
S	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	A
n	N/A	A	A	N/A						

A: Available
N/A: Not Available

## Description

Pulses are output from the specified channel when the corresponding control flag turns off and the execution condition is in on state.

## For FPE

Channel no.	Output	Output method	
ch0	Y0	CW	PLS
	Y1	CCW	SIGN
	Y2	Deviation counter   clear	
	Y3	CW	PLS
	Y4	CCW	SIGN
	Y5	Deviation counter   clear	

For FP-X Ry type (AFPX-PLS)

Channel no.	Output	Output method	
ch0   Casette   mounting part 1	Y100	CW	PLS
	Y101	CCW	SIGN
	Deviation counter   clear		
ch1   Casette   mounting part 2	Y201	CCW	SIGN
	Y202	Deviation counter   clear	

## For FP-X Tr type

Channel no.	Output	Output method	
ch0	Y 0	CW	PLS
	Y 1	CCW	SIGN
	Y4 or Y8	Deviation counter clear	
	Y 2	CW	PLS
	Y 3	CCW	SIGN
	Y5 or Y9	Deviation counter clear	
ch3	Y 4	CW	PLS
	Y5	CCW	SIGN
	No deviation counter clear control		

Note) There is no ch3 for C14T and C14TD.
Note) C14T and C14TD is Y4 or Y5. C30T, C30TD, C60T and C60TD is Y8 or Y9.
Note) The deviation counter clear control is not available for the ch2 and ch3.
Note) Use the ch2 and ch3 at up to 20 kHz .

The control code, initial speed, maximum speed, acceleration/deceleration time, and deviation counter clear signal are specified by creating a data table as described on the following page using the user program.
The frequency is changed using the specified acceleration/deceleration time from the initial speed to the maximum speed. During deceleration, the frequency is changed based on the same slope as during acceleration.

If the frequency is set to 50 kHz or more, specify a duty of $1 / 4(25 \%)$.
If the frequency for ch2 or ch3 of FP-X Tr type is set to 10 kHz or more, specify a duty of $1 / 4(25 \%)$.

## Table of areas used

For FP:

Channel no.	Control flag	Elapsed value area	Target value area	Near home	Home input
ch0	R903A	DT90044, DT90045	DT90046, DT90047	DT90052 bit2	X2
ch2	R903C	DT90200, DT90201	DT90202, DT90203	DT90052 bit4	X5

## For FP-X Ry type

Channel no.	Control flag	Elapsed value area	Target value area	Near home	Home input
ch0	R911C	DT90348, DT90349	DT90350, DT90351	DT90052 bit4	X4
ch1	R911D	DT90352, DT90353	DT90354, DT90355	DT90052 bit4	X5

## For FP-X Tr type

Channel   no.	Control   flag	Elapsed value   area	Target value area	Near   home	home   input
ch0	R911C	DT90348	DT90350		X4
		DT90351		X5	
ch1	R911D	DT90352	DT90354		<bit4>

Note) There is no ch3 for C14T and C14TD.

## Operation modes

## Return to home position

Pulses are output continually until home input (X2 or X5) occurs. To decelerate at near home, set the corresponding bit of special data register DT90052 off $\rightarrow$ on $\rightarrow$ off when near home input occurs.
The value in the elapsed value area during a home position return differs from the current value. When the return is completed, the elapsed value changes to 0 .

Home position return by means of near home input and home input
Deceleration occurs when near home input occurs, and pulse output stops after home input. Operation varies depending on the control code (lower order) settings described on the following page.


## Home position return using only home input

Pulse output stops when home input occurs. Use a control code (lower order) setting on the following page from H 20 to H 27 .


## Setting the data table

$\begin{aligned} & S \\ & S+1 \end{aligned}$	Control code	(*1)
$\begin{aligned} & \mathrm{S}+2 \\ & \mathrm{~S}+3 \end{aligned}$	Initial speed Fmin (Hz)	(*2)
$\begin{aligned} & \mathrm{S}+4 \\ & \mathrm{~S}+5 \end{aligned}$	Maximum speed   Fmax (Hz)	(*2)
$\begin{aligned} & S+6 \\ & S+7 \end{aligned}$	Acceleration/deceleration time t (ms)	(*3)
$\begin{aligned} & \mathrm{S}+8 \\ & \mathrm{~S}+9 \end{aligned}$	Deviation counter clear signal output time $\operatorname{tr}(\mathrm{ms})$	(*4)

(*1): Control code specification (specify with an H constant)

0: Fixed	
Number of acceleration/deceleration steps	
0: 30 steps	
1: 60 steps (Can be specified for only FPE V1.4 or more and FP-X.)	
Duty (on width)	
0: Duty $1 / 2(50 \%)$	
1: Duty $1 / 4(25 \%)$	
Frequency range	
0: 1.5 Hz to 9.8 kHz	
1: 48 Hz to 100 kHz	
2: 191 Hz to 100 kHz	
Operation mode and output method	
20: Home position return mode I	CW
21: Home position return mode I	CCW
22: Home position return mode I	Direction output off
23: Home position return mode I	Direction output on
24: Home position return mode I	CW + deviation counter clear
25: Home position return mode I	CCW + deviation counter clear
26: Home position return mode I	Direction output off + deviation counter clear
27: Home position return mode I	Direction output on + deviation counter clear
30: Home position return mode II	CW
31: Home position return mode II	CCW
32: Home position return mode II	Direction output off
33: Home position return mode II	Direction output on
34: Home position return mode II	CW + deviation counter clear
35: Home position return mode II	CCW + deviation counter clear
36: Home position return mode II	Direction output off + deviation counter clear
37: Home position return mode II	Direction output on + deviation counter clear

(*2): Frequency (Hz) "K constant"
Frequency range
$0: 1.5 \mathrm{~Hz}$ to $9.8 \mathrm{kHz}[\mathrm{K} 1$ to K 9800 (units: Hz )] (Max. error near 9.8 kHz : approx. -0.9 kHz )

* Set " 1 " to specify 1.5 Hz .

1: 48 Hz to 100 kHz [K48 to K100000 (units: Hz )] (Max. error near 100 kHz : approx. -3 kHz ) For this range we recommend a duty of $1 / 4$.
2: 191 Hz to 100 kHz [K191 to K100000 (units: Hz)] (Max. error near 100 kHz : approx. -0.8 kHz ) For this range we recommend a duty of $1 / 4$.
Initial speed: Set to 30 kHz or lower.
(*3): Acceleration/deceleration time (ms) "K constant"
With 30 steps: K30 to K32760
With 60 steps: K60 to K32760 (FP $\Sigma$ V1.4 or more and FP-X only)
(*4): Deviation counter clear signal output time
Set the deviation counter clear signal output time.
0.5 ms to 100 ms [K0 to K100] Set value and margin of error ( 0.5 ms or less)

Specify K0 when not using this signal or when specifying 0.5 ms

## Application example



## Acceleration/deceleration time setting

When setting the acceleration/deceleration time, number of steps and initial speed, please use values that satisfy the following formula. When the acceleration/deceleration time has 30 steps please use 30 ms units. When it has 60 steps, please use 60 ms units. *5
Acceleration/deceleration time: $\mathrm{t}[\mathrm{ms}] \geqq$ (no. of steps $\times 1000$ ) / initial speed f0 $[\mathrm{Hz}]$
(*5): If they are set without using 30 ms units or 60 ms units, the values will be automatically corrected to the multiple values of 30 ms or 60 ms (larger value).

## Precautions during programming

When the control code (lower order) is H 20 to H 27 (Home return mode typel), the home input is enabled after near home input regardless of whether deceleration has ended or is still in progress.
When the control code (lower order) is H30 to H37 (Home return mode type II), the home input is only enabled following near home input after deceleration to the initial speed has been completed.

Even when home input has occurred, executing this instruction causes pulse output to begin.
If the near home input is enabled while acceleration is in progress, deceleration begins.
If both the normal program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.

When using this instruction for FP $\Sigma$, set the channels corresponding to system registers 400 and 401 to "Not set as high-speed counter".

When using this instruction for FP-X, set the pulse output by the system register.
If you perform a rewrite during RUN when pulse output is taking place, more pulses than the setting may be output.

During the time that the circular interpolation control flag R904E is on, the pulse output instructions F166 to F176 cannot be executed.

Please refer to "F0 (MV) instruction pulse output control" when doing a soft reset, count disable, pulse output stop, or near home process.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area is exceeded when an index modifier is used.
- The " $n$ " is outside specification range.
- The data of "S, S+1" to "S+4, S+5" are outside specification range.
- The " $\mathrm{S}+2, \mathrm{~S}+3$ " > " $\mathrm{S}+4, \mathrm{~S}+5$ ".
- With the FP-X, the pulse output has not been set by the system register.

Pulse output (Trapezoidal control)

Outputs pulses from the specified pulse output channels according to the specified parameters.
[Feature] An acceleration time and deceleration time can be set respectively. Also, the deceleration stop is available.
The target speed can be changed.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register   DT	$\begin{gathered} \hline \text { Index } \\ \text { register } \\ \hline \ln (* 1) \\ \hline \end{gathered}$	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WR	SV	EV					K	H	
n	N/A	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	N/A	N/A	A
S	N/A	A	A	N/A									

(*1) 10 to ID

A: Available N/A: Not Available

## Description

When the trigger is on, pulses are output from the specified channels and the trapezoidal control can be performed.

The control code, initial speed, target speed, acceleration time, deceleration time and the target value is specified by creating data tables [S] to [S+11] using user programs.
When accelerating, the frequency is changed in the acceleration time specified from the initial speed to the target speed.
When decelerating, the frequency is changed in the deceleration time specified from the target speed.
The deceleration stop request is available by the control data (bit5) of DT90052. (e.g.) F0(MV) H 120 , DT90052

When using the same condition as the table used at the previous startup, the operation can be started at high speed without calculation.
Method of acceleration/deceleration and initial speed
During the pulse output, the pulse output instruction flag corresponding to the channel turns on.
When the deceleration stop is requested during acceleration, deceleration is performed with the same slope of the deceleration time from the target speed.
In this instruction, the operation is processed giving the acceleration/deceleration time priority.

The pulse output frequency can be changed by rewriting the target speed during the pulse output.
Two control methods are available, which are type 0 and type 1 . Using the type 0 , the speed can be changed within the range of the target speed specified first.
Using the type 1, the speed can be accelerated/decelerated up to the range of the maximum frequency, regardless of the target speed specified fist.
Image of operation 1: When the target speed is not changed


Image of operation 2: When the target value is changed


## Precautions during programming

When the same channel is described in a normal program and interrupt program both, do not execute them at the same time.

This instruction cannot be executed when the corresponding control flag to the channel started is on.
When rewriting during RUN is performed, the pulse output will stop.
The instruction cannot be started when the deceleration stop request flag is on.
To restart after stopping the operation, turn off the trigger once, and then turn it on again.
When the instruction is started during the interrupt program, specify the execution in the interrupt program with the control code. Speed cannot be changed when the instruction is executed in the interrupt program.

## Pules output channels and areas used

Channel No.	Output	Output type		Pulse output instruction flag	Elapsed value area	Target value area	Correction speed of initial speed	Deceleration minimum speed	Acceleration forbidden area starting position
ch0	Y0	CW	PLS	R9120	$\begin{array}{\|l\|} \hline \text { DT90400 } \\ \text { DT90401 } \end{array}$	$\begin{array}{\|l\|l} \hline \text { DT90402 } \\ \text { DT90403 } \end{array}$	R90406	DT90407	DT90408
	Y1	CCW	SIGN						DT90409
ch1	Y2	CW	PLS	R9121	$\begin{array}{\|l\|l} \hline \text { DT90410 } \\ \text { DT90411 } \end{array}$	$\begin{aligned} & \text { DT90412 } \\ & \text { DT90413 } \end{aligned}$	R90416	DT90417	DT90418
	Y3	CCW	SIGN						DT90419
ch2	Y4	CW	PLS	R9122	$\begin{array}{\|l\|l} \hline \text { DT90420 } \\ \text { DT90421 } \end{array}$	$\begin{aligned} & \text { DT90422 } \\ & \text { DT90423 } \end{aligned}$	R90426	DT90427	DT90428
	Y5	CCW	SIGN						DT90429
ch3	Y6	CW	PLS	R9123	$\begin{array}{\|l} \text { DT90430 } \\ \text { DT90431 } \end{array}$	$\begin{aligned} & \text { DT90432 } \\ & \text { DT90433 } \end{aligned}$	R90436	DT90437	DT90438
	Y7	CCW	SIGN						DT90439

## Settings of data table

Table of type 0

S S+1	Control code	Velocity range (Frequency) (Hz) 1 Hz to 50 kHz [K1 to K50000 (Unit: Hz)]
S+2 $\mathrm{S}+3$	Initial speed $(\mathrm{Hz})$	
S+4 $\mathrm{S}+5$	Target speed $(H z)$	
S+6 $\mathrm{S}+7$	Acceleration time (ms)	Acceleration time up to the target speed:   Acceleration time range (ms) K1 to K32760 (Unit: ms)
S+8 $\mathrm{S}+9$	Deceleration time (ms)	Deceleration time from the target speed:   Deceleration time range (ms) K1 to K32760 (Unit: ms)
$\begin{aligned} & \mathrm{S}+10 \\ & \mathrm{~S}+11 \end{aligned}$	Target value (No. of pulses)	Target value range $\mathrm{K}-2,147,483,648 \text { to } \mathrm{K} 2,147,483,647$

## Table of type 1

S ${ }_{\text {S }}$	Control code	Velocity range (Frequency) (Hz)   1 Hz to 50 kHz [K1 to K50000 (Unit: Hz)]
S+2 $\mathrm{S}+3$	Initial speed $(\mathrm{Hz})$	
S+4 $\mathrm{S}+5$	Target speed (Hz)	
S+6 S+7	Acceleration time (ms)	Acceleration time up to the max. speed 50 kHz :   Acceleration time range (ms) K1 to K32760 (Unit: ms)
S+8 $\mathrm{S}+9$	Deceleration time (ms)	Deceleration time from the max. speed 50 kHz : Deceleration time range (ms) K1 to K32760 (Unit: ms)
$\begin{aligned} & \mathrm{S}+10 \\ & \mathrm{~S}+11 \end{aligned}$	Target value (No. of pulses)	Target value range $\mathrm{K}-2,147,483,648 \text { to } \mathrm{K} 2,147,483,647$

Note: If the speed is changed to a value over 50 kHz during the operation, it will be corrected to 50 kHz .

## Note the following characteristics according to the specified initial speed.

(1) When the initial speed is 1 or higher, and lower than 46 Hz , the control up to the maximum frequency to the degree of 10 kHz can be performed. If the frequency is higher than that, the speed error will be larger.
(2) When the initial speed is 46 or higher, and lower than 184 Hz , the control up to 50 kHz can be performed.
(3) When the initial speed is 184 or higher, the control up to 50 kHz can be performed. The speed error around 50 kHz will be smallest.

## Change of speed during pulse output

(1)With the type 0 , if a value larger than the target speed at start-up is specified, it will be corrected to the target speed at start-up. With the type 1 , if the target value is set to a value larger than 50 kHz , it will be corrected to 50 kHz .
(2)If the elapsed value crosses over the acceleration forbidden area starting position during accelerating, acceleration cannot be performed. For information on the acceleration forbidden area starting position, refer to the special registers.
(3)For deceleration, the speed cannot be lower than the deceleration minimum speed.

For information on the deceleration minimum speed, refer to the special registers.
Assignment of control code (Specify with H constant)

10: Fixed
Control assignment
0: Trapezoidal
Control assignment type
0: Type 0 1: Type 1
Interrupt execution assignment
0: Execute in main program.
1: Execute in interrupt program.
(The trigger is the level type.)
Output assignment
0: Pulse output
1: Calculation only
Operation mode assignment
0: Incremental
1: Absolute
Output type assignment
0: CW/CCW
1: PLS+SIGN (Forward OFF/Reverse ON)
2: PLS+SIGN (Forward ON/Reverse OFF)

*As for the output assignment
When starting the instruction with the setting of " 1 : Calculation only", the pulse output is not performed. When starting the instruction with the assignment of the same channel and the same parameter after executing this instruction once for a channel, it can be started at high speed. (It is the same for the both cases of "Pulse output" and "Calculation only".)
However, if a parameter other than the parameter used for the previous execution is specified, the high-speed startup cannot be performed.

Note) The same parameter means that all the parameters other than the output assignment are the same.

## Output type

## Incremental <Relative control>

The pulses specified for the target value are output.

| Mode selection |  | CW/CCW | PLS+SIGN <br> Forward OFF <br> Reverse ON | PLS+SIGN <br> Forward ON <br> Reverse OFF |
| :--- | :--- | :--- | :--- | :--- | Elapsed value

## Absolute <Absolute value control>

The pulse that is the difference between the specified target value and the current value is output.

| Mode selection |  | CW/CCW | PLS+SIGN <br> Forward OFF <br> Reverse ON | PLS+SIGN <br> Forward ON <br> Reverse OFF |
| :--- | :--- | :--- | :--- | :--- | Elapsed value

[Explanation of pulse output operation]
Pulses are output using a duty of $25 \%$ fixedly.
When using the PLS +SIGN method, pulses will be output approx. 300 us later after the output of direction signal. (The characteristics of a motor driver is considered.)

## Sample program1: Trapezoidal control type 0, No deceleration stop request, No change of speed



## Data table

DT0	Control information	Trapezoidal control   Incremental CW/CCW
DT2	Initial speed   $(\mathrm{Hz})$	1000 Hz
DT4	Target speed   $(\mathrm{Hz})$	7000 Hz
DT6	Acceleration time   (ms)	450 ms
DT8	Deceleration time   (ms)	300 ms
DT10	Target value   (No. of pulses)	100,000 pulses

Sample program2: Trapezoidal control type 0, With deceleration stop request, With change of speed
$\left.\begin{array}{|llll|}\hline & \text { RO } & \text { [F1 DMV, H10000000, DTO }\end{array}\right]$


The deceleration stop is performed according to the deceleration time after the detection of deceleration stop request.

## Data table

Refer to the Sample program1.
Sample program3: Trapezoidal control type 0, with change of speed

R0		
	[ F1 DMV, H10000000, DT0	]
	[ F1 DMV, K1000, DT2	]
	[ F1 DMV, K7000, DT4	]
	[ F1 DMV, K450, DT8	]
	[ F1 DMV, K300, DT6	]
R1 [F1DMV, K100000, DT10 ]		
R1	[ F171 SPDH, DT0, K0	]
R2	[ F1 DMV, K5000, DT4	]



## Data table

DT0	Control information	Trapezoidal control   Incremental CW/CCW
DT2	Initial speed   (Hz)	1000 Hz
DT4	Target speed   (Hz)	7000 Hz
DT6	Acceleration time   (ms)	450 ms
DT8	Deceleration time   (ms)	300 ms
DT10	Target value   (No. of pulses)	100,000 pulses

## Sample program4: Trapezoidal control type 1, with change of speed

RO (DF) [F1 DMV H10010000, DT0		
R1	[ F1 DMV, K1000, DT2	]
	[ F1 DMV, K25000, DT4	]
	[ F1 DMV, K600, DT8	]
	[ F1 DMV, K400, DT6	]
	[ F1 DMV, K100000, DT10	]
1	[ F171 SPDH, DT0, K0	]
R2		
	[ F1 DMV, K20000, DT4	]



## Data table

DTO	Control information	Trapezoidal control Incremental CW/CCW	
DT2	$\begin{aligned} & \text { Initial speed } \\ & (\mathrm{Hz}) \end{aligned}$	1000 Hz	
DT4	Target speed (Hz)	25000 Hz	
DT6	Acceleration time (ms)	600ms	Acceleration time up to 50 kHz
DT8	Deceleration time (ms)	400ms	Deceleration time from 50 kHz
DT10	Target value (No. of pulses)	100,000 pulses	

## Flag conditions

- Error flag (R9007):
- Error flag (R9008):
- Turns on when the area specified using the index modifier exceeds the limit.
- Turns on when $n$ is out of the specified range.
- Turns on when each data of $[\mathrm{S}, \mathrm{S}+1]$ to $[\mathrm{S}+4, \mathrm{~S}+5]$ is out of the specified range.
- Turns on when $[\mathrm{S}+2, \mathrm{~S}+3]>[\mathrm{S}+4, \mathrm{~S}+5]$.
- Turns on when [S10, $\mathrm{S}+11$ ] is out of the specified range.
- Turns on when the pulse output has not been set by the system register.
- Turns on when the interrupt execution has been specified for executing the instruction in the main program.

Availability
FPOR

Outline Outputs the specified number of pulses and performs the deceleration stops after the position control starting input during the pulse output.

## Program example

Ladder Diagram	Boolean		
	Address		uction
	10	ST	R 10
	11	DF	
	12	F171	(SPDH)
		DT	100
		K	0


$\mathbf{S}$	Starting 16-bit area for registering data tables
$\mathbf{n}$	Channels intended for pulse output ( $\mathrm{n}=0$ to 3 )

## Operands

Operand	Relay			Timer/ Counter	Register	Index register	SWR	Constant		Index modifier
	WX	WY	WR	EV	DT	In (*1)		K	H	
S	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	N/A	A
n	N/A	A	A	N/A						

A: Available $\mathrm{N} / \mathrm{A}$ : Not Available

## (*1) 10 to ID

## Description

When the trigger is on, pulses are output from the specified channels.
The control code, initial speed, target speed, acceleration time, deceleration time and the target value after the position control starting input is specified by creating data tables $[\mathrm{S}]$ to $[\mathrm{S}+11]$ using user programs.
When accelerating, the frequency is changed in the acceleration time specified from the initial speed to the target speed.
The pulse output continues until the position control starting input turns on after reaching the target speed.
After the position control starting input turned on, the pulse output continues up to the target value, and then decelerates and stops.
For using the position control staring input ( $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ ), set the system register 402.
When decelerating, the frequency is changed in the deceleration time specified from the target speed.
The positioning control can be also started by the control data (bit6) of DT90052.
(e.g.) F0(MV) H140, DT90052

The deceleration stop can be requested by the control data (bit5) of DT90052.
(e.g.) F0(MV) H120, DT90052

When using the same condition as the table used at the previous startup, the operation can be started at high speed without calculation.
During the pulse output, the pulse output instruction flag corresponding to channel turns on.
When the deceleration stop is requested during acceleration, deceleration is performed with the same slope of the deceleration time from the target speed.
In this instruction, the operation is processed giving the acceleration/deceleration time priority.
The initial speed may be corrected to enable accelerating/decelerating within the specified time.

Image of operation: When the target speed does not change


Image of operation: When the target speed changes


Pulse output instruction flag

## Precautions during programming

When the same channel is described in a normal program and interrupt program both, do not execute them at the same time.
This instruction cannot be executed when the corresponding pulse output instruction flag to the channel started is on.
When rewriting during RUN is performed, the pulse output will stop.

The instruction cannot be started when the deceleration stop request flag is on.
Note that the methods to stop the pulse output in this instruction are only any of the following operations: Turning on the position control starting input (position control starting flag), requesting the deceleration stop and executing an emergency stop.
To restart after stopping the operation, turn off the trigger once, and then turn it on again.
When the instruction is started during the interrupt program, specify the execution in the interrupt program with the control code. Speed cannot be changed when the instruction is executed in the interrupt program.

## Pulse output channels and areas used

Channel No.	Output	Output type		Position control starting input	Pulse output instruction flag	Elapsed value area	Target value area	Correction speed of initial speed	Deceleration minimum speed	Acceleration   forbidden   area starting   position
ch0	Y0	CW	PLS	X0 DT90052 bit6	R9120	DT90400   DT90401	DT90402DT90403	DT90406	DT90407	$\begin{aligned} & \text { DT90408 } \\ & \text { DT90409 } \end{aligned}$
	Y1	CCW	SIGN							
ch1	Y2	CW	PLS	X1   DT90052   bit6	R9121	DT90410   DT90411	DT90412DT90413	DT90416	DT90417	$\begin{aligned} & \text { DT90418 } \\ & \text { DT90419 } \end{aligned}$
	Y3	CCW	SIGN							
ch2	Y4	CW	PLS	$\begin{array}{\|l} \text { X2 } \\ \text { DT90052 } \\ \text { bit6 } \end{array}$	R9122	$\begin{array}{\|l\|l} \hline \text { DT90420 } \\ \text { DT90421 } \end{array}$	$\begin{aligned} & \text { DT90422 } \\ & \text { DT90423 } \end{aligned}$	DT90426	DT90427	$\begin{aligned} & \text { DT90428 } \\ & \text { DT90429 } \end{aligned}$
	Y5	CCW	SIGN							
ch3	Y6	CW	PLS	$\begin{array}{\|l\|} \hline \text { X3 } \\ \text { DT90052 } \\ \text { bit6 } \end{array}$	R9123	$\begin{aligned} & \text { DT90430 } \\ & \text { DT90431 } \end{aligned}$	DT90432DT90433	DT90436	DT90437	$\begin{aligned} & \text { DT90438 } \\ & \text { DT90439 } \end{aligned}$
	Y7	CCW	SIGN							

## Setting the data table

$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S}+1 \end{aligned}$	Control code	Velocity range (Frequency) (Hz)   1 Hz to 50 kHz [K1 to K50000 (Unit: Hz)]
$\begin{aligned} & \mathrm{S}+2 \\ & \mathrm{~S}+3 \end{aligned}$	Initial speed (Hz)	
$\begin{aligned} & S+4 \\ & S+5 \end{aligned}$	$\begin{aligned} & \text { Target speed } \\ & (\mathrm{Hz}) \end{aligned}$	
$\begin{aligned} & \mathrm{S}+6 \\ & \mathrm{~S}+7 \end{aligned}$	Acceleration time (ms)	Acceleration time up to the max. speed 50 kHz . Acceleration time range (ms) K1 to K32760 (Unit: ms)
$\begin{aligned} & \mathrm{S}+8 \\ & \mathrm{~S}+9 \end{aligned}$	Deceleration time (ms)	Deceleration time from the max. speed 50 kHz . Deceleration time range (ms) K1 to K32760 (Unit: ms)
$\begin{aligned} & \mathrm{S}+10 \\ & \mathrm{~S}+11 \end{aligned}$	Target value (No. of pulses)	Target value range $\mathrm{K}-2,147,483,648 \text { to } \mathrm{K} 2,147,483,647$

Note the following characteristics according to the specified initial speed.
(1) When the initial speed is 1 or higher, and lower than 46 Hz , the control up to the maximum frequency to the degree of 10 kHz can be performed.
If the frequency is higher than that, the speed error will be larger.
(2) When the initial speed is 46 or higher, and lower than 184 Hz , the control up to 50 kHz can be performed.
(3) When the initial speed is 184 or higher, the control up to 50 kHz can be performed.

The speed error around 50 kHz will be smallest.

## Change of speed during pulse output

(1) If the target value is set to a value larger than 50 kHz , it will be corrected to 50 kHz .
(2) If the elapsed value crosses over the acceleration forbidden area starting position during accelerating, acceleration cannot be performed.
For information on the acceleration forbidden area starting position, refer to the special registers.
(3) For deceleration, the speed cannot be lower than the deceleration minimum speed.

For information on the deceleration minimum speed, refer to the special registers.

## Assignment of control code (Specify with H constant)

10: Fixed
Control assignment
1: JOG positioning
Control assignment 2
0: Type 0
Interrupt execution assignment
0: Execute in main program.
1: Execute in interrupt program.
(The trigger is the level type.)
Output assignment
0: Pulse output
1: Calculation only
Operation mode assignment
0: Incremental
Output type assignment
0: CW/CCW
1: PLS+SIGN (Forward OFF/Reverse ON)
2: PLS+SIGN (Forward ON/Reverse OFF)

When the target value has been set to 0 , it will stop when the position control starting input turns on.
(Only V1.06 or later)
For reversing the output when the target value has been set to 0 , set the output type of control code to $4,5,6$ instead of $0,1,2$.
*As for the output assignment
When starting the instruction with the setting of "1: Calculation only", the pulse output is not performed. When starting the instruction with the assignment of the same channel and the same parameter after executing this instruction once for a channel, it can be started at high speed. (It is the same for the both cases of "Pulse output" and "Calculation only".)
However, if a parameter other than the parameter used for the previous execution is specified, the high-speed startup cannot be performed.

Note) The same parameter means that all the parameters other than the output assignment are the same.

## Output type

| Mode selection |  | CW/CCW | PLS+SIGN <br> Forward OFF <br> Reverse ON | PLS+SIGN <br> Forward ON <br> Reverse OFF |
| :--- | :--- | :--- | :--- | :--- | Elapsed value

When the target value has been set to 0 , the output will be the forward mode when the output type is set to 0,1 , 2. For performing the reverse output, set the type to 4, 5, 6 instead of 0,1 , 2. (V1.06 or later)
[Explanation of pulse output operation]
Pulses are output using a duty of $25 \%$ fixedly.
When using the PLS +SIGN method, pulses will be output approx. 300 us later after the output of direction signal.
(The characteristics of a motor driver is considered.)

## Sample program



## Flag conditions

- Error flag (R9007):
- Error flag (R9008):
- Turns on when the area specified using the index modifier exceeds the limit.
- Turns on when n is out of the specified range.
- Turns on when each data of $[\mathrm{S}, \mathrm{S}+1]$ to $[\mathrm{S}+4, \mathrm{~S}+5]$ is out of the specified range.
- Turns on when $[\mathrm{S}+2, \mathrm{~S}+3]>[\mathrm{S}+4, \mathrm{~S}+5]$.
- Turns on when $[\mathrm{S}+10, \mathrm{~S}+11]$ is out of the specified range.
- Turns on when the pulse output has not been set by the system register.
- Turns on when the interrupt execution has been specified for executing the instruction in the main program.

Outputs the specified number of pulses changing the target speed again and performs the deceleration stop after the position control starting input during the pulse output.

## Program example



## Operands

Operand	Relay				Timer/Counter		$\begin{gathered} \text { Register } \\ \hline \text { DT } \\ \hline \end{gathered}$	Index register$\ln (* 1)$	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WR	SV	EV					K	H	
n	N/A	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	N/A	N/A	A
S	N/A	A	A	N/A									

(*1) 10 to ID

## Description

When the corresponding control flag is off and the trigger is on, pulses are output from the specified channels.
The control code, initial speed, target speed 1, acceleration time, target speed 2 after position control starting input, change time, deceleration time and the target value is specified by creating data tables [ S ] to [ $\mathrm{S}+15$ ] using user programs.
When accelerating, the frequency is changed in the acceleration time specified from the initial speed to the target speed.
After the position control starting input turned on, the pulse output continues up to the target value, and then decelerates and stops.
For using the position control staring input ( $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ ), set the system register 402.
When decelerating, the frequency is changed in the deceleration time specified from the target speed.
The positioning control can be also started by the control data (bit6) of DT90052.
(e.g.) F0(MV) H140, DT90052

The deceleration stop can be requested by the control data (bit5) of DT90052. (e.g.) F0(MV) H120, DT90052

When using the same condition as the table used at the previous startup, the operation can be started at high speed without calculation.
Method of acceleration/deceleration and initial speed
When the deceleration stop is requested during acceleration, deceleration is performed with the same slope of the deceleration time from the target speed.
In this instruction, the operation is processed giving the acceleration/deceleration time priority.

The initial speed may be corrected to enable accelerating/decelerating within the specified time.


Note) Note that the position control starting input will be disregarded even if it is turned on during acceleration.

## Precautions during programming

When the same channel is described in a normal program and interrupt program both, do not execute them at the same time.

This instruction cannot be executed when the corresponding control flag to the channel started is on.
If rewriting during RUN is performed during pulse output, pulses more than the setting may be output.
As for the position control starting input, only the rising edge $(\mathrm{ON})$ is detected.
The instruction cannot be started when the deceleration stop request flag is on.
Note that the methods to stop the pulse output in this instruction are only any of the following operations: Turning on the position control starting input (position control starting flag), requesting the deceleration stop and executing an emergency stop.

The target speed cannot be changed with this instruction.
When the instruction is started during the interrupt program, specify the execution in the interrupt program with the control code.

## Pules output channels and areas used

Channel No.	Output	Output type		Position control starting input	Pulse output instruction flag	Elapsed value area	Target value area
ch0	YO	CW	PLS	X0   DT90052 bit6	R9120	DT90400   DT90401	$\begin{array}{\|l\|l} \hline \text { DT90402 } \\ \text { DT90403 } \end{array}$
	Y1	CCW	SIGN				
ch1	Y2	CW	PLS	X1 DT90052 bit6	R9121	$\begin{aligned} & \text { DT90410 } \\ & \text { DT90411 } \end{aligned}$	DT90412   DT90413
	Y3	CCW	SIGN				
ch2	Y4	CW	PLS	X2   DT90052 bit6	R9122	$\begin{aligned} & \text { DT90420 } \\ & \text { DT90421 } \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { DT90422 } \\ \text { DT90423 } \end{array}$
	Y5	CCW	SIGN				
ch3	Y6	CW	PLS	X3 DT90052 bit6	R9123	$\begin{array}{\|l\|l} \hline \text { DT90430 } \\ \text { DT90431 } \end{array}$	$\begin{aligned} & \text { DT90432 } \\ & \text { DT90433 } \end{aligned}$
	Y7	CCW	SIGN				

## Setting the data table

S $S+1$	Control code	Velocity range (Frequency) (Hz) 1 Hz to 50 kHz [K1 to K50000 (Unit: Hz)]
S+2 $\mathrm{S}+3$	Initial speed (Hz)	
$\begin{aligned} & S+4 \\ & S+5 \end{aligned}$	Target speed 1 (Hz)	
S+6 $\mathrm{S}+7$	Acceleration time (ms)	Acceleration/deceleration time range (ms) K1 to K32760 (Unit: ms)
$\begin{aligned} & \mathrm{S}+8 \\ & \mathrm{~S}+9 \end{aligned}$	Target speed 2 (Hz)	Velocity range (Frequency) (Hz)   1 Hz to 50 kHz [K1 to K50000 (Unit: Hz)]
$\begin{aligned} & S+10 \\ & S+11 \end{aligned}$	Change time (ms)	K1 to K32760 (Unit: ms)
$\begin{aligned} & S+12 \\ & S+13 \end{aligned}$	Deceleration time (ms)	K1 to K32760 (Unit: ms)
$\begin{aligned} & \mathrm{S}+14 \\ & \mathrm{~S}+15 \end{aligned}$	Target value (No. of pulses)	Target value range K-2,147,483,648 to K2,147,483,647

## Note the following characteristics according to the specified initial speed.

(1) When the initial speed is 1 or higher, and lower than 46 Hz , the control up to the maximum frequency to the degree of 10 kHz can be performed.
If the frequency is higher than that, the speed error will be larger.
(2) When the initial speed is 46 or higher, and lower than 184 Hz , the control up to 50 kHz can be performed.
(3) When the initial speed is 184 or higher, the control up to 50 kHz can be performed.

The speed error around 50 kHz will be smallest.

## Assignment of control code (Specify with H constant)

10: Fixed
Control assignment
1: JOG positioning
Control assignment 2
1: Type 1
Interrupt execution assignment
0: Execute in main program.
1: Execute in interrupt program.
(The trigger is the level type.)
Output assignment
0: Pulse output
1: Calculation only
Operation mode assignment
0: Incremental
Output type assignment
0: CW/CCW
1: PLS+SIGN (Forward OFF/Reverse ON)
2: PLS+SIGN (Forward ON/Reverse OFF)

## Output type

## Incremental <Relative control>

The pulse specified for the target value are output.

|  | Mode <br> selection | CW/CCW | PLS+SIGN <br> Forward OFF <br> Reverse ON | PLS+SIGN <br> Forward ON <br> Reverse OFF |
| :--- | :--- | :--- | :--- | :--- | Elapsed value

[Explanation of pulse output operation]
Pulses are output using a duty of $25 \%$ fixedly.
When using the PLS +SIGN method, pulses will be output approx. 300 us later after the output of direction signal.
(The characteristics of a motor driver is considered.)

## Sample program



## Flag conditions

- Error flag (R9007):
- Error flag (R9008):
- Turns on when the area specified using the index modifier exceeds the limit.
- Turns on when $n$ is out of the specified range.
- Turns on when each data of $[\mathrm{S}, \mathrm{S}+1]$ to $[\mathrm{S}+4, \mathrm{~S}+5]$ is out of the specified range.
- Turns on when $[\mathrm{S}+8, \mathrm{~S}+9]$ is out of the specified range.
- Turns on when $[\mathrm{S}+2, \mathrm{~S}+3]>[\mathrm{S}+4, \mathrm{~S}+5]$.
- Turns on when $[\mathrm{S}+2, \mathrm{~S}+3]>[\mathrm{S}+8, \mathrm{~S}+9]$.
- Turns on when $[S+14, S+15]$ is out of the specified range.
- Turns on when the pulse output has not been set by the system register.


## F172(PLSH)

## Pulse output <br> (with channel specification) <br> (JOG operation)

Availability
FP $\Sigma / F P-X$

Outline Outputs the pulses of the specified parameter from the specified channel for the pulse output.

## Program example

Ladder Diagram			Boolean		
			Address   10   11	Instruction	
Trigger				$\begin{aligned} & \text { ST } \\ & \text { F172 } \\ & \text { DT } \\ & \text { K } \end{aligned}$	R 10   (PLSH)   10   0
S		Starting number for the area that contains the data table			
	n	Channel that corresponds to the pulse output			

## Operands

Operand	Relay			Timer/Counter		Register	Index   register	Constant		Index   modifier
	WX	WY	WR	SV	EV	DT	I	K	H	
S	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	A
$\mathbf{n}$	N/A	A	A	N/A						

## Description

A: Available N/A: Not Available
When the corresponding control flag is off and the execution condition is in the on state, pulses are output from the specified channel. The pulses are output while the execution condition is on.

For FP $\Sigma$

Channel no.	Output	Output method	
ch0	Y0	CW	PLS
	Y1	CCW	SIGN
	Y3	CW	PLS
	Y4	CCW	SIGN

For FP-X Ry type (AFPX-PLS)

Channel no.	Output	Output method	
ch0   Cassete   mounting part 1	Y100	CW	PLS
	Y101	CCW	SIGN
ch1   Cassete   mounting part 2	Y200	CW	PLS
		CCW	SIGN

## For FP-X Tr type

Channel no.	Output	Output method	
ch0	Y 0	CW	PLS
	Y 1	CCW	SIGN
ch1	Y 2	CW	PLS
	Y 3	CCW	SIGN
ch2	Y 4	CW	PLS
	Y 5	CCW	SIGN
ch3	Y 6	CW	PLS
	Y 7	CCW	SIGN

Note) There is no ch3 for C14T and C14TD.
Note) The pulse I/O cassette (AFPX-PLS) cannot be installed on the FP-X Tr type.
Note) Use the ch2 and ch3 at up to 20 kHz .
By specifying either addition counting or subtraction counting in the control code, this instruction can be used as an instruction for JOG operations.
Frequency can be changed in each scan, and the target value can be changed asynchronously. However, the control code cannot be changed during instruction execution.
If a frequency of 50 kHz or higher is specified, a duty of $1 / 4(25 \%)$ should be specified.
If the frequency for ch2 or ch3 of FP-X Tr type is set to 10 kHz or more, specify a duty of $1 / 4$ (25\%).
Table of areas used
For FPE

Channel no.	Control flag	Elapsed value
ch0	R903A	DT90044, DT90045
ch2	R903C	DT90200, DT90201

## For FP-X Ry type

Channel no.	Control flag	Elapsed value
ch0	R911C	DT90348, DT90349
ch1	R911D	DT90352, DT90353

Note) Ch1 cannot be used for C14R.

## For FP-X Tr type

Channel no.	Control flag	Elapsed value area	Target value area
ch0	R911C	DT90348	DT90350
		DT90349	DT90351
ch1	R911D	DT90352	DT90354
		DT90353	DT90355
ch2	R911E	DT90356	DT90358
		DT90357	DT90359
ch3	R911F	DT90360	DT90362
		DT90361	DT90363

Note) There is no ch3 for C14T and C14TD.
Note) The pulse I/O cassette (AFPX-PLS) cannot be installed on the FP-X Tr type.
Note) Use the ch2 and ch3 at up to 20 kHz .

## Precautions during programming

During the time that the circular interpolation control flag R904E is on, the pulse output instructions F166 to F176 cannot be executed.
When using this instruction for FPइ, the setting for the channels corresponding to system registers no. 400 and no. 401 should be set to "High-speed counter not used".
When using this instruction for FP-X, set the pulse output by the system register.
If a rewrite is executed during RUN while the system is operating, pulse output stops while the program is being rewritten.
If the same notation is being used for both the ordinary program and the interrupt program, make sure they are not both executed at the same time.
Target value setting can be used in FP $\Sigma$ V1.4 or more and FP-X only.
If a value outside of the specified range is written for the frequency area while the instruction is being executed, the frequency output will be adjusted to either to the minimum or the maximum. And when starting execution of the instruction, an operation error occurs.
If the control code is changed after the instruction startup, it will be invalid.
If the frequency is changed to a value outside the specification range after the instruction startup, an operation error will not occur and the program will run at the minimum or maximum value in the specification range.

## Flag conditions

- Error flag (R9007): Turns on when:
- Error flag (R9008): Turns on when:
- The control code or frequency is outside the specification range. (During instruction startup)
- The specified area is exceeded when an index is modified.
- The " $n$ " is outside specification range.
- With the FP-X, the pulse output has not been set by the system register.


## Data table settings

$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S}+1 \end{aligned}$	Mode with no target value			Target value match stop mode	
	Control code	(*1)	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S}+1 \end{aligned}$	Control code	(*1)
$\begin{aligned} & S+2 \\ & S+3 \end{aligned}$	Frequency	(*2)	$\begin{aligned} & \mathrm{S}+2 \\ & \mathrm{~S}+3 \end{aligned}$	Frequency	(*2)
			$\begin{aligned} & S+4 \\ & S+5 \end{aligned}$	Target value	(*3)

(*1): Control code specification (specify with an H constant)

## 0: Fixed

Target value setting
0 : Mode with no target value
1: Target value match stop mode
(Can be specified for only FPE V1.4 or more and FP-X.)
Duty (on width)
0 : Duty $1 / 2$ (50\%)
1: Duty $1 / 4$ (25\%)
Frequency range
$0: 1.5 \mathrm{~Hz}$ to 9.8 kHz
1: 48 Hz to 100 kHz
2: 191 Hz to 100 kHz
Output method
00: No counting
01: No counting
CW
10: Addition counting
CCW
12: Addition counting
CW
13: Addition counting
Directional output off
21: Subtraction counting
Directional output on
22: Subtraction counting
CCW
Directional output off
Directional output on
(*2): Frequency ( Hz ) "K constant"
Frequency range
0: 1.5 Hz to 9.8 kHz [K1 to K9800 (units: Hz)] (Max. error near 9.8 kHz approx. -0.9 kHz )

* Set "1" to specify 1.5 Hz .

1: 48 Hz to 100 kHz [K48 to K100000 (units: Hz)] (Max. error near 100 kHz : approx. -3 kHz )
2: 191 Hz to 100 kHz [K191 to K100000 (units: Hz)] (Max. error near 100 kHz : approx. -0.8 kHz )
For counting method, set the initial instruction execution frequency to 30 kHz or lower.
(*3): Target value (Absolute value) (FPE V1.4 or more and FP-X only)
This is used when setting the target value match stop mode.(Absolute only)
Designate the target value setting in the range indicated below. If an out of range value is designated, the number of pulses output will be different than the designated value. The target value setting is ignored in the no count mode.

Output method	Range of target values which can be designated
Addition counting	Designate a value larger than the current value
Subtraction counting	Designate a value smaller than the current value


Availability
FPOR

Outline Performs the pulse output from the specified pulse output channels according to the specified parameters.
[Feature] Acceleration time and deceleration time can be set individually. The deceleration stop is also available.
The target speed can be changed.
Program example


## Operands

Operand	Relay				Timer/Counter		$\begin{array}{\|c} \text { Register } \\ \hline \text { DT } \end{array}$	Index   register   In (*1)	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WR	SV	EV					K	H	
n	N/A	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	N/A	N/A	A
S	N/A	A	A	N/A									

(*1) IO to ID
A: Available
N/A: Not Available

## Description

When the corresponding pulse output instruction flag is off and the trigger is on, pulses are output from the specified channels.
With the JOG operation type, the control code, initial speed, target speed, acceleration time and deceleration time is specified by creating data tables [S] to [S+9] using user programs.
With the JOG operation type 1 (with target values), the target value is specified in a range of [ $\mathrm{S}+10$ ] to $[\mathrm{S}+11]$ as well as the above items.
When accelerating, the frequency is changed in the acceleration time specified from the initial speed to the target speed.
When the trigger is turned off after starting the instruction, the deceleration stop is performed.
When decelerating, the frequency is changed from the target speed in the specified deceleration time.
When the trigger is turned on during deceleration, acceleration is performed again from deceleration.


## Precautions during programming

When the same channel is described in a normal program and interrupt program both, do not execute them at the same time.

This instruction cannot be executed when the corresponding pulse output instruction flag to the channel started is on.
If rewriting during RUN is performed during the pulse output, the pulse output stops during the program is being rewritten.
It is not effective if the control code is changed after starting the instruction. It has no effect on the operation.

## Pules output channels and areas used

Channel No.	Output	Output type		Pulse output instruction flag	Elapsed value area	Target value area	Correction speed of initial speed	Deceleration minimum speed	Acceleration forbidden area starting position
ch0	Y0	CW	PLS	R9120	$\begin{array}{\|l\|} \hline \text { DT90400 } \\ \text { DT90401 } \end{array}$	$\begin{aligned} & \text { DT90402 } \\ & \text { DT90403 } \end{aligned}$	DT90406	DT90407	$\begin{aligned} & \text { DT90408 } \\ & \text { DT90409 } \end{aligned}$
	Y1	CCW	SIGN						
ch1	Y2	CW	PLS	R9121	DT90410DT90411	$\begin{aligned} & \text { DT90412 } \\ & \text { DT90413 } \end{aligned}$	DT90416	DT90417	$\begin{aligned} & \text { DT90418 } \\ & \text { DT90419 } \end{aligned}$
	Y3	CCW	SIGN						
ch2	Y4	CW	PLS	R9122	$\begin{aligned} & \text { DT90420 } \\ & \text { DT90421 } \end{aligned}$	$\begin{aligned} & \text { DT90422 } \\ & \text { DT90423 } \end{aligned}$	DT90426	DT90427	$\begin{aligned} & \text { DT90428 } \\ & \text { DT90429 } \end{aligned}$
	Y5	CCW	SIGN						
ch3	Y6	CW	PLS	R9123	DT90430DT90431	$\begin{aligned} & \text { DT90432 } \\ & \text { DT90433 } \end{aligned}$	DT90436	DT90437	$\begin{aligned} & \text { DT90438 } \\ & \text { DT90439 } \end{aligned}$
	Y7	CCW	SIGN						

## Setting the data table

S +1	Control code	Velocity range (Frequency) (Hz) 1 Hz to 50 kHz [ K 1 to K 50000 (Unit: Hz )]
$\begin{aligned} & S+2 \\ & S+3 \end{aligned}$	Initial speed (Hz)	
$\begin{aligned} & S+4 \\ & S+5 \end{aligned}$	$\begin{aligned} & \text { Target speed } 1 \\ & (\mathrm{~Hz}) \end{aligned}$	Acceleration time up to the max. speed 50 kHz . Acceleration time range (ms) K1 to K32760 (Unit: ms)
S+6 $\mathrm{S}+7$	Acceleration time (ms)	Deceleration time from the max. speed 50 kHz .   Deceleration time range (ms) K1 to K32760 (Unit: ms)
$\begin{aligned} & S+8 \\ & S+9 \end{aligned}$	Deceleration time (ms)	Target value range   Note: Available for JOG type 1 (with target values) only. K-2,147,483,648 to K2,147,483,647
	Target value	Available for JOG type 1 only

## Note the following characteristics according to the specified initial speed.

(1) When the initial speed is 1 or higher, and lower than 46 Hz , the control up to the maximum frequency to the degree of 10 kHz can be performed.
If the frequency is higher than that, the speed error will be larger.
(2) When the initial speed is 46 or higher, and lower than 184 Hz , the control up to 50 kHz can be performed.
(3) When the initial speed is 184 or higher, the control up to 50 kHz can be performed.

The speed error around 50 kHz will be smallest.

## Change of speed during pulse output

(1) With the type 0 , if a value larger than the target speed at start-up is specified, it will be corrected to the target speed at start-up.
With the type 1, if the target value is set to a value larger than 50 kHz , it will be corrected to 50 kHz .
(2) If the elapsed value crosses over the acceleration forbidden area starting position during accelerating, acceleration cannot be performed.
For information on the acceleration forbidden area starting position, refer to the special registers.
(3) For deceleration, the speed cannot be lower than the deceleration minimum speed.

For information on the deceleration minimum speed, refer to the special registers.

## Assignment of control code (Specify with H constant)

10: Fixed
Control assignment
0: JOG
Control assignment 2
0: Type 0 (Without target values)
1: Type 1 (With target values)
0: Fixed
Output assignment
0: Pulse output
1: Calculation only
Movement direction
Type 0 (Without target values)
0: Forward
1: Reverse
Type 1 (With target values)
0: Incremental
1: Absolute
Output type assignment
0: CW/CCW
1: PLS+SIGN (Forward OFF/Reverse ON)
2: PLS+SIGN (Forward ON/Reverse OFF)

*As for the output assignment
When starting the instruction with the setting of "1: Calculation only", the pulse output is not performed. When starting the instruction with the assignment of the same channel and the same parameter after executing this instruction once for a channel, it can be started at high speed. (It is the same for the both cases of "Pulse output" and "Calculation only".) However, if a parameter other than the parameter used for the previous execution is specified, the high-speed startup cannot be performed.

Note) The same parameter means that all the parameters other than the output assignment are the same.

Output type 0 (without target values)

| Mode selection |  | CW/CCW | PLS+SIGN <br> Forward OFF <br> Reverse ON | PLS+SIGN <br> Forward ON <br> Reverse OFF |
| :--- | :--- | :--- | :--- | :--- | Elapsed value

## Output type 1 (with target values)

Incremental <Relative control>
The pulses specified for the target value are output.

| Mode selection |  |  |  | CW/CCW |
| :--- | :--- | :--- | :--- | :--- | | PLS+SIGN |
| :--- |
| Forward OFF |
| Reverse ON |$~$| PLS+SIGN |
| :--- |
| Forward ON |
| Reverse OFF |$\quad$ Elapsed value

## Absolute <Absolute value control>

The pulse that is the difference between the specified target value and the current value is output.

Mode selection	CW/CCW	PLS+SIGN   Forward OFF   Reverse ON	PLS+SIGN   Forward ON   Reverse OFF	Elapsed value
When target value is   larger than current   value	Output from CW	Pulse output when   direction output is off	Pulse output when   direction output is on	Addition
When target value is   smaller than current   value	Output from CCW	Pulse output when   direction output is on	Pulse output when   direction output is off	Subtraction

[Explanation of pulse output operation]
Pulses are output using a duty of $25 \%$ fixedly.
When using the PLS +SIGN method, pulses will be output approx. 300 us later after the output of direction signal. (The characteristics of a motor driver is considered.)

## Method of acceleration/deceleration and initial speed

When the deceleration stop is requested during acceleration, deceleration is performed with the same slope of the deceleration time from the target speed.
In this instruction, the operation is processed giving the acceleration/deceleration time priority.
The initial speed may be corrected to enable accelerating/decelerating within the specified time.

## Sample program



## Flag conditions

- Error flag (R9007):
- Error flag (R9008):
- Turns on when the control code or frequency is out of the settable range (when the instruction is started).
- Turns on when the area specified using the index modifier exceeds the limit.
- Turns on when $n$ is out of the specified range.
- Turns on when the pulse output of the specified channel is not set by the system register.


## F173(PWMH)

PWM output
(with channel specification)

## Availability

FP $\sum /$ FP-X/FPOR

Outline Outputs the PWM of the specified parameter from the specified channel for the PWM output.

## Program example

Ladder Diagram			Boolean		
			Address		uction
$10$		$\text { VMH, } \underset{\mathrm{S}}{\mathrm{DT} 20,} \underset{\mathrm{n}}{\mathrm{~L}} \underset{\mathrm{n}}{\mathrm{~K} 0}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F173 } \\ & \text { DT } \\ & \text { K } \end{aligned}$	$\begin{array}{r} \text { R } \quad 10 \\ \text { (PWMH) } \\ 20 \\ 0 \end{array}$
	S	Starting number for the area that contains the data table			
	n	Channel targeted by the PWM output			

## Operands

Operand	Relay			Timer/Counter		Register   DT	Index   register   I	Constant		Index modifier
	WX	WY	WR	SV	EV			K	H	
S	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	A
n	N/A	A	A	N/A						

A: Available $\mathrm{N} / \mathrm{A}$ : Not Available

## Description

When the corresponding control flag is off and the execution condition is in the on state, a PWM is output from the specified channel for the PWM output. The PWM is output while the execution condition is on.
The data table shown at below, indicating the frequency and duty, is created and the values are specified by the user program.
The duty, particularly when it is close to the minimum or maximum value, may be off from the specified ratio, depending on the load voltage and load current.

The duty can be changed for each separate scan. Control codes, however, cannot be changed while an instruction is being executed.

Table of areas used
For FP:

Channel no.	Output	Control flag
ch0	Y0	R903A
ch2	Y3	R903C

## For FP-X Ry type (AFPX-PLS)

Channel no.	Output	Control flag
ch0   Casette   mounting part 1	Y100	R911C
ch1   Casette   mounting part 2	Y200	R911D

## For FP-X Tr

Channel no.	Output	Control flag
ch0	Y0	R911C
ch1	Y2	R911D
ch2	Y4	R911E
ch3	Y6	R911F

Note) There is no ch3 for FPX-C14T.
Note) The pulse I/O cassette (AFPX-PLS) cannot be installed on the FP-X Tr type.
Note) Use the ch2 and ch3 at up to 20 kHz .

## For FPOR

Channel no.	Output	Pulse I/O instruction flag
ch0	Y0	R9120
ch1	Y2	R9121
ch2	Y4	R9122
ch3	Y6	R9123

## Precautions during programming

During the time that the circular interpolation control flag R904E is on, the pulse output instructions F166 to F176 cannot be executed.
When using this instruction for FP $\Sigma$, the setting for the channels corresponding to system registers no. 400 and no. 401 should be set to "High-speed counter not used".
When using this instruction for FP-X, set the PWM output by the system register.
If a rewrite is executed during RUN while the system is operating, pulse output stops while the program is being rewritten.
If the same notation is being used for both the ordinary program and the interrupt program, make sure they are not both executed at the same time.
If a value over the specified range is written for the duty area while the instruction is being executed, the duty output will be adjusted to the maximum. And when starting execution of the instruction, an operation error occurs.
If the control code is changed after the instruction startup, it does not affect the frequency but the resolution of the duty.
If the frequency is changed to a value outside the specification range after the instruction startup, an operation error will not occur and the program will run with the duty of 100 resolution.
If the duty is changed to $100 \%$ or higher after the instruction startup, an operation error will not occur and the program will run at the maximum value of the specified resolution.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The specified area is exceeded when an index is modified.
- The $n$ is any value other than 0 or 2 .
- The control code is outside specification range. (During instruction startup)
- The duty is higher than 100\%. (During instruction startup)
- With the FP-X, the PWM output has not been set by the system register.


## Data table settings

S	
	Control code
	(*1)
	(*2)

(*1): Control code specification (specify using K constant)
For FPE and FP-X

Resolution of 1000

K	Frequency   $\mathbf{( H z )}$	Timing   $(\mathbf{m s})$
K0	1.5	666.67
K1	2.0	502.51
K2	4.1	245.70
K3	6.1	163.93
K4	8.1	122.85
K5	9.8	102.35
K6	19.5	51.20
K7	48.8	20.48
K8	97.7	10.24
K9	201.6	4.96
K10	403.2	2.48
K11	500.0	2.00
K12	694.4	1.44
K13	1.0 k	0.96
K14	1.3 k	0.80
K15	1.6 k	0.64
K16	2.1 k	0.48
K17	3.1 k	0.32
K18	6.3 k	0.16
K19	12.5 k	0.08

Resolution of 100

K	Frequency   $\mathbf{( H z )}$	Timing   $(\mathbf{m s})$
K20	15.6 k	0.06
K21	20.8 k	0.05
K22	25.0 k	0.04
K23	31.3 k	0.03
K24	41.7 k	0.02

Note: When using ch2 or ch3 on FP-X Tr type, use the control codes up to K20.
(*2): Specification of duty (specify using K constant)
If the control code is K 0 to K 19 , the duty is K 0 to K 999 ( $0.0 \%$ to $99.9 \%$ ).
If the control code is K20 to K24, the duty is K0 to K99 (0\% to $99 \%$ ).
Set values are specified in units of $1 \%$ (K10) (digits below the decimal point are rounded off).

## For FPOR

K	Frequency (Hz)	Period (ms)
K3	6	166.67
K4	7.5	133.33
K5	12.5	80.00
K6	25	40.00
K7	50	20.00
K8	100	10.00
K9	200	5.00
K10	400	2.50
K11	600	1.67
K12	800	1.25
K13	1000	1.00
K14	1200	0.83
K15	1600	0.63
K16	2000	0.50
K17	3000	0.33
K18	4800	0.21
Other than the above	Cannot be specified	

## Pulse output <br> (with channel specification) <br> (Selectable data table control operation)

Outline Outputs the pulses from the specified channel for the pulse output according to the specified data table.

## Program example



Operands

Operand	Relay			Timer/Counter		$\begin{gathered} \text { Register } \\ \hline \text { DT } \end{gathered}$	Index   register   I	Constant		Index modifier
	WX	WY	WR	SV	EV			K	H	
S	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	A
n	N/A	A	A	N/A						

A: Available N/A: Not Available

## Description

When the corresponding control flag is off and the execution condition is in the on state, pulses are output from the specified channel (ch0 or ch2) based on the contents set for the data table in which the first address is that specified by " S ".

For FPE

Channel no.	Output	Output method	
ch0	Y0	CW	PLS
	Y1	CCW	SIGN
ch2	Y3	CW	PLS
	Y4	CCW	SIGN

For FP-X Ry type (AFPX-PLS)

Channel no.	Output	Output method	
ch0   Cassete   mounting part 1	Y101	CW	PLS
ch1   Cassete   mounting part 2	Y200	CWW	SIGN

## For FP-X Tr type

Channel no.	Output	Output method	
ch0	Y 0	CW	PLS
	Y 1	CCW	SIGN
ch1	Y 2	CW	PLS
	Y 3	CCW	SIGN
ch2	Y 4	CW	PLS
	Y 5	CCW	SIGN
ch3	Y 6	CW	PLS
	Y 7	CCW	SIGN

Note) There is no ch3 for C14T and C14TD.
Note) The pulse I/O cassette (AFPX-PLS) cannot be installed on the FP-X Tr type.
Note) Use the ch2 and ch3 at up to 20 kHz .

When the elapsed value of the high-speed counter reaches the target value specified in the data table, the pulse frequency is switched (interrupt processing is carried out).
When the elapsed value agrees with the last target value, the pulse output operation finishes.
Use the FO (MV) instruction to control the high-speed counter to force the pulse output control to stop.
If the frequency is set to 50 kHz or more, specify a duty of $1 / 4(25 \%)$.
If the frequency for ch2 or ch3 of FP-X Tr type is set to 10 kHz or more, specify a duty of $1 / 4$ (25\%).

## Table of areas used

For FPE

Channel no.	Control flag	Elapsed value area	Target value area
ch0	R903A	DT90044, DT90045	DT90046, DT90047
ch2	R903C	DT90200, DT90201	DT90202, DT90203

## For FP-X Ry type

Channel no.	Control flag	Elapsed value area	Target value area
ch0	R911C	DT90348, DT90349	DT90350, DT90351
ch1	R911D	DT90352, DT90353	DT90354, DT90355

## For FP-X Tr type

Channel no.	Control flag	Elapsed value area	Target value area
ch0	R911C	DT90348	DT90350
		DT90349	DT90351
ch1	R911D	DT90352	DT90354
		DT90353	DT90355
ch2	R911E	DT90356	DT90358
		DT90357	DT90359
ch3	R911F	DT90360	DT90362
		DT90361	DT90363

Note) There is no ch3 for C14T and C14TD.
Note) The pulse I/O cassette (AFPX-PLS) cannot be installed on the FP-X Tr type.
Note) Use the ch2 and ch3 at up to 20 kHz .

## Precautions during programming

The high-speed counter control flag R903A (R903C) is on from the time that the execution condition for the F174 (SPOH) instruction has gone on until the pulse output stops.
During the time that the high-speed counter control flag R903A (R903C) is on, the high-speed counter and pulse output instructions F166 to F176, which use the same control flag, cannot be executed.
During the time that the circular interpolation control flag R904E is on, the pulse output instructions F166 to F176 cannot be executed.
An operation error occurs if a value that is not within the allowable range is specified for the control code or for frequency 1 . (If the data for frequency 1 is 0 , the operation is terminated without anything being executed.)
Pulse output is stopped if the frequency of the second or a subsequent stage is specified as 0 or as a value outside the allowable range.
If the table pointer exceeds the data register DT area during pulse output, pulse output control stops and the high-speed counter control flag R903A (R903C) goes off.
Always make sure that the target values are specified within the ranges indicated on the following page. If a value outside the allowable range is specified, the number of pulses output will be different from the specified value.
If a periodic interrupt or high-speed counter value interrupt program is run, or the PLC link function is used at the same time, a frequency of 80 kHz or less should be used.
Note: With FP-X, refer to the table of areas used for the internal relay equivalent to R903A (R903C).
When using this instruction for FP-X, set the pulse output by the system register.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area is exceeded when an index modifier is used.
- The " n " is other than 0 or 2 .
- The control code or frequency 1 is outside setting range.
- With the FP-X, the pulse output has not been set by the system register.


## Setting the data tabler

[S]	Control code
[S+2]	Frequency 1
[S+4]	Target value 1 (Number of pulses)
[S+6]	Frequency 2
[S+8]	Target value 2 (Number of pulses)
[S+2n]	Frequency n
[S+2(n+1)]	Target value n (Number of pulses)
[S+2(n+2)]	K0

nd of table (Pulse output stops.)
(*1): Specification of control code "H constant"
Upper word
0 : Fixed
Duty (on width)
0 : Duty $1 / 2$ (50\%)
1: Duty $1 / 4$ (25\%)
Frequency range
$0: 1.5 \mathrm{~Hz}$ to 9.8 kHz
1: 48 Hz to 100 kHz
2: 191 Hz to 100 kHz
Operation mode
0 : Incremental Specifies the amount of travel (number of pulses)
1: Absolute Specifies the target value (absolute value)

## Output method

0: CW
1: CCW
2: PLS+SIGN (forward off)
3: PLS+SIGN (reverse on)
4: PLS+SIGN (forward on)
5: PLS+SIGN (reverse off)
(addition counting) (subtraction counting) (addition counting) (subtraction counting) (addition counting) (subtraction counting)
(*2): Frequency (Hz) "K constant"
Frequency range
$0: 1.5 \mathrm{~Hz}$ to $9.8 \mathrm{kHz}[\mathrm{K} 1$ to K 9800 (units: Hz )] (Max. error near 9.8 kHz : approx. -0.9 kHz )

* Set " 1 " to specify 1.5 Hz .

1: 48 Hz to 100 kHz [K48 to K100000 (units: Hz)] (Max. error near 100 kHz : approx. -3 kHz )
2: 191 Hz to 100 kHz [K191 to K100000 (units: Hz)] (Max. error near 100 kHz : approx. -0.8 kHz )
Initial speed: Set "Frequency 1" to 30 kHz or less.
(*3): Target value (K-2147483648 to K2147483647)
The value of the 32-bit data specified for the target value should be within the range indicated in the table below.

Specification of control code		Range of allowable target values
Operation mode	Output method	
Incremental	Addition counting	Specifies a positive value.
	Subtraction counting	Specifies a negative value.
Absolute	Addition counting	Specifies a value larger than the current value
	Subtraction counting	Specifies a value smaller than the current value

## Program example

## [Operation content]

1. Pulse output from the specified channel ch0 begins at $1,000 \mathrm{~Hz}$ when the $\mathbf{F 1 7 4}$ (SPOH) instruction execution condition (trigger) R10 goes on.
2. At the point when 1,000 pulses have been counted at a frequency of $1,000 \mathrm{~Hz}$, the frequency switches to $2,500 \mathrm{~Hz}$.
3. At the point when 3,000 pulses have been counted at a frequency of $2,500 \mathrm{~Hz}$, the frequency switches to $5,000 \mathrm{~Hz}$.
4. At the point when 8,000 pulses have been counted at a frequency of $5,000 \mathrm{~Hz}$, the frequency switches to $1,000 \mathrm{~Hz}$.
5. At the point when 10,000 pulses have been counted, pulse output stops.

Frequency (speed) [Hz]


When the execution condition (trigger) R10 of the F174 (SPOH) instruction goes on, the high-speed counter control flag R903A (R903C) goes on. When the elapsed value reaches 10,000 and pulse output stops, R903A (R903C) goes off.
Note: With FP-X, refer to the table of areas used for the internal relay equivalent to R903A (R903C).

## [Settings and program]

The frequency range is from 191 Hz to 100 kHz , the duty $1 / 4$ (25\%), the operation mode is Incremental, and the output method is CW.

Ro	
HH[F1 DMV , H 1200, DT100]	Control code: "H1200"
[F1 DMV , K 1000, DT102]	Frequency 1: $1,000 \mathrm{~Hz}$
[F1 DMV , K 1000, DT104]	Target value 1: 1,000 pulses
[F1 DMV , K 2500, DT106]	Frequency 2 : $2,500 \mathrm{~Hz}$
[F1 DMV , K 2000, DT108]	Target value 2: 2,000 pulses
[F1 DMV , K 5000, DT110]	Frequency 3: $5,000 \mathrm{~Hz}$
[F1 DMV , K 5000, DT112]	Target value 3: 5,000 pulses
[F1 DMV , K 1000, DT114]	Frequency 4: $1,000 \mathrm{~Hz}$
[F1 DMV , K 2000, DT116]	Target value 4: 2,000 pulses
R10 ${ }^{[F 1 ~ D M V ~, ~ K ~ 0, ~ D T 118] ~}$	Output pulse stops
-H(DF)-[F174 SPOH,DT100,K0]	Pulse output control

Outline
Outputs pulses from the specified pulse output channels according to the specified data table.

## Program example

Ladder Diagram	Boolean		
	Address		uction
	$\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$	ST   DF   F174   DT   K	$\begin{array}{r} \mathrm{R} \quad 10 \\ \\ (\mathrm{SPOH}) \\ 100 \\ 0 \end{array}$
Starting 16-bit area for registering data tables			
Channels intended for pulse output ( $\mathrm{n}=0$ to 3)			

## Operands

$\left.$| Operand | Relay |  |  | Timer/Counter |  |  | Register | Index <br> register | Constant |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Index |
| :---: |
| modifier | \right\rvert\,

A: Available N/A: Not Available

## Description

When the corresponding pulse output instruction flag is off and the trigger is on, pulses are output from the specified channels according to the conditions specified in the data table which starts with the address specified by [S].
If the elapsed value of the pulse output reaches the target value specified in the data table, the pulse frequency is changed (by the interrupt operation).
When the elapsed value reaches the final target value, the pulse output stops.
Image of operation
Frequency (speed) [Hz]


Pules output channels and areas used

Channel No.	Output	Output type		Pulse output instruction flag	Elapsed value area	Target value area
ch0	YO	CW	PLS	R9120	DT90400	DT90402
	Y1	CCW	SIGN		DT90401	DT90403
ch1	Y2	CW	PLS	R9121	DT90410	DT90412
	Y3	CCW	SIGN		DT90411	DT90413
ch2	Y4	CW	PLS	R9122	DT90420	DT90422
	Y5	CCW	SIGN		DT90421	DT90423
ch3	Y6	CW	PLS	R9123	DT90430	DT90432
	Y7	CCW	SIGN		DT90431	DT90433

## Setting the data table

	Control code *1
$\mathrm{S}+1$	
$\mathrm{~S}+2$	Frequency $1(\mathrm{~Hz}) * 2$
$\mathrm{~S}+3$	
$\mathrm{~S}+4$	Target value 1 (No. of pulses) *3
$\mathrm{S}+5$	
$\mathrm{~S}+2$	Frequency $2(\mathrm{~Hz})$
$\mathrm{S}+3$	
$\mathrm{~S}+4$	Target value 2 (No. of pulses)
$\mathrm{S}+5$	


$\approx$	
$\begin{array}{r} S+2 n \\ S+2 n+1 \end{array}$	Frequency $\mathrm{n}(\mathrm{Hz})$
$\begin{array}{r} S+2(n+1) \\ S+2(n+1)+1 \end{array}$	Target value n ( $\mathrm{No}$. of pulses)
$\begin{array}{r} \mathrm{S}+2(\mathrm{n}+2) \\ \mathrm{S}+2(\mathrm{n}+2)+1 \end{array}$	K0: fixed: Table end

Note: If the frequency " $n$ " is set to a value larger than 50 kHz , it will be corrected to 50 kHz .
Note the following characteristics applied according to the value of frequency 1.
(1) When the frequency 1 is 1 or higher, and lower than 46 Hz , the control up to the maximum frequency to the degree of 10 kHz can be performed.
If the frequency " $n$ " is set to a value below 6 Hz , it will be corrected to 6 Hz .
(2) When the frequency 1 is 46 or higher, and lower than 184 Hz , the control up to 50 kHz can be performed. If the frequency " $n$ " is set to a value below 46 Hz , it will be corrected to 46 Hz .
(3) When the frequency 1 is 184 or higher, the control up to 50 kHz can be performed.

If the frequency " $n$ " is set to a value below 184 Hz , it will be corrected to 184 Hz .

*2: Velocity range (Frequency) (Hz) <K constant>
1 Hz to 50 kHz [K1 to K50000 (Unit: Hz)]
*3: Target value range (ms) <K constant>
K-2,147,483,648 to K2,147,483,647
32-bit data value specified for the target value should be within the following range.

Assignment of control code		Range of settable target values
Operation mode	Output type	
Incremental	Count: Addition	Specify a positive value.
	Count: Subtraction	Specify a negative value.
Absolute	Count: Addition	Specify a value larger than the current value.
	Count: Subtraction	Specify a value smaller than the current value.

## Sample program

## Description of operation

(1) When the trigger R10 in F174 (SPOH) instruction is on, the pulses are output at 1000 Hz from the specified channel.
(2) When 1000 pulses are counted at 1000 Hz , the frequency changes to 2500 Hz .
(3) When 3000 pulses are counted at 2500 Hz , the frequency changes to 5000 Hz .
(4) When 8000 pulses are counted at 5000 Hz , the frequency changes to 1000 Hz .
(5) When 1000 pulses are counted, the pulse output stops.


Note) When the trigger R10 in $\mathrm{F} 174(\mathrm{SPOH})$ instruction turns on, the pulse output instruction flag will be on. Once the pulse output stops when the elapsed value reached 10000, the high-speed counter control flag will be off.

## Setting and program

Control assignment: Arbitrary table control, operation mode: Incremental, the output type is CW/CCW.
$\left.\begin{array}{rlll}\text { RO } & {\left[\begin{array}{llll}F 1 & \text { DMV,H } & 10000000, \text { DT100 }\end{array}\right]}\end{array}\right]$

Control code: "H10000000"
Frequency 1: 1000 Hz
Target value 1: 1000 pulses
Frequency 2: 2500 Hz
Target value 2: 3000 pulses
Frequency 3: 5000 Hz
Target value 3: 5000 pulses
Frequency 4: 1000 Hz
Target value 4: 2000 pulses
Stop of pulse output
Start of pulse output

## Precautions during programming

The pulse output instruction flag is on until the pulse output stops after turning on the trigger in $\mathrm{F} 174(\mathrm{SPOH})$ instruction.
When the frequency 1 is out the settable range, the operation error occurs. (If the data of the frequency 1 is 0 , the operation ends without processing anything.)
When the second frequency or later is 0 or out of the specified range, the pulse output stops.
When the direction is reversed by executing the instruction with the specified target value, the pulse output stops.
Do not execute this instruction in the normal program and the interrupt program at the same time.
When the table point exceeds the data register (DT) area during the pulse output, the pulse output stops and the high-speed counter control flag turns off.
The target value must be specified within the range. If an outlying value is specified, the number of pulses that is different from the specified condition is output.

## Flag conditions

- Error flag (R9007):
- Error flag (R9008):
- Turns on when the area specified using the index modifier exceeds the limit.
- Turns on when n is out of the specified range.
- Turns on when the control code or frequency 1 is out of the specified range.

Pulse output (Linear interpolation)

Availability
FPE C32T2, C32T2H
C28P2, C28P2H/FP-X

Outline Pulses are output from channel for 2 pulse output, in accordance with the parameters in the designated data table, so that the path to the target position forms a straight line.

## Program example

Ladder Diagram			Boolean		
			Address		uction
			$\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$	ST   DF   F175   DT   K	$\begin{array}{r} \text { R } \quad 10 \\ \\ \text { (SPSH) } \\ 100 \\ 0 \end{array}$
S $\quad$ Starting address of area containing the data table.		Starting address of area containing the data table.			
$\mathbf{n}$ $0:$ Fixed (FPE, FP-X Ry type)   0 or 2 (FP-X Tr type)					

## Operands

Operand	Relay			Timer/Counter		Register   DT	$\square$   Index register   I	Constant		Index modifier		
	WX	WY	WR	SV	EV			K	H			
S	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	A		
n	N/A	A	A	N/A		Available Not Available						

## Description

Pulses are output from channel ch0 (X-axis) and ch2 (Y-axis) (FP-X: ch1) when the corresponding control flag is off and the execution conditions are on.

For FP:

Channel no.	Output	Output method	
ch0 (for X-axis)	$\mathrm{Y0}$	CW	PLS
	Y 1	CCW	SIGN
	Y 3	CW	PLS
	Y 4	CCW	SIGN

For FP-X Ry type (AFPX-PLS)

Channel no.	Output	Output method	
ch0 (for X-axis)   Cassete   mounting part 1	Y100	CW	PLS
ch1 (for Y-axis)   Cassete   mounting part 2	Y200	CCW	SIGN

For FP-X Tr type

Channel no.	Output	Output method	
ch0 (for X-axis)	Y 0	CW	PLS
	Y 1	CCW	SIGN
ch1 (for Y-axis)	Y 2	CW	PLS
	Y 3	CCW	SIGN
ch2 (for X-axis)	Y 4	CW	PLS
	Y 5	CCW	SIGN
ch3 (for Y-axis)	Y 6	CW	PLS
	Y 7	CCW	SIGN

Note) For the FP-X Tr type, the combinations of ch0 (Xaxis) and ch1 (Yaxis), and ch2 (Xaxis) and ch3 ( Y axis) can be used.
Note) As there is no ch3 for C14T and C14TD, only the combination of ch0 and ch1 can execute the linear interpolation.

The control code, initial speed, maximum speed, acceleration/deceleration time, and target value are specified by creating the data table " S " to " $\mathrm{S}+11$ " on the following page using the user program.
If the frequency is set to 40 kHz or more, specify a duty of $1 / 4(25 \%)$.
If the frequency for ch2 or ch3 of FP-X Tr type is set to 10 kHz or more, specify a duty of $1 / 4$ (25\%).

## Table of areas used

For FPE

Channel no.	Control flag	Elapsed value area	Target value area
ch0	R903A	DT90044, DT90045	DT90046, DT90047
ch2	R903C	DT90200, DT90201	DT90202, DT90203

## For FP-X Ry type

Channel no.	Control flag	Elapsed value area	Target value area
ch0	R911C	DT90348, DT90349	DT90350, DT90351
ch1	R911D	DT90352, DT90353	DT90354, DT90355

## For FP-X Tr type

Channel no.	Control flag	Elapsed value area	Target value area
ch0	R911C	DT90348	DT90350
		DT90349	DT90351
ch1	R911D	DT90352	DT90354
		DT90353	DT90355
ch2	R911E	DT90356	DT90358
		DT90357	DT90359
ch3	R911F	DT90360	DT90362
		DT90361	DT90363

Note) There is no ch3 for C14T and C14TD.
Note) The pulse I/O cassette (AFPX-PLS) cannot be installed on the FP-X Tr type.
Note) Use the ch2 and ch3 at up to 20 kHz .

## Precautions during programming

Designate settings for the target value and movement distance so they are within the following range.

$$
-8,388,608 \text { to }+8,388,607
$$

When using in combination with other positioning instructions like F171, designate so the target value is within the above range, even in those instructions.
When using in application requiring precision, check with the actual machine.
If both the regular program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.
During the time that the circular interpolation control flag R904E is on, the pulse output instructions F166 to F176 cannot be executed.
When using this instruction for FPE, set the channels corresponding to system registers 400 and 401 to "Not set as high-speed counter".
If you perform a rewrite during RUN when pulse output is taking place, more pulses than the setting may be output.
When using this instruction for FP-X, set the pulse output by the system register.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area is exceeded when an index modifier is used.
- The " $n$ " is other than 0 .
- The data "S, S+1 to S+10, S+11" of data table are outside specification range.
- The composite speed designation satisfies: Initial speed "S+2, S+3" > Maximum speed "S+4, S+5"
- The composite speed designation satisfies: Maximum speed " $\mathrm{S}+4$, $\mathrm{S}+5$ " > 100 kHz
- The composite speed designation satisfies: Maximum speed " $\mathrm{S}+4, \mathrm{~S}+5$ " $>20 \mathrm{kHz}$ when outputting ch2 or ch3 with FP-X Tr type.
- Incremental mode is designated and the value of "current value + movement distance" is outside the range -8388608 to +8388607 .
- Absolute mode is designated and the target value is outside the range -8388608 to +8388607.
- With the FP-X, the pulse output has not been set by the system register.


## Setting the data table

[S]	Control code	(*1)   (*2)	Setting area
[S+2]	Composite speed Initial speed Fmin(Hz)		
[S+4]	Composite speed Maximum speed $\mathrm{Fmax}(\mathrm{Hz})$		
[S+6]	Acceleration/Deceleration time T (ms)	(*3)	Designated with
[S+8]	X-axis (CH0) Target value (Movement distance)	(*4)	
[S+10]	Y-axis (FPE: CH2, FP-X: CH1) Target value (Movement distance)		
[S+12]	X-axis (CHO) component speed Initial speed Fxmin		
[S+14]	X-axis (CHO) component speed Maximum speed Fxmax		Operation result
[S+16]	Y-axis (FPE: CH2, FP-X: CH1) component speed Initial speed Fymin		storage area
[S+18]	Y-axis (FPE: CH2, FP-X: CH1) component speed Maximum speed Fymax		Parameters for each
[S+20]	X -axis (CH0) frequency range		axis component,
[S+21]	Y-axis (FPE: CH2, FP-X: CH 1 ) frequency range		instruction execution,
[S+22]	X-axis (CH0) number of acceleration/deceleration steps	(*7)	are stored here.
[S+23]	Y-axis (FPE: CH2, FP-X: CH1) number of acceleration/deceleration steps		

(*1): Specification of control code (specify with H constant)

	$\begin{gathered} \Gamma \mathrm{S}+1 \\ \mathbf{H} \square \square \end{gathered}$
0: Fixed	$\square 1$
Duty (on width)	
0: Duty 1/2 (50\%)	
1: Duty 1/4 (25\%)	
0: Fixed	
Operation mode and output method	
00: Incremental	CW/CCW
02: Incremental	PLS + SIGN (forward off / reverse on)
03: Incremental	PLS + SIGN (forward on / reverse off)
10: Absolute	CW/CCW
12: Absolute	PLS + SIGN (forward off / reverse on)
13: Absolute	PLS + SIGN (forward on / reverse off)

(*2): Composite speed (Initial speed, Maximum speed) (Hz) <K constant>
1.5 Hz to 100 kHz [ K 1 to K100000]

However, 1.5 Hz is for an angle of Odeg or 90deg only.
Also, specify K1 when specifying 1.5 Hz .
If the component speed drops lower than the minimum speed for each frequency range, then the speed will become the corrected component speed, so be careful. (See *6)
When simultaneously using a high-speed counter, periodical interrupt or PLC link, do not set to 60 kHz or higher.
If initial speed is set equal to maximum speed, pulses will be output with no acceleration/deceleration. Set the composite speed so that component speed of each axis is 1.5 Hz or greater.
Composite speed (initial speed): 30 kHz or lower

## Note:

Cautions regarding specification of composite speed (initial speed)
The trajectory might not be linear if the initial composite speeds for CH 0 and CH 2 are not 1.5 Hz or higher in the formula below (when the formula below can't be worked out).
$\mathrm{f} \geqq \frac{1.5 \downharpoonleft(\Delta \mathrm{x} 2+\Delta \mathrm{y} 2)}{\Delta \mathrm{x}}$
$\Delta x$ : Short CH of distance between target and current value
$\Delta y$ : Long CH of distance between target and current value When using ch2, ch3 of FP-X Tr type, 1.5 Hz to 20 kHz [ K 1 to K20000]
$\left(*_{3}\right):$ Acceleration/deceleration time (ms) "K constant"
K0 to K32767
If this is 0 , pulses will be output for the initial speed (composite speed) as is, with no acceleration/deceleration.
(*4): Target value
K-8388608 to K8388607
When operating only one axis,
a) In incremental mode, set the target value for the axis which will not be operated to 0 .
b) In absolute mode, set the target value for the axis which will not be operated the same as the current value.
Note: Infinite feed is not possible during linear interpolation.
(*5): Component speed (Initial speed and maximum speed of each axis)
This is stored as 2 words in real numbers type.


Example:
Even if the initial speed is corrected (See *6), the calculation value will be stored as is in the operation result storage area.
(*6): Frequency range
The system automatically selects the frequency range for each component of each axis.
Range 0: 1.5 Hz to 9.8 kHz
Range 1: 48 Hz to 100 kHz
Range 2: 191 Hz to 100 kHz
a) If maximum speed $\leqq 9800 \mathrm{~Hz}$

If initial speed $<1.5 \mathrm{~Hz}$, initial speed is corrected to 1.5 Hz , and range 0 is selected.
If initial speed $\geqq 1.5 \mathrm{~Hz}$, range 0 is selected.
b) If $9800 \mathrm{~Hz}<$ maximum speed $\leqq 100000 \mathrm{~Hz}$,

If initial speed $<48 \mathrm{~Hz}$, initial speed is corrected to 48 Hz , and range 0 is selected.
If $48 \mathrm{~Hz} \leqq$ initial speed $<191 \mathrm{~Hz}$, range 1 is selected.
If initial speed $\geqq 191 \mathrm{~Hz}$, range 2 is selected.

## (*7): Number of acceleration/deceleration steps

The system automatically calculates the number of acceleration/deceleration steps in the range 0 to 60 steps.
If the operation result is 0 , pulses are output for the initial speed (composite speed) as is, with no acceleration/deceleration.
The number of acceleration/deceleration steps is found using the formula:
acceleration/deceleration time (ms) x component initial speed (Hz).

## Example:

With incremental, initial speed 300 Hz , maximum speed 5 kHz , acceleration/deceleration time 0.5 s , CHO target value 1000, CH2 target value 50
CHO component initial speed $=\frac{300 \times 1000}{\sqrt{\left(1000^{2}+50^{2}\right)}}=299.626 \mathrm{~Hz}$
CH 2 component initial speed $=\frac{300 \times 50}{\sqrt{\left(1000^{2}+50^{2}\right)}}=14.981 \mathrm{~Hz}$
CHO number of acceleration/deceleration steps $=500 \times 10^{-3} \times 299.626 \doteqdot 147.8 \Rightarrow 60$ steps
CH 2 number of acceleration/deceleration steps $=500 \times 10^{-3} \times 14.981 \fallingdotseq 7.4 \Rightarrow 7$ steps
Note: With FP-X, CH 2 is CH 1 .

Pulses area output from channel for 2 pulse output, in accordance with the parameters in the designated data table, so that the path to the target position forms a straight line.

## Program example

Ladder Diagram		Boolean		
		Address		uction
10		10	ST	R 10
		11	DF	
		12	F175	(SPSH)
			DT	100
			K	0


$\mathbf{S}$	Starting 16-bit area for registering data tables
$\mathbf{n}$	Channels intended for pulse output ( $\mathrm{n}=0$ to 3 )

## Operands

Operand	Relay			Timer/Counter		Register	Index   register	Constant	Index   modifier
	WX	WY	WR	SV	EV	DT	I	H	
S	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	A
$\mathbf{n}$	N/A	A	N/A						

A: Available N/A: Not Available

## Description

When the corresponding pulse output instruction flag is off and the trigger is on, pulses are output from channel ch0 ( X -axis) and ch2 ( Y -axis), or ch3 ( X -axis) and ch4 ( Y -axis).

Channel no.	Output	Output method	
ch0 (for X-axis)	Y 0	CW	PLS
	Y 1	CCW	SIGN
ch2 (for Y-axis)	Y 3	CW	PLS
	Y 4	CCW	SIGN
ch3 (for X-axis)	Y 5	CW	PLS
	Y 6	CCW	SIGN
ch4 (for Y-axis)	Y 7	CW	PLS
	Y 8	CCW	SIGN

The control code, initial speed, maximum speed, acceleration/deceleration time, and target value are specified by creating the data table " $S$ " to " $\mathrm{S}+11$ " on the following page using the user program.
When the elapsed value reaches the final target value, the pulse output stops.

Table of areas used
FPOR

Pulse output   channel No.	Pulse output   instruction flag	Elapsed value area	Target value area	Target value area   for match ON/OFF	Correction speed   of initial speed
ch0	R9120	DT90400 to   DT90401	DT90402 to   DT90403	DT90404 to   DT90405	DT90406
ch1	R9121	DT90410 to   DT90411	DT90412 to   DT90413	DT90414 to   DT90415	DT90416
ch2	R9122	DT90420 to   DT90421	DT90422 to   DT90423	DT90424 to   DT90425	DT90426
ch3	R9123	DT90430 to   DT90431	DT90432 to   DT90433	DT90434 to   DT90435	DT90436

## Precautions during programming

Designate settings for the target value and movement distance so they are within the following range.
K-8,388,608 to +8,388,607
When using in combination with other positioning instructions like F171, designate so the target value is within the above range, even in those instructions.
When using in application requiring precision, check with the actual machine.
If both the regular program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.

## Setting of data table

The linear interpolation can be performed with either combination of $(\mathrm{CH} 0$ and CH 1$)$ or $(\mathrm{CH} 2$ and CH 3$)$.
The acceleration time and deceleration time can be specified individually.


## *1: Assignment of control code (Specify with H constant)

10: Fixed
Control assignment
0: Interpolation
Type
O: Linear interpolation
0: Fixed
Output assignment
0: Pulse output
1: Calculation only
Operation mode assignment
0: Incremental
1: Absolute
Output type assignment
O: CW/CCW
1: PLS+SIGN (Forward OFF/Reverse ON)
2: PLS+SIGN (Forward ON/Reverse OFF)

*As for the output assignment
When starting the instruction with the setting of "1: Calculation only", the pulse output is not performed. When starting the instruction with the assignment of the same channel and the same parameter after executing this instruction once for a channel, it can be started at high speed. (It is the same for the both cases of "Pulse output" and "Calculation only".)
However, if a parameter other than the parameter used for the previous execution is specified, the high-speed startup cannot be performed.

Note) The same parameter means that all the parameters other than the output assignment are the same.

## Output type

Incremental <Relative control>
The pulses specified for the target value are output.

| Mode selection |  |  |  | CW/CCW |
| :--- | :--- | :--- | :--- | :--- | | PLS+SIGN |
| :--- |
| Forward OFF |
| Reverse ON |$\quad$| PLS+SIGN |
| :--- |
| Forward ON |
| Reverse OFF |$\quad$ Elapsed value

## Absolute <Absolute value control>

The pulse that is the difference between the specified target value and the current value is output.

Target value	CW/CCW	PLS+SIGN   Forward OFF   Reverse ON	PLS+SIGN   Forward ON   Reverse OFF	Elapsed value
When target value is   larger than current   value	Output from CW	Pulse output when   direction output is off	Pulse output when   direction output is on	Addition
When target value is   smaller than current   value	Output from CCW	Pulse output when   direction output is on	Pulse output when   direction output is off	Subtraction

[Explanation of pulse output operation]
Pulses are output using a duty of $25 \%$ fixedly.
When using the PLS +SIGN method, pulses will be output approx. 300 us later after the output of direction signal. (The characteristics of a motor driver is considered.)
*2: Composite speed range (Initial speed, Maximum speed) (Hz) <K constant>
6.0 Hz to 50 kHz [K6 to K50000]
(However, 6.0 Hz is for an angle of 0 deg or 90 deg only. Also, specify K6 when specifying 6.0 Hz .)

- When specifying K 1 to K 5 , it is the same as $6.0 \mathrm{~Hz}(\mathrm{~K} 6)$.
- If initial speed is set equal to maximum speed, pulses will be output with no acceleration/deceleration.
- Set the composite speed so that component speed of each axis is 6 Hz or greater.
- Composite speed (Initial speed): 30Hz or less


## Note) Cautions regarding specification of composite speed (initial speed)

- The trafectory might not be linear if the initial composite speeds for CH 0 and CH 2 are not 6.0 Hz or higher in the formula below.
* When the formula below can't be worked out.

$\Delta \mathrm{x}$ : Short CH of distance between target and current value
$\Delta \mathrm{y}$ : Long CH of distance between target and current value
*3: Acceleration time (ms), Deceleration time (ms) <K constant>
K0 to K32767
If this is 0 , pulses will be output for the initial speed (composite speed) as is, with no acceleration/deceleration.
Note: Specify the same value for the acceleration time and deceleration time.


## *4: Target value (Movement distance)

K-8388608 to K8388607
When operating only one axis,
a) In increment mode, set the target value for the axis which will not be operated to 0 .
b) In absolute mode, set the target value for the axis which will not be operated the same as the current value.

Note: Infinite feed is not possible during linear interpolation.
*5: Component speed (Initial speed and and maximum speed of each axis)
This is stored as 2 words in real numbers type.

$$
\begin{aligned}
& X \text {-axis component speed }=\frac{(\text { Composite speed }) \times(X \text {-axis movement distance })}{\sqrt{ }\left((X \text {-axis movement distance })^{2}+(Y \text {-axis movement distance })^{2}\right)} \\
& Y \text {-axis component speed }=\frac{(\text { Composite speed }) \times(Y \text {-axis movement distance })}{\sqrt{ }\left((X \text {-axis movement distance })^{2}+(Y \text {-axis movement distance })^{2}\right)} \\
& \hline
\end{aligned}
$$

## Component speed and correction

Note the following characteristics according to the component speed of the initial speed calculated by the above formula *5.
(1) When the initial speed is 1 or higher, and lower than 46 Hz , the control up to the maximum frequency to the degree of 10 kHz can be performed.
(2) When the initial speed is 46 or higher, and lower than 184 Hz , the control up to 50 kHz can be performed.
(3) When the initial speed is 184 or higher, the control up to 50 kHz can be performed.

The speed error around 50 kHz will be smallest.
Note that the vector of the composite speed may be deviated at the time the pulse output starts or stops when the value has been corrected.
Compare with the correction speed of initial speed in the special registers to check whether or not the specified initial speed is corrected.

## Flag conditions

- Error flag (R9007):
- Error flag (R9008):
- Turns on when the area is exceeded when an index modifier is used.
- Turns on when the " $n$ " is other than 0 .
- Turns on when the data " $\mathrm{S}, \mathrm{S}+1$ to $\mathrm{S}+!0, \mathrm{~S}+11$ " of data table are outside specification range.
- Turns on when the composite speed designation satisfies: Maximum speed "S+4, S+5" > 50kHz
- Turns on when increment mode is designated and the value of "current value + movement distance" is outside the range -8388608 to +8388607 .
- Turns on when absolute mode is designated and the target value is outside the range -8388608 to +8388607 .
- The acceleration time and deceleration time has not been set to the same value.


## F176(SPCH)

## Pulse output (Circular interpolation)

Availability
FP $\sum$ C32T2, C32T2H
C28P2, C28P2H

Outline
Pulses are output from channel ch0 and ch2, in accordance with the parameters in the designated data table, so that the path to the target position forms an circular.

## Program example

Ladder Diagram			Boolean		
			Address		uction
10	Trigger	$\mathrm{SPCH}, \underbrace{\text { DT100 }}_{\mathrm{S}}, \underbrace{\mathrm{K} 0}_{\mathrm{n}}]$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F176 } \\ & \text { DT } \\ & \text { K } \end{aligned}$	
	S	Starting address of area containing the data table.			
	n	0: Fixed			

## Operands

Operand	Relay			Timer/Counter		Register   DT	Indexregister	Constant		Index modifier
	WX	WY	WR	SV	EV			K	H	
S	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	A
n	N/A	A	A	N/A						

A: Available
N/A: Not Available

## Description

Pulses are output from the channel ch 0 (for X -axis) and ch2 (for Y -axis) when the corresponding control flag turns off and the execution condition (trigger) turns on.
For FPE

Channel no.	Output	Output method	
ch0 (for X-axis)	Y 0	CW	PLS
	Y 1	CCW	SIGN
ch2 (for Y-axis)	Y 3	CW	PLS
	Y 4	CCW	SIGN

Designate the control code, composite speed, target position and pass position by creating the data table " S " to " $\mathrm{S}+11$ " on the next page with the user program.

## Table of areas used

Channel no.	Control flag	Elapsed value area	Target value area
ch0	R903A	DT90044, DT90045	DT90046, DT90047
ch2	R903C	DT90200, DT90201	DT90202, DT90203

## Flag for circular interpolation

## R904E: Circular interpolation control flag

Turns ON when circular interpolation instruction F176 starts up and maintains that state until the target value is reached.

## R904F: Set value change confirmation flag

When conducting control with the continuous mode for performing continuous circular interpolation actions, use this after circular interpolation instruction startup when overwriting the next target value.

## Precautions during programming

Assume that the execution conditions for this instruction always hold. When the execution conditions are off, pulse output stops.
During the time that the circular interpolation control flag R904E is on, the pulse output instructions F166 to F176 cannot be executed.

When the target value has not been reached and the execution condition is off, circular interpolation control flag R904E turns on and other positioning instructions F171 to F176 cannot start up.
When restarting, use pulse output control instruction F0, below, to reset the pulse output instruction. This operation resets the Control flag for circular interpolation (R904E).
Designate settings for the target value and movement distance so they are within the following range.
$-8,388,608$ to $+8,388,607$
When using in combination with other positioning instructions like F171, designate so the target value is within the above range, even in those instructions.
The accuracy of circular interpolation may degrade if the scan time lengthens.
If both the regular program and the interrupt program contain code for the same channel, make sure both are not executed simultaneously.
If you make the current position equal the target value when specifying the center position setting method, a circle drawing operation will result.
When using in application requiring precision, check with the actual machine.
When using this instruction, set the channels corresponding to system registers 400 and 401 to "Not set as high-speed counter".

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area is exceeded when an index modifier is used.
- The " n " is other than 0 .
- The data "S, S+1 to $\mathrm{S}+10, \mathrm{~S}+11$ " are outside specification range.
- Incremental mode is designated and the value of "current value + movement distance" is outside the range -8388608 to +8388607 .
- Absolute mode is designated and the target value is outside the range -8388608 to +8388607.
With pass position setting method,
- Current position $\mathrm{S} \fallingdotseq$ Target position E
- Current position $\mathrm{S} \fallingdotseq$ Pass position P
- Pass position $\mathrm{P} \fallingdotseq$ Target position E
- Current position S, Pass position P and Target position E approximate a straight line.
With center position setting method,
- Center position $\mathrm{O}=$ Target position E
- Center position $\mathrm{O}=$ Current position S


## Setting the data table

Pass position setting method


Center position setting method

$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S}+1 \end{aligned}$	Control code	(*1)	
$\mathrm{S}+2$ $\mathrm{~S}+3$	Composite speed (Frequency) Fv (Hz)	(*2)	
$\begin{aligned} & \mathrm{S}+4 \\ & \mathrm{~S}+5 \end{aligned}$	X-axis (CHO)   Target position	(*3)	Setting
$\begin{aligned} & \mathrm{S}+6 \\ & \mathrm{~S}+7 \end{aligned}$	Y-axis (CH2) Target position	(*3)	
$\begin{aligned} & \mathrm{S}+8 \\ & \mathrm{~S}+9 \end{aligned}$	$\mathrm{X} \text {-axis (CHO) }$   Center position		
$\begin{aligned} & S+10 \\ & S+11 \end{aligned}$	Y-axis (CH2)   Center position		
$\begin{aligned} & \mathrm{S}+12 \\ & \mathrm{~S}+13 \end{aligned}$	Radius		Operation result storage area

(*1): Specification of control code (specify with H constant)

0: Fixed
Operation connection mode(*4)
0: Stop
1: Continue
Rotation direction (*5)
0: from CH2-CW axis to CHO-CW axis
1: from CHO-CW axis to CH2-CW axis
Circular method (*6)
0: Pass position setting method
1: Center position setting method
Operation mode and output method
00: Incremental $\quad$ CW/CCW
0: Incremental $\quad$ PLS + SIGN (forward off / reverse on)
03: Incremental $\quad$ PLS + SIGN (forward on / reverse off)
10: Absolute $\quad$ CW/CCW
12: Absolute $\quad$ PLS + SIGN (forward off / reverse on)
13: Absolute $\quad$ PLS + SIGN (forward on / reverse off)

(*2): Composite speed (Frequency) "K constant"
100 Hz to 20 kHz [K100 to K20000]
As a guide, keep the composite speed within the range of the formula below.
$\mathrm{Fv}[\mathrm{Hz}]<=$ radius[pulse] x 10/scantime[ms]
(*3): Target position and pass position
K-8388608 to K8388607
(*4): Operation connection mode
Stop:
When stop $(0)$ is specified, it will stop when the target position is reached.

## Continue:

When the following circular interpolation data table is overwritten when continue (1) is specified after circular interpolation action begins, the following circular interpolation begins when the first circular interpolation that was started up finishes (target position reached). To finish, specify stop (0) for this flag (operation connection mode) after the last circular interpolation action has started.

## (*5): Rotation direction

Pulses are output according to the designated direction. Operation differs, as indicated below, depending on the pass position and rotation direction setting.


(*6): Circular method

## Pass position setting method:

The center position and the radius of the circular are calculated by specifying the pass and target positions for the current position.
Center position setting method:
The radius of the circular is calculated by specifying the center and target positions for the current position.


Let CH 0 be the X -axis, and CH 2 be the Y -axis.

Fv:	Composite speed	$\mathrm{O}(\mathrm{Xo}, \mathrm{Yo}):$ Center point (Center position)
Fx:	X -axis component speed	$\mathrm{S}(\mathrm{Xs}, \mathrm{Ys}):$ Start point (Current position)
Fy:	Y-axis component speed	$\mathrm{P}(\mathrm{Xp}, \mathrm{Yp}):$ Pass point (Pass position)
r:	Radius	$\mathrm{E}(\mathrm{Xe}, \mathrm{Ye}):$ End point (Target position)
$\mathrm{Fx}=\mathrm{Fv} \sin \theta=\mathrm{Fv} \frac{\|\mathrm{Ye}-\mathrm{Yo}\|}{r}$		

Outline
Performs the home return operation on the specified pulse output channels.

## Program example



## Operands

Operand	Relay			Timer/Counter		Register   DT	Index register I	Constant		Index modifier
	WX	WY	WR	SV	EV			K	H	
S	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	A
n	N/A	A	A	N/A						

## Description

When the corresponding pulse output instruction flag is off and the flag is on, pulses are output from the specified channels to perform the home return operation.

* For using the pulse output function, it is required to set how to use input/output by system registers.
${ }^{*} \mathrm{C} 10$ and C14 is relay output type, therefore, pulse output cannot be performed.


## Description of operation mode

Home return (Type 0 ) : The home input is available in all sections.
Home return (Type 1) : The home input is available only in the section of creep speed.


Type 1: Home input is available only in the section of creep speed.
$\qquad$ ,
Type 0: Home input is available in all sections.

## Table of areas used <br> FPOR

Pulse output channel No	Output	Output type		Near home input	Home input	Deviation counter clear		Pulse output instruction flag	Elapsed value area	Target value area	
				C16		C31,T32,F32					
ch0	Y0	CW	PLS		$\begin{aligned} & \text { DT90052 } \\ & \text { <bit4> } \end{aligned}$	X4	Y6	Y8	R9120	DT90400	DT90402
	Y1	CCW	SIGN			6	Y8	R91	DT90401	DT90403	
ch1	Y2	CW	PLS	X5		Y7	Y9	R9121	DT90410	DT90412	
	Y3	CCW	SIGN	X5		Y7	Y9	R9121	DT90411	DT90413	
ch2	Y4	CW	PLS						DT90420	DT90422	
	Y5	CCW	SIGN	X6		-	YA	1	DT90421	DT90423	
ch3	Y6	CW	PLS	X7		-	YB	R9123	DT90430	DT90432	
	Y7	CCW	SIGN						DT90431	DT90433	

* In case of C16 type

Note1: As Y 6 and Y 7 of CH 3 is also used for the deviation counter clear output of $\mathrm{CH} 0 / 1$, either one of those functions can be used.

* In case of C32, T32, F32

Note1: As X4, X5, X6 and X7 for the home return is also used for the high-speed counter, either one of those functions can be used.

$\begin{array}{r} \mathrm{S} \\ \mathrm{~S}+1 \end{array}$	Control code	Velocity range (Frequency) (Hz)
$\mathrm{S}+2$ $\mathrm{~S}+3$	Initial speed	
$\begin{aligned} & S+4 \\ & S+5 \end{aligned}$	Target speed (Hz)	Acceleration time up to the target speed: Acceleration time range (ms) K1 to K32760 (Unit: ms)   Deceleration time from the target speed:
S+6	Acceleration time (ms)	
S+7		
S+8	Deceleration time (ms)	Deceleration time from the target speed: Deceleration time range (ms) K1 to K32760 (Unit: ms)
S+9	Deceleration time (ms)	
S+10 $S+11$	Creep speed (Hz)	Speed range (frequency) (Hz)   1 Hz to 50 kHz [K1 to k 50000 (Unit: Hz)]
$\begin{aligned} & S+12 \\ & S+13 \end{aligned}$	Deviation counter clear Signal output time	k0 to k200   $\mathrm{kO}=$ Not output deviation counter clear signal. $\mathrm{Kn}=\mathrm{n} * 0.5 \mathrm{~ms}$

Note the following characteristics according to the specified initial speed.
(1) When the initial speed is 1 or higher, and lower than 46 Hz , the control up to the maximum frequency to the degree of 10 kHz can be performed.
If the frequency is higher than that, the speed error will be larger.
(2) When the initial speed is 46 or higher, and lower than 184 Hz , the control up to 50 kHz can be performed.
(3) When the initial speed is 184 or higher, the control up to 50 kHz can be performed.

The speed error around 50 kHz will be smallest.

## Assignment of control code (Specify with H constant)



Output type

| Mode selection |  | CW/CCW | PLS+SIGN <br> Forward OFF <br> Reverse ON | PLS+SIGN <br> Forward ON <br> Reverse OFF |
| :--- | :--- | :--- | :--- | :--- | Elapsed value

[Explanation of pulse output operation]
Pulses are output using a duty of $25 \%$ fixedly.
When using the PLS +SIGN method, pulses will be output approx. 300 us later after the output of direction signal. (The characteristics of a motor driver is considered.)

## Precautions during programming

Even in the state that the home input turns on, once this instruction is executed, the pulse output starts. If the near home input becomes effective during the acceleration, the deceleration operation will start. When the same channel is described in a normal program and interrupt program both, do not execute them at the same time.

This instruction cannot be executed when the corresponding control flags to each channel are on. If rewriting during RUN is performed during pulse output, pulses more than the setting may be output. When performing the software reset, count prohibition, pulse output stop or near home operation, refer to the FO(MV) instruction, pulse output.

## Flag conditions

- Error flag (R9007):
- Error flag (R9008):
- Turns on when the area specified using the index modifier exceeds the limit.
- Turns on when $n$ is out of the specified range.
- Turns on when each data of $[\mathrm{S}, \mathrm{S}+1]$ to $[\mathrm{S}+4, \mathrm{~S}+5]$ is out of the specified range.
- Turns on when initial speed $[\mathrm{S}+2, \mathrm{~S}+3]>$ target value $[\mathrm{S}+4, \mathrm{~S}+5]$.


## F178(PLSM) Input pulse measurement

Availability
FPOR

Outline Measures the number of pulses and the pulse period of the specified high-speed counter channel when using the high-speed counter function.

## Program example

Ladder Diagram			Boolean		
			Address		uction
10		PLSM , $\underbrace{\text { DT100 }}_{\text {S1 }}$, DT101 $\underbrace{\text { D }}_{\text {S2 }}$, DT200 $]$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F178   DT   DT   DT	
	S1	Specification of channel No. and No. of moving average.			
	S2	Counting period			
	D	Starting address of the destination area			

## Operands

Operand	Relay				Timer/Counter		Register		Index register	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WR	SV	EV	DT	LD	In (*1)			K	H	
S1	A	A	A	A	A	A	A	A	A	N/A	N/A	A	A	A
S2	A	A	A	A	A	A	A	A	A	N/A	N/A	A	A	A
D	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*) Io to ID
A: Available
N/A: Not Available

## Description

The number of pulses or the pulse period of the specified high-speed counter channel is measured based on the control data specified by [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D).
In the measurement of the number of pulses, the number of pulses of the specified high-speed counter counted during the period specified by S 2 is counted.
The average of the number of moving average is calculated with the specified period and stored in D and D+1.
When the number of average is $n,-1$ is output during the ( $n *$ counting period) time after the execution of the instruction.

In the pulse period measurement in 1us unit, a period of 1 pulse right after the execution of this instruction is counted and stored in $\mathrm{D}+2$ and $\mathrm{D}+3$.
In the pulse period measurement in 1 ms unit, the measured value is stored in $D+4$ and $D+5$ every time the measurement of a period of 1 pulse completes.
The same channel cannot be specified at the same time with other high-speed counter control instructions <F165(CAMO), F166(HC1S), F167(HC1R)>.
An exclusive control is implemented by the high-speed counter control flags (R9110 to R9115).
The number of channels that the instruction can be executed simultaneously is two.
The trigger should be always ON while the pulse is being measured with this instruction.
Turning OFF the trigger stops the measurement.

## Specification of each item

Specifying the channel number and number of moving average [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D)
Specify the channel number of the high-speed counter and number of moving average.
If necessary, specify the measurement of pulse period.
Setting of measurement limit for measuring period in 1 ms unit

0: No measurement limit process		
$1: 100 \mathrm{~ms}$		
$2: 200 \mathrm{~ms}$		
$3: 300 \mathrm{~ms}$		
$4: 500 \mathrm{~ms}$		
$5: 1 \mathrm{~s}$		
$6: 2 \mathrm{~s}$		
$7: 5 \mathrm{~s}$		
$8: 10 \mathrm{~s}$		
$9: 60 \mathrm{~s}$		
A: Undefined any more		
n		
S1		
Measurement of -_ No. of moving		
pulse period		
H0 to H1		
0: Pulse period is not measured.		
1: Pulse period is measured in 1us unit.		
2: Pulse period is measured in 1ms unit.		
3: Pulse period is measured in 1us unit and 1 ms unit.		

## Measurement limit process for period measurement

The measurement limit process is a function which sets the measurement value to -1 when the period measurement has not completed in a given amount of time.

## When measuring period in 1us unit

When measurement timer overflow has occurred
The measurement value is set to -1 when a short period could be measured although a time more than 174 ms has elapsed after the previous measurement request.
When measurement has not completed
The measurement value is set to -1 when measurement has not completed although a time more than 350ms has elapsed after the previous request.
Even when measurement has completed after that, the result is disregarded and measurement is requested again.

## When measuring period in 1 ms unit

The elapsed value is set to -1 when the result of checking the period measurement counter _plsCycleTime0 has exceeded the measurement limit specified for the above $n$.
Even when measurement has completed after that, the data is disregarded and measurement is requested again.
Specify the counting period for the number of pulses. [S2](WXO)
Specify it in 1 ms unit. K1 to K5000 (1ms to 5s)
Specifying the starting number of the destination area where the pulse is output. [D](DT100)
Specify the starting number of the destination area where the pulse is output.

D,	D+1	No. of pulses (Moving average value)	The latest value is stored with the measurement period specified by S 2 .
D+2,	D+3	Pulse period (1us unit)	The period of 1 pulse right after this instruction is executed is stored.
D+4	D+5	Pulse period (1ms unit)	The latest value is updated every time the period of 1 pulse is measured after the execution of this instruction.

A maximum of approx. 174.7 ms can be measured in 1 us unit.
A maximum of approx. 49.7 days can be measured in 1 ms unit.

## Period measurement data

When measurement starts, -1 is set.
When measurement limit is exceeded, -1 is set.

## Precautions during programming

The same channel cannot be specified at the same time with other high-speed counter control instructions <F165(CAM0), F166(HC1S), F167(HC1R)>.
An exclusive control is implemented by the high-speed counter control flags (R9110 to R9115).
Once the instruction is executed, the pulse measurement function will be effective until the control is cleared with FO(MV) S, DT90052 instruction.
The number of channels that the instruction can be executed simultaneously is two.
F178 instruction cannot be executed if the high-speed counter function is not used.
Do not execute this instruction in the normal program and the interrupt program at the same time.

## FPOR

High-speed counter   channel No.	Control flag	Elapsed value area	Target value area
ch0	R9110	DT90300 to DT90301	DT90302 to DT90303
ch1	R9111	DT90304 to DT90305	DT90306 to DT90307
ch2	R9112	DT90308 to DT90309	DT90310 to DT90311
ch3	R9113	DT90312 to DT90313	DT90314 to DT90315
ch4	R9114	DT90316 to DT90317	DT90318 to DT90319
ch5	R9115	DT90320 to DT90321	DT90322 to DT90323

## Example of input pulse measurement setting <br> [Condition]

(1) Set the channel number to 0 and the number of moving average to 5 . Specify the pulse period measurement in 1 us unit.
(2) Set the counting period to 10 ms .


## Execution of program

When the internal relay R3 is ON, the operation is performed as follows.
When pulses are input with a frequency at 10 kHz .

DT200 to DT201	No. of pulses (Moving average value)	$\rightarrow 100$ pulses   Calculates the number of input pulses every 10 ms , and calculates the average of the past 5 times with a period of counting.
DT202 to DT203	Pulse period in 1us unit	$\begin{aligned} \rightarrow & 100 \mu \mathrm{~s} \\ & \text { (The value is } \mathrm{k} 100 .) \end{aligned}$
DT204 to DT205	Pulse period in 1 ms unit	$\rightarrow$ Becomes 0 ms .

Note: The final numbers of actual measured values may vary due to measurement error.

## Flag conditions

- Error flag (R9007):
- Error flag (R9008):
- Turns on when the area specified using the index modifier exceeds the limit.
- [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) Turns on when the specified channel is out of the specified range.
- [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) Turns on when the number of moving average is out of the specified range.
- [S2](WXO) Turns on when the counting period is out of the specified range.
- [D](DT100) Turns on when the range data to be stored exceeds the area.
- Turns on when the same channel has been already controlled with the same sorf of instruction.
- Turns on when the number of execution channels is 3 or more.
- Turns on when the high-speed counter has not been set for the specified channel by the system register.

Availability
FP-e

Outline Instruction to register the screen displayed in the N mode and S mode.

## Program example



Note: A special data register cannot be specified for S4.

## Operands

Operand	Relay			Timer/Counter		$\begin{array}{\|c\|} \hline \text { Register } \\ \hline \text { DT } \\ \hline \end{array}$	Index register		Constant		Index modifier
	WX	WY	WR	SV	EV		IX	IY	K	H	
S1	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S3	A	A	A	A	A	A	A	A	N/A	N/A	A
S4	N/A	A	A	A	A	A	A	A	N/A	N/A	A

A: Available $\mathrm{N} / \mathrm{A}$ : Not Available

## Description

Register FP-e screens specified with S1 with the method whereby S2 to $\mathrm{S} 2+2$ is specified.
For S3, specify the address where data for display in the upper is stored. For S 4 , specify the address where data for display in the lower is stored.
When this instruction is executed, the registered screen is displayed in the FP-e panel.
To switch screens, use the mode switch on the FP-e, or instruction F180 or F181.
Specify the screens for setting with S1.
Specify the display method with $\mathrm{S} 2, \mathrm{~S} 2+1$ and $\mathrm{S} 2+2$.
Specify the data to be displayed in the upper with S3.
Specify the data to be displayed in the lower with S4.
Note) For the numeric data display of S3 and S4, only 16-bit data is available.

## Precautions during programming

This instruction cannot be used during the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The value of S1 or S2 exceeds the limit of specified range.


## How to specify S1

Specify the type of FP-e mode.

Value specified for S1	Type of mode
H0	N mode first screen
H1	N mode second screen
H2	S mode first screen
H3	S mode second screen

## How to specify S2, S2+1, S2+2

With $\mathrm{S} 2, \mathrm{~S} 2+1$ and $\mathrm{S} 2+2$ specify the display method of the screen specified with S 1 .
By writing the data below, the screen display method is specified in a 3-word range from the area specified with S 2 .
For example, when DT10 is specified for S2, DT10 to DT12 becomes the area below.

## S2: First word

Specifies the method in which all units are displayed.


Undefined (bits 15 to 10) [Specify 0 ]

Lower display setting (bit 9) [0: display, 1: no display]

Upper display setting (bit 8) [0: display, 1: no display]

Unit display setting (bits 7 to 0 ) [0: no display, 1 : display]

- bit 0: Unit "PV"
- bit 1: Unit "SV"
- bit 2: Unit "s"
- bit 3: Unit "m"
- bit 4: Unit "h"
- bit 5: Unit " "C"
- bit 6: Unit "F"
- bit 7: Unit " "


## S2+1: Second word

Specifies the method for displaying data in the upper.
The bits shown in the figure below are allocated. Please specify with the H constant.

## S2+2: Third word

Specifies the method for displaying data in the lower.
The bits shown in the figure below are allocated. Please specify with the H constant.


Zero suppress (bit 15)
[0: Yes, 1: No]
Remarks)
If displaying decimal point in the format of 5-digit decimal with sign, the value(s) before the decimal point should be displayed.

## Example:

To change the color to red, put 10 for bits 14 and 13.
Specify in this way: $0100000000000000 \rightarrow \mathrm{H} 4000$.


Outline Specify the screen to be displayed on the FP-e.
Program example


## Operands

Operand	Relay			Timer/Counter		$\begin{array}{\|c} \text { Register } \\ \hline \text { DT } \end{array}$	Index register		Constant		Index modifier
	WX	WY	WR	SV	EV		IX	IY	K	H	
S	A	A	N/A	A	A	A	A	A	A	A	A

A: Available N/A: Not Available

## Description

Switches the FP-e screen to the screen of the mode specified with S.

## How to specify S

Specify the type of FP-e mode.

Value specified for S	Type of mode
K0	N mode first screen
K1	N mode second screen
K2	S mode first screen
K3	S mode second screen
K4	R mode first screen
K5	R mode second screen
K6	I mode first screen
K7	I mode second screen

## Precautions during programming

If specifying the value other than 0 to 7 for S , an operation error will occur.
This instruction cannot be used during the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The value of $S$ is number except 0 to 7 .


## Availability

FP-X V2.0 or more FPE V3.10 or more FPOR

Outline The filter processing is executed for the specified bits and the bitwise results are output.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register		Index   register	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD				K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	N/A
S3	A	A	A	A	A	A	A	A	A	A	A	A	A	N/A
N	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A

(*1) 10 to ID
A: Available N/A: Not Available

## Operation

In the 16-bit data stored in the area specified by S 1 , the bits of 0 specified by S 2 are output directly, and the bits of 1 are output by performing the filter processing for the time specified by S 3 ( 0 to 30000 in msec unit). The results are stored in the area specified by D in bit unit. (The bit positions are the same as S 1 .)


The bit position of S1 and D corresponds respectively.

## Precautions during programming

When the system detects a leading edge of the trigger, all the bits of the input specified by S1 is unconditionally output.
Max. 1 scan time error in the filter processing time occurs occasionally.

## Explanation of example

The changes in values of R0 or XO to XF , when the conditions prior to the execution of this instruction ( $\mathrm{RO}=0$ ) are as below, are explained with a time chart.

WX0 (Filter processing input data) $=$ HA9BC
DT1 (Filter processing object bit) $=\mathrm{H} 0001$
DT2 8Filter processing time) = k500
WR10 (Filter processing result) $=$ HFFFF


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The filter processing time specified by "S3" is smaller than k0 or larger than k30000.


## F183(DSTM) Auxiliary timer (32-bit)

Outline $\quad$ Sets the 32-bit ON-delay timer for 0.01 s units ( 0.01 to 21474836.47 s) Program example


## Operands

Operand	Relay			Timer/Counter		Register	Index   register		Constant		Index   modifier
	WX	WY	WR	SV	EV	DT	IX   $(* 1)$	IY	K	H	
	A	A	A	A	A	A	A	N/A	A	A	N/A
D	N/A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A

A: Available N/A: Not Available
(*1) With the FP0R, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.

## Explanation of example

When the execution condition (trigger) has been satisfied, the auxiliary timer is activated, and the time equal to the values stored in data registers DT10 and DT11 $\times 0.01$ seconds has elapsed, R5 goes on.

## Description

This functions as a 32-bit addition-type On Delay timer set in 0.01-second units.
When the execution condition (trigger) is on, the elapsed time is added, and when the elapsed value ( $D+1, D$ ) (32 bits) exceeds the set value, the relays being used are turned on by the OT instruction which comes next in the program.
When the execution condition (trigger) is off, the elapsed value area is cleared to 0 , and relays being used are turned off by the OT instruction.
When the time set for the special internal relay R900D has elapsed, the relay is turned on.
R900D can also be used as a timer contact.
(R900D is off when the execution condition (trigger) is off and while addition is being carried out.)


Operation is the same as that in the example shown above.

## Timer set time

The timer setting is entered as a value of $0.01 \times$ (timer set value).
The timer set value is specified as a K constant within the range of K1 to K2147483647.
The F183 (DSTM) is set between 0.01 and $21,474,836.47$ seconds, in units of 0.01 seconds.
If the set value is K500, the set time will be $0.01 \times 500=5$ seconds.

## Precautions during programming

The area in which the set value is stored must be set so that the area specified for the elapsed value does not overlap any areas reserved for other timer or counter instructions, or memory areas used for high-level instruction operations.
Because addition is carried out when operations are carried out, the program should be set up so that operations are carried out every scan.
(In cases such as programs where division is carried out, or for jump or loop instructions, where several operations are carried out during one scan, or where it was not possible to carry out any operation during the scan, correct results cannot be obtained.)

## How the Auxiliary Timer Works

(1) When the execution condition (trigger) changes from off to on, values of 0 are sent to the elapsed value area ( $D+1, D$ ).

(2) If the execution condition (trigger) stays on, the values in the elapsed value area ( $D+1, D$ ) are added.

(3) If the values in the elapsed value area ( $D+1, D$ ) reach $(S+1, S)$, relays being used are turned on by the OT instruction which comes next in the program. The special internal relay R900D also goes on at this point.


## Precautions When Using R900D

If R900D is used and multiple auxiliary timers are being used, always use R900D in the line following the auxiliary timer instruction.


When timer (a), which is activated by XO: on, expires, Y0 goes on. When timer © $\curvearrowleft$, which is activated by X 1 : on, expires, Y1 goes on.
If written as indicated below, R900D will not function correctly.


## F190(MV3)

P190(PMV3)

## Three 16-bit data move

Outline Copies three 16-bit data to the specified 48-bit area (3 words).
For the FPOR/FP $\Sigma / F P-X$, the $P$ type high-level instruction "P190 (PMV3)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	$f$		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S3	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A

A: Available
N/A: Not Available

## Explanation of example

When trigger R0 turns on,

- the contents of data register DT10 are copied to DT40.
- the contents of data register DT20 are copied to DT41.
- the contents of data register DT30 are copied to DT42.



## Description

The 16-bit data or 16 -bit equivalent constant specified by S1, S2 and S3 is copied to the area (3 words) specified by D when the trigger turns on.

## Related instruction

To transfer two types of 16-bit data at once, use the F7 (MV2) instruction.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## Three 32-bit data move

Outline Copies three 32-bit data to the specified 96-bit area (6 words).
For the FP0R/FP $/$ /FP-X, the P type high-level instruction "P191 (PDMV3)" is not available.

## Program example

Ladder Diagram		Boolean		
		Address		
Trigg	3, DT10, DT20, DT30, DT40	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F191   DT   DT   DT   DT	$\begin{gathered} 0 \\ 10 \\ 20 \\ 30 \\ 40 \end{gathered}$
S1	32-bit equivalent constant or lower 16-bit area of 32-bit data (source)			
S2	32 -bit equivalent constant or lower 16-bit area of 32-bit data (source)			
S3	32-bit equivalent constant or lower 16-bit area of 32-bit data (source)			
D	Starting 16-bit area of 6 words (96-bit area) (destination)			

## Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	$f$		
S1	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A	N/A
S3	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

## Explanation of example

When trigger R0 turns on,

- the contents of data register DT11 and DT10 are copied to data registers DT41 and DT40.
- the contents of data register DT21 and DT20 are copied to DT43 and DT42.
- the contents of data register DT31 and DT30 are copied to DT45 and DT44.



## Description

The 32-bit data or 32-bit equivalent constant specified by S1, S2 and S3 is copied to the area (6 words) specified by D when the trigger turns on.

## Related instruction

To transfer two types of 32-bit data at once, use the F8 (DMV2) instruction.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

P215(PDAND)

Outline Performs bit-wise AND operation on two 32-bit data items.
For the FPOR/FP $/$ /FP-X, the $P$ type high-level instruction "P215 (PDAND)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL	I	K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

## Explanation of example

15														
[DT10]	1	0	0	1	0	1	1	0	0	0	1	0	0	0
0	1													
[DT11]	1	1	0	0	0	1	1	0	1	0	1	0	1	0

AND operation

15															
[DT20]	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0


	10														
[DT30]	1	0	0	1	0	1	1	0	0	0	0	0	0	0	0
0															

## Description

Performs AND operation on each bit in the 32-bit equivalent constant or 32-bit data specified by "S1+1 and S1" and "S2+1 and S2" when the trigger turns on. The AND operation result is stored in the 32-bit area specified by D.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".

P216(PDOR)

Outline Performs bit-wise OR operation on two 32-bit data items.
For the FPOR/FP $/$ /FP-X, the $P$ type high-level instruction "P216 (PDOR)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

## Explanation of example



OR operation

15
[DT20]
1

[DT21] 0 

15															
[DT30]	1	1	1	1	1	1	1	1	0	0	1	0	0	0	0

[DT31]

1	1	0	0	0	1	1	0	1	1	1	1	1	1	1	1

## Description

Performs OR operation on each bit in the 32-bit equivalent constant or 32-bit data specified by "S1+1 and S1" and " $\mathrm{S} 2+1$ and S2" when the trigger turns on. The OR operation result is stored in the 32 -bit area specified by D.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".

32-bit data XOR

Outline Performs bit-wise exclusive OR operation on two 32-bit data items.
For the FPOR/FP $/$ /FP-X, the $P$ type high-level instruction "P217 (PDXOR)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	1		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

## Explanation of example

15	0															
[DT10]	1	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1
[DT11]	1	1	0	0	0	1	1	0	1	0	1	0	1	0	0	1

[S2](WXO): H00FFFFOO Exclusive OR

	15														
[DT20]	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
0															


	15														
[DT30]	0	1	1	0	1	0	0	1	0	0	1	0	0	0	0
1															

## Description

Performs exclusive OR operation on each bit in the 32-bit equivalent constant or 32-bit data specified by "S1+1 and S1" and "S2+1 and S2" when the trigger turns on. The exclusive OR operation result is stored in the 32-bit area specified by D .

You can use this instruction to check how many bits in two 32-bit data items are the same.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".

P218(PDXNR)

## 32-bit data XNR

Outline Performs bit-wise exclusive NOR operation on two 32-bit data items.
For the FPOR/FP $/$ /FP-X, the $P$ type high-level instruction "P218 (PDXNR)" is not available.

## Program example

Ladder Diagram		Boolean		
		Address	Instruction	
Trig	NR, DT10, DT20, DT30   S1   S2   D	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F218   DT   DT   DT	R $\quad 0$ (DXNR)
S1	32-bit equivalent constant or lower 16-bit area of 32-bit data			
S2	32-bit equivalent constant or lower 16-bit area of 32-bit data			
D	Lower 16-bit area of 32-bit data for storing exclusive NOR operation result			

## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

## Explanation of example

> [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D): HC6A99621

15	10														
[DT10]	1	0	0	1	0	1	1	0	0	0	1	0	0	0	0
1															

[S2](WXO): H00FFFFOO Exclusive NOR

[D](DT100): H39A996DE


## Description

Performs exclusive NOR operation on each bit in the 32-bit equivalent constant or 32-bit data specified by "S1+1 and S1" and "S2+1 and S2" when the trigger turns on. The exclusive NOR operation result is stored in the 32 -bit area specified by D .

You can use this instruction to check how many bits in two 32-bit data items are the same.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ". P219(PDUNI)


## Outline Unites two 32-bit data.

For the FPOR/FPD/FP-X, the P type high-level instruction "P219 (PDUNI)" is not available.

## Program example



## Operands



## Explanation of example

[DT10]	1010	1010	1010	1010
[DT11]	1100	1100	1100	1100

AND
[S3+1, S3]:HF0F0F00F

[DT30]
[1111
[DT31]


[DT20]	0101	0101	0101	0101
[DT21]	0011	0011	0011	0011

Inverted AND
[S3+1, S3]:H0F0F0FF0
[Inverted DT30]
[Inverted DT31]

0000	1111	1111	0000
0000	1111	0000	1111
$\downarrow$			
H03030550			
0000 0101 0101 0000   0000 0011 0000 0011			

## Description

The two groups of double word data specified by " $\mathrm{S} 1+1$ and S 1 " and " $\mathrm{S} 2+1$ and S 2 " are combined by bit unit processing using the master data specified by "S3+1 and S3" and stored in the 32-bit area specified by D. ([S1+1, S1](HCCCCAAAA) AND [S3+1, S3]) OR ([S2+1, S2](H33335555) AND [S3+1, S3]) $\longrightarrow[D+1, D]$
When $[\mathrm{S} 3+1$ and S 3$])$ is $\mathrm{H} 0,([\mathrm{~S} 2+1, \mathrm{~S} 2] \longrightarrow[\mathrm{D}+1, \mathrm{D}]$
When $[\mathrm{S} 3+1, \mathrm{~S} 3])$ is HFFFFFFFF, $([\mathrm{S} 1+1, \mathrm{~S} 1] \longrightarrow[\mathrm{D}+1, \mathrm{D}]$

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- = flag (R900B): Turns on for an instant when the calculated result is recognized as " 0 ".

Time data $\rightarrow$ second conversion

Outline The specified time data (a date and time) is changed into the number of seconds.
With FP2/FP2SH, this function is available from Ver. 1.50 or later.

## Program example

Ladder Diagram			Boolean		
			Address		uction
Trigger			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F230 } \\ & \text { DT } \\ & \text { DT } \end{aligned}$	R 0   (TMSEC)    10    20
	S	Area in which the input time data stored			
	D	Area in which the converted second information stored (32 bits)			

## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	
S	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

A: Available $\mathrm{N} / \mathrm{A}$ : Not Available

## Explanation of example

When the internal relay (R0) is on, conversion to the number of seconds from standard time is performed for the time data of the data registers DT10 to DT12, and the conversion result is stored in DT20 and DT21.


## Description

1) Conversion to the number of seconds from standard time *1 is performed for the input time data [S ~ $S+2]$, and a conversion result is stored in [D, D+1] by the 32-bit binary.
2) The conversion is in consideration of the leap year.

1 minute	---	60 seconds
1 hour	---	60 minutes
1 day	---	24 hours
1 year (leap year)	---	366 days
1 year (except a leap year)	---	365 days
A leap year (4 multiple years)	---	Feb. 29

3) Time data (S) must be specified in the data sequence of BCD, and the value within the limits must be registered.
*1: Standard time is 00:00'00" on January 1, '01. Moreover, a conversion result is output with a binary value.

	Time data (S) (BCD)	
	(higher)	(lower)
$\begin{array}{r} \mathrm{S}: \\ \mathrm{S}+1: \\ \mathrm{S}+2: \end{array}$	Minutes (H00-59)	Seconds (H00-H59)
	Days (H01-H31)	Hours (H00-H23)
	Years (H00-H99)	Months (H01-H12)
$凸$		
Second data (D)		
D: . . Seconds data		
D+1:	( H 0000000000	

The correspondence table of Time data and Second conversion

2001	Time data (S)	Seconds data (D)
	'01/01/01 00:00:00	H00000000
:	'01/01/01 00:00:01	H00000001
:	:	:
:	'01/01/01 00:01:00	H0000003C
:	:	:
:	'01/01/01 01:00:00	H00000E10
:	:	:
:	'01/01/02 00:00:00	H00015180
:	:	:
2099	'99/12/31 23:59:59	HBA368E7F
2100	'00/01/01 00:00:00	HBA368E80
	:	:
2100	'00/12/31 23:59:59	HBC19137F

## Flag conditions

$\Sigma$ Error flag (R9007) (R9008):

- It turns on, when the specified address using the index modifier exceeds a limit.
- It turns on, when values other than BCD are specified for [S].
- It turns on, when the value which exceeds the range in the time data of [S] is specified.
- It turns on, when the data of [S] exceeds the area.

Second $\rightarrow$ time data conversion

## Availability

FP2/FP2SH/FP-X FP $\sum$ 32k/FP0R

Outline The specified number of seconds is changed into time data (a date and time).
With FP2/FP2SH, this function is available from Ver. 1.50 or later.

## Program example

Ladder Diagram			Boolean		
			Address		uction
Trigger			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F231   DT   DT	$\begin{array}{lr} \text { R } & 10 \\ \text { (SECTM) } \\ 0 \\ & 10 \end{array}$
	S	Area in which the number of seconds stored (32 bits)			
	D	Head area in which time data stored			

## Operands

| Operand | Relay |  |  |  | Timer/Counter |  | Register |  |  | Index <br> register |  | Constant |  | Index <br> modifier |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WX | WY | WR | WL | SV | EV | DT | LD | FL | I | K | H | f |  |
|  | A | A | A | A | A | A | A | A | A | A | N/A | N/A | N/A | A |
| D | N/A | A | A | A | A | A | A | A | A | A | N/A | N/A | N/A | A |

## Explanation of example

When the internal relay (R0) is on, the number of seconds for the data registers DT0 and DT1 is converted to the time data based on the standard time, and stored in DT10 to 12.

ex.)		$\Rightarrow$	(higher)	(lower)	
$\begin{aligned} & \text { DT0 } \\ & \text { DT1 } \end{aligned}$	H039D0A6A		H51	H06	DT10
	(Binary value)		H03	H15	DT11
	(60,623,466秒)		H02	H12	DT12

(Dec.3,02-15:51:06)
(2002)


## Description

1) The input number of seconds $(S)$ is converted to the time data based on standard time *1, and stored in (D).
2) The conversion is in consideration of the leap year.

1 minute	---	60 seconds
1 hour	---	60 minutes
1 day	---	24 hours
1 year (leap year)	---	366 days
1 year (except a leap year)	---	365 days
A leap year (4 multiple years)	---	Feb. 29

3) The range which can specify the number of seconds ( S ) is 100 years which can be expressed by time data.

$$
\begin{array}{lll}
\text { H00000000 - HBC19137F } & --- & \text { Normal conversion } \\
\text { HBC191380 - HFFFFFFFF } & \text {--- } & \text { Conversion error }
\end{array}
$$

*1: Standard time is 00:00'00" on January 1, '01.


Total Second Conversion

Second data (S)	Time data (D)
H00000000	'01/01/01 00:00:00
H00000001	'01/01/01 00:00:01
:	:
H0000003C	'01/01/01 00:01:00
:	:
H00000E10	'01/01/01 01:00:00
:	:
H00015180	'01/01/02 00:00:00
:	:
HBA368E7F	'99/12/31 23:59:59
HBA368E80	'00/01/01 00:00:00
:	:
HBC19137F	'00/12/31 23:59:59

## Flag conditions

$\Sigma$ Error flag (R9007) (R9008):

- It turns on, when the specified address using the index modifier exceeds a limit.
- It turns on, when the number of seconds ( S ) is ( S ) >=HBC191380.
- It turns on, when the data memory of [D](DT100) exceeds the area.

P235(PGRY)

Outline Converts 16-bit data to gray code.
For the FPOR/FP $\Sigma / F P-X$, the $P$ type high-level instruction "P235 (PGRY)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

## Description

Converts the 16-bit data specified by S to gray codes when the trigger turns on. The converted result is stored in the 16 -bit area specified by D .
For detailed information about the gray code page 3-597

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

High-level Instructions

## F236(DGRY) P236(PDGRY

32-bit data $\rightarrow$ Gray code

Outline Converts 32-bit binary data to gray code.
For the FPOR/FP $/$ /FP-X, the P type high-level instruction "P236 (PDGRY)" is not available.

## Program example

Ladder Diagram		Boolean		
		Address	Instruction	
Trigg		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	ST   F236   DT   DT	(DGRY)   10   20
S	32-bit equivalent constant or lower 16-bit area of 32-bit data to be converted (source)			
D	Lower 16-bit area of 32-bit data for storing gray code (destination)			

## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL	I	K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

## Description

Converts the 32-bit data specified by $S$ to gray code when the trigger turns on. The converted data is stored in $\mathrm{D}+1$ and D .

For detailed information about the gray code page 3-597

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

P237(PGBIN)

## Outline Converts 16-bit gray code to 16-bit binary data.

For the FPOR/FPE/FP-X, the P type high-level instruction "P237 (PGBIN)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL	1	K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
														A: Available N/A: Not Available	

## Description

Converts the gray codes in 16 -bit are specified by $S$ to 16 -bit data when the trigger turns on. The converted result is stored in the area specified by D .
For detailed information about the gray code page 3-597

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.

Outline Converts gray code to 32 -bit data.
For the FPOR/FPI/FP-X, the P type high-level instruction "P238 (PDGBIN)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

## Description

Converts gray code to 32-bit data when the trigger turns on. The converted result is stored in the 32-bit area specified by $\mathrm{D}+1$ and D .
For detailed information about the gray code page 3-597

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## Binary/Hexadecimal/BCD/Gray Code Expressions



## Bit line to bit column conversion

Outline Converts a selected bit line to a bit column.
For the FPOR/FP $/$ /FP-X, the P type high-level instruction "P240 (PCOLM)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index   register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	$f$		
S	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

## Explanation of example

When the specified bit position $\mathrm{n}=10$

15																
S	0	1	0	1	0	0	0	1	1	1	0	1	1	0	0	1
						10	$\checkmark$									0
D						1										
D+1						0										
D+2						0										
D+3						1										
D+4						1										
D+5						0										
D+6						1										
D+7						1										
D+8						1										
D+9						0										
D+10						0										
D+11						0										
D+12						1										
D+13						0										
D+14						1										
D+15						0										

## Description

The bit data at the position specified by " $n$ " of the 16 -word data area with the head address $D$ is rewritten using the 16 -bit data of the area specified by S .
The contents of the bits of the 16-word data area with head address $D$ that are not specified do not change. " n " can be between 0 and 15 .

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If the specified bit position $[n]$ is not in the range $0 \leqq n \leqq 15$.
- If the result of the conversion overflows the storage area specified with D.

Outline Converts a specified bit column to a bit line.
For the FPOR/FPE/FP-X, the P type high-level instruction "P241 (PLINE)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL	I	K	H	1		
S	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

## Explanation of example

When the specified bit position $\mathrm{n}=10$


## Description

Reads the bit data at the position specified by " $n$ " from the area specified by $S$ and stores it in the area specified by D.
"n" can be set between 0 and 15.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If the specified bit position $[\mathrm{n}]$ is not in the range $0 \leqq n \leqq 15$.
- If the conversion range specified with $S$ overflows the area.


## Availability

E250(BTOA) Binary $\rightarrow$ ASCII conversion
FP-X/FPE 32k/FPOR

Outline Converts 16-bit/32-bit binary data to ASCII code.

## Program example

Ladder Diagram			Boolean		
			Address		ion
Trigger			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST F250 M DT DT DT	$\begin{array}{r} \quad 0 \\ \text { A) } \\ \text { 16-D } \\ 10 \\ 20 \\ 100 \end{array}$
	S1	Control string			
	S2	Starting 16-bit area for storing binary data			
	N	Conversion method			
	D	Starting 16-bit area for storing ASCII codes of converted result			

## Operands

Operand	Relay				Timer/Counter		Register		Index register		Constant		M	Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	IX	IY	K	H		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
N	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

A: Available
N/A: Not Available

## Operation

Converts the binary data stored in the area specified by S2 to ASCII codes using the conversion method of $N$ according to 4 control characters specified by S1. The converted result is stored in the area specified by D.

## Specifying the various items

- Specifying control strings and the meanings [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D)

M 16-D Converts 16-bit data to decimal ASCII codes.
M 32-D Converts 32-bit data to decimal ASCII codes.
M 16+H Converts 16-bit data to hexadecimal ASCII codes. (Normal direction)
M 32+H Converts 32-bit data to hexadecimal ASCII codes. (Normal direction)
M 16-H Converts 16-bit data to hexadecimal ASCII codes. (Reverse direction)
M 32-H Converts 32-bit data to hexadecimal ASCII codes. (Reverse direction)
*The details of the normal and reverse directions are described later.

## - Specifying the conversion method [ N ](K1)

Example of converting 16-bit data (K1234 and K56) to decimal ASCII codes


5	53	
H.Ei	K1234	-'ial.ı6\%
㕱	$A$	
	Hi+ ATM	1614
	$\mathrm{H}=1 \mathrm{H}$	:0655s!





-

-.-Chancler minge,



Notes

## About the digit number of ASCII data

- When converting 16-bit data to hexadecimal ASCII codes Specified range: H1 to 4 When less than H4, the specified number of digits is stored from the lower bytes.
If the digit number of original data is larger with the specification less than H4, it is an error.
- When converting 32-bit data to hexadecimal ASCII codes Specified range: H1 to 8 When less than H8, the specified number of digits is stored from the lower bytes.
If the digit number of original data is larger with the specification less than H8, it is an error.
- When converting to decimal ASCII codes

Specified range: H1 to F
Source data is treated as signed binary data. When it is a negative number, the minus sign "-" is added.
When the number of digit of ASCII codes is larger than the converted result, the space "_" is stored in the extra smaller addresses.

## About normal direction and reverse direction (only when converting to hexadecimal ASCII data)





## Conversion examples

- Converts 16-bit data (K1234 and K56) to decimal ASCII codes.

$$
\begin{array}{|ll}
\hline \text { DT10 }=\text { K } 1234 & \rightarrow " 1234 _56 " \\
\text { DT11 }=\text { K } 56
\end{array}
$$

When No. of converted data is " 2 ", Starting position for storing is " 0 ", Size of the area for storing is " 4 ".



- Converts 32-bit data (K1234 and K56789) to decimal ASCII codes.

| DT10, 11 $=\mathrm{K} 1234$ | $\rightarrow "$ 1234__56789" |
| :--- | :--- | :--- | :--- |
| DT12, 13 $=\mathrm{K}$ 56789st |  |

When No. of converted data is " 2 ", Starting position for storing is " 1 ", Size of the area for storing is " 7 ".


DT13 DT12 DT11 DT10

K56789
K1234


DT107 DT106 DT105 DT104 DT103 DT102 DT101 DT100


- Converts 16-bit data (H0123 and H89AB) to hexadecimal ASCII codes.

DT10	$=\mathrm{H} 123$	$\rightarrow$ "2301AB89"
DT11	$=\mathrm{H}$ 89AB	

When No. of converted data is " 2 ", Starting position for storing is " 1 ", Size of the area for storing is " 4 ". (Normal direction)




DT104 5T-0GDT1G2 DT-01 DT1ら日


For the reverse direction (when "16+H" is "16-H)



- Converts 32-bit data (H00000123 and H0089ABCD) to hexadecimal ASCII codes (Normal direction)

| DT10, $11=\mathrm{H} 123$ | $\rightarrow$ "230100CDAB89" |
| :--- | :--- | :--- |
| DT12, $13=\mathrm{H}$ 89ABCD |  |

When No. of converted data is " 2 ", Starting position for storing is " 0 ", Size of the area for storing is " 6 ".



For the reverse direction (when " $32+\mathrm{H}$ " is " $32-\mathrm{H}^{\prime}$ )


Flag conditions
$\Sigma$ Error flag (R9007): Turns on and stays on when
$\Sigma$ Error flag (R9008): Turns on for an instant when

- There is an error in the control string specified by S1.
- The direction of converted data is changed to the normal direction when the conversion format specified by S1 is in decimal.
- The size of the area for storing ASCII codes specified by N exceeds the rated value when the conversion format specified by S 1 is in hexadecimal. (Rated value for 16-bit data: 4) (Rated value for 32-bit data: 8)
- The No. of the converted data specified by N is 0 .
- The converted result exceeds the area for storing ASCII codes specified by N.
- The converted result exceeds the area.
- The area specified using the index modifier exceeds the limit.

Availability
FP-X/FP $\Sigma$ 32k/FPOR

Outline Converts ASCII code to 16-bit/32-bit binary data.

## Program example

Ladder Diagram			Boolean		
			Address   10   11		uction
Trigger				ST   F25   M   DT   DT   DT	$\begin{array}{rr} \text { R } & 0 \\ \text { ATOB) } \\ \text { D-16 } \\ 10 \\ 10 \\ 20 \\ 100 \end{array}$
S1 $\quad$ Control string					
S2		Starting 16-bit area for storing ASCII codes			
	N	Conversion method			
	D	Starting 16-bit area for storing binary data of converted result			

## Operands

Operand	Relay				Timer/Counter		Register		Index register		Constant		M	Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	IX	IY	K	H		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
N	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

A: Available
N/A: Not Available

## Operation

Converts the ASCII codes stored in the area specified by S 2 to binary data using the conversion method of N according to 4 control characters specified by S1. The converted result is stored in the area specified by D .

## Specifying the various items

- Specifying control strings and the meanings [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D)

Ranges of treated data
M D-16 Converts decimal ASCII codes to 16-bit data.
M D-32 Converts decimal ASCII codes to 32-bit data.
$-32,768$ to +32767
$-2,147,483,648$ to $+2,147,483,647$
M H+16 Converts hexadecimal ASCII codes to 16-bit data.
(Normal direction)
0 to FFFF
M H+32 Converts hexadecimal ASCII codes to 32-bit data.
(Normal direction) 0 to FFFFFFFF
M H-16 Converts hexadecimal ASCII codes to 16-bit data.
(Reverse direction) 0 to FFFF
M H-32 Converts hexadecimal ASCII codes to 32-bit data.
(Reverse direction)
0 to FFFFFFFF
*The details of the normal and reverse directions are described later.

- Specifying the conversion method [ N ](K1)

Example of converting the ASCII data string "123456789012" to decimal 3 digits x 4 data


When converting by the above program:


## - About normal direction and reverse direction

The conversions in the normal direction and reverse direction are available for hexadecimal ASCII data. Example of converting "0123456789ABCDEF".




## Conversion examples

- Examples of converting to decimal 3 digits $\times 4$ data (when no comma "," exists)

Converts to 16-bit data.

| $" 123456789012 "$ | $\rightarrow$ DT100 | $=\mathrm{K}$ | 123 |
| :--- | :--- | :--- | :--- | :--- |
| DT100 | $=$ | K | 456 |
| DT102 | $=$ | K | 789 |
| DT103 | $=$ | K | 12 |

When No. of numeric data is " 4 ", Starting position for reading is " 1 ", Digit No. of numeric data is " 3 ".
$\left\lvert\, \begin{aligned} & \text { R0 } \\ & \mid\end{aligned}\right.$ (DF $-\quad[F 251$ ATOB, M D-16, DT10, H 413, DT 100$]$




- Examples of converting to hexadecimal 4 digits $\times 3$ data

Converts to 16-bit data in normal direction.

$" 001209 A B 000 E "$	$\rightarrow$ DT100	$=$ H 1200	
DT101	$=$ H AB09		
DT102	$=$	H	0 E 00

When No. of numeric data is " 3 ", Starting position for reading is " 1 ", Digit No. of numeric data is " 4 ".
RO
$\stackrel{\text { R0 }}{\dagger}$ (DF) $\quad[$ F251 ATOB, $\quad \mathrm{H}+16, \quad$ DT10, H 314 , DT 100$]$








- Example of converting to decimal number x 4 data (in case of comma-deliminated "," data)

| $" 12,345,6789,0, "$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| $*$ The last of character strings is a comma. | $\rightarrow$ DT100 | $=\mathrm{K}$ | 12 |
|  | DT101 | $=\mathrm{K}$ | 345 |
| DT102 | $=\mathrm{K}$ | 6789 |  |
|  | DT103 | $=\mathrm{K}$ | 0 |

When No. of numeric data is " 4 ", Starting position for reading is " 1 ", Digit No. of numeric data is " 4 ".
(Converts to 16-bit data) * Specify the maximum digit number.


- Example of converting to decimal 5 digits with a decimal point $x 2$ data (when no comma exists)

$1234.50006 .7 "$	$\rightarrow$ DT100	$=$	K 12345
DT101	$=$	K 67	

When No. of numeric data is " 2 ", Starting position for reading is " 0 ", Digit No. of numeric data is " 6 ", and converting to 16 -bit data.
*A decimal point is also counted as a digit.



- Example of converting to decimal number with a decimal point $x 2$ data (in case of comma-deliminated "," data)

| $" 1234.5,6.7, "$ |  |  |
| :--- | :--- | :--- | :--- | :--- |
| $*$ The last of character strings is a comma. | $\rightarrow$ DT100 | $=$ K 12345 |
| DT101 | $=$ | K 67 |

When No. of numeric data is " 2 ", Starting position for reading is " 0 ", Digit No. of numeric data is " 6 ", and converting to 16-bit data.
*A decimal point is also counted as a digit.



## Particular examples

- If there is numeric data larger than the specified digit number between commas.
(Example: Decimal number $\times 4$, the digit number of the numeric data is 4)

- If there is no value between commas (Example: Decimal number $\times 4$ )
"123,456,,78" $\rightarrow$ Operation error
- If there is only a decimal point between commas (Example: Decimal number with a decimal point x 3 )



## Flag conditions

$\Sigma$ Error flag (R9007): Turns on and stays on when
$\Sigma$ Error flag (R9008): Turns on for an instant when

- There is an error in the control string specified by S1.
- The direction of converted data is changed to the normal direction when the conversion format specified by S1 is in decimal.
- The size of the area for storing ASCII codes specified by N exceeds the rated value when the conversion format specified by S1 is in hexadecimal. (Rated value for 16-bit data: 4) (Rated value for 32-bit data: 8)
- Any code other than 0 to F, symbols, space, dot, comma exists in ASCII code specified by S2.
- The No. of the converted blocks specified by N is 0 .
- The size of the area for storing ASCII codes specified by N is 0 .
- The ASCII code to be converted exceeds the area.
- The converted result exceeds the area.
- The converted result exceeds the converted data scale specified by N .
- The area specified using the index modifier exceeds the limit.

Outline Checks whether the specified ASCII data is correct or not.

## Program example

Ladder Diagram			Boolean	
			Address	Instruction
0 11			11   12   14	ST R 0   F252(ACHK)     M D-16    DT  10   DT  20   ST R 0   AN R $900 B$   F251(ATOB)     M D-16    DT 10    DT 20    DT 100
	S1	Control string data or 16-bit are for storing control strings		
	S2	Starting 16-bit area for storing ASCII code		
	N	16-bit equivalent constant or 16-bit area for storing conversion method		

## Operands

Operand	Relay				Timer/Counter		Register		Index register	SWR	SDT	Constant		M	Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \text { In } \\ (* 1) \end{gathered}$			K	H		
S1	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
N	A	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A

(*1) 10 to ID

A: Available
N/A: Not Available

## Operation

- Checks whether the ASCII codes stored in the area specified by S2 can be converted correctly or not using the conversion method of N according to 4 control characters specified by S 1 . Checks whether the character strings can be converted by F251 (ATOB) instruction.
- Checks data before converting the data by F251 (ATOB) instruction. If an error is found in the data, controls not to execute F251 (ATOB) instruction. Specify the same values for $\mathrm{S} 1, \mathrm{~S} 2$ and N as F 251 (ATOB) instruction. If the results are correct, the special internal relay (R900B) turns on. If the results are incorrect, the special internal relay (R900B) turns off.


## Specifying the various items

The way to specify S1, S2 and N is the same as F251 (ATOB) instruction. Refer to the explanation described in F251 (ATOB) ASCII Binary conversion.

## Flag conditions

$\Sigma$ Error flag (R9007): Turns on and stays on when
$\Sigma$ Error flag (R9008): Turns on for an instant when

- There is an error in the control string specified by S1.
- The direction of converted data is changed to the normal direction when the conversion format specified by S1 is in decimal.
- The size of the area for storing ASCII codes specified by N exceeds the rated value when the conversion format specified by S 1 is in hexadecimal. (Rated value for 16-bit data: 4) (Rated value for 32-bit data: 8)
- The No. of the converted blocks specified by N is 0 .
- The size of the area for storing ASCII codes specified by N is 0 .
- The ASCII code to be converted exceeds the area.
- The area specified using the index modifier exceeds the limit.


## Overview of Character String Instructions F257 (SCMP) to F265 (SREP)

## Configuration of character string instruction data tables

Data tables for character strings show the character string size, the number of characters, and the character data.


Higher 16 bits Lower 16 bits

## Example:

The example shows a character string data table specifying the following: Character string size: 10. Number of characters: 5. Character data: "ABCDE".


Higher Lower 16 bits 16 bits

## How data tables are set

Specify the values for the character string size and number of characters. The F0 (MV) instruction is used to specify values.

Specify the characters. The F95 (ASC) instruction is used to specify characters.

## Example:

The example shows (character string size "16 characters", "no specification of characters") for DTO.


1 Example:
The example shows a data table specifying the following for DTO: (character string size "20 characters", number of characters " 12 characters", and character data "ABCDEFGHIJKL").


## Comparing character strings

Outline These instructions compare two specified character strings and output the judgment results to a special internal relay.
With the FPOR/FP /FP-X, the differential execution type instruction P257 (PSCMP) cannot be specified.

## Program example

Ladder Diagram												Boolean			
												Address		Instruction	
10	Trigg	er	$257$	SCl			$10$   2					$\begin{aligned} & 10 \\ & 11 \end{aligned}$		$\begin{aligned} & \text { ST } \\ & \text { F257 } \\ & \text { DT } \\ & \text { DT } \end{aligned}$	R 10   (SCMP)   10
S1					Character string 1 for comparison										
S2					Character string 2 for comparison										
Operands															
Operand	Relay				Timer/Counter		Register			$\begin{array}{\|c\|} \hline \text { Index } \\ \text { register } \end{array}$	Constant				Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \hline \text { FL } \\ (* 1) \end{gathered}$	$\underset{(* 2)}{1}$	K	H	f	M	
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) Cannot be specified with FPOR, FPE and FP-X.
A: Available
(*2) IO to ID
N/A: Not Available

## Explanation of example

When internal relay R10 is on, data register DT1 and DT11 are compared.
In this case, it is determined that "S1" < "S2", and R900C goes on.


## Description

The character string specified for " S 1 " is compared to that specified for S 2 , and the judgment result is output to special internal relays R9009 to R900C (judgment flags for comparison instructions).
R9009 to R900C are assigned based on whether "S1" or "S2" is larger, as shown in the table below.

Relationship   of S1 and S2	Flag			
	R900A	R900B	R900C	R9009
	$>$	$=$	$<$	Carry
S1<S2	OFF	OFF	ON	Fluctuates
S1=S2	OFF	ON	OFF	OFF
S1>S2	ON	OFF	OFF	Fluctuates

## Precautions during programming

If the number of characters is different, the greater/lesser relationship is as shown below.

S1	Greater/lesser	S2
"ABCDE"	$=$	"ABCDE"
"ABCD"	$<$	"ABCDE"
"B"	$>$	"ABCDE"

Comparison of character strings is performed in sequence from byte 0 , one character at a time.
If one character string has fewer characters than the other, it may still be handled as larger if a large character code is used when the comparison is made.
Example: "B" > "ABCDE"
To specify a character string, indicate the number of the area in which the character size and number of characters have been specified.
For detailed information about the table configuration of data area see page 3-615.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The specified range is exceeded when an index is modified.
- The number of characters is larger than the character string size.


## Character string coupling

Outline These instructions couple one character string with another.
With the FPOR/FP $/$ /FP-X, the differential execution type instruction P258 (PSADD) cannot be specified.

## Program example

Ladder Diagram												Boolean			
												Address		Instruction	
10	$\begin{aligned} & \text { Trigge } \\ & \text { R10 } \\ & -1+ \end{aligned}$	er $-[F$	$258$	SAD		+			1	$\exists$		$\begin{aligned} & 10 \\ & 11 \end{aligned}$		ST   F258   DT   DT   DT	
S1					Character string to be coupled										
S2					Character string to be coupled										
D					Area in which the coupled character strings are stored										
Operands															
Operand	Relay				Timer/Counter		Register			Index register	Constant				Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \text { FL } \\ (* 1) \end{gathered}$	$\begin{gathered} 1 \\ (* 2) \end{gathered}$	K	H	f	M	
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) Cannot be specified with FPOR, FPE and FP-X.
A: Available
(*2) IO to ID

## Description

The character string specified for " S 1 " is coupled to that specified for " S 2 ", and the result is stored in the character string specified by "D".
At the starting address of the area for storing results " $D$ ", designate the character string size using the user program.

## Explanation of example



## Precautions during programming

If the result of the coupling operation is larger than the character string size of " D ", only as many characters as will fit in "D" are stored.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The specified range is exceeded when an index is modified.
- The number of characters is larger than the character string size.
- Carry flag (R9009): Turns on for an instant when the operation result is larger than the character string size of " D "

Number of characters in a character string

Outline These instructions determine the number of characters in a character string.
With the FPOR/FPE/FP-X, the differential execution type instruction P259 (PLEN) cannot be specified.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			M	Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \text { FL } \\ (* 1) \end{gathered}$	$\underset{(* 2)}{1}$	K	H	f		
S	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
D	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) Cannot be specified with FPOR, FP $\Sigma$ and FP-X.
(*2) 10 to ID

A: Available N/A: Not Available

## Explanation of example

DTO	10	
DT1	8	
DT2	"B"	"A"
DT3	"D"	"C"
DT4	"1"	"E"
DT5	"3"	"2"
DT6		

Higher Lower
16 bits 16 bits

## Description

The number of characters in the character string specified by " $S$ " is determined, and the result is stored in "D".

## Precautions during programming

If the number of characters is larger than the character size string, an operation error occurs.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The specified range is exceeded when an index is modified.
- The number of characters is larger than the character string size.


## Search for character string

Outline These instructions search for a specified character string. With the FPOR/FPE/FP-X, the differential execution type instruction P260 (PSSRC) cannot be specified.

## Program example



S1	Area in which the character data to be searched is stored   (character string or character constant)
S2	Character string to be searched
D	Area in which the results of the search are stored

Operands

Operand	Relay				Timer/Counter		Register			Index   register   I   (*2)	Constant			M	Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \text { FL } \\ (* 1) \end{gathered}$		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) Cannot be specified with FPOR, FPE and FP-X.
(*2) 10 to ID

A: Available
N/A: Not Available

## Explanation of example

The DT0 character is searched from the character string of DT10, and the result is stored in DT120.


## Description

The character data specified by " S 1 " is searched using the character string specified by " S 2 ".
The number of characters that are the same, as resulting from the search, is stored in "D", and the first detected relative position (byte unit) is stored in " $\mathrm{D}+1$ ".

## Precautions during programming

Specify a number of characters such that " S 1 " is less than or equal to "S2".
For the number of characters " $\mathrm{S} 1+1$ " in the character string on the search side, designate the number of characters for performing search.
Example:

(Character $4^{4}$ string size)	
(Number of characters)	
"B"	"A"
"D"	"C"

- When the number of characters is 1 , the system searches the character " A ".
When the number of characters is 2 , the characters "AB" are searched as one unit.


## Flag conditions

Error flag (R9007): Turns on and stays on when:
Error flag (R9008): Turns on for an instant when:

- The specified range is exceeded when an index is modified.
- The number of characters is larger than the character string size.

Retrieving data from character strings (right side)

Outline These instructions retrieve a specified number of characters from the right side of the character string.
With the FPOR/FPI/FP-X, the differential execution type instruction P261 (PRIGHT) cannot be specified.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			M	Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \text { FL } \\ (* 1) \end{gathered}$	$\underset{(* 2)}{1}$	K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) Cannot be specified with FPOR, FP $\Sigma$ and $F P-X$.
A: Available
(*2) IO to ID
$\mathrm{N} / \mathrm{A}$ : Not Available

## Explanation of example

A character is retrieved from the end of the character string of DTO, and is sent to DT20.


## Description

The number of characters specified by "S2" is searched starting from the right side (the end of the character data) of the character string specified by " S 1 ", and is sent to the character string specified by "D".
At the starting address of the area for storing results "D", designate the character string size using the user program.

## Precautions during programming

The character data from "D" prior to the operation is cleared.
If the number of characters specified by " S 2 " is larger than the number of characters in the character string specified by " S 1 ", the number of characters of the character string specified by " S 1 " is sent.
If the number of characters specified by "S2" is larger than the size of the character string of "D", data equal to the size of the character string specified by " D " is sent.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The specified range is exceeded when an index is modified.
- The number of characters is larger than the character string size.
- Carry flag (R9009): Turns on for an instant when the result of the operation is larger than the size of the character string specified by "D".

Retrieving data from character strings (left side)

Outline These instructions retrieve a specified number of characters from the left side of the character string.
With the FPOR/FP $\Sigma /$ FP-X, the differential execution type instruction P262 (PLEFT) cannot be specified.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			M	Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \text { FL } \\ (* 1) \end{gathered}$	$\stackrel{1}{(* 2)}$	K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) Cannot be specified with FPOR, FP $\Sigma$ and $F P-X$.
A: Available
(*2) IO to ID
$\mathrm{N} / \mathrm{A}$ : Not Available

## Explanation of example

A character is retrieved from the beginning of the character string of DT0, and is sent to DT20.


## Description

The number of characters specified by " S 2 " is searched starting from the left side (the beginning of the character data) of the character string specified by "S1", and is sent to the character string specified by "D". At the starting address of the area for storing results "D", designate the character string size using the user program.

## Precautions during programming

The character data from "D" prior to the operation is cleared.
If the number of characters specified by " S 2 " is larger than the number of characters in the character string specified by " S 1 ", the number of characters of the character string specified by " S 1 " is sent.

If the number of characters specified by "S2" is larger than the size of the character string of "D", data equal to the size of the character string specified by " $D$ " is sent.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The specified range is exceeded when an index is modified.
- The number of characters is larger than the character string size.
- Carry flag (R9009): Turns on for an instant when the result of the operation is larger than the size of the character string specified by "D".


## Retrieving a character string from a character string

Outline
These instructions retrieve a character string consisting of a specified number of characters from the specified position in the character string. With the FPOR/FPE/FP-X, the differential execution type instruction P263 (PMIDR) cannot be specified.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index   register$\|$I   (*2)	Constant			M	Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \text { FL } \\ (* 1) \end{gathered}$		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
S3	A	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) Cannot be specified with FPOR, FPE and FP-X.
(*2) 10 to ID

A: Available
N/A: Not Available

## Explanation of example

Three characters are retrieved from the position byte 1 (second character) of the character string of DT0, and are sent to DT20.


## Description

The number of characters specified by " S 3 " is retrieved starting from the position specified by "S2" in the character string specified by " S 1 ", and is sent to the character string specified by "D".
At the starting address of the area for storing results "D", designate the character string size using the user program.

## Precautions during programming

The character data from "D" prior to the operation is cleared.
If the number of characters specified by " S 3 " is larger than the number of characters in the character string specified by "S1" from the position specified by "S2", the number of characters of the character string specified by " S 1 " is sent.
If the number of characters of the operation result is larger than the size of the character string of "D", data equal to the size of the character string specified by "D" is sent.

The position specified by "S2" sets the least significant byte as K0 (byte 0), and the positions are counted in the order of $0,1,2$, etc., starting from the least significant byte.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The specified range is exceeded when an index is modified.
- The number of characters is larger than the character string size
- The number of characters of " S 1 " is larger than the number of characters of "S2"
- Carry flag (R9009): Turns on for an instant when the result of the operation is larger than the size of the character string specified by "D"


## Writing a character string to a character string

Outline These instructions write a specified number of characters from a character string to a specified position in the character string. With the FPOR/FPE/FP-X, the differential execution type instruction P264 (PMIDW) cannot be specified.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index   register   I   (*2)	Constant			M	Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \text { FL } \\ (* 1) \end{gathered}$		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) Cannot be specified with FPOR, FPE and FP-X.
(*2) 10 to ID

A: Available
$\mathrm{N} / \mathrm{A}$ : Not Available

## Explanation of example

Three characters are retrieved from the character string of DTO, and are sent to the position byte 1 (second character) of the character string block of DT20.


## Description

The number of characters specified by "S2" is retrieved from the character string specified by " S 1 ", and is sent to the " n " position of the character string specified by " D ".

## Precautions during programming

The character data from "D" prior to the operation is not cleared (it is overwritten).
If the number of characters specified by " S 2 " is larger than the number of characters in the character string specified by "S1", the number of characters of the character string specified by "S1" is sent.
If the position of " $n$ " is larger than the number of characters of the character string of "D", an operation error occurs.
If the number of characters in the operation result is larger than the size of the character string in "D", then replacement is done only within a range the size of the character string in " D ".
The position specified by " n " sets the least significant byte as K0 (byte 0 ), and the positions are counted in the order of $0,1,2$, etc., starting from the least significant byte.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The specified range is exceeded when an index is modified.
- The number of characters is larger than the character string size
- The number of characters of " $D$ " is larger than the number of characters of " $n$ "
- Carry flag (R9009): Turns on for an instant when the result of the operation is larger than the size of the character string specified by "D"


## Replacing character strings

Outline
These instructions replace a specified number of characters in a character string with the same number of different characters, starting from a specified position.
With the FPOR/FPE/FP-X, the differential execution type instruction P265 (PSREP) cannot be specified.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			M	Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \mathrm{FL} \\ (* 1) \end{gathered}$	$\begin{gathered} \mathrm{I} \\ (* 2) \end{gathered}$	K	H	f		
S	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A
P	A	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	A

(*1) Cannot be specified with FPOR, FP $\Sigma$ and FP-X.
(*2) 10 to ID

A: Available N/A: Not Available

## Explanation of example

The DT0 character string is replaced with the number of characters in DT1 ( 5 characters) from byte $p=1$ in DT20. In this case, $\mathrm{n}=3$ characters of the data stored in the source are deleted in the replacement.


## Description

The character string specified by "S" replaces the character string specified by " $D$ ", for the number of characters specified by " n ", starting from the position specified by " P ".

## Precautions during programming

The character data from "D" prior to the operation is not cleared (it is overwritten).
If the number of characters in " n " is larger than the number of characters in the character string " S " subsequent to the point designated with " p ", replacement is done for the number of characters in the character string " S " subsequent to the point designated with " p ".
If the position specified by " p " is larger than the number of characters in the character string specified by " n ", an operation error occurs.
The position specified by "p" sets the least significant byte as K0 (byte 0), and the positions are counted in the order of $0,1,2$, etc., starting from the least significant byte.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The specified range is exceeded when an index is modified.
- The number of characters is larger than the character string size
- The number of characters of " D " is larger than the number of characters of " n "
- Carry flag (R9009): Turns on for an instant when the result of the operation is larger than the size of the character string specified by " D "


## F270(MAX)

P270(PMAX)

## Maximum value search in 16-bit data table

Outline $\quad$ Searches for a maximum value in a table of 16-bit areas.
For the FP0R/FP $/$ /FP-X, the $P$ type high-level instruction "P270 (PMAX)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
														A: Available N/A: Not Available	

## Description

This instruction searches for the maximum value in the 16-bit data table between the area selected with S1 and the area selected with S 2 , and stores it in the area selected with D . The address relative to S 1 is stored in $\mathrm{D}+1$.


If there are several values which are a maximum value, the relative address of the first value found searching from S 1 is stored in $\mathrm{D}+1$.

## Precaution during programming

Even if $\mathrm{D}+1$ overflows the selected area, it will still be stored, and this may corrupt the data in the leading part of the other area. (An area overflow check is not performed.)

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S1 > S2.
- The areas of S1 and S2 are different.

Outline Searches for a maximum value in a table of 32-bit areas.
For the FPOR/FPE/FP-X, the P type high-level instruction "P271 (PDMAX)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

## Description

This instruction searches for the maximum value in the double word data table between the area selected with S1 and the area selected with S2, and stores it in the area selected with D. The address relative to S1 is stored in D+2.

Double word data table


If S2 specifies a higher word of double word data, processing will take place over the same area as if the lower word had been specified.

Double word data table				Maximum value
$\begin{array}{r} \mathrm{S} 1: \\ \mathrm{S} 1+1 \end{array}$	Lower word	$0 \longrightarrow \mathrm{D}$ :	Lower word	
	Higher word	D+1:	Higher word	
S1+2:		D+2:		Relative address
S1+3:				
	$\vdots$			
S2-1:	Lower word	n		
S2:	Higher word	Relative add	dress	

If there are several values which are a maximum value, the relative address of the first value found searching from S 1 is stored in $\mathrm{D}+2$.

## Precaution during programming

Even if $\mathrm{D}+2$ overflows the selected area, it will still be stored, and this may corrupt the data in the leading part of the other area. (An area overflow check is not performed.)

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S1 > S2.
- The areas of S1 and S2 are different.

P272(PMIN)

## Minimum value search in 16-bit data table

Outline Searches for a minimum value in a table of 16 -bit areas.
For the FPOR/FP $/$ /FP-X, the P type high-level instruction "P272 (PMIN)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

## Description

This instruction searches for the minimum value in the 16-bit data table between the area selected with S1 and the area selected with S2, and stores it in the area selected with D. The address relative to $S 1$ is stored in D+1.


If there are several values which are a minimum value, the relative address of the first value found searching from S 1 is stored in $\mathrm{D}+1$.

## Precaution during programming

Even if $\mathrm{D}+1$ overflows the selected area, it will still be stored, and this may corrupt the data in the leading part of the other area. (An area overflow check is not performed.)

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S1 > S2.
- The areas of S1 and S2 are different.

Minimum value search in 32-bit data table

Searches for a minimum value in a table of 32 -bit areas.
For the FPOR/FPE/FP-X, the P type high-level instruction "P273 (PDMIN)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
														A: Available N/A: Not Available	

## Description

This instruction searches for the minimum value in the double word data table between the area selected with S1 and the area selected with S2, and stores it in the area selected with D. The address relative to S 1 is stored in $\mathrm{D}+2$.


If S2 specifies a higher word of double word data, processing will take place over the same area as if the lower word had been specified.

If there are several values which are a minimum value, the relative address of the first value found searching from S 1 is stored in D+2.

## Precaution during programming

Even if D+2 overflows the selected area, it will still be stored, and this may corrupt the data in the leading part of the other area. (An area overflow check is not performed.)

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S1 > S2.
- The areas of S1 and S2 are different.

Total and mean numbers calculation in 16-bit data table

## Outline Calculates the total and mean numbers in the specified word data table.

For the FPOR/FP $/$ /FP-X, the P type high-level instruction "P275 (PMEAN)" is not available.

## Program example



S1	Starting 16-bit area of data table
S2	Ending 16-bit area of data table
D	Starting 16-bit for storing total and mean numbers (3 words)

Operands

Operand	Relay				Timer/Counter		Register			Index   register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

## Description

The total value and the average value of the word data (signed) from the area selected with S1 to the area selected with S 2 are obtained and stored in the area selected with D .

15		0
D		Total (32 bits)
D+1		
D+2		Mean (16 bits)

Decimals of the average value are rounded off so that the average value is an integer.

## Precaution during programming

Even if $D+2$ overflows the selected area, it will still be stored, and this may corrupt the data in the leading part of the other area. (An area overflow check is not performed.)

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S1 > S2.
- The areas of S1 and S2 are different.
- Carry flag (R9009): Turns on for an instant when overflows/underflows while calculating.


## E276(DMEAN)

Total and mean numbers calculation in 32-bit data table P276(PDMEAN)

Outline Calculates the total and mean numbers in the specified double word data table.
For the FPOR/FP $/$ /FP-X, the P type high-level instruction "P276 (PDMEAN)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index   register   1	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

## Description

The total value and the average value of the double word data (signed) from the area selected with S1 to the area selected with S2 are obtained and stored in the area selected with D.

	15	
D		Total (64 bits)
D+1		
D+2		
D+3		
D+4		Mean (32 bits)
D+5		

If S2 specifies a higher word of double word data, processing will take place over the same area as if the lower word had been specified.


Decimals of the average value are rounded off so that the average value is an integer.

## Precaution during programming

Even if $D+5$ overflows the selected area, it will still be stored, and this may corrupt the data in the leading part of the other area. (An area overflow check is not performed.)

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S1 > S2.
- The areas of S1 and S2 are different.
- Carry flag (R9009): Turns on for an instant when overflows/underflows while calculating.


## Outline Sorts a string of data words.

For the FPOR/FP $\Sigma / F P-X$, the $P$ type high-level instruction "P277 (PSORT)" is not available.

## Program example



S1	Starting 16-bit area of sort data
S2	Ending 16-bit area of sort data
S3	Constant or area where sort condition is stored.

## Operands

Operand	Relay				Timer/Counter		Register			Index   register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S2	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S3	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
														A: Available N/A: Not Available	

## Explanation of example

When the S3 is "K0 (ascending order)"

DT10	K300	DT10	K-30
11	K10	11	K-3
12	K3	12	K-1
13	K-1	13	K1
14	K1000	14	K3
15	K-30		K10
16	K100	16	K30
17	K30	17	K100
18	K1	18	K300
19	K-3	19	K1000

When the S3 is "K1 (descending order)"

## Description

The data words (signed) from the area specified by S1 to the area specified by S2 are sorted in ascending order (the smallest word is first) or descending order (the largest word is first) depending on the condition set with S3.

If S1 = S2, sorting does not take place.
The sort condition is specified as follows in S3:

- KO: Ascending order
- K1: Descending order

Double sorting is used for the sorting method. Data is sorted from S1 to S2 in order following the sorting procedure. Note that the number of word comparisons increases in proportion to the square of the number of words, thus more time will be required for execution when there are a large number of words.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S1 > S2.
- The areas of S1 and S2 are different.

Sort data in 32-bit data table (in smaller or larger number order)

Outline Sorts a string of data double words.
For the FPOR/FP $/$ /FP-X, the P type high-level instruction "P278 (PDSORT)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S2	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S3	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
														A: Available N/A: Not Available	

## Explanation of example

When the S3 is "K0 (ascending order)"


When the S3 is "K1 (descending order)"

DT10, 11	K25000	DT10, 11	K100000
12, 13	K-4000	12, 13	K25000
14, 15	K1500	14, 15	K1500
16, 17	K-2600	16, 17	K-2600
18, 19	K100000	18, 19	K-4000

## Description

The double data words (signed) from the area specified by S1 to the area specified by S2 are sorted in ascending order (the smallest word is first) or descending order (the largest word is first) depending on the condition set with S3.

If S1 = S2, sorting does not take place.
The sort condition is specified as follows in $\mathrm{S3}$ :

- KO: Ascending order
- K1: Descending order

Double sorting is used for the sorting method. Data is sorted from S1 to S2 in order following the sorting procedure. Note that the number of word comparisons increases in proportion to the square of the number of words, thus more time will be required for execution when there are a large number of words.
If S2 specifies a higher word of double word data, processing will take place over the same area as if the lower word had been specified.


Specified areas

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S1 > S2.
- The areas of S1 and S2 are different.


## Scaling of 16-bit data

Outline
The output value Y is found for the input value X by performing scaling for the given data table.
With the FPOR/FP $/$ /FP-X, the differential execution type instruction P282 (PSCAL) cannot be specified.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index   register   I   (*2)	Constant			Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \mathrm{FL} \\ \left.\mathbf{N}^{*} 1\right) \end{gathered}$		K	H	f	
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) Cannot be specified with FPOR, FP $\Sigma$ and FP-X.
(*2) 10 to ID

A: Available
N/A: Not Available

## Explanation of example

The output value $Y$ for the input value $X$ stored in DT0 is found by accessing the data table starting from DT10, and the result is stored in DT120.

## Description

The output value for the input value $X$ is found by performing scaling according to the data table, where the 16 -bit data designated in " S 1 " is designated in " S 2 ".
The number " $n$ " of items in the data table is determined by the value " $n$ " designated for the head " S 2 " of the data table.

Configuration of the data table used for scaling When S2 $=$ DT10 and $n=K 10$

S2:	n	DT10
S2+1:	x1	DT11
S2+2:	x2	DT12
S2+3:	x3	DT13
S2+n-1:	xn-1	DT19
S2+n:	xn	DT20
$\mathrm{S} 2+\mathrm{n}+1$ :	y1	DT21
S2+n+2:	y2	DT22
S2+n+3:	y3	DT23
S2+2n-1:	yn-1	DT29
S2+2n:	yn	DT30



## Precautions during programming

Make $x_{t}$ greater than $x_{t-1}$.
xt and yt should be created as 16-bit data to indicate which line is specified.
If $X(S 1)$ is a value smaller than $x 1$, the value of $Y(D)$ will be the value of $y 1$.
If $X(S 1)$ is larger than $x n, Y(D)$ will be the value of $y n$.
The maximum value of $n$ is 99 .

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The specified range is exceeded when an index is modified.
- The n specified by " S 2 " is smaller than 2 , or if the n is larger than 99
- The data table specified by "S2" exceeds the available area
- Xn are not in ascending order


## F283(DSCAL)

Scaling of 32-bit data

Outline $\quad$ The output value Y is found for the input value X by performing scaling for the given data table.
With the FPOR/FPE/FP-X, the differential execution type instruction P283 (PDSCAL) cannot be specified.

## Program example

Ladder Diagram			Boolean		
			Address		uction
$10$	Trigger		$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F283   DT   DT   DT	$\begin{array}{lr} \text { R } & 10 \\ \text { (DSCAL) } \\ & 0 \\ 10 \\ & 120 \end{array}$
	S1	32-bit data of the source corresponding to the input value X, or area storing data			
	S2	Starting address of data table used for scaling (linearization)			
	D	Area where output result Y is stored			

## Operands

Operand	Relay				Timer/Counter		Register			$\begin{array}{\|c\|} \hline \text { Index } \\ \text { register } \end{array}$	Constant			Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\begin{gathered} \hline \text { FL } \\ (* 1) \end{gathered}$	$\underset{(* 2)}{1}$	K	H	f	
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A

(*1) Cannot be specified with FPOR, FP $\Sigma$ and FP-X.
(*2) 10 to ID

A: Available
N/A: Not Available

## Explanation of example

The output value $Y$ for the input value $X$ stored in DT0 is found by accessing the data table starting from DT10, and the result is stored in DT120 and DT121.

## Description

The output value for the input value X is found by performing scaling according to the data table, where the $32-$ bit data designated in " S 1 " is designated in " S 2 ".
The number " n " of items in the data table is determined by the value " n " designated for the head " S 2 " of the data table.

Configuration of the data table used for scaling


## Precautions during programming

## Make $x_{t}$ greater than $x_{t-1}$.

xt and yt should be created as 32-bit data to indicate which line is specified.
If $X(S 1)$ is a value smaller than $x 1$, the value of $Y(D)$ will be the value of $y 1$.
If $X(S 1)$ is larger than $x n, Y(D)$ will be the value of $y n$.
The maximum value of $n$ is 99 .

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The specified range is exceeded when an index is modified.
- The n specified by " S 2 " is smaller than 2 , or if the n is larger than 99
- The data table specified by "S2" exceeds the available area
- Xn are not in ascending order

Outline Executes the linear output according to the elapsed time from the start by performing scaling with the output initial value, target value and time range.

## Program example



Operands

Operand	Relay				Timer/Counter		Register		Index   register   In   $(* 1)$	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD				K	H	
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A
S3	A	A	A	A	A	A	A	A	A	A	A	A	A	A
N	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A

(*1) 10 to ID
A: Available N/A: Not Available

## Operation

Executes the linear output according to the elapsed time from the start by performing scaling with the 16-bit output initial value specified by S1, the 16-bit output target value specified by S2 and the 16-bit output time range (ms unit) specified by S3.

## Precautions during programming

Max. 1 scan time error in the output time range occurs occasionally.

## Explanation of example

When specifying each value as below by the program:

he: TTib;






RГ.


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- the area specified using the index modifier exceeds the limit.
- the output time range specified by "S3" is smaller than k1 or larger than k30000.

Outline This instruction carries out upper and lower limit control for 16-bit data.
For the FPOR/FP $/$ /FP-X, the $P$ type high-level instruction "P285 (PLIMT)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index   register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	$f$		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S3	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
														A: Available N/A: Not Available	

## Description

The 16-bit output value stored in the area specified by $D$ is controlled based on whether or not the 16-bit input value specified by S 3 falls within the range bounded by the upper and lower limits set in S2 and S1.

The output value is determined based on the following conditions:

- When the lower limit S1 is greater than the input value S3, the lower limit value S1 is stored in D as the output value.
- When the upper limit $S 2$ is less than the input value $S 3$, the upper limit value $S 2$ is stored in $D$ as the output value.
- When Lower limit S1 $\leqq$ Input value S3 $\leqq$ Upper limit S2, the input value S3 is stored in D as the output value.


To perform upper limit control only, set K-32768 (or H8000) for the lower limit S1.
To perform lower limit control only, set K32767 (or H7FFF) for the upper limit S2.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S1 > S2.
- = flag (R900B): Turns on when the result of processing is between the upper and lower limits.

P286(PDLIMT)

## 32-bit data upper and lower limit control

Outline This instruction carries out upper and lower limit control for 32-bit data.
For the FPOR/FP $/$ /FP-X, the $P$ type high-level instruction "P286 (PDLIMT)" is not available.

## Program example

Ladder Diagram		Boolean		
		Address	Instruction	
Trigger		10	ST	$\mathrm{R} \quad 0$
		11	F286	(DLIMT)
			DT	10
$10-$	T, DT10, DT20, DT30, DT40 ]		DT	20
	1 L ¢ L		DT	30
	S1 S2 S3 D		DT	40
S1	The area where the lower limit is stored or the lower limit data. (2 words)			
S2	The area where the upper limit is stored or the upper limit data. (2 words)			
S3	The area where the input value is stored or the input value data. (2 words)			
D	The area where the output value is stored. (2 words)			

## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S3	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

## Description

The output value (double words data) stored in the area specified by $D$ is controlled based on whether or not the input value (double words data) specified by S3 falls within the range bounded by the upper and lower limits set in S2 and S1.
The output value is determined based on the following conditions:

- When the lower limits S1+1 and S1 are greater than the input value S3+1 and S3, the lower limit value $\mathrm{S} 1+1$ and S 1 are stored in $\mathrm{D}+1$ and D as the output value.
- When the upper limits S2+1 and S2 are less than the input value S3+1 and S3, the upper limit value $\mathrm{S} 2+1$ and S 2 are stored in $\mathrm{D}+1$ and D as the output value.
- When Lower limit S1+1 and S1 $\leqq$ Input value $\mathrm{S} 3+1$ and S3 $\leqq$ Upper limit S2+1 and S2, the input value $\mathrm{S} 3+1$ and S 3 are stored in $\mathrm{D}+1$ and D as the output value.


To perform upper limit control only, set K-2147483648 (or H80000000) for the lower limit S1+1 and S1.
To perform lower limit control only, set K2147483647 (or H7FFFFFFF) for the upper limit S2+1 and S2.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
$-\mathrm{S} 1>\mathrm{S} 2$.
- = flag (R900B): Turns on when the result of processing is between the upper and lower limits.

16-bit data deadband control

Outline This instruction carries out dead-band control for 16-bit data.
For the FPOR/FP $/$ /FP-X, the P type high-level instruction "P287 (PBAND)" is not available.

## Program example

Ladder Diagram		Boolean		
		Address	Instruction	
Trigger		10	ST	R 0
		11	F287	(BAND)
			DT	10
10	, DT10, DT20, DT30, DT40 ]		DT	20
	, $L_{\text {, }}\left\llcorner_{\text {, }} L_{\text {, }}\right.$		DT	30
	S1 S2 S3 D		DT	40
S1	The area where the lower limit is stored or the lower limit data.			
S2	The area where the upper limit is stored or the upper limit data.			
S3	The area where the input value is stored or the input value data.			
D	The area where the output value is stored			

## Operands

Operand	Relay				Timer/Counter		Register			Index   register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S3	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

## Explanation of example

When the DT10 is $\mathrm{K}-100$ and DT20 is K 100 .

Value of DT30		Value of DT40
$\mathrm{K}-300$		$\mathrm{~K}-200$
$\mathrm{~K}-200$	$\rightarrow$	$\mathrm{~K}-100$
$\mathrm{~K}-100$ to K100	$\rightarrow$	K 0
K 200	$\rightarrow$	K 100
K 300	$\rightarrow$	K 200

## Description

The output value (word data) stored in the area specified by $D$ is controlled based on whether or not the input value (word data) specified by S3 falls within the dead-band bounded by the upper and lower limits set in S1 and S 2 .

The output value is determined based on the following conditions:
When the lower limit $S 1$ is greater than the input value $S 3$, the input value $S 3$ minus the lower limit value $S 1$ is stored in D as the output value.
When the upper limit S2 is less than the input value S3, the input value S3 minus the upper limit value S 2 is stored in D as the output value.
When Lower limit S1 $\leqq$ Input value S3 $\leqq$ Upper limit S2, zero is stored in D as the output value.


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S1 > S2.
- Carry flag (R9009): Turns on for an instant when the calculated result is overflowed or underflowed.
- = flag (R900B): Turns on when the input value is recognized as " 0 .

P288(PDBAND)

## 32-bit data deadband control

Outline This instruction carries out dead-band control for 32-bit data.
For the FPOR/FP $/$ /FP-X, the $P$ type high-level instruction "P288 (PDBAND)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index   register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	$f$		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S3	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

## Explanation of example

When "DT10 and DT11" is "K-10000"and "DT20 and DT21" is "K10000".

Value of DT30 and DT31	Value of DT40 and DT41	
$\mathrm{K}-30000$	$\rightarrow$	$\mathrm{~K}-20000$
$\mathrm{~K}-20000$		$\mathrm{~K}-10000$
$\mathrm{~K}-10000$ to K10000	$\rightarrow$	K 0
K 20000	$\rightarrow$	K 10000
K 30000		K 20000

## Description

The output value (double word data) stored in the area specified by D is controlled based on whether or not the input value (double word data) specified by S3 falls within the dead-band bounded by the upper and lower limits set in S1 and S2.

The output value is determined based on the following conditions:
When the lower limit $\mathrm{S} 1+1$ and S 1 are greater than the input value $\mathrm{S} 3+1$ and S 3 , the input value $\mathrm{S} 3+1$ and S 3 minus the lower limit value $S 1+1$ and $S 1$ are stored in $D+1$ and $D$ as the output value.

When the upper limit S2+1 and S2 are less than the input value S3+1 and S3, the input value S3+1 and S3 minus the upper limit value $\mathrm{S} 2+1$ and S 2 are stored in $\mathrm{D}+1$ and D as the output value.
When Lower limit S1+1 and S1 $\leqq$ Input value S3+1 and S3 $\leqq$ Upper limit S2+1 and S2, zero is stored in D+1 and D as the output value.


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit. - S1 > S2.
- Carry flag (R9009): Turns on for an instant when the calculated result is overflowed or underflowed.
- = flag (R900B): Turns on when the input value is recognized as "0."

Outline This instruction carries out zone control for 16-bit data.
For the FPOR/FP $/$ /FP-X, the P type high-level instruction "P289 (PZONE)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S3	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available

## Explanation of example

When the DT10 is "K-100" and DT20 is "K100".

Value of DT30	
Value of DT40	
$\mathrm{K}-300$	$\rightarrow$
$\mathrm{~K}-400$	
$\mathrm{~K}-200$	$\rightarrow$

## Description

The bias value specified by S1 or S2 is added to the input value (word data) specified by S3, and the output value is stored in the area specified by D .
The output value is determined by the following conditions:
When the input value S 3 is less than zero, the input value S 3 plus the negative bias value S 1 is stored in D as the output value.
When the input value S 3 equals zero, zero is stored in D as the output value.
When the input value $S 3$ is greater than zero, the input value $S 3$ plus the positive bias value $S 2$ is stored in $D$ as the output value.


## Flag conditions

Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.

- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Turns on for an instant when the calculated result is overflowed or underflowed.
- = flag (R900B): Turns on for an instant when the input value S 3 is recognized as " 0 ".

32-bit data zone control

Outline This instruction carries out zone control for 32-bit data. (double words) For the FPOR/FPS/FP-X, the P type high-level Instruction "P290 (PDZONE)" is not available.

## Program example

Ladder Diagram	Boolean		
	Address		uction
Trigger	10	ST	R 0
$\stackrel{1}{\square}$	11	F290	(DZONE)
RO		DT	10
$10-$ F290 DZONE, DT10, DT20, DT30, DT40 ]		DT	20
		DT	30
S1 S2 S3 D		DT	40


S1	Area where negative bias value is stored or negative bias value data (double   words)
S2	Area where positive bias value is stored or positive bias value data (double   words)
S3	Area where input value is stored or input value data (double words)
D	Area (double words) where output value is stored

Operands

Operand	Relay				Timer/Counter		Register			Index   register   1	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
S3	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

## Explanation of example

When the "DT10 and DT11" is "K-10000" and the "DT20 and DT21" is "K10000".

Value of DT30 and DT31	Value of DT40 and DT41
K-30000	K-40000
K-20000	$\rightarrow \quad \mathrm{K}-30000$
K-10000	K-20000
K0	K0
K10000	$\rightarrow \quad \mathrm{K} 20000$
K20000	K30000
K30000	$\rightarrow \quad \mathrm{K} 40000$

## Description

The bias value specified by S 1 or S 2 is added to the input value (double word data) specified by S 3 , and the output value is stored in the area specified by D .
The output value is determined by the following conditions:
When the input value $\mathrm{S} 3+1$ and S 3 are less than zero, the input value $\mathrm{S} 3+1$ and S 3 plus the negative bias value $S 1+1$ and $S 1$ are stored in $D+1$ and $D$ as the output value.
When the input value $\mathrm{S} 3+1$ and S 3 equals zero, zero is stored in $\mathrm{D}+1$ and D as the output value.
When the input value $\mathrm{S} 3+1$ and S 3 is greater than zero, the input value $\mathrm{S} 3+1$ and S 3 plus the positive bias value $\mathrm{S} 2+1$ and S 2 are stored in $\mathrm{D}+1$ and D as the output value.


## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Turns on for an instant when the calculated result is overflowed or underflowed.
- = flag (R900B): Turns on for an instant when the input value S 3 is recognized as " 0 ".

Outline Triangle functions, calculates trigonometric functions and the sine [SIN( )] of BCD code angular data, and stores it as BCD.

## Program example

Ladder Diagram			Boolean		
			Address		uction
Trigger			$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { F300 } \\ & \text { DT } \\ & \text { DT } \end{aligned}$	$\begin{array}{lr} \text { R } & 0 \\ & \text { (BSIN) } \\ & 10 \\ & 20 \end{array}$
S		Area where angle data is stored or angle data			
D		Starting 16-bit area where calculated result is stored (3 words)			

Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL	I	K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

## Explanation of example

Calculates the SIN ( ) of the angle 45 degrees.


Calculates the SIN ( ) of the angle 270 degrees.


## Description

The $\operatorname{SIN}([\mathrm{S}])$ of an angle data (units are degrees) specified by S is calculated and the result stored in the 3 -word area beginning at D .
SIN[S] $\rightarrow$ [D](DT100) [D+1]. [D+2]
D: Sign
D+1: Integer value
D+2: Decimal

Select a $B C D$ value for $S$ within the range $0^{\circ}$ to $360^{\circ}$ in units of 1 degree. Be sure to specify the value using BCD H data.
The sign stored in D is 0 when the result of processing is positive, and 1 when the result is negative.
The result of processing stored in $\mathrm{D}+1$ and $\mathrm{D}+2$ is a BCD value within the range -1.0000 to 1.0000 .
The decimal stored in $\mathrm{D}+2$ is rounded off to four digits.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data specified in S is not BCD value.
- If data specified in S is not within $0^{\circ}$ to $360^{\circ}$.
- = flag (R900B): Turns on when result of processing is recognized as " 0 ."

Outline Triangle functions, calculates trigonometric functions and the cosine [COS ( )] of BCD code angular data, and stores it as BCD.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available N/A: Not Available

## Explanation of example

Calculates the COS ( ) of the angle 30 degrees.


Calculates the COS ( ) of the angle 135 degrees.


## Description

The $\operatorname{COS}([\mathrm{S}]$ ) of an angle data (units are degrees) specified by S is calculated and the result stored in the 3 -word area beginning at D .

$$
\operatorname{COS}[\mathrm{S}] \rightarrow[\mathrm{D}][\mathrm{D}+1] .[\mathrm{D}+2]
$$

D: Sign
D+1: Integer value
D+2: Decimal

Select a BCD value for $S$ within the range $0^{\circ}$ to $360^{\circ}$ in units of 1 degree. Be sure to specify the value using BCD H data.

The sign stored in D is 0 when the result of processing is positive, and 1 when the result is negative. The result of processing stored in $D+1$ and $D+2$ is a $B C D$ value within the range -1.0000 to 1.0000 . The decimal stored in $\mathrm{D}+2$ is rounded off to four digits.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data specified in S is not BCD value.
- If data specified in S is not within $0^{\circ}$ to $360^{\circ}$.
- = flag (R900B): Turns on when result of processing is recognized as " 0 ."


## BCD type Tangent operation

Outline Triangle functions, calculates trigonometric functions and the tangent [TAN ( )] of BCD code angular data, and stores it as BCD.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index   register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
														A: Available N/A: Not Available	

## Explanation of example

Calculates the TAN ( ) of the angle 60 degrees.


Calculates the TAN ( ) of the angle 135 degrees.


## Description

The TAN([S]) of an angle data (units are degrees) specified by S is calculated and the result stored in the 3 -word area beginning at $D$.
TAN[S] $\rightarrow$ [D](DT100) [D+1]. [D+2]
D: Sign
D+1: Integer value
D+2: Decimal

Select a BCD value for $S$ within the range $0^{\circ}$ to $360^{\circ}$ in units of 1 degree. Be sure to specify the value using BCD H data.

The sign stored in D is 0 when the result of processing is positive, and 1 when the result is negative.
The result of processing stored in $D+1$ and $D+2$ is a BCD value within the range -57.2900 to 57.2900 .
The decimal stored in $\mathrm{D}+2$ is rounded off to four digits.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data specified in S is not BCD value.
- If data specified in $S$ is not within $0^{\circ}$ to $360^{\circ}$.
- If data specified in S is $90^{\circ}$ to $270^{\circ}$.
- = flag (R900B): Turns on when result of processing is recognized as " 0 ."


## F303(BASIN) P303(PBASIN)

 BCD type Arcsine operationOutline Triangle functions, This instruction calculates arcsine $\left[\operatorname{SIN}^{-1}()\right]$.

## Program example



S	Starting 16-bit area where angle data is stored or angle data (3 words)
D	Area where calculated result is stored

## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	$f$		
S	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

## Explanation of example

Calculates the arc SIN of the value 0.7071 .


Calculates the arc SIN of the value -0.5 .


## Description

$\mathrm{SIN}^{-1}$ (the arcsine) of the value specified in $\mathrm{S}, \mathrm{S}+1$, and $\mathrm{S}+2$ is calculated, and the result (an angle) is stored in D .
$\mathrm{SIN}^{-1}([\mathrm{~S}][\mathrm{S}+1] .[\mathrm{S}+2]) \rightarrow[\mathrm{D}]$
S: Sign
$\mathrm{S}+1$ : Integer value
S+2: Decimal

Set 0 for the sign in $S$ when the data to be processed is positive, and set 1 for the sign when the data is negative.
Set the integer and decimal parts of the data each within a range of 0 to 1.0000 in $\mathrm{S}+1$ and $\mathrm{S}+2$.
The result of the calculation will be stored in D as a BCD value within the range $0^{\circ}$ to $90^{\circ}$ or $270^{\circ}$ to $360^{\circ}$ (in degrees).

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data specified in $\mathrm{S}+2, \mathrm{~S}+1$ and S are not $B C D$ value.
- If data specified in S+2, S+1 and S are not within -1.0000 to 1.0000.
- = flag (R900B): Turns on when result of processing is recognized as "0."

Outline Triangle functions, This instruction calculates arccosine $\left[\operatorname{COS}^{-1}()\right]$.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL	1	K	H	$f$		
S	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

## Explanation of example

Calculates the arc COS of the value 0.8660 .


Calculates the arc COS of the value -0.5 .


## Description

$\mathrm{COS}^{-1}$ (the arccosine) of the value specified in $\mathrm{S}, \mathrm{S}+1$, and $\mathrm{S}+2$ is calculated, and the result (an angle) is stored in D .
COS-1 ([S][S+1]. [S+2]) $\rightarrow$ [D](DT100)
S: Sign
S+1: Integer value
$S+2$ : Decimal

Set 0 for the sign in $S$ when the data to be processed is positive, and set 1 for the sign when the data is negative.
Set the integer and decimal parts of the data each within a range of 0 to 1.0000 in $\mathrm{S}+1$ and $\mathrm{S}+2$.
The result of the calculation will be stored in D as a BCD value within the range $0^{\circ}$ to $180^{\circ}$ (in degrees).

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data specified in $\mathrm{S}+2, \mathrm{~S}+1$ and S are not BCD value.
- If data specified in $\mathrm{S}+2, \mathrm{~S}+1$ and S are not within -1.0000 to 1.0000 .
- = flag (R900B): Turns on when result of processing is recognized as "0."


## BCD type Arctangent operation

Outline Triangle functions, This instruction calculates arctangent $\left[\mathrm{TAN}^{-1}()\right]$.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

## Explanation of example

Calculates the arc TAN of the value 1.7321.


Calculates the arc TAN of the value -1 .

DT20:	H 1
DT21:	H 1
DT22:	H 0
	$\checkmark$
DT10:	H315

## Description

$\mathrm{TAN}^{-1}$ (the arctangent) of the value specified in $\mathrm{S}, \mathrm{S}+1$, and $\mathrm{S}+2$ is calculated, and the result (an angle) is stored in D .

TAN $^{-1}([\mathrm{~S}][\mathrm{S}+1] .[\mathrm{S}+2]) \rightarrow[\mathrm{D}]$
S: Sign
$\mathrm{S}+1$ : Integer value
$\mathrm{S}+2$ : Decimal

Set 0 for the sign in $S$ when the data to be processed is positive, and set 1 for the sign when the data is negative.
Set the integer and decimal parts of the data each within a range of 0 to 9999.9999 in $\mathrm{S}+1$ and $\mathrm{S}+2$.
The result of the calculation will be stored in D as a BCD value within the range $0^{\circ}$ to $90^{\circ}$ or $270^{\circ}$ to $360^{\circ}$ (in degrees).

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data specified in $\mathrm{S}+2, \mathrm{~S}+1$ and S are not BCD value.
- = flag (R900B): Turns on when result of processing is recognized as " 0 ."


## Floating point data move

Outline Copies floating point data (32 bits) to the specified 32-bit area. For the FPOR/FP $/$ /FP-X/FP0/FP-e, the P type high-level instruction "P309 (PFMV)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index registerI	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	N/A	A	N/A	N/A											
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available N/A: Not Available

## Explanation of example

The floating point data " 1.234 " are copied to data registers DT11 and DT10 when trigger R0 turns on.
$\square$

## Description

The floating point data ( 32 bits) specified by $S$ is copied to the 32 -bit area specified by $D$ when the trigger turns on.


Range of real number data which can be set are as follows:
Positive: $f 0.0000001$ to $f 9999999$
Negative: f-9999999 to f-0.000001

## Precaution during programming

For FP0, this instruction F309 (FMV) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.


## Floating point data addition

Outline Adds two real number data items and stores the result in the specified area.
For the FPOR/FPI/FP-X/FPO/FP-e, the $P$ type high-level instruction "P310 (PF+)" is not available.

## Program example



S1	Real number data (2 words) or lower 16-bit area of 32-bit data (for augend)
S2	Real number data (2 words) or lower 16-bit area of 32-bit data (for addend)
D	Lower 16-bit area of 32-bit data (for result)

## Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A

* Index modification of a real number is not possible.


## Description

The real number data (2 words) specified by S1 and S2 are added together when the trigger turns on. The added result is stored in $\mathrm{D}+1$ and D .
$[S 1+1, S 1]+[S 2+1, S 2] \rightarrow[D+1, D]$
Specifying the integer device with [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and[S2](WXO), the integer data is internally converted to real numbers before operations continue.
$\mid \mathrm{H}_{\mathrm{H}}^{\mathrm{R}} \mathrm{H}[\mathrm{F} 310 \mathrm{~F}+$, \% DT 0, \% DT 2, DT 4$] \mid$

Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid$ RO H F310 F+, DT 0, DT 2, \% DT 4$] \mid$
When the constant K is specified in S 1 and S 2 , the operations are the same as when a integer device is specified.

## Program example

The "f4.554" is stored to DT30 and DT31 when the R0 turns on.
$\mid$ RO $H$ F310 F+, f1.414, f3.14, DT30 $] \mid$
The "f135.795" is stored to DT30 and DT31 when the R0 turns on.
R0

-1 F F309 FMV, f12.345 DT10	$]$
$\left[\left.\begin{array}{lll}\text { F309 FMV, f12.345, DT20 } & \\ {[\text { F310 F+, DT10, DT20, DT30 }} & ]\end{array} \right\rvert\,\right.$	

## Precaution during programming

For FPO, this instruction $\mathbf{F 3 1 0}\left(\mathbf{F}^{+}\right)$cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in "S1+1 and S1" and "S2+1 and S2."
- If result of processing is outside integer range when integer device is specified in D+1 and D.
- Carry flag (R9009): Turns on for an instant when the result is overflowed.


## Floating point data subtraction

Outline Subtracts real number data from the minuend and stores the result in the specified area.
For the FPOR/FP $/$ /FP-X/FP0/FP-e, the P type high-level instruction "P311 (PF-)" is not available.

## Program example



S1	Real number data (2 words) or lower 16-bit area of 32-bit data (for minuend)
S2	Real number data (2 words) or lower 16-bit area of 32-bit data (for subtrahend)
D	Lower 16-bit area of 32-bit data (for result)

## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A

* Index modification of a real number is not possible.


## Description

Subtracts the real number data (2 words) specified by S2 from the real number data (32-bit) specified by S1 when the trigger turns on. The subtracted result is stored in D+1 and D.
$[S 1+1, S 1]-[S 2+1, S 2] \rightarrow[D+1, D]$
Specifying the integer device with [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and [S2](WXO), the integer data is internally converted to real numbers before operations continue.

$	$	R0	F311 F-, \% DT 0, \% DT 2, DT 4 $]$

Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid$ RO
When the constant K is specified in S 1 and S 2 , the operations are the same as when a integer device is specified.

## Program example

The "f0.445" is stored to DT30 and DT31 when the R0 turns on.
$\mid \mathcal{H}^{\text {RO }}$ [ F311 F-, f1, f0.555, DT30 $] \mid$
The "f100.15" is stored to DT30 and DT31 when the R0 turns on.


RO H F309 FMV, f100.1, DT10
$\left[\begin{array}{l}\text { F309 FMV, f0.05, DT20 } \\ {[\text { F311 F-, DT10, DT20, DT30 }}\end{array}\right]$

## Precaution during programming

For FPO, this instruction F311 (F-) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in " $\mathrm{S} 1+1$ and S 1 " and " $\mathrm{S} 2+1$ and S2."
- If result of processing is outside integer range when integer device is specified in D+1 and D.
- Carry flag (R9009): Turns on for an instant when the result is overflowed.

P312(PF*)

## Floating point data multiplication

Outline Multiplies two real number data items and stores the result in the specified 32-bit area.
For the FP0R/FPI/FP-X/FP0/FP-e, the P type high-level instructions are not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Description

Multiplies the real number data (2 words) specified by S1 and the one specified by S2 when the trigger turns on.
The multiplied result is stored in $D+1$ and $D$ (32-bit area).
$[S 1+1, S 1] \times[S 2+1, S 2] \rightarrow[D+1, D]$
Specifying the integer device with [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and [S2](WXO), the integer data is internally converted to real numbers before operations continue.
$\mid \stackrel{\text { R0 }}{-1} \mathrm{H}$ F312 F*, \% DT 0, \% DT 2, DT 4] $\mid$

Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid$ RO
When the constant K is specified in S 1 and S 2 , the operations are the same as when a integer device is specified.

## Program example

The "f123.4000" is stored to DT30 and DT31 when the R0 turns on.
$\mid \mathcal{H O}^{\text {RO }}[$ F312 F*, f1.234, f100, DT30 $] \mid$

## Precaution during programming

For FP, this instruction F312 ( $\mathrm{F}^{*}$ ) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in "S1+1 and S1" and "S2+1 and S2."
- If result of processing is outside integer range when integer device is specified in D+1 and D.
- Carry flag (R9009): Turns on for an instant when the result is overflowed.


## F313(F\%)

P313(PF\%)

## Floating point data division

Outline Divides real number data by the divisor and stores the divided result in the specified 32-bit area.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P313 (PF\%)" is not available.

## Program example



S1	Real number data (2 words) or lower 16-bit area of 32-bit data (for dividend)
S2	Real number data (2 words) or lower 16-bit area of 32-bit data (for divisor)
D	Lower 16-bit area of 32-bit data (for result)

## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A
														A: Available N/A: Not Available	

## Description

The real number data (2 words) specified by S1 is divided by the real number data (2 words) specified by S2 when the trigger turns on. The result is stored in $\mathrm{D}+1$ and D .
$[S 1+1, S 1] \div[S 2+1, S 2] \rightarrow[D+1, D]$
Specifying the integer device with [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and [S2](WXO), the integer data is internally converted to real numbers before operations continue.
$\mid$ RO $H$ F313 F\%, \% DT 0, \% DT 2, DT4] $\mid$

Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid \stackrel{\text { RO }}{-1 H[F 313 F \%, ~ D T ~ 0, ~ D T ~ 2, ~ \% ~ D T ~} 4] \mid$
When the constant K is specified in S 1 and S 2 , the operations are the same as when a integer device is specified.

## Program example

The "f5.432100" is stored to DT30 and DT31 when the R0 turns on.
$\mid$ RO $H$ F312 F\%, f54.321, f10, DT30 $] \mid$

## Precaution during programming

For FP, this instruction F313 (F\%) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in "S1+1 and S1" and "S2+1 and S2."
- If result of processing is outside integer range when integer device is specified in D+1 and D.
- The real number data (floating point data) for the divisor specified by S 2 is " 0.0 ".
- Carry flag (R9009): Turns on for an instant when the result is overflowed.


## F314(SIN)

P314(PSIN)

Outline
Triangle functions, This instruction calculates sine [SIN ( )].
For the FPOR/FPE/FP-X/FPO/FP-e, the P type high-level instruction "P314 (PSIN)" is not available.

## Program example



S	Angle data (2 words) or lower 16-bit area of 32-bit data where angle data is   stored
D	Lower 16-bit area of 32-bit data where calculated result is stored

Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL	I	K	H	$f$		
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Description

The $\mathrm{SIN}([\mathrm{S}+1$ and S$]$ ) of an angle data (units are radians) specified by $\mathrm{S}+1$ and S is calculated and the result stored in D+1 and D.
SIN ([S+1, S]) $\rightarrow$ [D+1, D]
Specifying the integer device with [S], the integer data is internally converted to real numbers before operations continue.
$\mid \stackrel{\mathrm{RO}}{\mathrm{H} H} \mathrm{~F} 314$ SIN, \% DT 0, DT $4 \quad] \mid$

Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid$ RO H[ F314 SIN, DT 0, \% DT 4 $] \mid$
When the constant K is specified in S , the operations are the same as when a integer device is specified.

## Program example

The "f0.4999999" is stored to DT20 and DT21 when the R0 turns on.


## Precautions during programming

The accuracy of the calculation decreases as the absolute value of the angle data specified in $\mathrm{S}+1$ and S increases. We recommend that angle data be set within the following range:
$-2 \pi$ (radians) $\leqq[S+1, S] \leqq 2 \pi$ (radians)
For FP0, this instruction F314 (SIN) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- If result of processing is outside integer range when integer device is specified in D+1 and D.
- Absolute value of $\mathrm{S}+1$ and S is 52707176 or greater.
- Carry flag (R9009): Turns on for an instant when the result is overflowed.
- = flag (R900B): Turns on when result of processing is recognized as " 0 ."


## F315(cos)

P315(PCOS)

## Floating point data Cosine operation

Outline Triangle functions, This instruction calculates cosine [COS ( )].
For the FPOR/FP $/$ /FP-X/FPO/FP-e, the P type high-level instruction "P315 (PCOS)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Description

The COS ([S+1 and S]) of an angle data (units are radians) specified by S+1 and S is calculated and the result stored in $\mathrm{D}+1$ and D .
$\operatorname{COS}([\mathrm{S}+1, \mathrm{~S}]) \rightarrow[\mathrm{D}+1, \mathrm{D}]$
Specifying the integer device with [S], the integer data is internally converted to real numbers before operations continue.
$\mid \mathrm{H}^{\text {RO }} \mathrm{H}$ F315 COS, \% DT0, DT $\left.4 \quad\right] \mid$

Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid \stackrel{\text { RO }}{-1 H}$ F315 COS, DT 0, \% DT 4$] \mid$
When the constant K is specified in S , the operations are the same as when a integer device is specified.

## Program example

The "f0.7071068" is stored to DT20 and DT21 when the RO turns on.

$$
\text { Radians of } 45^{\circ}
$$



## Precautions during programming

The accuracy of the calculation decreases as the absolute value of the angle data specified in S and $\mathrm{S}+1$ increases. We recommend that angle data be set within the following range:
$-2 \pi$ (radians) $\leqq[S+1, S] \leqq 2 \pi$ (radians)
For FP0, this instruction F315 (COS) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- If result of processing is outside integer range when integer device is specified in D+1 and D.
- Absolute value of $\mathrm{S}+1$ and S is 52707176 or greater.
- Carry flag (R9009): Turns on for an instant when the result is overflowed.
- = flag (R900B): Turns on when result of processing is recognized as " 0 ."

P316(PTAN)

## Floating point data Tangent operation

Outline Triangle functions, This instruction calculates tangent [TAN ( )]. For the FPOR/FP $/$ /FP-X/FPO/FP-e, the P type high-level instruction "P316 (PTAN)" is not available.

## Program example



S	Angle data (2 words) or lower 16-bit area of 32-bit data where angle data is   stored
D	Lower 16-bit area of 32-bit data where calculated result is stored

Operands

| Operand | Relay |  |  |  | Timer/Counter |  | Register |  | Index <br> register |  | Constant |  | Index <br> modifier | Integer <br> device |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WX | WY | WR | WL | SV | EV | DT | LD | FL | I | K | H | f |  |  |
| S | A | A | A | A | A | A | A | A | A | A | A | A | A | A* | A |
| D | N/A | A | A | A | A | A | A | A | A | A | N/A | N/A | N/A | A | A |

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Description

The TAN([S+1 and S]) of an angle data (units are radians) specified by $\mathrm{S}+1$ and S is calculated and the result stored in D+1 and D.
TAN $([S+1, S]) \rightarrow[D+1, D]$
Specifying the integer device with [S], the integer data is internally converted to real numbers before operations continue.
$\left.\left\lvert\, \begin{array}{|c|}\text { RO } \\ \text { H F316 TAN, \% DT 0, DT } 4\end{array}\right.\right]$
Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid \mathrm{H}^{\text {RO }} \mathrm{H}$ F316 TAN, DT 0, \% DT $\left.4 \quad\right] \mid$
When the constant K is specified in S , the operations are the same as when a integer device is specified.

## Program example

The "f1.732048" is stored to DT20 and DT22 when the R0 turns on.


## Precautions during programming

The accuracy of the calculation decreases as the absolute value of the angle data specified in S+1 and S increases. We recommend that angle data be set within the following range:
$-2 \pi$ (radians) $\leqq[S+1, S] \leqq 2 \pi$ (radians)
For FP0, this instruction F316 (TAN) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- If result of processing is outside integer range when integer device is specified in $\mathrm{D}+1$ and D .
- Absolute value of $S+1$ and $S$ is 52707176 or greater.
- Carry flag (R9009): Turns on for an instant when the result is overflowed.
- = flag (R900B): Turns on when result of processing is recognized as "0."

Floating point data Arcsine operation

Outline Triangle functions, This instruction calculates arcsine $\left[\operatorname{SIN}^{-1}\right.$ ( )]. For the FPOR/FP $/$ /FP-X/FP0/FP-e, the P type high-level instruction "P317 (PASIN)" is not available.

## Program example



S	Angle data (2 words) or lower 16-bit area of 32-bit data where angle data is   stored
D	Lower 16-bit area of 32-bit data where calculated result is stored

## Operands

Operand	Relay				Timer/Counter		Register			Index registerI	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A
A: Available N/A: Not Available															

## Description

SIN of the value specified in S+1 and S is calculated, and the result [an angle (radians)] is stored in D+1 and D.
$\mathrm{SIN}^{-1}([\mathrm{~S}+1, \mathrm{~S}]) \rightarrow[\mathrm{D}+1, \mathrm{D}]$
Specifying the integer device with [S], the integer data is internally converted to real numbers before operations continue.
$\left.\left\lvert\, \begin{array}{|lll}\text { R0 } & \text { F317 ASIN, \% DT 0, DT 4 }\end{array}\right.\right] \mid$
Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid-1$ RO F317 ASIN, DT 0, \% DT $4 \quad] \mid$
When the constant K is specified in S , the operations are the same as when a integer device is specified.

## Program example

The "f0.5235986 (radians of 30 degrees)" is stored to DT20 and DT21 when the R0 turns on. $\mid{ }_{-}^{\text {RO }} \mathrm{H}$ [ F317 ASIN, f0.4999999, DT20 $] \mid$

## Precautions during programming

$D+1$ and $D$ is stored within the following range: $-\pi / 2$ (radians) $\leqq[D+1, D] \leqq \pi / 2$ (radians)
For FPO, this instruction F317 (ASIN) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
$-S+1$ and $S$ is not within the range $-1.0 \leqq[S+1, S] \leqq 1.0$
- If result of processing is outside integer range when integer device is specified in D+1 and D.
- = flag (R900B): Turns on when result of processing is recognized as " 0 ."
- Carry flag (R9009): Turns on for an instant when the result is overflowed.

Outline Triangle functions, This instruction calculates arccosine [COS ${ }^{-1}$ ( )]. For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P318 (PACOS)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register				Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Description

COS of the value specified in $\mathrm{S}+1$ and S is calculated, and the result [an angle data (units and radians)] is stored in $\mathrm{D}+1$ and D .
$\operatorname{COS}^{-1}([\mathrm{~S}+1, \mathrm{~S}]) \rightarrow[\mathrm{D}+1, \mathrm{D}]$
Specifying the integer device with [S], the integer data is internally converted to real numbers before operations continue.
$\mid$ RO $H$ F318 ACOS, \% DT 0, DT $4 \quad] \mid$
Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid \mathrm{H}^{\mathrm{RO}} \mathrm{H}$ F318 ACOS, DT 0, \% DT $\left.4 \quad\right] \mid$
When the constant K is specified in S , the operations are the same as when a integer device is specified.

## Program example

The "f0.7853980 (radians of 45 degrees)" is stored to DT20 and DT21 when the R0 turns on.
$\left\lvert\, \begin{array}{|c}\text { RO } \\ - \\ H\end{array}\right.$ F318 ACOS, f0.7071069, DT20 $] \mid$

## Precautions during programming

$D+1$ and $D$ is stored within the following range: 0.0 (radians) $\leqq[D+1, D] \leqq \pi$ (radians)
For FP0, this instruction F318 (ACOS) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
$-\mathrm{S}+1$ and S is not within the range $-1.0 \leqq[\mathrm{~S}+1, \mathrm{~S}] \leqq 1.0$
- If result of processing is outside integer range when integer device is specified in D+1 and D.
- = flag (R900B): Turns on when result of processing is recognized as " 0 ."
- Carry flag (R9009): Turns on for an instant when the result is overflowed.


## Floating point data Arctangent operation

Outline Triangle functions, This instruction calculates arctangent [TAN ${ }^{-1}$ ( )]. For the FPOR/FP $/$ /FP-X/FP0/FP-e, the P type high-level instruction "P319 (PATAN)" is not available.

## Program example



S	Angle data (2 words) or lower 16-bit area of 32-bit data where angle data is   stored
D	Lower 16-bit area of 32-bit data where calculated result is stored

## Operands

Operand	Relay				Timer/Counter		Register				Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Description

TAN ${ }^{-1}$ (the arctangent) of the value specified in $\mathrm{S}+1$ and S is calculated, and the result [an angle data (units and radians)] is stored in $\mathrm{D}+1$ and D .
$\operatorname{TAN}^{-1}([S+1, S]) \rightarrow[D+1, D]$
Specifying the integer device with [S], the integer data is internally converted to real numbers before operations continue.
$\mid \mathrm{H}^{\text {RO }} \mathrm{H}$ F319 ATAN, \% DT 0, DT $\left.4 \quad\right] \mid$
Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid \stackrel{\text { RO }}{\text { R }}$ [ F319 ATAN, DT 0, \% DT $4 \quad] \mid$
When the constant K is specified in S , the operations are the same as when a integer device is specified.

## Program example

The "f1.047197 (radians of 60 degrees)" is stored to DT20 and DT21 when the R0 turns on.


## Precautions during programming

$\mathrm{D}+1$ and D is stored within the following range: $-\pi / 2$ (radians) $<[\mathrm{D}+1, \mathrm{D}]<\pi / 2$ (radians)
For FP0, this instruction F319 (ATAN) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- If result of processing is outside integer range when integer device is specified in D+1 and D.
- = flag (R900B): Turns on when result of processing is recognized as " 0 ."
- Carry flag (R9009): Turns on for an instant when the result is overflowed.

Outline This instruction calculates a natural logarithm LN( ).
For the FPOR/FPE/FP-X/FPO/FP-e, the P type high-level instruction "P320 (PLN)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A
A: Available N/A: Not Available															

## Description

The natural logarithm $L N(S+1$ and $S)$ is calculated of the data specified in $S+1$ and $S$, and the result is stored in D+1 and D.
$\mathrm{LN}([S+1, S]) \rightarrow[D+1, D]$
Specifying the integer device with [S], the integer data is internally converted to real numbers before operations continue.
$\mid$ RO H F320 LN, \% DT 0, DT $4 \quad] \mid$
Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid$ RO $\quad$ F F320 LN, DT 0, \% DT $4 \quad] \mid$

## Program example

The "f1.6094379" is stored to DT20 and DT21 when the R0 turns on.
RO
H H F320 LN, K 5, DT20

The " $\mathrm{f}-0.3160815$ " is stored to DT30 and DT31 when the R0 turns on.
$\stackrel{\text { RO }}{-1} \mathrm{H}$ F320 LN, f0.729, DT30


## Precaution during programming

For FPO, this instruction F320 (LN) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- The $S+1$ and $S$ is not greater than zero.
- If result of processing is outside integer range when integer device is specified in D+1 and D.
- = flag (R900B): Turns on when result of processing is recognized as "0."
- Carry flag (R9009): Turns on for an instant when the result is overflowed.

Floating point data exponent

Outline $\quad$ This instruction calculates the exponent of a floating point real number EXP( ).
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P321 (PEXP)" is not available.

## Program example



S	Angle data (2 words) or lower 16-bit area of 32-bit data where angle data is   stored
D	Lower 16-bit area of 32-bit data where calculated result is stored

## Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Description

The exponent $\operatorname{EXP}(S+1$ and $S)$ is calculated from the real number data specified in $S+1$ and $S$, and the result is stored in $\mathrm{D}+1$ and D .
$\operatorname{EXP}([S+1, S]) \rightarrow[D+1, D]$
The calculation is performed with the exponent base (e) equal to 2.718282.
Specifying the integer device with [S], the integer data is internally converted to real numbers before operations continue.
$\mid \stackrel{\text { RO }}{-1 \text { F } 321 \text { EXP, \% DT 0, DT } 4 \quad] \mid}$
Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid$ R0 H F321 EXP, DT 0, \% DT 4 $] \mid$

## Program example

The "f7.389056" is stored to DT20 and DT21 when the R0 turns on.

$\stackrel{\text { R0 }}{-1} \mathrm{H}$ F321 EXP, K 2, DT20

The "f221.406402" is stored to DT30 and DT31 when the R0 turns on.
$\stackrel{\text { RO }}{\mathrm{H}} \mathrm{H}$ F321 EXP, f5.4, DT30

## Precaution during programming

For FP0, this instruction F321 (EXP) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in S+1 and S.
- If result of processing is outside integer range when integer device is specified in D+1 and D.
- = flag (R900B): Turns on when result of processing is recognized as "0."
- Carry flag (R9009): Turns on for an instant when the result is overflowed.


## Floating point data logarithm

Outline This instruction calculates the logarithm of a floating point real number LOG( ).
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P322 (PLOG)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A
														A: Available N/A: Not Available	

* Index modification of a real number is not possible.


## Description

The logarithm LOG(S+1 and S) is calculated of the data specified in $\mathrm{S}+1$ and S , and the result is stored in $\mathrm{D}+1$ and D .
LOG ([S+1, S]) $\rightarrow$ [D+1, D]
Specifying the integer device with [S], the integer data is internally converted to real numbers before operations continue.
$\mid$ RO H F322 LOG, \% DT 0, DT $4 \quad] \mid$
Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\left.\left\lvert\, \begin{array}{|ll}\text { RO } & \text { F322 LOG, DT 0, \% DT } 4\end{array}\right.\right] \mid$
When the constant K is specified in S , the operations are the same as when a integer device is specified.

## Program example

The "f1.30103" is stored to DT20 and DT21 when the R0 turns on.

The "f0.0108932" is stored to DT30 and DT31 when the R0 turns on.
R0

- H F322 LOG, f1.0254, DT30


## Precaution during programming

For FP0, this instruction F322 (LOG) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- The $\mathrm{S}+1$ and S is not greater than zero.
- If result of processing is outside integer range when integer device is specified in D+1 and D.
- = flag (R900B): Turns on when result of processing is recognized as " 0 ."
- Carry flag (R9009): Turns on for an instant when the result is overflowed.

Floating point data power

Outline This instruction raises a floating point real number to the specified power.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P323 (PPWR)" is not available.

## Program example



S1	Real number data (2 words) or lower 16-bit area of 32-bit data (for   multiplicand)
S2	Real number data (2 words) or lower 16-bit area of 32-bit data (for multiplier)
D	Lower 16-bit area of 32-bit data (for result)

Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A
														A: Available N/A: Not Available	

## Description

The real number data specified by $\mathrm{S} 1+1$ and S 1 is raised to the power specified by the real number data of $\mathrm{S} 2+1$ and S 2 , and the result is stored in $\mathrm{D}+1$ and D .
$[S 1+1, S] \wedge[S 2+1, S 2] \rightarrow[D+1, D]$
Specifying the integer device with [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and [S2](WXO), the integer data is internally converted to real numbers before operations continue.
$\mid \stackrel{\text { RO }}{\mid-}$-HF323 PWR, \% DT 0, \% DT 2, DT 4] $\mid$

Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid$ RO
When the constant K is specified in S 1 and S 2 , the operations are the same as when a integer device is specified.

## Program example

The "f625.0" is stored to DT20 and DT21 when the R0 turns on.
$\left\lvert\, \begin{aligned} & \text { RO } \\ & \mid-H \\ & \text { F323 PWR, K5, K 4, DT20 } \quad]\end{aligned}\right.$
The "f30.51758" is stored to DT30 and DT31 when the RO turns on.
$\mid \mathrm{H}^{\text {RO }}$ [ F323 PWR, f3.125, K 3, DT30 $] \mid$

## Precaution during programming

For FPO, this instruction F323 (PWR) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in "S1+1 and S1" and "S2+1 and S2."
- The power of negative number data is not an integer
- If result of processing is outside integer range when integer device is specified in D+1 and D.
- = flag (R900B): Turns on when result of processing is recognized as " 0 ."
- Carry flag (R9009): Turns on for an instant when the result is overflowed.

Floating point data square root

Outline Takes the square root of the specified real number data and stores result in the specified area.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P324 (PFSQR)" is not available.

## Program example



S	Real number data (2 words) or lower 16-bit area of 32-bit area for storing data   to be calculated
D	Lower 16-bit area of 32-bit area for storing the calculated result

## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL	I	K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Description

The square root of real number data specified by $S$ is calculated and stored in the 32-bit area specified by $D$. $\sqrt{[S 1+1, S]} \rightarrow[D+1, D]$
Specifying the integer device with [S], the integer data is internally converted to real numbers before operations continue.

$|$| RO |
| :---: |
| $\mid$ |

Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid \mathrm{H}^{\text {RO }} \mathrm{H}$ F324 FSQR, DT 0, \% DT $\left.4 \quad\right] \mid$
When the constant K is specified in S , the operations are the same as when a integer device is specified.

## Program example

The "f1.41421" is stored to DT20 and DT21 when the R0 turns on.


- H F324 FSQR, K 2, DT20


## Precaution during programming

For FP0, this instruction F324 (FSQR) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- The S+1 and $S$ is not greater than zero.
- If result of processing is outside integer range when integer device is specified in D+1 and D.
- = flag (R900B): Turns on when result of processing is recognized as "0."
- Carry flag (R9009): Turns on for an instant when the result is overflowed.


## F325(FLT)

P325(PFLT)
16-bit integer data $\rightarrow$ Floating point real number data

Outline Converts 16-bit integer data to floating point real number data. For the FPOR/FPE/FP-X/FPO/FP-e, the P type high-level instruction "P325 (PFLT)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	$f$		
S	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A

A: Available
N/A: Not Available

## Description

Converts the 16-bit integer data with sign specified by $S$ to real number data when the trigger turns on.
The converted data is stored in D.


## Precaution during programming

For FPO, this instruction F325 (FLT) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- =lag (R900B): Turns on for an instant when the converted data is recognized as " 0 ".

Outline Converts 32-bit integer data to floating point real number data. For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P326 (PDFLT)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Index } \\ \text { register } \end{array} \\ \hline \text { I } \end{array}$	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	1		
S	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

## Description

Converts the 32-bit integer data with sign specified by $S$ to real number data when the trigger turns on. The converted data is stored in $\mathrm{D}+1$ and D .


## Precaution during programming

For FPO, this instruction F326 (DFLT) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
$=$ flag (R900B): Turns on for an instant when the converted data is recognized as " 0 ".
- Carry flag (R9009): There are too many significant digits in mantissa of converted real number data.

Floating point real number data $\rightarrow$ 16-bit integer data (largest integer not exceeding the floating point real number data)

Outline Converts real number data to 16-bit integer data (the largest integer not exceeding the floating point real number data).
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P327 (PINT)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A*	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
A: AvailableN/A: Not AvailableIndex modification of a real number is not possible															

## Explanation of example

When the real number data "1.234" is in DT10 and DT11, as shown below.


When the real number data "-1.234" is in DT10 and DT11, as shown below.


## Description

Converts real number data range: (+32767.99 to -32767.99) specified by S to signed 16 -bit integer data (the largest integer not exceeding the floating point data) when the trigger turns on. The converted data is stored in $D$.

Real number data

Signed 16-bit integer data


## Precaution during programming

For FPO, this instruction F327 (INT) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- The converted data exceeds the range of 16 -bit integer data.
- = flag (R900B): Turns on for an instant when the converted data is recognized as " 0 ".

Floating point real number data $\rightarrow$ 32-bit integer data (largest integer not exceeding the floating point real number data)

Outline Converts real number data to 32-bit integer data (the largest integer not exceeding the floating point real number data).
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P328 (PDINT)" is not available.

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	$f$		
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A*	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
A: Available N/A: Not Available Index modification of a real number is not possible															

## Explanation of example

When the real number data " 12345.67 " is in DT10 and DT11, as shown below.


When the real number data " -12345.67 " is in DT10 and DT11, as shown below.


## Description

Converts real number data (range: +2147483000 to -2147483000 ) specified by $\mathrm{S}+1$ and S to signed 32-bit integer data (the largest integer not exceeding the floating point data) when the trigger turns on. The converted data is stored in $\mathrm{D}+1$ and D .


## Precaution during programming

For FP0, this instruction F328 (DINT) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in S+1 and S.
- The converted data exceeds the range of 32-bit integer data.
- = flag (R900B): Turns on for an instant when the converted data is recognized as "0".


## F329(FIX)

 P329(PFIX)Outline Converts real number data to 16-bit integer data (rounding the first decimal point down to integer).
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P329 (PFIX)" is not available.

## Program example



S	Real number data (2 words) or lower 16-bit area of 32-bit data (source)
D	Lower 16-bit area for storing converted data (destination)

Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A*	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available N/A: Not Available * Index modification of a real number is not possible.

## Explanation of example

When the real number data " 1.234567 " is in DT10 and DT11, as shown below.


When the real number data "-1.234567" is in DT10 and DT11, as shown below.


## Description

Converts real number data (range: 32767.99 to -32768.99 ) specified by S to signed 16 -bit integer data (rounding the first decimal point down to integer) when the trigger turns on. The converted data is stored in D .


## Precaution during programming

For FP0, this instruction F329 (FIX) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- The converted data exceeds the range of 16-bit integer data.
- = flag (R900B): Turns on for an instant when the converted data is recognized as " 0 ".

Outline Converts real number data to 32-bit integer data (rounding the first decimal point down to integer).
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the P type high-level instruction "P330 (PDFIX)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A*	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available

* Index modification of a real number is not possible.


## Explanation of example

When the real number data "123456.7" is in DT10 and DT11, as shown below.


When the real number data "-123456.7" is in DT10 and DT11, as shown below.


## Description

Converts real number data (range: $-2,147,483,000$ to $2,147,483,000$ ) specified by $\mathrm{S}+1$ and S to signed 32-bit integer data (rounding the first decimal point down to integer) when the trigger turns on. The converted data is stored in $\mathrm{D}+1$ and D .

Real number data	15		0
	S:	Lower word	
	S+1:	Higher word	
Signed 32-bit integer data		V	0
	D:	Lower word	
	D+1:	Higher word	

## Precaution during programming

For FPO, this instruction F330 (DFIX) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- The converted data exceeds the range of 32 -bit integer data.
- = flag (R900B): Turns on for an instant when the converted data is recognized as " 0 ".

Floating point real number data $\rightarrow$ 16-bit integer data (rounding the first decimal point off to integer)

Outline Converts real number data to 16-bit integer data (rounding the first decimal point off to integer).
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P331 (PROFF)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL	I	K	H	$f$		
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A*	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Explanation of example

When the real number data " 1234.567 " is in DT10 and DT11, as shown below.


When the real number data " -1234.567 " is in DT10 and DT11, as shown below.


## Description

Converts real number data (range: +32767.49 to -32768.49 ) specified by $S$ to signed 16 -bit integer data (rounding the first decimal point off to integer) when the trigger turns on. The converted data is stored in D.


## Precaution during programming

For FPO, this instruction F331 (ROFF) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- The converted data exceeds the range of 16-bit integer data.
- = flag (R900B): Turns on for an instant when the converted data is recognized as " 0 ".

Floating point real number data $\rightarrow$ 32-bit integer data (rounding the first decimal point off to integer)

Outline Converts real number data to 32-bit integer data (rounding the first decimal point off to integer).
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P332 (PDROFF)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	$f$		
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A*	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available N/A: Not Available

* Index modification of a real number is not possible.


## Explanation of example

When the real number data " 45678.51 " is in DT10 and DT11, as shown below.


When the real number data "-45678.51" is in DT10 and DT11, as shown below.


## Description

Converts real number data (range: $-2,147,483,000$ to $2,147,483,000$ ) specified by $\mathrm{S}+1$ and S to signed 32 -bit integer data (rounding the first decimal point off to integer) when the trigger turns on. The converted data is stored in $\mathrm{D}+1$ and D .

Real number data


## Precaution during programming

For FPO, this instruction F332 (DROFF) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- The converted data exceeds the range of 32 -bit integer data.
- = flag (R900B): Turns on for an instant when the converted data is recognized as " 0 ".

Outline This instruction rounds down the decimal part of real number data.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction
"P333 (PFINT)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL	I	K	H	f		
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A*	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Explanation of example

When the real number data " 1234.567 " is in DT10 and DT11, as shown below.


When the real number data " -1234.567 " is in DT10 and DT11, as shown below.


## Description

The decimal part of the real number data specified in $\mathrm{S}+1$ and S is rounded down, and the result is stored in $D+1$ and $D$.

Real number data	15		0
	S:	Lower word	
	S+1:	Higher word	
Real number data		$\checkmark$	0
	D:	Lower word	
	D+1:	Higher word	

## Precaution during programming

For FP0, this instruction F333 (FINT) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- = flag (R900B): Turns on when result of processing is recognized as " 0 ."
- Carry flag (R9009): Turns on for an instant when the result is overflowed.

Floating point real number data rounding the first decimal point off

Outline This instruction rounds off the decimal part of real number data.
For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P334 (PFRINT)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A*	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Explanation of example

When the real number data " 1234.567 " is in DT10 and DT11, as shown below.


When the real number data " -1234.567 " is in DT10 and DT11, as shown below.


## Description

The decimal part of the real number data stored in $\mathrm{S}+1$ and S is rounded off, and the result is stored in $\mathrm{D}+1$ and $D$.

Real number data	15		0
	S:	Lower word	
	S+1:	Higher word	
Real number data		$\checkmark$	0
	D:	Lower word	
	D+1:	Higher word	

## Precaution during programming

For FP0, this instruction F334 (FRINT) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- = flag (R900B): Turns on when result of processing is recognized as " 0 ."
- Carry flag (R9009): Turns on for an instant when the result is overflowed.

Outline This instruction changes the sign of real number data.
For the FPOR/FP $\Sigma / F P-X / F P 0 / F P-e$, the $P$ type high-level instruction "P335 (PF+/-)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Explanation of example

When the real number data "-60000.00" is in DT10 and DT11, as shown below.


When the real number data " -30000.00 " is in DT10 and DT11, as shown below.


## Description

The real number data stored in $\mathrm{S}+1$ and S is changed sign bit, and the result is stored in $\mathrm{D}+1$ and D .

Real number data	15		0
	S:	Lower word	
	S+1:	Higher word	
Real number data		$\checkmark$	0
	D:	Lower word	
	D+1:	Higher word	

## Precaution during programming

For FPO, this instruction F335 ( $\mathbf{F}+/-$ ) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- Carry flag (R9009): Turns on for an instant when the result is overflowed.

P336(PFABS)
Floating point real number data absolute

Outline Takes absolute value of real number data.
For the FPOR/FP $\Sigma /$ FP-X/FP0/FP-e, the $P$ type high-level instruction "P336 (PFABS)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Explanation of example

When the real number data " 1234.567 " is in DT10 and DT11, as shown below.


When the real number data "-1234.567" is in DT10 and DT11, as shown below.


## Description

Takes the absolute value of real number data specified by $S$ when the trigger turns on. The result (absolute value) is stored in $D+1$ and $D$.


Specifying the integer device with [S], the integer data is internally converted to real numbers before operations continue.
When the constant K is specified in [S], the operations are the same as when a integer device is specified.

## Precaution during programming

For FPO, this instruction F336 (FABS) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- = flag (R900B): Turns on when result of processing is recognized as "0."
- Carry flag (R9009): Turns on for an instant when the result is overflowed.

Outline This instruction converts the units of an angle from degrees to radians. For the FPOR/FPE/FP-X/FP0/FP-e, the P type high-level instruction "P337 (PRAD)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL	1	K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Description

The data in degrees of an angle specified in $\mathrm{S}+1$ and S is converted to radians (real number data) and the result is stored in $\mathrm{D}+1$ and D .


Specifying the integer device with $[\mathrm{S}]$, the integer data is internally converted to real numbers before operations continue.

When the constant K is specified in S , the operations are the same as when a integer device is specified.

## Program example

The "f0.7853981" is stored to DT20 and DT21 when the R0 turns on.

RO
F337 RAD, f45, DT20

## Precaution during programming

For FP0, this instruction F337 (RAD) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- = flag (R900B): Turns on when result of processing is recognized as "0."
- Carry flag (R9009): Turns on for an instant when the result is overflowed.

Outline Converts the units of an angle from radians to degrees.
For the FPOR/FPS/FP-X/FP0/FP-e, the P type high-level instruction "P338 (PDEG)" is not available.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Description

The angle data in radians (real number data) specified in $\mathrm{S}+1$ and S is converted to angle data in degrees and the result is stored in D+1 and D.

Angle data (radians) (Real number data)	15	
	Lower word	
	Higher word	
	$\checkmark$	
Angle data (degrees)	Lower word	
D+1:	Higher word	

Specifying the integer device with $[\mathrm{S}]$, the integer data is internally converted to real numbers before operations continue.
$\mid$ RO H F338 DEG, \% DT 0, DT $4 \quad] \mid$
Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid \stackrel{\text { RO }}{-1 H[\text { F338 DEG, DT 0, \% DT 4 } \quad] \mid}$
When the constant K is specified in S , the operations are the same as when a integer device is specified.

## Program example

The " 330.00000 " is stored to DT20 and DT21 when the R0 turns on.
$\mid \stackrel{\text { RO }}{-1 H \text { F338 DEG, f0.5235987, DT20 }] \mid}$

## Precautions during programming

When the constant or integer device is specified in S , the integer device cannot be set in D .
For FP0, this instruction F338 (DEG) cannot be programmed in the interrupt program.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in $\mathrm{S}+1$ and S .
- If result of processing is outside integer range when integer device specified in $D+1$ and $D$.
- = flag (R900B): Turns on when result of processing is recognized as "0."
- Carry flag (R9009): Turns on for an instant when the result is overflowed.

Floating point real number data comparison

Outline Compares one real number data (floating point data) item with another.
Program example

Ladder Diagram												Boolean			
												Address		Instruction	
10		ger	$=345$		$1 \mathrm{P}$	10,	DT					10 11		$\begin{array}{\|ll} \text { ST } & \text { I } \\ \text { F345 } & \text { (F } \\ \text { DT } & \\ \text { DT } \end{array}$	
S1					Real number data (2 words) or lower 16-bit area of 32-bit data to be compared										
S2					Real number data (2 words) or lower 16-bit area of 32-bit data to be compared										
Operands															
Operand	Relay				Timer/Counter		Register			Index   register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A

A: Available

* Index modification of a real number is not possible.


## Description

Compares the real number data (floating point data) specified by S1 with that specified by S2 when the trigger turns on. The comparison result is stored in special internal relays R9009, and R900A to R900C.
The following table lists the states of the carry flag (R9009), > flag (R900A), = flag (R900B), and < flag (R900C), depending on the relative sizes of (S1+1, S1) and (S2+1, S2).

Comparison between (S1+1, S1) and (S2+1, S2)	Flag			
	$\begin{aligned} & \text { R900A } \\ & \text { (> flag) } \end{aligned}$	$\begin{aligned} & \text { R900B } \\ & \text { (= flag) } \end{aligned}$	$\begin{aligned} & \text { R900C } \\ & \text { ( } \text { flag) } \end{aligned}$	$\begin{gathered} \text { R9009 } \\ \text { (carry flag) } \end{gathered}$
(S1+1, S1) < (S2+1, S2)	off	off	on	$\downarrow$
$(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$	off	on	off	off
(S1+1, S1) > (S2+1, S2)	on	off	off	$\downarrow$

" $\uparrow$ ": turns on or off according to the conditions
Specifying the integer device with [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D) and [S2](WXO), the integer data is internally converted to real numbers before operations continue.

When the constant K is specified in S 1 and S 2 , the operations are the same as when a integer device is specified.

High-level Instructions

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data are specified in ( $\mathrm{S} 1+1, \mathrm{~S} 1$ ) and ( $\mathrm{S} 2+1$, S2).

P346(PFWIN)

## Floating point real number data band comparison

Outline Compares one real number data item with the data band specified by two other real number data items.

## Program example

Ladder Diagram		Boolean	
		Address	Instruction
	N, DT10, ${ }_{\text {ST }}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST R 0   F346  (FWIN)   DT  10   DT 20    DT  30
S1	Real number data (2 words) or lower 16-bit area of 32-bit data to be compared		
S2	Real number data (2 words) or lower 16-bit area of 32-bit data for lower limit		
S3	Real number data (2 words) or lower 16-bit area of 32-bit data for upper limit		

## Operands

Operand	Relay				Timer/Counter		Register			Index   register$\|$	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S3	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A

A: Available

* Index modification of a real number is not possible.


## Description

Compares the floating point real number data specified by S1 with the data band specified by S2 and S3, when the trigger turns on. This instruction checks whether S1 is in the data band between S2 (lower limit) and S3 (upper limit), larger than S3, or smaller than S2. The comparison result is stored in special internal relays R900A, R900B, and R900C.
The following table lists the states of the carry flag (R9009), > flag (R900A), = flag (R900B), and < flag (R900C).

Comparison between (S1+1, S1), (S2+1, S2) and (S3+1, S3)	Flag			
	$\begin{aligned} & \text { R900A } \\ & \text { (> flag) } \end{aligned}$	$\begin{aligned} & \mathrm{R} 900 \mathrm{~B} \\ & \text { (= flag) } \end{aligned}$	$\begin{aligned} & \text { R900C } \\ & \text { (< flag) } \end{aligned}$	R9009 (Carry flag)
(S1+1, S1) < (S2+1, S2)	off	off	On	X
$\begin{aligned} & (S 1+1, S 1) \leqq(S 3+1, S 3) \text { and } \\ & (S 2+1, S 2) \leqq(S 1+1, S 1) \end{aligned}$	off	on	off	X
(S3+1, S3) < (S1+1, S1)	on	off	off	X

Specifying the integer device with [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D), [S2](WXO) and [S3], the integer data is internally converted to real numbers before operations continue.

When the constant K is specified in $\mathrm{S} 1, \mathrm{~S} 2$ and S 3 , the operations are the same as when a integer device is specified.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data are specified in " $\mathrm{S} 1+1, \mathrm{~S} 1$ ", " $\mathrm{S} 2+1, \mathrm{~S} 2$ ", and "S3+1, S3".
$-(\mathrm{S} 2+1, \mathrm{~S} 2)>(\mathrm{S} 3+1, \mathrm{~S} 3)$.
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data are specified in " $\mathrm{S} 1+1, \mathrm{~S} 1$ ", " $\mathrm{S} 2+1, \mathrm{~S} 2$ ", and "S3+1, S3".
$-(S 2+1, S 2)>(S 3+1, S 3)$.

Floating point data upper and lower limit control

Outline This instruction carries out upper and lower limit control for real number data.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Index } \\ \text { register } \end{array} \\ \hline \text { I } \\ \hline \end{array}$	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S3	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A

A: Available
N/A: Not Available

* Index modification of a real number is not possible.


## Description

The output value (real number data) stored in the area specified by $D$ is controlled based on whether or not the input value (real number data) specified by S3 falls within the range bounded by the upper and lower limits (real number data) set in S1 and S2.
The output value is determined based on the following conditions:
When the lower limit S1+1 and S1 are greater than the input value $\mathrm{S} 3+1$ and S 3 , the lower limit value $\mathrm{S} 1+1$ and S1 stored in D+1 and D as the output value.
When the upper limit S2+1 and S2 are less than the input value S3+1 and S3, the upper limit value S2+1 and S2 are stored in D+1 and D as the output value.

When Lower limit S1+1 and S1 § Input value S3+1 and S3 $\leqq$ Upper limit S2+1 and S2, the input value S3+1 and S3 stored in D+1 and D as the output value.


Specifying the integer device with [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D), [S2](WXO) and [S3], the integer data is internally converted to real numbers before operations continue.
$\mid \stackrel{R 0}{\mathrm{RO}}-[$ F347 FLIMT, \% DT10, \% DT20, DT30, DT40 ] $\mid$
Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mid \mathrm{H}^{\text {RO }}$ [ F347 FLIMT, DT10, DT20, DT30, \% DT40 ] $\mid$
When the constant K is specified in $\mathrm{S} 1, \mathrm{~S} 2$ and S 3 , the operations are the same as when a integer device is specified.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in (S1+1 and S1), (S2+1 and S2) and (S3+1 and S3).
- (S1+1, S1) > (S2+1, S2).
- If result of operating is outside integer range when integer device is specified in D+1 and D.
- = flag (R900B): Turns on when result of operating is within the range of the upper and lower limits.

Floating point real number data deadband control

Outline This instruction carries out dead-band control for real number data.
Program example

Ladder Diagram		Boolean	
		Address	Instruction
Trigger		10	ST R 0
		11	F348(FBAND)
			DT 10
			DT 20
			DT 30
			DT 40
S1	The area where the lower limit is stored or the lower limit data. (2 words)		
S2	The area where the upper limit is stored or the upper limit data. (2 words)		
S3	The area where the input value is stored or the input value data. (2 words)		
D	The area where the output value is stored. (2 words)		

Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S3	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A

A: Available N/A: Not Available

* Index modification of a real number is not possible.


## Description

The output value (real number data) stored in the area specified by D is controlled based on whether or not the input value (real number data) specified by S3 falls within the dead-band bounded by the upper and lower limits (real number data) set in S 1 and S 2 .
The output value is determined based on the following conditions:
When the lower limit $\mathrm{S} 1+1$ and S 1 are greater than the input value $\mathrm{S} 3+1$ and S 3 , the input value $\mathrm{S} 3+1$ and S 3 minus the lower limit value $S 1+1$ and $S 1$ are stored in $D+1$ and $D$ as the output value.

When the upper limit S2+1 and S2 are less than the input value S3+1 and S3, the input value S3+1 and S3 minus the upper limit value $\mathrm{S} 2+1$ and S 2 are stored in $\mathrm{D}+1$ and D as the output value.
When Lower limit S1+1 and S1 Input value S3+1 and S3 $\leqq$ Upper limit S2+1 and S2, 0.0 is stored in $\mathrm{D}+1$ and D as the output value.


Specifying the integer device with [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D), [S2](WXO) and [S3], the integer data is internally converted to real numbers before operations continue.
$|\stackrel{\text { Ro }}{-1}|$ F348 FBAND, \% DT10, \% DT20, \% DT30, DT40 $] \mid$
Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.
$\mathrm{H}^{\text {RO }}{ }^{-}$[ F348 FBAND, DT10, DT20, DT30, \% DT40]
When the constant K is specified in $\mathrm{S} 1, \mathrm{~S} 2$ and S 3 , the operations are the same as when a integer device is specified.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in " $\mathrm{S} 1+1, \mathrm{~S} 1$ ", " $\mathrm{S} 2+1, \mathrm{~S} 2$ " and "S3+1, S3".
- "S1+1, S1" > "S2+1, S2".
- If result of operating is outside integer range when integer device is specified in " $\mathrm{D}+1, \mathrm{D}$ ".
- = flag (R900B): Turns on when result of operating is within the range of the upper and lower limits.
- Carry flag (R9009): Turns on for an instant when the result is overflowed.

Floating point real number data zone control

Outline This instruction carries out zone control for real number data.
Program example

Ladder Diagram	Boolean		
	Address		uction
Trigger	10	ST	R 0
	11	F349	(FZONE)
R0 [		DT	10
$10-1$ [ 349 FZONE, DT10, DT20, DT30, DT40 ]		DT	20
$L_{\text {, }} L_{\text {, }} L_{\text {, }} L_{\text {, }}$		DT	30
S1 S2 S3 D		DT	40


S1	Area where negative bias value is stored or negative bias value data (double   words)
S2	Area where positive bias value is stored or positive bias value data (double   words)
S3	Area where input value is stored or input value data (double words)
D	Area (double words) where output value is stored

Operands

Operand	Relay				Timer/Counter		Register			Index   register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S2	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
S3	A	A	A	A	A	A	A	A	A	A	A	A	A	A*	A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	A

A: Available N/A: Not Available

* Index modification of a real number is not possible.


## Description

The bias value specified by S 1 or S 2 is added to the input value (real number data) specified by S 3 , and the output value is stored in the area specified by D .
The output value is determined by the following conditions:
When the input value $\mathrm{S} 3+1$ and S 3 are less than 0.0 , the input value $\mathrm{S} 3+1$ and S 3 plus the negative bias value $\mathrm{S} 1+1$ and S 1 are stored in $\mathrm{D}+1$ and D as the output value.
When the input value $\mathrm{S} 3+1$ and S 3 are equals 0.0 , zero is stored in $\mathrm{D}+1$ and D as the output value.
When the input value S3+1 and S3 are greater than 0.0 , the input value $\mathrm{S} 3+1$ and S 3 plus the positive bias value $\mathrm{S} 2+1$ and S 2 are stored in $\mathrm{D}+1$ and D as the output value.


Specifying the integer device with [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D), [S2](WXO) and [S3], the integer data is internally converted to real numbers before operations continue.


Specifying the integer device with [D](DT100), the real numbers are automatically converted into integer data.


When the constant K is specified in $\mathrm{S} 1, \mathrm{~S} 2$ and S 3 , the operations are the same as when a integer device is specified.

Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- If data other than real number data is specified in " $\mathrm{S} 1+1, \mathrm{~S} 1$ ", " $\mathrm{S} 2+1, \mathrm{~S} 2$ " and "S3+1, S3."
- If result of operating is outside integer range when integer device is specified in " $\mathrm{D}+1, \mathrm{D}$ ".
- = flag (R900B): Turns on when input value is recognized as " 0 ."
- Carry flag (R9009): Turns on for an instant when the result is overflowed.

Maximum value search in floating point real number data table

Outline Searches for a maximum value in a table of real number data.
Program example


## Operands

Operand	Relay				Timer/Counter		Register			Index   register   1	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

## Description

This instruction searches for the maximum value in the real number data table between the area selected with S 1 and the area selected with S 2 , and stores it in the area selected with $\mathrm{D}+1$ and D . The address relative to S1 is stored in D+2.

Real number data table


If S2 specifies a higher word of real number data, processing will take place over the same area as if the lower word had been specified.


If there are several values which are a maximum value, the relative address of the first value found searching from S1 is stored in D+2.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S1 > S2.
- The areas of S1 and S2 are different.
- The real number data is outside possible operating range.


## F351 (FMIN) P351(PFMIN) <br> Minimum value search in floating point real number data table

Outline $\quad$ Searches for a minimum value in a table of real number.
Program example


Operands

Operand	Relay				Timer/Counter		Register				Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

## Description

This instruction searches for the minimum value in the real number data table between the area selected with S1 and the area selected with S2, and stores it in the area selected with D+1 and D. The address relative to S1 is stored in D+2.

Real number data table


If S2 specifies a higher word of real number data, processing will take place over the same area as if the lower word had been specified.


If there are several values which are a minimum value, the relative address of the first value found searching from S1 is stored in D+2.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
-S1 > S2.
- The areas of S1 and S2 are different.
- The real number data is outside possible operating range.

Total and mean numbers calculation in floating point real number data table

Outline Calculates the total and mean numbers in the specified real number data table

## Program example

Ladder Diagram		Boolean		
		Address	Instruction	
	AN, $\left.\begin{array}{c}\text { DT10, } \\ \text { S1 } \\ \text { ST20, } \\ \text { S2 } \\ \text { ST30 }\end{array}\right]$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST   F352   DT   DT   DT	
S1	Starting 16-bit area for storing the real number data			
S2	Ending 16-bit area for storing the real number data			
D	Starting 16-bit area for storing total and mean numbers (4 words)			

## Operands

Operand	Relay				Timer/Counter		Register			Index register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S1	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

## Description

The total value and the average value of the real number data from the area selected with S1 to the area selected with S2 are obtained and stored in the area selected with D.

	15	0
D	Lower, word	
D+1	Higher word	Total
D+2	Lower word	Mean
D+3	Higher' word	ean

If S2 specifies a higher word of real number data, processing will take place over the same area as if the lower word had been specified.


## Precautions during programming

Even if $\mathrm{D}+2$ overflows the selected area, it will still be stored, and this may corrupt the data in the leading part of the other area. (An area overflow check is not performed.)

## Flag conditions

Error flag (R9007): Turns on and stays on when:

- The area specified using the index modifier exceeds the limit.
$-\mathrm{S} 1>\mathrm{S} 2$.
- The areas of S1 and S2 are different.
- The real number data is outside possible operating range.
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S1 > S2.
- The areas of S1 and S2 are different.
- The real number data is outside possible operating range.
- Carry flag (R9009): Turns on for an instant when overflows/underflows while calculating.

Sort data in real number floating point data table

Outline Sorts a string of real number data (in smaller or larger number order).
Program example


S1	Starting 16-bit area of sort data (2 words)
S2	Ending 16-bit area of sort data (2 words)
S3	Constant or area where sort condition is stored.

Operands

Operand	Relay				Timer/Counter		Register			Index   register	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	$f$		
S1	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S2	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
S3	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A

A: Available
N/A: Not Available

## Description

The real number data from the area specified by S1 to the area specified by S2 are sorted in ascending order (the smallest word is first) or descending order (the largest word is first) depending on the condition set with S3.
If $\mathrm{S} 1=\mathrm{S} 2$, sorting does not take place.
The sort condition is specified as follows in S3:

- KO: Ascending order
- K1: Descending order

Double sorting is used for the sorting method. Data is sorted from S1 to S2 in order following the sorting procedure. Note that the number of word comparisons increases in proportion to the square of the number of words, thus more time will be required for execution when there are a large number of words.

If S2 specifies a higher word of real number data, processing will take place over the same area as if the lower word had been specified.


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- S1 > S2.
- The areas of S1 and S2 are different.
- The real number data is outside possible operating range.


## Scaling of real number data

## Outline

Scaling(linearization) on a real number data table is performed, and the output $(\mathrm{Y})$ to an input value $(\mathrm{X})$ is calculated.
With FP2/FP2SH, this function is available from Ver. 1.50 or later.

## Program example



S1	Real numerical value or area which shows the input value $(\mathrm{X})$
S2	Head area of the data table used for scaling
D	Area in which the output value $(\mathrm{Y})$ stored

## Operands

Operand	Relay				Timer/ Counter		Register			Index register	Constant				Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL	I	K	H	H	f		
S1	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	A	A
S2	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	A	A

A: Available
N/A: Not Available

## Explanation of example

The output value $Y$ is calculated for the input value stored in DTO referring to the data table which starts with DT10, and the result is stored in DT100.

## Description

1) Scaling (linearization) is performed according to the data table of the real number specified by [S2](WXO) in the inputted real numerical value [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D), and an output value is stored in [D](DT100).
2) An output value is calculated by searching the linear section of an input value [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D), and computing the linear interpolation between these two points from the linear table specified by [S2](WXO).
When the specified input value is out of the registration range of an linear table, the output value (Y0 or Yn ) over a starting point ( x 0 ) or an ending point ( xn ) is stored, respectively.

$$
\begin{aligned}
& {[\mathrm{S} 1]<=x_{0}--[\mathrm{D}]=y_{0}} \\
& {[\mathrm{~S} 1]>=x_{n}---[D]=y_{n}}
\end{aligned}
$$

3) The linear table [S2](WXO) must be having the section of two or more points registered.

Moreover, the linear table must be registered in ascending order, from small to large number of the $x$ sequences.

$$
\begin{array}{ll}
2<=\text { Registration mark }(m)<=99 & (m=n+1) \\
\text { xt }-1<x t & (1<=t<=n)
\end{array}
$$

4) When the distance between two points of a scaling table is very large, an operation error occurs. for example)

Point1: $\left(x_{0}, y_{0}\right)=(H F F 000000$, HFF000000 $)=\left(-1.7 * 10^{34},-1.7 * 10^{34}\right)$
Point2: $\left(x_{1}, y_{1}\right)=(H 7 F 000000$, H7F000000 $)=\left(+1.7 * 10^{34},+1.7^{*} 10^{34}\right)$
5) The error of an output result is proportional to the distance between two points of a scaling table.
6) When the integer modifier is specified to be an input value [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D), scaling processing is performed after changing it into a real numerical value.
7) An output result is changed into an integer value and stored when the integer modifier is specified to be an output value [S2](WXO).


## Flag conditions

- Error flag (R9007)(R9008):
- It turns on, when the specified address using the index modifier exceeds a limit.
- It turns on, when a non-real number value is inputted into [S1]((%5Cunderbrace%7B)%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D).
- In the registration mark of [S2](WXO), it turns on at the time of $\mathrm{m}<2$ or $\mathrm{m}>99$.
- It turns on, when a non-real number value is specified to be the real numerical value (xt, yt) specified in [S2](WXO).
- It turns on, when the linear table of [S2](WXO) is not registered in ascending order of the x -sequence.
- It turns on, when the linear table of [S2](WXO) exceeds the area.
- It turns on, when the overflow (operaion is unable) occurs in the operation of scaling.
- It turns on, when integer modifier specification is carried out for [D](DT100) and an output result exceeds the integer range.


## F355(PID)

 PID processingOutline This instruction carries out PID processing using data table.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register   DT	$\qquad$	Constant			Index modifier
	WX	WY	WR	WL	SV	EV			K	H	f	
S	N/A	N/A	N/A	N/A	N/A	N/A	A	N/A	N/A	N/A	N/A	N/A

A: Available N/A: Not Available

## Description

PID processing is performed to hold the measured value specified by $S+2$ at the set value $S+1$, and the result is output to $\mathrm{S}+3$.
Derivative control or proportional-derivative control can be selected for the PID processing mode.
Set the PID processing coefficients (proportional gain, integral time and derivative time) and the processing mode and cycle in the parameter table. PID processing will be performed based on these settings.

## Types of PID processing

## Reverse operation and forward operation

When a process has been changed, the vertical direction of the output can be selected.
If the measured value drops, "Reverse operation" is specified to boost the output (heating, etc.).
If the measured value increases, "Forward operation" is specified to boost the output (cooling, etc.).

## Derivative type (PI-D) / Proportional-derivative type (I-PD)

Generally, with "derivative PID control", when a set value is changed, there is increased fluctuation in the output, but convergence is faster.
Generally, with "proportional-derivative PID control", when a set value is changed, there is less fluctuation in the output, but convergence is slower.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The value set for the parameter is out of range.
- The area specified using the index modifier exceeds the limit.


## Parameter table settings



* For the FPO use the 20 words, $[\mathrm{S}+11]$ to $[\mathrm{S}+30]$, as the work area.


## Explanation of parameters <br> (1) Control mode

Select the type of PID processing and auto-tuning on/off with the H constants.

Control mode		Value of [S]	
		Auto-tuning   when not executed	Auto-tuning   when executed
Derivative type	Reverse operation	H0	H8000
	Forward operation	H1	H8001
Proportional-   derivative type	Reverse operation	H2	H8002
	Forward operation	H3	H8003

## Auto-tuning

The optimum values for the $\mathrm{Kp}, \mathrm{Ti}$, and Td of the PID parameters can be measured by measuring the process response. When auto tuning is executed, the estimated results are reflected in the parameter area after auto tuning has been completed. (There may be cases in which auto tuning cannot be executed, depending on the process. If this happens, processing returns to the original parameter operation.)
For precautions concerning execution of auto tuning, refer to the following page.

## Reverse operation and forward operation

These parameters determine whether the output will increase or decrease when a change occurs in the process.

## Reverse operation

If the measured process value decreases, the output will increase. (Example: Heating)

## Forward operation

If the measured process value increases, the output will increase. (Example: Cooling)

## Derivative type PID and proportional-derivative type PID

When the set value is changed, the output changes.

## Derivative type

In general this produces a large change when a set value is changed, however, convergence is fast.

## Proportional-derivative type

In general this produces a small change when a set value is changed, however, convergence is slow.

Set the target value which determines the amount of process control within the following range.
K0 to K10000
(3) Measured value (PV)

Input the current process control value with the A/D converter. Adjust so that it falls within the following range. K0 to K10000
(4) Output value (MV)

The result of PID processing is stored. Use the D/A converter or other device to output it to the process. K0 to K10000
(5) Output lower limit value

K0 to K9999 (< upper limit value)
(6) Output upper limit value ..... [S+5]K1 to K10000 (> lower limit value)Specify the output value (MV) range. Values specified for the range are output.The limits should be as follows:$0 \leqq$ output lower limit value < output upper limit value $\leqq 10000$.
(7) Proportional gain (Kp) ..... [S+6]Specify the coefficient used for PID processing.The set value $\times 0.1$ will be the actual proportional gain.
The setting range is K 1 to K 9999 ( 0.1 to 999.9 , specify in increments of 0.1 )
If auto-tuning is selected for the specified control mode, the set value will be automaticallyadjusted and rewritten.
(8) Integral time (Ti)[S+7]
Specify the coefficient used for PID processing.
The set value $\times 0.1$ will be the actual integral time.
The setting range is K 1 to K 30000 ( 0.1 to 3000 seconds, specify in increments of 0.1 seconds)
When the set value is 0 , the integration is not executed.
If auto-tuning is selected for the specified control mode, the set value will be automaticallyadjusted and rewritten.
(9) Derivative time (Td)[S+8]
Specify the coefficient used for PID processing.
The set value $\times 0.1$ will be the actual derivative time.
The setting range is K1 to K10000 ( 0.1 to 1000 seconds, specify in increments of 0.1 seconds)If auto-tuning is selected for the specified control mode, the set value will be automaticallyadjusted and rewritten.
(10) Control cycle (Ts) ..... [S+9]
Set the cycle for executing PID processing. The set value $\times 0.01$ will be the actual control period.The setting range is K1 to K6000 ( 0.01 to 60.0 seconds, specify in increments of 0.01 seconds).(11) Auto-tuning progress[S+10]If auto-tuning is specified in the control mode, the degree to which auto-tuning has progressedis indicated. The values for K 1 to K 5 are stored based on the progress from the default value of 0 ,and the values return to the default values when auto-tuning has been completed.
(12) PID processing work area ..... $[S+11]$ to $[S+29]$
The system uses this work area to perform PID processing.
For the FPO use the 20 words, [S+11] to [S+30], as the work area.

## Precautions when executing auto-tuning

If "Execute auto-tuning" is specified using the parameter table (control mode [S]), attention should be paid to the following points.
After auto-tuning has been completed, the control mode [S] area is automatically rewritten from H 8000 to H 8003 to HO to H 3 . Make sure the mode is not rewritten again in the program.
After auto-tuning has been completed, the optimum values are stored for the proportional gain (Kp), the integration time (Ti) and derivative time (Td), but before executing auto-tuning, the appropriate values (for example, the lower limit value) within the setting range must be set.
After auto-tuning has been completed, the optimum values are stored for the proportional gain (Kp), the integration time (Ti) and derivative time (Td). Be careful that the stored values are not inadvertently rewritten.
Auto-tuning calculates the ideal $\mathrm{Kp}, \mathrm{Ti}$ and Td values. This is done for setting (SP) by measuring the change of the measured value (PV) when the output value (MV) is set to the upper limit so that the measured value (PV) is caused to fluctuate, and measuring the change of the measured value (PV) when the output value (MV) is set to the lower limit.

The changes of the output value (MV) when auto-tuning will complete after a minimum of three changes: upper limit output-lower limit output-upper limit output. If the auto-tuning progress remains at 0 even after changes have occurred several times, please try again after shortening control synchronization Ts.

## Precautions during programming

A 30 word area ( 31 words for the FPO), including the operation work area, is required for the parameter table. Be careful not to allow other instructions to overwrite values in this area.
Error detection will not occur even if the parameter table exceeds the area.
When specifying "S" specify a number that is within at least 30 words ( 31 words for the FPO) from the last number.
Take care that the area is not exceeded due to index modification. An error will not be detected if the area is exceeded.
Use the A/D converter or other device to input the current measured value $\mathrm{S}+2$.
Use the D/A converter or other device to output the result of PID processing S+3 to the process.
For the FPO, this instruction F355 (PID) cannot be programmed in the interrupt program.
If two or more PID instructions specifying the same table are described in the program, it may operate incorrectly.
(Example)

(Reason)
Because the PID instructions are internally operating using the specified table, even if the execution condition has not been effected.
In such a case, specify the table in separate addresses.

## Operation of PID control

PID is a control method widely used in the instrumentation field involving feedback control of process quantities such as temperature, pressure, flow, and fluid level.

## 1) Proportional operation

Proportional operation generates an output which is proportional to the input.


The amount of control is held constant.
An offset remains.
Proportional control grows stronger as Kp is increased.

## 2) Integral operation

Integral operation generates an output which is proportional to the integral time of the input.


In combination with proportional operation or proportional-derivative operation, integral operation removes the offset produced by these methods.
Integral operation grows stronger as the integral time (Ti) is shortened.

## 3) Derivative operation

Derivative operation generates an output which is proportional to the derivative time of the input.


The advancing characteristic of derivative control alleviates the adverse effect which the delaying characteristic of the process exerts on control.
Derivative control grows stronger as the derivative time (Td) is increased.
In the case of pure derivative operation, control can temporarily become ineffective if noise is input, and this can have an adverse effect on the process being controlled. For this reason, incomplete differential operation is executed.


## 4) PID operation

PID operation is a combination of proportional, integral, and derivative operation.


If the parameters are set to the optimum values, PID control can quickly bring the amount of control to the target value and maintain it there.

Outline Temperature control (PID) can be easily performed using the image of a temperature controller.

## Program example

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Ladder Diagram}} \& \multicolumn{3}{|c|}{Boolean} \\
\hline \& \& Address \& \multicolumn{2}{|l|}{Instruction} \\
\hline \multicolumn{2}{|l|}{Trigger} \& \begin{tabular}{l}
10 \\
11 \\
21
\end{tabular} \& ST \(\quad\) R
F356(EZPID)
WR1
WX2
DT32710
DT100
OT \(\quad Y\) \& 1

0 <br>
\hline S1 \& \multicolumn{4}{|l|}{Control data} <br>
\hline S2 \& \multicolumn{4}{|l|}{Measured value (PV)} <br>
\hline S3 \& \multicolumn{4}{|l|}{Starting No. of area storing PID control parameter} <br>
\hline S4 \& \multicolumn{4}{|l|}{Starting No. of PID processing work area} <br>
\hline
\end{tabular}

## Operands

Operand	Relay				Timer/Counter		Register		Index register	SWR	SDT	Constant		Index modifier
	WX	WY	WR	WL	SV	EV	DT	LD	$\underset{\left({ }_{(* 1)}\right.}{\stackrel{1}{2}}$			K	H	
S1	N/A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	-
S2	A	A	A	A	A	A	A	A	A	A	A	N/A	N/A	-
S3	N/A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A	-
S4	N/A	A	A	A	A	A	A	A	N/A	N/A	N/A	N/A	N/A	-

(*1) 10 to ID.
A: Available
N/A: Not Available

## Operation

PID processing is performed to hold the measured value (PV) at the set value (SP).
Writing OUT instruction immediately after this instruction enables the PWM output (on-off output) similar to a temperature controller.
Auto-tuning function is also available to calculate the control parameter of PID automatically.
It can be used with analog output as it outputs values as well as PWM output.

## General explanation of used memories

S1: It is recommended to specify the non-hold type area (e.g. WR) where can be operated in bit unit. When bit0 is 1 , it is auto-tuning request. This bit is reset with this instruction when auto-tuning has completed.
Reset this bit to cancel auto-tuning.
When bito is 0 , it is PID control.
When auto-tuning has completed successfully, 1 is set for bit 1 .
Bit2 turns on to hold the output MV (S4) when the execution condition of this instruction changes from off to on.
When bit3 is 0 , it is PWM control. And when bit3 is 1 , it is ANALOG output control.
When bit 4 is 0 , the max. value of the internal output is the output upper limit value $+20 \%$ of the output range (output upper limit value - output lower limit value), and the min. value is the output lower limit value $-20 \%$ of the output range.
When bit4 is 1 , the max. value of the internal output is the output upper limit value, and the min. value is the output lower limit value.
*The output lower limit value is specified by S4+1, and the output upper limit value is specified by S4+2.
Bits 5 to F are reservation bits. Normally use them as 0 .
S2: Area storing measured value (PV) (1 word) Effective range
The input WXn of a temperature input unit can be directly specified. $k-30000$ to $k+30000$
S3: Area to specify target value (SP) and control parameter (4 words)
It is recommended to use this area allocating to the hold-type operation Setting range memory.
S3: Store set value (SP). It is necessary to specify by the $k-30000$ to $k+30000$ instruction or an indicator.
S3+1: Store proportional gain (KP).
After auto-tuning has been com- k1 to K9999 (0.1 to Actual gain is Set value $\times 0.1$.
S3+2: Store integral time (TI).
Actual integral time is Set val-
pleted, it is automatically set.
After auto-tuning has been com- k0 to k30000 (0 to pleted, it is automatically set. 3000s) ue $\times 0.1$.
S3+3: S3+3: Store derivative time After auto-tuning has been com- k0 to k10000 (0 to (TD).
pleted, it is automatically set. 1000s)
Actual derivative time is Set value $\times 0.1$.
S4: It is divided into output (MV), specified area of control mode, auto-tuning related area and PID processing work area.
The area in the range of 54 to $S 4+29$ is necessary for the instruction. (The detail is described hereinbelow.)
It is recommended to allocate it in the non-hold area. Also, do not use the data in this area for other purposes.

## Easy usage

When PWM output in reverse operation (heating)


## Explanation of operation

Specify set value (SP) with the instruction or an indicator before the operation.
If auto-tuning is requested with a device such as indicator, the above auto-tuning request program is not necessary.
When R1 turns on, work area DT100 to DT129 will be initialized. (However, only DT100 (MV) can be held.) The control conditions are that operation cycle is 1 sec , derivative type reverse operation (heating), and PWM resolution is 1000 .
PID control starts from the next scan, and PWM output is executed for Y0.
Note) If execution condition R1 has turned off during PID control, PWM output Y0 also turns off. However, output value MV is held.

Program as described above to start auto-tuning with the instruction, and turn on R1 after turning on R0. When auto-tuning has completed successfully, R11 turns on and KP, TI and TD is set.
If R1 is on continuously, it will change to PID control automatically, and PWM output will be executed for Y0.

## When changing control conditions

The area of $\mathrm{S} 4+1$ to $\mathrm{S} 4+9$ must be changed to change control conditions. Change it before the second execution of the F356 instruction.
<Details of S4>
S4: It is divided into output (MV), specified area of control mode, auto-tuning related area and PID processing work area. It is recommended to allocate it in the non-hold area. Also, do not use the data in this area for other purposes.

Output (MV) and control mode area
(Normally, the default values are used.)

## Default value Range

S4: The output value (MV) of PID processing is stored.
S4+1: Set the lower limit value of output value (MV).
S4+2: Set the upper limit value of output value (MV).
k0 k-10000 to 10000
k0 Min. k-10000
k10000 Max. k+10000
k0 k0 to 80(\%)
k100
k0
k1 to 3000 ( 0.01 to 30 s)

S4+4: Set control cycle (TS). Setting unit=10ms, default value=1sec.
S4+5: Set control mode. (Refer to the table below.)

Reverse operation and forward operation Reverse operation: If the measured value drops, "Reverse operation" is specified to boost the output (heating, etc.).
Forward operation: If the measured value increases, "Forward operation" is specified to boost the output (cooling, etc.).
Derivative type (PI-D)/Proportional-derivative type (I-PD)
Derivative type: The speed is faster to get to set value, but it is easily overshooted.
Proportional-derivative type: The speed is slow to get to set value, but it is not easily overshooted.

Auto-tuning related area (The default value is normally used.)

S4+6: Set bias value for performing auto-tuning.
S4+7: Set correction data (a1) of auto-tuning result (KP).
S4+8: Set correction data (a2) of auto-tuning result (TI).
S4+9: Set correction data (a3) of auto-tuning result (TD).
$\mathrm{S} 4+10$ : The status while auto-tuning is being performed is stored.
PID processing work area
S4+11: The area up to $\mathrm{S} 4+29$ is 0
to the work area for PID processing and auto-tuning processing. to
S4+29:
0

Note) The default value is written when the execution condition turns on.
Output (MV) is output only in the ranges of upper limit value and lower limit value.
"Also, set to be as $-1000 \leqq$ lower limit value < upper limit value $\leqq 10000$."
How to output PWM.
The cycle of a PWM output is decided by the setting value of $S 4+4$. The default value is periodic 1 second.
Duty of PWM is decided by the rate of the output MV (S4) that accounts for in the range of k0 to k10000. When either on of the minimum value and maximum value of Output MV specified by S4+1 and S4+2 is a negative value, the PWM output is always OFF.
A PWM output is always ON, when the output MV is kO , and it is always OFF when the output MV is k 10000 .

## Explanation of specific usage

1: When changing control mode only with PWM output
Change the content of the control mode (S4+5) to k1 to k3 using an instruction such as F0(MV) instruction.
(Example) Change the control mode to the proportional derivative type from the derivative type that is the default.
$\left|\begin{array}{lll|}|c| c|c|\end{array}\right|$
2. When using an analog output unit for output

2-1: Set the bit3 of S1 to 1 in order to start ANALOG output control.
2-2: Set output lower limit value (S4+1) and output upper limit value (S4+2) according to the output range of an analog output unit.
(Example) <Lower limit value=k0, upper limit value=k2000>, <Lower limit value=k0, upper limit value $=k 4000>$

2-3: Change the value of control cycle (TS): (S4+4) according to the cycle of updating input of a temperature input unit (that is normally 0.15 or more).
(Example) TS $=\mathrm{k} 10$ (100ms)
2-4: Change the control mode if necessary.
2-5: Transmit output value (MV) to WY of an analog output unit.

Note) When analog output is used for output, it is not necessary to write OUT instruction immediately after this instruction.
Also, when analog output is used, PWM output is fixed to off.
(Example) When controlling with the settings that the output upper value (S4+2) is K4000 and the control cycle (S4+4) is 10 seconds


## More detail on setting method

1: Setting for $100 \%$ output band (S4+3)
$100 \%$ output band is to specify the timing of starting PID control when measured value (PV) becomes more than what percentage of set value.
$100 \%$ output is performed in the area up to a specified measured value.
When measured value (PV) is smaller than set value (SP) *this setting, it has affect on reducing the arrival time to set value (SP) by performing $100 \%$ output.
Therefore, when it is set to k80, $100 \%$ output is performed up to $80 \%$ of set value (SP), and PID control starts from then.
When kO has been set to the default value for this setting, PID control is performed from the beginning.
2: Fine adjustment of auto-tuning
2-1: Correction of the result of auto-tuning (S4+7, S4+8 and S4+9)
When auto-tuning has completed, the parameters for KP, TI and TD are stored in (S3+1, S3+2 and S3+3).
That result can be corrected with this parameter.

## (Example)

Set S4+7 to k200 (means to 200\%) and perform auto-tuning to correct KP to double value.
Set S4+8 to K128 (means to 125\%) and perform auto-tuning to correct TI to 1.25 times value.
Set S4+9 to k75 (means to 75\%) and perform auto-tuning to correct TD to 0.75 times value.
$2-1$ : Auto-tuning bias value ( $\mathrm{S} 4+6$ )
Auto-tuning is executed with (set value (SP) - auto-tuning bias value) as a set value (SP').
It is used to control excessive temperature rise while auto-tuning is performed.
For the forward operation, auto-tuning is executed with (set value (SP) + this set value) as a set value.



Note) Even if starting auto-tuning in the condition that measured value (PV) is close to set value (SP), auto-tuning is performed with the above SP'.

## Precautions on programming

1: When the execution condition has turned on, the area of S 4 to $\mathrm{S} 4+29$ is initialized.
If it is set to values other than the default values, write with $\mathrm{FO}(\mathrm{MV})$ instruction using always on relay R9010 as execution condition.

2: As operation cycle or timing of PWM output is always operated internally with PID processing instruction, always operate only once in 1 scan.
Therefore, do not execute it during the subroutine or interrupt program.
This instruction that the same operand has been specified cannot be written more than once.
3: Do not turn off the execution condition during PID processing. Otherwise, PID processing will be disabled.
4: If you do not want to synchronize PWM output cycle for controlling multiple objects, delay the timing of start-up by adjusting times such as the rise time for start-up condition.
5: As execution condition is changed after executing this instruction, after instructions cannot operate correctly with the program below.



## Conditions when operation errors occur

1: S2: Measured value (PV), S3: Set value (SP), S3+1: KP, S3+2: TI, S3+3: TD
When each parameter of $\mathrm{S} 4+1$ to $\mathrm{S} 4+9$ is out of the setting range.
2: When the area specified with S3 or S4 exceeds the upper limit of the specified operation device.

## Internal operation specifications

When the execution condition has turned on, the operation work is initialized.
If each parameter of $\mathrm{KP}, \mathrm{TI}$ and TD is all 0 when PID operation has started, they are initialized at 1,1 and 0 , respectively. And the operation is continued.
AT normal done flag or AT done code is cleared on the leading edge of AT signal.
The set value for AT operates regarding <set value (SP) - bias value> as target value. Default value for bias value is 0 .
When AT has completed successfully, the results which is calculated by raising KP, TI and TD of calculated results to the power of correction data a1, a2 and a3 are stored. Default value is $100 \%$.
When AT has completed successfully, AT normal done flag is set, and AT done code is stored in AT step. When AT has abended, the parameters of KP, TI and TD are not changed.
PWM output is output at the duty when the output range of MV is 0 to 10000.
For analog output (when bit3 of S1 is 1), the internal calculated value output in the range of 0 to 10000 and it is converted into a specified range.
Conversion formula: (Upper limit value - Lower limit value) x internal calculated value / 10000 + Lower limit value
Example) When upper limit value $=40000$, lower limit value $=0$ and internal calculated value $=5000$, output value is 2000.

## Precautions when using MV holding function • . . The usage varies according to models and versions.

1. For FP $\Sigma$, FP-X, FPOR (V1.05 or older)

Use the default upper limit and lower limit values for using the MV holding function.
2. For FPOR (V1.06 or later)

Upper limit and lower limit values are held as well as MV value, set MV value, upper limit and lower limit values before executing this instruction.

High-level Instructions

## F373(DTR)

P373(PDTR)

## 16-bit data revision detection

Outline This instruction detects changes in 16-bit data values.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A

A: Available
N/A: Not Available

## Explanation of example

When the trigger R0 turns on, R9009 will turn on if there has been a change in data register DT10 since the previous execution. Following this, the internal relay R10 will also turn on.

## Description

If the data in the 16-bit area specified by $S$ has changed since the previous execution, internal relay R9009 (carry flag) will turn on.
D is used to store the data of the previous execution, and when the current execution has been completed, the current data is stored in D.

## Precautions during programming

The internal relay R9009 (carry flag) used for detection of data changes is updated at each execution of the instruction.

For this reason,
Programs using R9009 should insert it immediately after an F373 (DTR)/P373 (PDTR) instruction.
Output to an output relay or internal relay to hold the result. (Refer to the explanation of F64 (BCMP)/P64 (PBCMP).)
As in the program example on preceding page, be sure to add the trigger (X10) for the F373 (DTR)/P373 (PDTR) instruction before the internal relay R9009 (carry flag).
If the always on relay (R9010) is the execution condition, this trigger (X10) is not necessary.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Turns on if a change has occurred in the specified data area.

High-level Instructions

## F374(DDTR)

## P374(PDDTR)

## 32-bit data revision detection

Outline This instruction detects changes in 32-bit data values.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index   register   1	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
S	A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
D	N/A	A	A	A	A	A	A	A	A	A	N/A	N/A	N/A	A	N/A
														A: Available N/A: Not Available	

## Explanation of example

When the trigger R0 turns on, R9009 will turn on if there has been a change in data register DT10 since the previous execution. Following this, the internal relay R10 will also turn on.

## Description

If the data in the 32-bit area specified by $S$ has changed since the previous execution, internal relay R9009 (carry flag) will turn on.
$D+1$ and $D$ is used to store the data of the previous execution, and when the current execution has been completed, the current data is stored in D+1 and D.

## Precautions during programming

The internal relay R9009 (carry flag) used for detection of data changes is updated at each execution of the instruction.

For this reason,
Programs using R9009 should insert it immediately after an F374 (DDTR)/P374 (PDDTR) instruction.
Output to an output relay or internal relay to hold the result. (Refer to the explanation of F64 (BCMP)/P64 (PBCMP).)
As in the program example on preceding page, be sure to add the trigger (X10) for the F374 (DDTR)/P374 (PDDTR) instruction before the internal relay R9009 (carry flag).
If the always on relay (R9010) is the execution condition, this trigger (X10) is not necessary.

## Flag conditions

- Error flag (R9007): Turns on and stays on when the area specified using the index modifier exceeds the limit.
- Error flag (R9008): Turns on for an instant when the area specified using the index modifier exceeds the limit.
- Carry flag (R9009): Turns on if a change has occurred in the specified data area.


## F410(SETB)

 P410(PSETB)
## Setting the index register bank number

Outline Setting the index register bank number

## Program example

Ladder Diagram	Boolean	
	Address	Instruction
Trigger	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	ST R 0   F410 (SETB)    K 1
n $\quad$ Constant data or area where register b	er is store	

## Operands

Operand	Relay				Timer/Counter		Register			Index   register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	$f$		
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A
														A: Available N/A: Not Available	

## Description

This instruction selects the current index register bank number.

## Precautions during programming

The bank number is automatically set to bank 0 before execution of the starting address of the program. If the program memory is 120 K steps, when the program is switched to the No. 1 program or the No. 2 program, the index register bank number is automatically set to 0 .

## Program example

Changing the index register banks


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The bank number is not from K0 to K15.


## Changing the index register bank number

Outline Index register bank number change over with remembering preceding bank number.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register   I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A

A: Available N/A: Not Available

## Description

This instruction selects the current index register bank number.
At this time, the current index bank number is stored in the push area (the push area has only one effective level, thus previous data is overwritten).

The bank numbers of index registers used in interrupt programs, subroutines, and other sub programs should be specified in such a way that the F411 (CHGB) instruction is executed at the beginning of the sub program, and the F412 (POPB) instruction is executed at the end of the sub program.

## Precautions during programming

The bank number is automatically set to bank 0 before execution of the starting address of the program. If the program memory is 120 K steps, when the program is switched to the No. 1 program or the No. 2 program, the index register bank number is automatically set to 0 .
The push area has only one effective level, thus the previous data is overwritten.

## Program example

This is a program in which the index register bank is switched to " 2 " at the beginning of the interrupt program, and is then switched back again to the original index register bank just before the end of the interrupt program (before the IRET instruction).


## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The bank number is not from K0 to K15.

Outline Changes index register bank number back to the bank before F411 (CHGB)/P411 (PCHGB) instructions.

## Program example



## Description

The current index register bank number is changed to the number stored in the push area.
The contents of the push area are not changed at this time.
The bank numbers of index registers used in interrupt programs, subroutines, and other sub programs should be specified in such a way that the F411 (CHGB) instruction is executed at the beginning of the sub program, and the F412 (POPB) instruction is executed at the end of the sub program.

## Precautions during programming

The bank number is automatically set to bank 0 before execution of the starting address of the program. If the program memory is 120 K steps, when the program is switched to the No. 1 program or the No. 2 program, the index register bank number is automatically set to 0 .
The push area has only one effective level.

## Program example

This is a program in which the index register bank is switched to " 2 " at the beginning of the interrupt program, and is then switched back again to the original index register bank just before the end of the interrupt program (before the IRET instruction).


## Setting the file register bank number

Outline Setting the file register bank number

## Program example



Operands

Operand	Relay				Timer/Counter		Register			Index   register   1	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	1		
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A

A: Available
N/A: Not Available

## Description

This instruction selects the current file register bank number.
File register bank number: 0 to 2 .

## Precautions during programming

The file register bank is set to bank 0 at the first step of program.
The file register bank is also set to bank 0 at the first step of No. 2 program.
Special data register for file register bank.

DT90263	File register bank (current value)	The current value of file register bank is stored.
DT90264	File register bank (shelter number)	The shelter number of file register bank is stored.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The bank number is not from K0 to K2.


## F415(CBFL)

 P415(PCBFL)
## Changing the file register bank number

Outline Changing the file register bank number.

## Program example



## Operands

Operand	Relay				Timer/Counter		Register			Index register I	Constant			Index modifier	Integer device
	WX	WY	WR	WL	SV	EV	DT	LD	FL		K	H	f		
n	A	A	A	A	A	A	A	A	A	A	A	A	N/A	A	N/A

A: Available
N/A: Not Available

## Description

This instruction selects the current file register bank number.
At this time, the current file bank number is stored in the push area (the push area has only one effective level, thus previous data is overwritten).
File register bank number: 0 to 2.

## Precautions during programming

The file register bank is set to bank 0 at the first step of program.
The file register bank is also set to bank 0 at the first step of No. 2 program.
Special data register for file register bank.

DT90263	File register bank (current value)	The current value of file register bank is stored.
DT90264	File register bank (shelter number)	The shelter number of file register bank is stored.

## Flag conditions

- Error flag (R9007): Turns on and stays on when:
- Error flag (R9008): Turns on for an instant when:
- The area specified using the index modifier exceeds the limit.
- The bank number is not from K0 to K2.

Restoring the file register bank number

Outline Changes file register bank number back to the bank before F415 (CBFL)/P415 (PCBFL) instructions.

## Program example

Ladder Diagram	Boolean		
	Address	Instruction	
Trigger	10	ST	R 0
	11	F416	(PBFL)

## Description

The current file register bank number is changed to the number stored in the push area. The contents of the push area are not changed at this time.

The user must manage the push area data so that the desired data is restored. This instruction only checks the data range, it does not check changes made with the F415 (CBFL) instruction.
The push area has only one effective level.

## Precautions during programming

The file register bank is set to bank 0 at the first step of program.
The file register bank is also set to bank 0 at the first step of No. 2 program.
Special data register for file register bank.

DT90263	File register bank (current value)	The current value of file register bank is stored.
DT90264	File register bank (shelter number)	The shelter number of file register bank is stored.

## Chapter 4

Precautions Concerning Programs

### 4.1 Changing the Set Value of Timer/Counter During RUN

### 4.1.1 Method of Rewriting Constant in the Program



Changing the set values (constants) in the program
Constants in the program can be rewritten as long as the following conditions are observed.
Operation method: RAM operation only
Rewriting method: Method using the programming tool software
Method using the FP Programmer II
Rewrite method using the programming tool software
Example of changing the set value of timer 5 from K30 to K50

1. Place the cursor on the value of K30 set for the timer 0.
2. Press the "Delete" key of computer to clear the value.
3. Enter a new constant of K50, and press the "Enter" key.

## Rewrite method using FP programmer II

Example of changing the set value of timer 5 from K30 to K50

1. Read the address containing the timer instruction.

$$
\left.\left.\begin{array}{c}
\mathrm{SHIFT} \\
\mathrm{SC}
\end{array} \begin{array}{c}
\mathrm{TM} \\
\mathrm{~T}-\mathrm{SV}
\end{array} \begin{array}{c}
\mathrm{ST} \\
\mathrm{X}-\mathrm{WX}
\end{array}\right] \begin{array}{c}
\mathrm{SRC} \\
\boldsymbol{R}
\end{array} \begin{array}{c}
\text { READ } \\
\boldsymbol{V}
\end{array}\right] \begin{gathered}
\text { READ } \\
\boldsymbol{v}
\end{gathered}
$$

2. Clear the constant (K30).

HELP)
CLR
3. Enter the new constant (K50).


## Operation and cautions after the change

After the change using the programming tool software or FP programmer II, the timer or counter in operation will continue to run. Operation based on the changed set value will be start the next time the execution condition changes from off to on.
If changing values using the boolean (ladder/non-ladder) mode input method available in the programming tool software, subtraction is interrupted when the values are rewritten, and starts again with the new value, starting from the next scan.
When method of constant rewriting in the program is used, the program itself will change. Thus, when the mode is changed and then set back to RUN or when the power is turned on, the changed set value will be preset.

### 4.1.2 Method of Rewriting a Value in the Set Value Area



## Changing values in the set value area SV

Values in the set value area SV can be changed with the following conditions.
Operation method: RAM operation, ROM operation
Rewriting method: Method using the programming tool software
Method using the FP Programmer II
Method using the program (high-level instruction)

## Operation and cautions after the change

After the change, the timer or counter in operation will continue to run. Operation based on the changed set value will be start the next time the execution condition changes from off to on.

With these methods, the value in the set value area SV will change, however, the program itself will not change. Therefore, when the mode is changed and then set back to RUN or when the power is turned on, operation will take place as follows:
When a set value in the program is specified by a constant K
The constant K is preset in the set value area SV. After the change, it will no longer be effective.

When a set value in the program is specified by a set value area number
In the case of a non-hold type timer or counter, 0 is preset in the set value area SV . In the case of a hold type timer or counter, the value changed by the method on the following page is preset in the set value area SV.

## Method 1: Method using the programming tool software

Select "MONITOR \& TEST RUN" from the online menu, read the set value area SV of the timer or counter using the data monitor, and change the value.

W. Lhitite12 (Assitorire Peeristers)								- 1 [	x
FP0 5.0K		4/4		PLC	REMOTE RUN	Monitoring	Home		
1	SY	0	10				Dec 1 Word Inteeter Dec 1 Word Inteeer Dec 1 Word Integer Dec 1 Word Integer		
2	SY	1	10						
3	SV	2	20						
4	Sy	3	30						
5	Dnused   Unused   Unused   Unused   Unused   numand								
6									
7									
8									
9									$\checkmark$
4									

## Method 2: Method using the FP Programmer II

Use the word data monitor function to read the set value area SV of the timer or counter to be changed, and rewrite the value.

Example of changing the value of SV0 from K30 to K50.

1. Execute word data monitor (OP8).

2. Read SVO.

3. Clear SVO.
$\underset{\substack{\text { HELP } \\ \text { CLR } \\ \hline}}{ }$
4. Write the new changing value.


## Method 3: Method using the program (high-level instruction)

To change a set value of timer/counter based on an input condition, use a high-level instruction as shown below to rewrite the value in the set value area SV of the desired timer or counter.

## Example: Changing the set value to K20 when input X0 turns on



With the FP2SH and FP10SH, it is possible to specify the data register DT, as well the relay WR for handling word data, and other similar areas, as the set value area. The set value can be changed by changing the value to be transmitted, using the FO (MV) instruction or a similar instruction.

### 4.2 Use of Duplicated Output

### 4.2.1 Duplicated Output

Duplicated output refers to repeatedly specifying the same output in a program.
If the same output is specified for the "OT" and "KP" instructions, it is considered to be duplicated output.
Even if the same output is used for multiple application instructions, such as the SET or RST instruction, or high-level instruction for data transfer, it is not regarded as duplicated output.
If you enter RUN mode while the duplicated output condition exists, under normal conditions, it will be flagged as an error. The ERROR (ERROR/ALARM) LED will light and the self-diagnostic error flag R9000 will go on.

## How to check for duplicated use

You can check for duplicated outputs in the program using the programming tool, by the following method:
Using FP Programmer II:
Operate the TOTAL CHECK function.
(Key operation: $\begin{gathered}(-) \\ O P\end{gathered} 9$ ENT
If there are any duplicated outputs, an error message (DUP USE) and the address will be displayed.
Using programming tool software (NPST-GR):
Excute the "TOTALLY CHECK A PROGRAM" on "CHECK A PROGRAM."
If there are any duplicated outputs, an error message (DUPLICATED OUTPUT ERROR) and the address will be displayed. If you execute "SEARCH AN ERROR," the error message will be displayed, and the first address number will be displayed.

## Enabling Duplicated Output

If you need to use output repeatedly due to the content of the program, duplicated output can be enabled.
In this case, change the setting of system register 20 to "enable" (when using FP programmer II, set K1).

When this is done, an error will not occur when the program is executed.

### 4.2.2 When Output is Repeated with an OT, KP, SET, or RST Instruction

## Condition of internal and output relays during operation

When instructions are repeatedly used which output to internal and output relays such as transfer instructions and OT, KP, SET and RST instructions, the contents are rewritten at each step during operation.

Example: Processing when SET, RST and OT instructions are used (X0 to X2 are all on).


The output is determined by the final operation results.
If the same output is used by several instructions such as the OT, KP, SET, RST, or data transfer instructions, the output obtained at the I/O update is determined by the results of the operation at the greatest program address.

Example: Output to the same output relay Y10 with OT, SET and RST instructions.


When X 0 to X 2 are all on, Y 10 is output as off at $\mathrm{I} / \mathrm{O}$ update according to the result of trigger X2.

If you need to output a result while processing is still in progress, use a partial I/O update instruction F143 (IORF).

### 4.3 Leading Edge Detection Method

### 4.3.1 Instructions of Leading Edge Detection Method

Instructions using the leading edge detection operation:

- DF (leading edge differential) instructions
- Count input for CT instructions
- Count input for F118 (UDC) instructions
- Shift input for SR instructions
- Shift input for F119 (LRSR) instructions
- NSTP instructions
- P type high-level instructions (with the prefix "P") for FP-C/FP2/FP2SH/FP10SH only


## Leading edge detection method

An instruction with a leading edge detection method operates only in the scan where its trigger is detected switching from off to on.

## Standard operation



Leading edge detection operation


The condition of the previous execution and the condition of the current execution are compared, and the instruction is executed only if the previous condition was off and the current condition is on. In any other case, the instruction is not executed.

## Precautions when using an instruction which performs leading edge detection

When RUN begins, for example when the system is powered on, the off $\rightarrow$ on change of the trigger is not detected. The instruction is not executed. Execution of the instruction will take place as explained on the following page.
When used with one of the instructions indicated in instructions below which change the order of execution of instructions, the operation of the instruction may change depending on input timing. Take care regarding this point.
Be careful when using leading edge detection type instructions with control instructions, such as:

- MC and MCE instructions
- JP and LBL instructions
- F19 (SJP) and LBL instructions for FP-C/FP2/FP2SH/FP3/FP10SH only
- LOOP and LBL instructions
- CNDE instruction
- Step ladder instructions
- Subroutine instructions


### 4.3.2 Operation and Precautions at Run Start Time

## Operation of first scan after RUN begins

The leading edge detection instruction is not executed when the mode has been switched to the RUN mode, or when the power supply is booted in the RUN mode, if the execution condition is already on.


If you need to execute an instruction when the trigger (execution condition) is on prior to switching to RUN mode, use the special internal relay R9014 in your program as follows. (R9014 is a special internal relay which is off during the first scan and turns on at the second scan.)

## Example 1: DF (leading edge differential) instruction



RUN


- Even if X0 was initially on, the input condition for the DF instruction is off-to-on at the second scan, therefore differential output is obtained.

Example 2: CT (counter) instruction


### 4.3.3 Precautions when Using a Control Instruction

Instructions which leading edge detection compare the condition of the previous execution and the condition of the current execution, and execute the instruction only if the previous condition was off and the current condition is on. In any other case, the instruction is not executed.

When a leading edge detection instruction is used with an instruction which changes the order of instruction execution such as MC, MCE, JP or LBL, the operation of the instruction may change as follows depending on input timing. Take care regarding this point.

## Example 1: Using the DF instruction between MC and MCE instructions



Time chart 2


Example 2: Using the CT instruction between JP and LBL instructions


Time chart 1


Final timing at which the previous JP instruction was not executed

Time chart 2

The count is not incremented, because the final timing at which the previous JP instruction was not executed has not been changed, and the execution condition XO for the counter input has not changed.
 which the previous JP instruction was not executed

The count is incremented, because the count input changed from off to on after the final timing at which the previous JP instruction was not executed.

### 4.4 Operation Errors

### 4.4.1 Operation Errors

An operation error is a condition in which operation is impossible when a high-level instruction is executed.

When an operation error occurs, the ERROR LED will light (for FPO, ERROR/ALARM LED will blink), and the operation error flags (R9007 and R9008) will turn on.

The operation error code K45 (H2D) is set at special data register DT9000/DT90000.
The error address is stored in special data registers DT9017 and DT9018/DT90017 and DT90018.

- With the FP0 C10, C14, C16, C32/FP-e, the self-diagnosis error codes are stored in DT9000, and addresses at which errors occurred are stored in DT9017 and DT9018.
- With the FP0R/FP0 T32C/FP5/FP-X/FP2/FP2SH/FP10SH, the self-diagnosis error codes are stored in DT90000, and addresses at which errors occurred are stored in DT90017 and DT90018.


## Types of operation error

## Address error

The memory address (number) specified by index modification is outside the area which can be used

## BCD data error

Operation is attempted on non-BCD data when an instruction handling BCD data is executed, or BCD conversion is attempted on data which is not within the possible conversion range.

## Parameter error

In an instruction requiring the specification of control data, the specified data is outside the possible range.

## Over area error

The data manipulated by a block instruction exceeds the memory range.

### 4.4.2 Operation Mode when an Operation Error Occurs

Normally, the operation stops when an operation error occurs.
However, when you set system register 26 to "continuation" (K1), the CPU operates even if an operation error occurs.

System registers are specified as described below.
Using programming tool software

1. Set the mode of the CPU to PROG.
2. Select the "Option" in "PLC Configuration" option from the menu.
3. On the "PLC Configuration" menu, select "Action on error". This displays system registers 20 to 28.
4. The check of system register $\mathbf{2 6}$ is removed.
5. Press the "OK" to write the setting to the PLC.

## Using FP programmer II Ver. 2

1. Set the mode of the CPU to PROG.
2. Press the keys on the FP programmer II, as shown below.
$\square$
3. Specify the register number (26) for the parameter to be set and read the parameter.
The value set in the selected system register 26 will be displayed.

4. To change a set value, press the (HELP) "CLR" key and write the K1 parameter.

### 4.4.3 Dealing with Operation Errors

## Procedure:

## 1. Check the location of the error.

Check the address where the error occurred, which is stored in DT9017 and DT9018 or in DT90017 and DT90018, and make sure the application instruction for that address is correct and appropriate.

## 2. Clear the error.

Use a programming tool to clear the error. (If the mode selector is set to RUN, RUN will resume as soon as the error is cleared.)
In the "STATUS DISPLAY" menu of the programming tool software (NPST-GR Ver. 3.1 or later), press the "F3" key.
In FP Programmer II, press the following keys.


An error can be cleared by turning the power off and on in PROG. mode, however, the contents of the operation memory except the hold type data will be cleared.

An error can also be cleared by executing the self-diagnostic error set instruction F148 (ERR).

### 4.4.4 Points to Check in Program

This is an example of a program in which an operation error is likely to occur.
Check if an extraordinarily large value or negative value was stored in the index register.
When a data register is modified using an index register



In this case, index register (IX) modifies the address of data register DT0. If data in IX is larger than the last address of the data register, an operation error will occur. The same is true when the contents of IX are negative value.
Is there any data which cannot be converted using BCD e BIN data conversion?
When BCD-to-BIN conversion is attempted


In this case, if DTO contains a hexadecimal number with one of the digits $A$ through $F$ such as 12A4, the data conversion will be impossible and an operation error will result.

When BIN-to-BCD conversion is attempted


F80 BCD, DT1, DT101 ]

In this case, if DT1 contains a negative value or a value greater than K9999, an operation error will occur.

Check if the divisor of a division instruction is K0.
$\left\lvert\, \begin{gathered}\mathrm{XO} \\ \mathrm{H} \\ \text { [F32 \%, DTO, DT100, DT200 ] }\end{gathered}\right.$
In this case, if the content of DT100 is K0, an operation error will occur.

### 4.5 Handling Index Registers

### 4.5.1 Index Registers

Index registers are used for indirect specification of values to number (addresses) and operands in relays and memory areas. (This is also called "index modification".)
Add the index register to the relay, memory area, or constant you want to modify, and then write the modifying value (16-bit data) to the index register. The FPO and FP-e have two points, IX and IY. The FP0R, FPE, FP-X, FP2, FP2SH and FP10SH have 14 points, IO to ID.
To modify a 32-bit constant, write the 32-bit data to two words of the index register.

## Example: Transferring the contents of data register DT100 to the number specified by the contents of an index register.



In this example, the number of the destination data register varies depending on the contents of IX with DT0 acting as a base. For example, when IX is K10, the destination will be DT10, and when IX is K20, the destination will be DT20.

In this way, index registers allow the specification of multiple memory areas with a single instruction, and thus index registers are very convenient when handling large amounts of data.

Changing banks in an index register of the FP2SH and FP10SH makes it possible to increase the number of points used in a program from 14 to a maximum of 224 (14 points, 16 banks).


### 4.5.2 Memory Areas Which can be Modified with Index Registers

Index registers can be used to modify other types of memory areas in addition to data registers DT.
IXWX0, IXWY1, IXWR0, IXSV0, IXEV2, IOWX10, I2WY1, I3WR0, IASV0, IBEV2
Constants can also be modified.
IXK10, IXH1001
In the FP2SH/FP10SH, the relay numbers can be modified.
IOX0, IAR10
In the FP2/FP2SH/FP10SH, an index register can be modified using another index register.
In the FP0/FP-e, an index register cannot modify another index register.
Possibility: IOID
Impossibility: IXIY, IXIX (except FP2/FP2SH/FP10SH) IOIO, IAIA (for FP2/FP2SH/FP10SH)

When a 32-bit constant is modified, the specified number and the following number are used in combination to handle the data as a 32-bit data.

The result of the modification is a 32-bit data.
In the FPO/FP-e
Higher 16-bit area Lower 16-bit area


When using index modification with an instruction which handles 32-bit data, specify with IX.

In the FPOR/FP $\Sigma /$ FP-X/FP2/FP2SH/FP10SH (example of specify with I0)


When modifying a 32-bit number, do not specify ID. Be aware that a syntax error will not occur even if this is not specified.

### 4.5.3 Example of Using an Index Register

Repeatedly reading in external data
With the FP0R/FPE/FP-X/FP2/FP2SH/FP10SH, any value between IO and ID should be specified in place of IX.
$\stackrel{y}{c}$
Example: Writing the contents of word external input relay WX3 to a sequence of data registers beginning from DTO.

(1) When $\mathbf{X 0}$ turns on, K 0 is written to index register IX.
(2) When the X 1 turns on, the contents of WX3 is transferred to the data register specified by IXDTO.
(3) Add 1 to IX.

In this case, the contents of IX will change successively, and the destination data register will be as follows.

Input times of X1	Contents of IX	Destination data register
1st	$0 \rightarrow 1$	DT0
and	$1 \rightarrow 2$	DT1
3rd	$2 \rightarrow 3$	DT2
$:$	$:$	$:$

Repeatedly changing the output destination (for FP2/FP2SH/FP10SH only)
Example: Changing the output destination successively each time xo turns on

(1) K0 is initially written to index register $\mathbf{I O}$.
(2) When the X0 turns on, the first time Y10 will turn on.
(3) Add 1 to the value of IO. From this point on, the output destinations successively change as follows each time XO turns on.

Input times of X0	Content of IO	Output destination
1st	0	Y10
2nd	1	Y11
3rd	2	Y12
$:$	$:$	$:$

Inputting and outputting data based on a number specified by an input
With the FP0R/FP $/$ /FP-X/FP2/FP2SH/FP10SH, any value between IO and ID should be specified in place of IX.

N
Example 1: Setting a timer number specified by a digital switch

(1) Convert the BCD timer number data in WX1 to binary and set it in index register IX.
(2) Convert the BCD timer set value in WXO to binary and stored in the timer set value area SV specified by contents of IX.

Example 2: External output of the elapsed value in a timer number specified by a digital switch

(1) Convert the BCD timer number data in WX1 to binary, and set it in index register IX.
(2) Convert the elapsed value data EV in the timer specified by IX to BCD, and output it to word external output relay WY3.

### 4.6 Handling BCD Data

### 4.6.1 BCD Data

$B C D$ is an acronym for binary-coded decimal, and means that each digit of a decimal number is expressed as a binary number.

## Example: Expressing a decimal number in BCD

Decimal number	6	$\mathbf{4}$	$\mathbf{5}$	Each digit is converted to a binary   number.
BCD  $r$ $r$    (Binary-coded   decimal) 0110 0100 0101				

### 4.6.2 Handling BCD Data in the Programmable Controller

When inputting data from a digital switch to the programmable controller or outputting data to a 7-segment display (with decoder), the data must be in BCD form. In this case, use a data conversion instruction as shown in the examples at below.
BCD arithmetic instructions (F40 through F58), also exist which allow direct operation on BCD data, however, it is normally most convenient to use BIN operation instructions (F20 through F38) as operation in the programmable controller takes place in binary.

## Input from a digital switch

Use the BCD-to-BIN conversion instruction F81 (BIN).


## Output to a 7-segment display (with decoder)

Use the BIN-to-BCD conversion instruction F80 (BCD).

Programmable controller	BIN (Conversion   $\downarrow$ using F80   BCD (BCD)    instruction)	
	$\checkmark \vee$	$\downarrow \downarrow$
7-segment display	1 -	$\square \square$

### 4.7 Precautions for Programming

## Programs which do not execute correctly

Do not write the following programs as they will not execute correctly.

## Program example 1:



## Program example 2:



## Program example 3:



When a combination of contacts are set as the trigger (execution condition) of a differential instruction (DF) or timer instruction, do not use an AND stack (ANS), push stack (PSHS), read stack (RDS), or pop stack (POPS) instruction.

### 4.8 Rewrite Function During RUN

### 4.8.1 Operation of Rewrite During RUN

## How operation of rewrite during RUN

Rewriting programs can be executed even in RUN mode. When a rewrite is attempted during RUN, the tool service time is temporarily extended, program rewriting is performed, and operation is resumed without the need to change the mode. For this reason, the time of the scan during the RUN rewrite extends from several ms to several hundreds of ms .

## Operation during rewrite

External output $(\mathrm{Y})$ is held.
External input $(X)$ is ignored.
The timer ( T ) stops the clock.
Rise and fall changes in the inputs of differential instructions (DF), counter instructions (CT), and left/right shift registers are ignored.
Interrupt functions are stopped.
Internal clock relays (special internal relays) are also stopped.
Pulse output is stopped during the rewrite.

## Set values for timer/counter instructions

All set values specified with decimal constants (K) in timer and counter instructions are preset in the corresponding set value areas (SV). Values in the elapsed value area (EV) do not change.

## Operation of rewrite during RUN completed flag

The rewrite during RUN completed flag (R9034) is a special internal relay that goes on for only the first scan following the completion of rewriting in the RUN mode. It can be used instead of the initial pulse relay following a change in the program.

### 4.8.2 Cases Where Rewriting During Run is not Possible

## When the timeout error message is indicated:

Even if the timeout error message is indicated, it is highly possible that the program in PLC has been already rewritten. Carry out the following operations.


## 1. When ladder symbol mode

As a ladder editing is left, set it to the offline edit mode. Complete the program conversion in the tool software, and then change to the online edit mode to check.

## 2. When boolean mode

A ladder editing is cleared.
Set it to the offline edit mode and carry out the editing operation again. After the operation, change to the online edit mode to check.
When the timeout error occurs using the through mode in GT series programmable display.
Extend the timeout time of the programmable display using the GTWIN.
(The default setting is 5 seconds.)


Select "Transfer" from "File" in the menu bar. The "transfer data" screen will open. Select "Condition" to open "Communication Setting" screen. Change the value for "Timeout". Click "OK" button to complete the change of setting.

## For FPO/FP-e/FPI/FP-X/FPOR

Cases where rewriting is not possible during RUN

1. When the result of rewriting is a syntax error.
<Example>
When executing the rewriting which does not form the following pair of instructions.
2. Step ladder instructions (SSTP/STPE)
3. Subroutine instructions (SUB/RET)
4. Interrupt instructions (INT/IRET)
5. JP/LBL
6. LOOP/LBL
7. MC/MCE

Also, rewritng is not possible during RUN in case of other syntax errors.
2. During the forced input/output operation

## Interrupt restrictions

When using interrupt, high-speed counter, pulse output or PWM output functions, do not perform a rewrite during RUN.
If a rewrite during RUN is executed, the operation as below will be performed. Exercise caution.

1. Interrupt programs will be disabled. Enable by executing an ICTL instruction once again.
<Example> Using R9034 (rewrite during RUN completed flag)

2. The high-speed counter will continue to count.

Target value match on/off instructions (F166/F167) will continue. Coincidence interrupt programs will be disabled when the F166/F167 instruction is running.
3. Pulse output and PWM output will be stopped.

State	Instruction number	Name
Continue	F171 (SPDH)	Pulse output (with channel specification) (Home position return)
Stop	F172 (PLSH)	Pulse output (with channel specification) (JOG operation)
Stop	F173 (PWMH)	PWM output (with channel specification)
Continue	F174 (SPOH)	Pulse output (with channel specification) (Selectable data table control operation)
Continue	F175 (SPSH)	Pulse output (Linear interpolation)
Stop	F176 (SPCH)	Pulse output (Circular interpolation)

4. The fixed time sampling trace will not be stopped.

## For FP2/FP2SH

Instructions that cannot be added or deleted by rewriting during RUN

1. Step ladder instructions (SSTP/STPE)
2. Subroutine instructions (SUB/RET)
3. Interrupt instructions (INT/IRET)
4. Control instructions (ED/LBL)

* The LBL instruction can be inserted/written, but cannot be deleted/erased.

Instructions that cannot be added or deleted during subprograms

1. JP/LBL
2. LOOP/LBL
3. MC/MCE

Cases where rewriting is not possible during RUN

1. When a syntax error occurred.
2. When the forced input/output operation is running.

### 4.8.3 Procedures and Operation of Rewrite During RUN

Item		FPWIN GR   Ladder symbol mode	FPWIN GR Boolean mode
Rewrite procedure		Maximum jof 128 steps.Changes are performed by block. When PG conversion is executed online, the program will be rewritten.	Rewriting performed by step.Caution is required as rewriting takes place simultaneously with the change.
Operation of each instruciton	OT/KP	If an instruction written in block a is deleted in block $b$, the condition before the rewrite will be held.s	If an instruction written in block a is deleted in block $b$, the condition before the rewrite will be held. Y contact relays which are on bill be held in the on sattus. To turn them off in the RUN mode, use forced output.
	TM/CT	- If an instruction written in block a is deleted in block $b$, the condition before the rewrite will be held.   - Set values specified by K constants in TM/CT instructions are preset in all of the corresponding SV's in the program. (Elapsed values EV do not change.)	- If an instruction written in block a is deleted in block b, the condition before the rewrite will be held.   - Set values specified by K constants in TM/CT instructions are preset in all of the corresponding SV's in the program. (Elapsed values EV do not change.)
	Fun High-level instructions	If an instruction written in block a is deleted in block $b$, the condition before the rewrite will be held.	- Ifdeleted, the outputmemory area will be held.
	MC/MCE	When writing MC/MCE instructions, be sure to write the instructions as a pair.	Writing or deleting a single instruction during RUN is not possible. Write or delete the instruction in FPWIN GR ladder symbol mode.
	CALL/SUB/ RET	A subroutine is a program appearing between SUBn and RET instructions. Be sure to write it to an address which follows the ED instruction.	Write in the order: RET, SUB, CALL Delete in the order: CALL, SUB, RET
	INT/IRET	An interrupt program is an program appearing between INTn and IRET instructions. Be sure to write it to an address which follows the ED instruction.	Write in the orde: IRET, INTDelete in the order: INT, IRET
	SSTP/STPE	A distance with the same number cannot be defined twice. An SSTP instruction cannot be written in a subprogram.	Writign and deletion of a single instruction is not possible for a program with no step ladder area.Write or delete both instructions simultaneously in FPWIN GR ladder symbol mode.   In the case of an SSTP instruction only, writing and deletion of a single instruction is possible for a program with a step ladder area.
	$\begin{aligned} & \text { JP/LOOP/ } \\ & \text { LBL } \end{aligned}$	Be sure to write the instruction for setting the loop number before LBL-LOOP instructions.	Write in the order: JP-LBL or LOOPLBLDelete in the order: LBL-JP or LBLLOOP

### 4.9 Processing During Forced Input and Output

### 4.9.1 Processing when forced input/output is initiated during RUN



## 1. Processing of external input (X)

Regardless of the state of the input from the input device, forced on/off operation will take precedence at a contact specified for forced input/output in the above procedure B. At this time, the input LED will not blink, however, the area of input $X$ in the operation memory will be rewritten.

Contacts not specified will read in the on/off state according to the condition of the inptu from the input device.

## 2. Processing of external output (Y)

Regardless of the result of operation, forced on/off will take precedence at a contact specified for forced input/ouput in the above procedure A. At this time, the area of output Y in the operation memory will be forcedly rewritten. External output will take place according to the input/output update timing in the above diagram.

The on/off state of contacts not specified will be determined by the operation result.

## 3. Processing of Timer (T) and Counter (C)

Regardless of the timer/counter input condition, forced on/off operation will take precedence at a contact specified for forced input/output. At this time, the contact of the timer $(\mathrm{T})$ or counter ( C ) in the operation memory will be rewritten. Timing and counting will not take place during control.
The on/off state of contacts not specified will be determined by the operation result.

## Operation during operation

## For small-sized PLCs FPOR, FPO, FPS and FP-X

Forced relay $R$ and output $Y$ are rewritten according to the results of operation.

## For medium-sized PLCs FP2 and FP2SH

For the relay and output Y specified by OT or KP instruction, the value of the forced processing has a priority. When rewritten by a high-level instruction, the result of the instruction has a priority.

### 4.10 Second Program Area (FP2SH, FP10SH)

## Explanation of operation method for FP2SH and FP10SH

For the type of FP2SH of which program capacity exceeds 60k steps and for the type of FP10SH of which program capacity exceeds 60k steps if the memory is added, the program area is divided into the first program area and the second program area. The divided programs are separate program units, however, uploading and downloading with TOOL is performed simultaneously. There are following restrictions for the operation devices.

Device and function	First program	Second program
Bits X, Y, R, LWords WX, WY, WR,   WL, DT, Ld, In, FI	Common device	
SALL Subroutine call	The subroutine of the second pro-   gram cannot be called up.	The subroutine of the first program   cannot be called up.
SUB Subroutine entry	100	100
JP Jump	255 (However, jumping to the second   program is not possible.)	255 (However, jumping to the first   program is not possible.)
LBL Label	255	255
INT Interrupt program	Can be written in the first program   only.	Cannot be used.
SSTP Step ladder	Can be written in the first program   only.	Cannot be used.
MC, MCE Master control	255 (A pair must be formed in the first   program.)	255 (A pair must be formed in the   second program.)

## Syntax check

- For SUB, JP, LBL, MC and MCE, the checks are performed as the above table.
- The duplicated output of OT and KP instructions and the duplicated use of timer and counter instructions are checked throughout the first and second programs.


## Operation flow diagram of FP2SH and FP10SH



As shown in the left diagram, the second program is executed after the first program has completed.

At the points when the first program or the second program starts, the following settings will be automatically selected.
$\binom{$ Index register bank $=0}{$ File register bank $=0}$

## Program switching method with FPWIN GR

Select "Edit" $\rightarrow$ "Switch Programming Area" in the menu bar to change the program area.


Note
The monitor data in the tool software is the data monitor when both first and second programs complete.

Chapter 5

## Appendix

Appendix ..... 5-1
5.1 System Registers / Special Internal Relays / Special Data Registers ..... 5-3
5.1.1 Table of System Registers for FPO ..... 5-5
5.1.2 Table of Special Internal Relays for FP0 ..... 5-15
5.1.3 Table of Special Data Registers for FP0 ..... 5-18
5.1.4 Table of System Registers for FP-e ..... 5-28
5.1.5 Table of Special Internal Relays for FP-e ..... 5-32
5.1.6 Table of Special Data Registers for FP-e. ..... 5-36
5.1.7 Table of System Registers for FPOR ..... 5-43
5.1.8 Table of Special Internal Relays for FPOR ..... 5-49
5.1.9 Table of Special Data Registers for FPOR ..... 5-59
5.1.10 Table of System Registers for FP $\Sigma$ ..... 5-78
5.1.11 Table of Special Internal Relays for FP $\Sigma$ ..... 5-84
5.1.12 Table of Special Data Registers for FP $\Sigma$ ..... 5-93
5.1.13 Table of System Registers for FP-X. ..... 5-107
5.1.14 Table of Special Internal Relays for FP-X ..... 5-119
5.1.15 Table of Special Data Registers for FP-X ..... 5-130
5.1.16 Table of System Registers for FP2/FP2SH/FP10SH ..... 5-151
5.1.17 Table of Special Internal Relays for FP1/FP-M/FP2/FP2SH/FP10SH/FP3 ..... 5-165
5.1.18 Special Data Registers for FP2/FP2SH/FP3/FP10SH ..... 5-176
5.2 Table of Basic Instructions ..... 5-201
5.3 Table of High-level Instructions ..... 5-209
5.4 Table of Error codes ..... 5-229
5.5 MEWTOCOL-COM Communication Commands ..... 5-242
5.6 Hexadecimal/Binary/BCD ..... 5-243
5.7 ASCII Codes ..... 5-244

### 5.1 System Registers / Special Internal Relays / Special Data Registers

## Precation for System Registers

## What is the system register area

- System registers are used to set values (parameters) which determine operation ranges and functions used. Set values based on the use and specifications of your program.
- There is no need to set system registers for functions which will not be used.


## Type of system registers

The registers to be used depend on each PLC.
(1) Allocation of user memory (System registers 0, 1 and 2)

These registers set the size of the program area and file register area, allowing the user memory area to be configured for the environment used. The size of the memory area will vary depending on the type.
(2) Allocation of timers and counters (System register 5)

The number of timers and counters is set by specifying the starting counter number.
(3) Hold/non-hold type setting (System registers 6 to 18)

When these registers are set to "hold type", the values in the relays and data memory will be retained even if the system is switched to PROG. mode or the power is turned off. If set to "non-hold type", the values will be cleared to " 0 ".
(4) Operation mode setting on error (System registers 4, 20 to 28)

Set the operation mode when errors such as battery error, duplicated use of output, I/O verification error and operation error occur.
(5) Time settings (System registers 30 to 34)

Set time-out error detection time and the constant scan time.
(6) Remote I/O operation settings (System registers 35 and 36)

These registers are used to select whether or not to wait for a slave station connection when the remote $\mathrm{I} / \mathrm{O}$ is started, and the remote $\mathrm{I} / \mathrm{O}$ update timing.
(7) MEWNET-W0/MEWNET-W/P PLC link settings (System registers 40 to 47,50 to 55, and 57)

These settings are for using link relays and link registers for MEWNET-W0/MEWNET-W/P PC(PLC) link communication.
Note) The default value setting is "no PC(PLC) link communication".
(8) MEWNET-H PC(PLC) link settings (System register 49)

Set the data size to be processed during one scan in the MEWNET-H PC(PLC) link communication.
(9) Input settings (System registers 400 to 406)

When using the high-speed counter function, pulse catch function or interrupt function, set the operation mode and the input number to be used for the function.
(10) Input time constant settings (FP1/FP-M System registers 404 to 407)

Changing the input signal width to be loaded enables to prevent the malfunctions caused by chattering or noises.
(11) Number of temperature input averaging process settings (System register 409)

The number of averaging times can be set in order to even out the variation in the input thermocouple values. For normal use it, set the number of times to t least twenty. For default value " 0 ", the number of average processing times is 20 .
(12) Tool and COM. ports communication settings (System registers 410 to 421)

Set these registers when the Tool port,and COM1 and COM2 ports are to be used for computer link, general-purpose serial communication, PC(PLC) link, and modem communication.Note that the default setting is computer link mode.

## Checking and changing the set value of system register

If you are going to use a value which is already set(the value which appears when read), there is no need write it again.

## Using programming tool software

Produce:

1. Set the control unit in the PROG mode.
2.Option ->PLC Configuration
2. When the function for which setting are to be entered is selected in the PLC Configuration dialog box,the value and setting status for the selected system register are displayed. To change the value and setting status, write in the new value and /or select the setting status.
4.To register these settings,choose OK

## Precautions for system register setting

-System register settings are effective from the time they are set.
However, input settings,tool port,COM port,and modem connection settings become effective when the mode is changed from PROG. to RUN. With regard to the modem connection setting, when the power is turned off and on or when the mode is changed from PROG. to RUN, the controller sends a command to the modem which enables it for reception.
-When the initialized operation is performed, all set system register values (parameters) will be initialized

### 5.1.1 Table of System Registers for FPO

## Content of system register settings

## 1. Setting the timers and counters (System register 5)

By indicating the counter start number, the timer and counter are split into two areas. The timer and counter together total 144 points, and the default value for th split is 100 . Thus the point allotment is as shown in the table below.

Timer	100 points (No. 0 to No. 99)
Counter	44 points (No. 100 to No. 143)

## Setting example

To increase the number of timers to 120, change the value of system register 5 to K120.


For T32, set the system registers 5 and 6 to the same value. This sets the timer to a non-hold type and counter to a hold type.

By setting system register 5 to " 0 ", the whole area becomes the counter. Also, by setting it to the value " 144 ", the whole area becomes the timer.

## 2. Hold types and non-hold type settings (System registers 6 to 8 and 14)

With the C10/C14/C16/C32/SL1, the areas held in the event of a power supply interruption are fixed at the areas shown in the table below, and the settings for system registers 6 to 8 and 14, will be invalid.

C10/C14/C16

Timer	Non-hold type: All points
Counter	Non-hold type: From the set value to C139
	Hold type: 4 points (elapsed values ) C140 to C143
Internal relay	Non-hold type: 976 points (R0 to R60F)   61 words (WR0 to WR60)
	Hold type: 32 points (R610 to R62F)   2 words (WR61 to WR62)
Data register	Non-hold type: 1652 words (DT0 to DT1651)
	Hold type: 8 words (DT1652 to DT1659)

C32/SL1

Timer	Non-hold type: All points
Counter	Non-hold type: From the set value to C127
	Hold type: 16 points (elapsed values )C128 to C143
Internal relay	$\begin{array}{ll}\text { Non-hold type: } & 880 \text { points (R0 to R54F) } \\ 55 \text { words (WR0 to WR54 }\end{array}$
	Hold type: 128 points (R550 to R62F)   8 words (WR55 to WR62)
Data register	Non-hold type: 6112 words (DT0 to DT6111)
	Hold type: 32 words (DT6112 to DT6143)

With the T32, set each relay and register to a hold type or non-hold type.


For normal situations, set the system registers 5 and 6 to the same value. This sets the timer to a nonhold type and counter to a hold type.
By setting this value to " 0 ", the whole area becomes hold type. Also, by setting it to the valeu 1 higher than the last number, the whold area becomes non-hold type.

C32/SL1

Type		
Area	All non-hold type	
Timer	All hold type	
Counter	Non-hold type	Non-hold type: 10 words (WR0 to WR9)
Internal   relay	Hold type	Hold type: 53 words (WR10 to WR62)
Data register		All hold type

Table of system registers
C10, C14, C16, C32, T32 and SL1 in the table respectively indicate 10-point, 14-point, 16-point, 32-point type and S-LINK type FPO control units.

Item	Address	Name	Default value	Descriptions	
Allocation of user memory	0	Sequence program area capacity	-	The set values are fixed and cannot be changed.   The stored values vary depending on the type.   K3: 3K words (C10, C14, C16)   K5: 5K words (C32, SL1)   K10: 10K words (T32)	
Hold/   Non-   hold	5	Timer and counter division (setting of starting counter number)	$\begin{aligned} & 100 \\ & (\mathrm{~K} 100) \end{aligned}$	0 to 144   (K0 to K144)	Set the system registers 5 and 6 to the same value.
	6	Hold type area starting number setting for timer and counter   (Available type: T32)	$\begin{aligned} & 100 \\ & (\mathrm{~K} 100) \end{aligned}$	0 to 144   (K0 to K144)	
	7	Hold type area starting number setting for internal relays (in word units) (Available type: T32)	$\begin{aligned} & 10 \\ & (\mathrm{~K} 10) \end{aligned}$	0 to 63 (K0 to K63)	
	8	Hold type area starting number setting for data registers   (Available type: T32)	$\begin{aligned} & 0 \\ & (\mathrm{KO}) \end{aligned}$	0 to 16384 (K0 to K16384)	
	14	Hold or non-hold setting for step ladder process (Available type: T32)	Non-hold (K1)	Hold (K10) Non-hold (K1)	
Action on error	20	Disable or enable setting for duplicated output	Disable (K0)	Disable (will be syntax error) (KO) Enable (will not be syntax error) (K1)	
	23	Operation setting when an I/O verification error occurs	Stop   (K0)	Stop (KO)   Operate (K1)	
	26	Operation setting when an operation error occurs	Stop   (KO)	$\begin{aligned} & \hline \text { Stop (K0) } \\ & \text { Operate (K1) } \\ & \hline \end{aligned}$	
	27	Operation settings when communication error occurs in the remote I/O (S-LINK) system	Operate   (K1)	Stop (KO)   Operate (K1)	

Note) The setting values of the system registers No. 6, 7, 8 and 14 becomes invalid with the types other than T32.

Item	Address	Name		Default value		Descriptions
Time setting	31	Wait time setting for multi-frame communication		6500 ms (K2600)	10 ms to 81900 ms (K4 to K32760) Used of default setting (K2600/6500 ms ) is recommended.	
	34	Constant va for scan tim	ue settings	$\begin{aligned} & 0 \mathrm{~ms} \\ & (\mathrm{KO}) \end{aligned}$	2.5 once 0 (K set $v$	s to 160 ms (K1 to K64 ): Scans each specified time interval. :Normal scan   ue $\times 2.5 \mathrm{~ms}=$ Constant value setting for multi-frame communication (ms)   In programming tool software, enter the time (a number divisible by 2.5 ).   In FP Programmer II, enter the set value (equal to the time divided by 2.5 ).
Input setting	400	High-speed   counter   mode   settings   (X0 to X2)	Setting by programming tool software	Do not set $\mathrm{X0}$ as highspeed counter.	CHO	```Do not set X0 as high-speed counter. 2-phase input (X0, X1) 2-phase input (X0, X1), Reset input (X2) Incremental input (X0) Incremental input (XO), Reset input (X2) Decremental input (X0) Decremental input (X0), Reset input (X2) Individual input (X0, X1) Individual input (X0, X1), Reset input (X2) Direction decision (X0, X1) Direction decision (X0, X1), Reset input (X2)```
				Do not set X 1 as highspeed counter.	CH1	Do not set X1 as high-speed counter.   Incremental input (X1)   Incremental input (X1), Reset input (X2)   Decremental input (X1)   Decremental input (X1), Reset input (X2)

Note1) If the operation mode is set to 2-phase, individual, or direction differentiation, the setting for CH 1 is invalid.
Note2) If reset input settings overlap, the setting of CH 1 takes precedence.
Note3) If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter] '[Pulse catch]' [Interrupt input].

FPO


Note1) If the operation mode is set to 2-phase, individual, or direction differentiation, the setting for CH 1 is invalid.
Note2) If reset input settings overlap, the setting of CH 1 takes precedence.
Note3) If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter] '[Pulse catch]' [Interrupt input].


Note1) If the operation mode is set to 2-phase, individual, or direction differentiation, the setting for CH 3 is invalid.
Note2) If reset input settings overlap, the setting of CH 3 takes precedence.
Note3) If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter] '[Pulse catch]' [Interrupt input].

FP0


Note1) With the TOOL software, "0" or " 1 " is set for each bit on the screen in the setting for system register 403.
Note2) If system register 400 to 403 are set simultaneously for the same inptu relay, the following precedence order is effective:
[High-speed counter] '[Pulse catch]' [Interrupt input].
When the high-speed counter is being used in the incremental input mode, even if input X0 is specified as an interrupt input and as pulse catch input, those settings are invalid, and input X0 functions as counter input for the high-speed counter.
No. 400: H 1 a This setting will be valid.
No. 402: H1
No. 403: H1

Item	Address	Name		Default value	Descriptions
Tool port setting	410	Unit No. setting for tool port (when connecting CNET)		$\begin{aligned} & 1 \\ & (\mathrm{~K} 1) \end{aligned}$	1 to 32 (K1 to K32)
	411	Communication format setting for tool port		Modem:   Disabled   Data   length:   8 bits   (H0)	Using FPWIN GR   Modem: Disable/Enable   Data length: 7 bits/8 bits   Using FP programmer II Specify the setting contents using H constants.   When connecting a modem, set the unit number to 1 with system register 410.
	414	Baud rate setting	Setting by program ming tool software	$\begin{aligned} & 9600 \\ & (\mathrm{HO}) \end{aligned}$	$\begin{aligned} & \text { 0: } 9600 \mathrm{bps} \\ & \text { 1: } 19200 \mathrm{bps} \end{aligned}$
Tool port/ RS232C port setting	414	Baud rate setting for tool port and RS232C port	Setting by FP programmer II	H1	If 19200 bps is set for both the tool port and RS232C port, H100 should be written.

FP0


Item	Address	Name		Default value	Descriptions
	417	Starting address setting for received buffer		$\begin{aligned} & 0 \\ & (\mathrm{KO}) \end{aligned}$	C10C/C14C/C16C: 0 to 1659 (K0 to K1659)   C32C/SL1: 0 to 6143 (K0 to K6143)   T32C: 0 to 16383 (K0 to K16383)
	418	Capacity setting for reception buffer	$\begin{aligned} & \text { C10C/C14 } \\ & \text { C/C16C } \end{aligned}$	$\begin{aligned} & \hline 1660 \\ & (\mathrm{~K} 1660) \\ & \hline \end{aligned}$	0 to 1660 (K0 to K1660)
			C32C/SL1	$\begin{aligned} & \hline 6144 \\ & \text { (K6144) } \end{aligned}$	0 to 6144 (K0 to K6144)
			T32C	$\begin{aligned} & 16384 \\ & \text { (K16384) } \\ & \hline \end{aligned}$	0 to 16384 (K0 to K16384)

### 5.1.2 Table of Special Internal Relays for FP0

The special internal relays turn on and off under special conditions. The on and off states are not output externally. Writing is not possible with a programming tool or an instruction.

FP0

Address	Name	Description
R9000	Self-diagnostic error flag	Turns on when a self-diagnostic error occurs. The self-diagnostic error code is stored in DT9000.
$\begin{aligned} & \text { R9001 to } \\ & \text { R9003 } \end{aligned}$	Not used	-
R9004	I/O verification error flag	Turns on when an I/O verification error occurs. The position number of the I/O where the verification error was occurred is stored in DT9010.
$\begin{aligned} & \text { R9005, } \\ & \text { R9006, } \end{aligned}$	Not used	-
R9007	Operation error flag (hold)	Turns on and keeps the on state shen an operation error occurs.   The address where the error occurred is stored in DT9017. (Indicates the first operation error which occurred).
R9008	Operation error flag (non-hold)	Turns on for an instant when an operation error occurs. The address where the operation error occurred is stored in DT9018. The contents change each time a new error occurs.
R9009	Carry flag	Turns on for an instant,   - when an overflow or underflow occurs.   - when " 1 " is set by one of the shift instructions.
R900A	> Flag	Turns on for an instant when the compared results become larger in the "F60 (CMP) to F63 (DWIN) comparison instructions."
R900B	= Flag	Turns on for an instant, - when the compared results are equal in the comparison instructions (F60 to F63).   - when the calculated results become 0 in the arithmetic instructions.
R900C	< Flag	Turns on for an instant when the compared results become smaller in the "F60 (CMP) to F63 (DWIN) comparison instructions.
R900D	Auxiliary timer contact	Turns on when the set time elapses (set value reaches 0 ) in the timing operation of the F137(STMR)/F183(DSTM) auxiliary timer instruction.   It turns off when the trigger for auxiliary timer instruction turns off.
R900E	Tool port error flag	This turns on when an error occurs during communication with a programming tool.
R900F	Constant scan error flag	Turns on when the scan time exceeds the time specified in system register 34 during constant scan execution.
R9010	Always on relay	Always on.
R9011	Always off relay	Always off.
R9012	Scan pulse relay	Turns on and off alternately at each scan.

FPO

Address	Name	Description
R9013	Initial on pulse relay	Turns on only at the first scan in the operation.   Turns off from the second scan and maintains the off state.
R9014	Initial off pulse relay	Turns off only at the first scan in the operation.   Turns on from the second scan andmaintains the on state.
R9015	Step ladder initial on pulse relay	Turns on for an instant only in the first scan of the process the moment step ladder process is opened.
$\begin{aligned} & \text { R9016, } \\ & \text { R9017 } \\ & \hline \end{aligned}$	Not used	-
R9018	0.01 s clock pulse relay	Repeats on/off operations in 0.01 s cycles.
R9019	0.02 s clock pulse relay	Repeats on/off operations in 0.02 s cycles.
R901A	0.1 s clock pulse relay	Repeats on/off operations in 0.1 s cycles.
R901B	0.2 s clock pulse relay	Repeats on/off operations in 0.2 s cycles.
R901C	1 s clock pulse relay	Repeats on/off operations in 1 s cycles.
R901D	2 s clock pulse relay	Repeats on/off operations in 2 s cycles.
R901E	1 min clock pulse relay	Repeats on/off operations in 1 min cycles.
R901F	Not used	-
R9020	RUN mode flag	Turns off while the mode selector is set to PROG. Turns on while the mode selector is set to RUN.
R9021 to R9025	Not used	-
R9026 (*Note)	Message flag	Turns on while the F149 (MSG) instruction is executed.
R9027 (*Note)	Remote mode flag	Turns on while the mode selector is set to REMOTE.
R9028	Not used	-

Note) Used by the system.

FPO

Address	Name		Description
R9029 (*Note)	Forcing flag		Turns on during forced on/off operation for input/output relay timer/counter contacts.
R902A (*Note)	External interrupt enable flag		Turns on while the external interrupt trigger is enabled by the ICTL instruction.
R902B (*Note)	Interrupt error flag		Turns on when an interrupt error occurs.
$\begin{aligned} & \text { R902C to } \\ & \text { R902F } \end{aligned}$	Not used		-
$\begin{aligned} & \hline \text { R9030, } \\ & \text { R9031 } \\ & \hline \end{aligned}$	Not used		-
R9032	RS232C port mode flag		When "General-use port" is selected, "K2" goes on.
R9033	Printout instruction flag		Turns on while a F147 (PR) instruction is executed. Turns off when a F147 (PR) instruction is not executed.
R9034	Rewrite during RUN flag		This is a special internal relay that goes on for only the first scan following the completion of rewriting in the RUN mode. (CPU Ver. 2.1 or later available)
R9035	S-LINK I/O communication error flag		Turns on when the S-LINK error (ERR 1, 3 or 4) occurs using S-LINK system.
R9036	S-LINK communication status flag		Turns on when communication is taking place with an SLINK input/Ooutput unit.
R9037	RS232C communication error flag		Turns on when the serial data communication error occurs.
R9038	RS232C reception completed flag		Turns on when a terminator is received during the serial data communicating.
R9039	RS232C transmission completed flag		Turns on while data is not send during the serial data communicating.   Turns off while data is being sent during the serial data communicating.
R903A	High-speed counter control flag	ch0	Turns on while the high-speed counter instructions F166(HC1S) to F170(PWM) are executed.
R903B	High-speed counter control flag	ch1	Turns on while the high-speed counter instructions F166(HC1S) to F170(PWM) are executed.
R903C	High-speed counter control flag	ch2	Turns on while the high-speed counter instructions F166(HC1S) to F170(PWM) are executed.
R903D	High-speed counter control flag	ch3	Turns on while the high-speed counter instructions F166(HC1S) to F170(PWM) are executed.
R903E, R903F	Not used		-

Note) Used by the system.

### 5.1.3 Table of Special Data Registers for FP0

The special data registers are one word (16-bit) memory areas which store specific information. With the exception of registers for which "Writing is possible" is indicated in the "Description" column, these registers cannot be written to.

Address		Name	Descriptions
FP0 T32	$\begin{aligned} & \text { FP0 C10, } \\ & \text { C14, C16, } \\ & \text { C32, SL1 } \end{aligned}$		
DT90000	DT9000	Self-diagnostic error code	The self-diagnostic error code is stored here when a self-diagnostic error occurs. Monitor the error code using decimal display.
DT90010	DT9010	I/O verify error unit	The position of the I/O for which an error occurred is stored in bits 0 to 3 .
DT90014	DT9014	Auxiliary register for operation	One shift-out hexadecimal digit is stored in bit positions 0 to 3 when F105 (BSR) or F106 (BSL) instruction is executed.
DT90015	DT9015	Auxiliary register for operation	The divided remainder ( 16 -bit) is stored in DT9015/DT90015 when F32(\%) or F52(B\%) instruction is executed.   The divided remainder (32-bit) is stored in DT9015 and DT9016/DT90015 and DT90016 when F33(D\%) or F53(DB\%) instruction is executed.
DT90016	DT9016		
DT90017	DT9017	Operation error address (hold)	After commencing operation, the address where the first operation error occurred is stored. Monitor the address using decimal display.
DT90018	DT9018	Operation error address (non-hold )	The address where an operation error occurred is stored. Each time an error occurs, the new address overwrites the previous address. At the beginning of scan, the address is 0 . Monitor the address using decimal display.
DT90019	DT9019	2.5 ms ring counter	The data stored here is increased by one every 2.5 ms . (H0 to HFFFF)   Difference between the values of the two points (absolute value) $\times 2.5 \mathrm{~ms}=$ Elapsed time between the two points.


Address		Name	Descriptions
FP0 T32	FP0 C10, C14, C16, C32, SL1		
-	DT9020   (Availabl e type:   SL1)	S-LINK status flag/error flag	Notes   - ERR1 and ERR3 occur even if the power supply on the S-LINK side is interrupted, but are canceled when the power supply is turned on again.   - ERR4 is held. To cancel it, repair the disconnected wire in the S-LINK syste, or whatever iscausing the problem, and then either turn the power to the FPO on again, press the SET switch to reset it, or turn the power supply on again on the S-LINK unit side.


Address		Name	Descriptions
FP0 T32	$\begin{aligned} & \text { FP0 C10, } \\ & \text { C14, C16, } \\ & \text { C32, SL1 } \end{aligned}$		
-	DT9021   (Availabl   e type:   SL1)	No. of units connected to S-LINK/error address	(When normal)   Note   - When the SET switch is pressed, the number of input/output units connected to the S-LINK system is set.   (If the same address has been specified for multiple units, the units are counted as a single unit. This is invalid, however, if an ERR4 error is in progress.)   (If ERR4 occurs)
DT90022	DT9022	Scan time (current value)   (*Note)	The current scan time is stored here. Scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) $\times 0.1$ K50 indicates 5 ms .

Scan time display is only possible in RUN mode, and shows the operation cycle time. The maximum and minimum values are cleared when each the mode is switched between RUN mode and PROG. mode.

Address		Name	Descriptions
FP0 T32	FP0 C10, C14, C16, C32, SL1		
DT90023	DT9023	Scan time (minimum value) (*Note1)	The minimum scan time is stored here. Scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) $\times 0.1 \mathrm{~ms}$ Example: K50 indicates 5 ms .
DT90024	DT9024	Scan time (maximum value) (*Note 1)	The maximum scan time is stored here. The scan time is calculated using the formula: Scan time (ms) = stored data (decimal) $\times 0.1 \mathrm{~ms}$ Example: K125 indicates 12.5 ms .
DT90025   (*Note2)	DT9025 (*Note2)	Mask condition monitoring register for interrupts (INT 0 to 5)	The mask conditions of interrupts using ICTL instruction can be monitored here. Monitor using binary display.
DT90026	DT9026	Not used	-
DT90027   (*Note2)	DT9027   (*Note2)	Periodical interrupt interval (INT24)	The value set by the ICTL instruction is stored. K0: periodical interrupt is not used. K1 to K3000: 10 ms to 30 s
DT90028	DT9028	Not used	-
DT90029	DT9029	Not used	-
DT90030   (*Note2)	DT9030   (*Note2)	Character storage by F149 MSG instruction	The contents of the specified message are stored in these special data registers when F149 (MSG) instruction is executed.
DT90031   (*Note2)	DT9031   (*Note2)		
$\begin{aligned} & \text { DT90032 } \\ & \text { (*Note2) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { DT9032 } \\ \text { (*Note2) } \\ \hline \end{array}$		
$\begin{aligned} & \text { DT90033 } \\ & \text { (*Note2) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DT9033 } \\ & \text { (*Note2) } \\ & \hline \end{aligned}$		
$\begin{aligned} & \hline \text { DT90034 } \\ & \text { (*Note2) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DT9034 } \\ & \text { (*Note2) } \end{aligned}$		
$\begin{aligned} & \hline \text { DT90035 } \\ & \text { (*Note2) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { DT9035 } \\ \text { (*Note2) } \\ \hline \end{array}$		
DT90036	DT9036	Not used	-
DT90037	DT9037	Work 1 for F96 (SRC) instruction	The number of data that match the searched data is stored here when F96 (SRC) instruction is executed.

Note1) Scan time display is only possible in RUN mode and shows the operation cycle time. The maximum and minimum values are cleared when each mode is switched between RUN mode and PROG. mode.
Note2) Used by the system.

Address		Name	Descriptions
FP0 T32	FPO C10, C14, C16, C32, SL1		
DT90038	DT9038	Work 2 for F96 (SRC) instruction	The position of the first matching data, counting from the starting 16-bit area, is stored here when an F96 (SRC) instruction is executed.
DT90039   to   DT90043	$\begin{array}{\|l\|} \hline \text { DT9039 } \\ \text { to } \\ \text { DT9043 } \end{array}$	Not used	-
DT90044	DT9044	High-speed counter elapsed value for ch0 (*Note1)	The elapsed value (24-bit data) for the highspeed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high-speed counter is automatically transferred to the special registers DT9044 and DT9045/DT90044 and DT90045.   The value can be written by executing F1 (DMV) instruction.
DT90045	DT9045		
DT90046	DT9046	High-speed counter target value for ch0 (*Note1)	The target value (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here.   Target values have been preset for the various instructions, to be used when the high-speed counter related instruction F166 to F170 is executed. These preset values can only be read, and cannot be written.
DT90047	DT9047		
DT90048	DT9048	High-speed counter elapsed value area for ch1 (*Note1)	The elapsed value (24-bit data) for the highspeed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high-speed counter is automatically transferred to the special registers DT9048 and DT9049/DT90048 and DT90049.   The value can be written by executing F1 (DMV) instruction.
DT90049	DT9049		
DT90050	DT9050	High-speed counter target value area for ch1 (*Note1)	The target value (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here.   Target values have been preset for the various instructions, to be used when the high-speed counter related instruction F166 to F170 is executed. These preset values can only be read, and cannot be written.
DT90051	DT9051		

Note1) In the FP0 compatibility mode of FPOR, it is 32-bit data.

Address		Name	Descriptions
FP0 T32	FPO C10, C14, C16, C32, SL1		
DT90052	DT9052	High-speed counter control flag	A value can be written with F0 (MV) instruction to reset the high-speed counter, disable counting, stop high-speed counter instruction (F168), and clear the high-speed counter.   Control code setting   Software is not reset: $\mathrm{H} 0(0000)$   Perform software reset: H1 (0001)   Disable count: H2 (0010)   Disable hardware reset: H4 (0100)   Stop pulse output (clear instruction): H8 (1000)   Perform software reset and stop pulse output:   H9 (1001)   The 16 bits of DT9052/DT90052 are allocated in groups of four to high-speed channels 0 to 3 as shown below.   A hardware reset disable is only effective when using the reset input (X2 and X5). In all other cases it is ignored.   When using pulse output, a hardware reset input is equivalent to an home point proximate input.
DT90053	-	Real-Time Clock (Clock/Calendar) monitor (hour/minute)	Hour and minute data of the Real-Time Clock (Clock/Calendar) are stored here.   This data is read-only data; it cannot be overwritten.


Address		Name	Descriptions		
FP0 T32	$\begin{aligned} & \text { FP0 C10, } \\ & \text { C14, C16, } \\ & \text { C32, SL1 } \end{aligned}$				
DT90054	-	Real-Time Clock (Clock/Calendar) monitor and setting (minute/second)	The year, month, day, hour, minute, second, and day-of-the-week data for the Real-Time Clock (Clock/Calendar) is stored. The built-in RealTime Clock(Clock/Calendar) will operate correctly through the year 2099 and supports leap years. The Real-Time Clock (Clock/Calendar) can be set (the time set) by writing a value using a programming tool software or a program that uses the F0 (MV) instruction.		
DT90055	-	Real-Time Clock (Clock/Calendar) monitor and setting (day/hour)			
DT90056	-	Real-Time Clock (Clock/Calendar) monitor and setting (year/month)		$\begin{aligned} & \text { Higher } 8 \text { bits } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Lower } 8 \text { bits } \\ & \hline \end{aligned}$
			DT90054	Minute data H00 to H59 (BCD)	Second data H 00 to H 59 (BCD)
DT90057	-	Real-Time Clock (Clock/Calendar) monitor and setting (day-of-the-week)	DT90055	$\begin{array}{\|c} \hline \text { Day data } \\ \text { H01 to } \mathrm{H} 31(\mathrm{BCD}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Hour data } \\ \text { H00 to } \mathrm{H} 23(\mathrm{BCD}) \\ \hline \end{array}$
			DT90056	Year data H00 to H99 (BCD)	Month data H 01 to H 12 (BCD)
			DT90057	-	$\begin{aligned} & \text { Day-of-the-week data } \\ & \text { H00 to H06 (BCD) } \end{aligned}$
			As a day FPWIN GR each valu	the week is not a fix what day is s for 00 to 06.	utomatially set on to 00 , and set


Address		Name	Descriptions
FP0 T32	FP0 C10, C14, C16, C32, SL1		
DT90058	Cll	Real-Time Clock (Clock/Calendar) time setting and 30 seconds correction	The Real-Time Clock(Clock/Calendar) is adjusted as follows.   When setting the Real-Time Clock   (Clock/Calendar) by program   By setting the highest bit of DT90058 to 1, the time becomes that written to DT90054 to DT90057 by F0 (MV) instruction. After the time is set, DT90058 is cleared to 0 . (Cannot be performed with any instruction other than F0 (MV) instruction.)   Example:   Set the time to 12:00:00 on the $5^{\text {th }}$ day when the X0 turns on.   If you changed the values of DT90054 to DT90057 with the data monitor functions of programming tool software, the time will be set when the new values are written. Therefore, it is unnecessary to write to DT90058.   When the correcting times less than 30 seconds   By setting the lowest bit of DT90058 to 1 , the value will be moved up or down and become exactly 0 seconds. After the correction is completed, DT90058 is cleared to 0 .   Example:   Correct to 0 seconds with X0 turns on $\mid{ }^{\text {XO }} \text { - } \left.\langle\mathrm{DF}\rangle-\left[\begin{array}{ll} \mathrm{FO} \mathrm{MV}, \mathrm{H} & \text { 1, DT90058 } \end{array}\right] \right\rvert\, \begin{aligned} & \text { Correct to } \\ & 0 \text { second. } \end{aligned}$   At the time of correction, if between 0 and 29 seconds, it will be moved down, and if the between 30 and 59 seconds, it will be moved up. In the example above, if the time was 5 minutes 29 seconds, it will become 5 minutes 0 second; and, if the time was 5 minutes 35 seconds, it will become 6 minutes 0 second.

Note) After discharging the battery (including when the power is turned on for the first time), the values of DT90053 to DT90058 change at random. Once the time and date have been set, these values will function normally.

Address		Name		Descriptions					
FP0 T32	FP0 C10, C14, C16, C32, SL1								
DT90059	DT9059	Serial communication error code		$\begin{aligned} & \text { DT9059 } \\ & \text { DT90059 } \\ & \text { - Tool port } \\ & \text { bit } 0=1 \text { : } \\ & \text { bit } 1=1 \\ & \text { bit } 2=1 \text { : } \\ & - \text { RS22C } \\ & \text { bit } 8=1 \text { : } \\ & \text { bit } 9=1 \text { : } \\ & \text { bit } 10=1 \end{aligned}$			4   Error   tool p		$\xrightarrow{0}$
DT90060	DT9060	Step ladder process	Process number: 0 to 15	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on"1".					
DT90061	DT9061		Process number: 16 to 31						
DT90062	DT9062		Process number: 32 to 47						
DT90063	DT9063		Process number: 48 to 63	Monitor using binary display.					
DT90064	DT9064		Process number: 64 to 79						
DT90065	DT9065		Process number: 80 to 95	1: executing 0: not-executing					
DT90066	DT9066		Process number: 96 to 111	A programming tool software can be used to write data.					
DT90067	DT9067		Process number: 112 to 127						


Address		Name	Descriptions
FP0 T32	FP0 C10, C14, C16, C32, SL1		
DT90104	DT9104	High-speed counter elapsed value area for ch2 (*Note1)	The elapsed value (24-bit data) for the highspeed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high-speed counter is automatically transferred to the special registers DT9104 and DT9015/DT90104 and DT90105.   The value can be written by executing a DMV (F1) instruciton.
DT90105	DT9105		
DT90106	DT9106	High-speed counter target value area for ch2 (*Note1)	The target value (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here.   Target values have been preset for the various instructions, to be used when the high-speed counter related instruction F166 to F170 is executed. These preset values can only be read, and cannot be written.
DT90107	DT9107		
DT90108	DT9108	High-speed counter elapsed value area for ch3 (*Note1)	The elapsed value (24-bit data) of the highspeed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high-speed counter is automatically transferred to the special registers DT9108 and DT9109/DT90108 and DT90109.   The value can be written by executing a DMV (F1) instruction.
DT90109	DT9109		
DT90110	DT9110	High-speed counter target value area for ch3 (*Note1)	The target value (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here.   Target values have been preset for the various instructions, to be used when the high-speed counter related instruction F166 to F170 is executed. These preset values can only be read, and cannot be written.
DT90111	DT9111		

Note1) In the FP0 compatibility mode of FPOR, it is 32-bit data.

### 5.1.4 Table of System Registers for FP-e

FP-e

	No.	Name	Default value	Descriptions	
Hold/ Nonhold	5	Starting number setting for counter	100	0 to 144	
	6	Hold type area starting number setting for timer and counter	140	0 to 144	(See note.)
	7	Hold type area starting number setting for internal relays	61	0 to 63	
	8	Hold type area starting number setting for data registers	1652	0 to 1660	
	14	Hold or non-hold setting for step ladder process	Non-hold	Hold/Non-hold	
Action on error	20	Disable or enable setting for duplicated output	Yes FPWIN GR: Disabled	Fixed   FPWIN GR: Disabled/Enabled	
	26	Operation setting when an operation error occurs	Stop	Stop/Continuation of operation	
	4	Alarm battery error (Operating setting when battery error occurs)	Disabled	Dis- When a battery error occurs,   abled:   a self-diagnostic error is not   issued and the ERROR LED   does not light.   Ena- When a battery error occurs,   bled:   a self-diagnostic error is   issued and the ERROR LED   lights.  	
Time setting	31	Wait time setting for multiframe communication	6500.0 ms	10 to 81900 ms	
	34	Constant value settings for scan time	0.0 ms	0: Normal scan 0 to 160 ms : Scans once each specified time interval	

Note) Use models without a Real-Time Clock(Clock/Calendar) function with the default value left as is.
If you change the setting the hold/non-hold operation will be unstalbe.
Settings are valid for models with a Real-Time Clock(Clock/Calendar) time function.

	No.	Name	Default value		Descriptions
Highspeed counter	400	High-speed counter operation mode settings (X0 to X2)	CHO:   Do not set input X0 as highspeed counter	CHO	Do not set input X0 as high-speed counter.   Two-phase input (X0, X1)   Two-phase input (X0, X1), Reset input (X2)   Incremental input (X0)   Incremental input (X0), Reset input (X2)   Decremental input (X0)   Decremental input (X0), Reset input (X2)   incremental/decremental input (X0, X1)   incremental/decremental input (X0, X1),   Reset input (X2)   Incremental/decremental control input (X0,   X1)   Incremental/decremental control input (X0,   X1), Reset input (X2)
			CH1:   Do not set input X1 as highspeed counter	CH1	Do not set input X 1 as high-speed counter.   Incremental input (X1)   Incremental inptu (X1), Reset input (X2)   Decremental input (X1)   Decremental input (X1), Reset input (X2)
	401	High-speed counter operation mode settings (X3 to X5)	CH2:   Do not set input X3 as highspeed counter	CH2	Do not set input X 3 as high-speed counter.   Two-phase input (X3, X4)   Two-phase input (X3, X4), Reset input (X5)   Incremental input (X3)   Incremental input (X3), Reset input (X5)   Decremental input (X3)   Decremental input (X3), Reset input (X5)   Incremental/decremental input (X3, X4)   Incremental/decremental input (X3, X4),   Reset input (X5)   Incremental/decremental control input ( $\mathrm{X} 3, \mathrm{X} 4$ )   Incremental/decremental control input   (X3, X4), Reset input (X5)
			HC3:   Do not set input X4 as highspeed counter	CH3	Do not set input $X 4$ as high-speed counter.   Incremental input (X4)   Incremental input (X4), Reset input (X5)   Decremental input (X4)   Decremental input (X4), Reset input (X5)

FP-e

	No.	Name	Default value	Descriptions
	402	Pulse catch input settings	Not set	Specify the input contacts used as pulse catch input.
Inter-ruptinput	403	Interrupt input settings	Not set	Specify the input contacts used as intrrupt input.   Specify the effective interrupt edge.   (When set: ON $\rightarrow$ OFF is valid)

Note1) If the operation mode is set to two-phase, incremental/decremental, or incremental/decremental control, the setting for CH 1 is invalid in part 2 of system register 400 and the setting for CH 3 is invalid in part 2 of system register 401.
Note2) If reset input settings overlap, the CH 1 setting takes precedence in system register 400 and the CH 3 setting takes precedence in system register 401.
Note3) The settings for pulse catch and interrupt input can only be specified in system registers 402 and 403.

Note4) If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective:

1. High-speed counter
2. Pulse catch
3. Interrupt input.

This means, the counter keeps counting even after an interrupt.

FP-e				
	No.	Name	Default value	Descriptions
Tem-perature inout	409	Number of temperature input average processing times   (Available PLC: model with thermocouple input)	0	0 to 50   For default valeu " 0 ", the number of average processing times is 20 .
Tool port setting	410	Unit No. setting	1	1 to 99
			Disabled	Modem connection: enabled/Disabled
	411	Communication format setting	Data length: 8 bits	Data length: 7 bits/8 bits When connecting a modem, the format will be as follows depending on the data length setting.   8 bits data length: no parity, 1 stop bit 7 bits data length: odd parity, 1 stop bit
	414	Communication speed (Baud rate) setting	9600 bps	$\begin{aligned} & 9600 \mathrm{bps} \\ & 19200 \mathrm{bps} \end{aligned}$
COM.   port   set-   ting	412	Communication mode setting	Computer link	Computer link General-purpose serial communication MODBUS RTU (Ver.1.2 and higher)
	413	Communication format setting	Data lenght bit: 8 bits Parity check: Odd Stop bit: 1 bit	Enter the settings for the various items.   - Data lenght: 7 bits/8 bits   - Parity check: none/with odd/with even   - Stop bit: 1 bit/2 bits   - The following setting is valid only when the communication mode specified by system register 412 has been set to "General-purpose serial communication".   - Terminator CR/CR+LF/None   - Header: STX not exist/STX exist
	414	Communication speed (Baud rate) setting	9600 bps	300 bps / 600 bps / 1200 bps / 2400 bps / 4800 bps / 9600 bps / 19200 bps
	415	Unit no. setting	1	1 to 99   (In Ver.1.2 and higher, settings can be changed in R mode even with the front operation switch.)
	416	Selection of modem connection	Disabled	Enabled/Disabled
	417	Starting address for received buffer of general (serial data) communication mode	0	0 to 1659
	418	Buffer capacity setting for data received of general (serial data) communication mode	1660	0 to 1660

### 5.1.5 Table of Special Internal Relays for FP-e

The special internal relays turn on and off under special conditions. The on and off states are not output externally. Writing is not possible with a programming tool or an instruction.
FP-e

Relay No.	Name	Description
R9000	Self-diagnostic error flag	Turns on when a self-diagnostic error occurs. $\Rightarrow$ The content of self-diagnostic error is stored in DT90000.
R9001	Not used	-
R9002	Not used	-
R9003	Not used	-
R9004	Not used	-
R9005	Backup battery error flag (non-hold)	Turns on for an instant when a backup battery error occurs.
R9006	Backup battery error flag (hold)	Turns on and keeps the on state when a backup battery error occurs. Once a battery error has been detected, this is held even after recovery has been made. It goes off if the power supply is turned off, or if the system is initialized.
R9007	Operation error flag (hold)	Turns on and keeps the on state shen an operation error occurs.   $\Rightarrow$ The address where the error occurred is stored in DT9017. (Indicates the first operation error which occurred).
R9008	Operation error flag (non-hold)	Turns on for an instant when an operation error occurs. $\Rightarrow$ The address where the operation error occurred is stored in DT9018. The contents change each time a new error occurs.
R9009	Carry flag	This is set if an overflow or underflow occurs in the calculation results, and as a result of a shift system instruction being executed.
R900A	> Flag	Turns on for an instant when the compared results become larger in the comparison instructions.
R900B	= Flag	Turns on for an instant,   - when the compared results are equal in the comparison instructions.   - when the calculated results become 0 in the arithmetic instructions.
R900C	< Flag	Turns on for an instant when the compared results become smaller in the comparison instructions.
R900D	Auxiliary timer instruction flag	Turns on when the set time elapses (set value reaches 0 ) in the timing operation of the F137(STMR)/F183(DSTM) auxiliary timer instruction.   The flag turns off when the trigger for auxiliary timer instruction turns off.
R900E	Tool port communication error	Turns on when a communication error at Tool port has occurred.
R900F	Constant scan error flag	Turns on when the scan time exceeds the time specified in system register 34 during constant scan execution. This goes on if 0 has been set using system register 34 .


FP-e
Relay No. Name Description   R9010 Always on relay Always on.   R9011 Always off relay Always off.   R9012 Scan pulse relay Turns on and off alternately at each scan.   R9013 Initial (on type) pulse   relay Goes on for only the first scan after operation (RUN) has   been started, and goes off for the second and subsequent   scans.   R9014 Initial (off type) pulse   relay    Roes off for only the first scan after operation (RUN) has     been started, and goes on for the second and subsequent     scans.
R9015
R9016
R9017
Step ladder initial
pulse relay (on type)
:---
the step ladder control.

FP-e

Relay No.		Name
R9020	RUN mode flag	Turns off while the mode selector is set to PROG.   Turns on while the mode selector is set to RUN.
R9021	Not used	-
R9022	Not used	-
R9023	Not used	-
R9024	Not used	-
R9025	Not used	-
R9026	Message flag	Turns on while the F149 (MSG) instruction is executed.
R9027	Not used	-
R9028	Not used	-
R9029	Forcing flag	Turns on during forced on/off operation for input/output   relay timer/counter contacts.
R902A	Interrupt enable flag	Turns on while the external interrupt trigger is enabled by   the ICTL instruction.
R902B	Interrupt error flag	Turns on when an interrupt error occurs.
R902C	Not used	-
R902D	Not used	-
R902E	Not used	-
R902F	Not used	-


FP-e			
Relay No.	Name		Description
R9030	Not used		-
R9031	Not used		-
R9032	Not used		-
R9033	Print instruction execution flag		Off: Printing is not executed. On: Execution is in progress.
R9034	RUN overwrite complete flag		Goes on for ony the first scan following completion of a rewrite during RUN operation.
R9035	Not used		-
R9036	Not used		-
R9037	COM port communication error flag		- Goes on is a transmission error occurs during data communication.
R9038	COM port reception done flag during general-purpose serial communication		- Turns on when the terminator is received during general purpose serial communication.
R9039	COM port transmission done flag during generalpurpose serial communication		- Goes on when transmission has been completed in general-purpose serial communication.   - Goes off when transmission is requested in generalpurpose serial communication.
R903A	High-speed counter control flag	ch0	Turns on while the high-speed counter instructions F166(HC15), F167(HC1R) and the pulse output instructions F168(SPD1) to F170(PWM) are executed.
R903B	High-speed counter control flag	ch1	Turns on while the high-speed counter instructions F166(HC15), F167(HC1R) and the pulse output instructions F168(SPD1) to F170(PWM) are executed.
R903C	High-speed counter control flag	ch2	Turns on while the high-speed counter instructions F166(HC15), F167(HC1R) and the pulse output instructions F168(SPD1) to F170(PWM) are executed.
R903D	High-speed counter control flag	ch3	Turns on while the high-speed counter instructions F166(HC15), F167(HC1R) and the pulse output instructions F168(SPD1) to F170(PWM) are executed.
R903E			-
R903F			-

### 5.1.6 Table of Special Data Registers for FP-e

The special data registers are one word (16-bit) memory areas which store specific information.
FP-e (A: Available, N/A: Not available)

Register No.	Name	Descriptions	Read -ing	Writing
DT9000	Self-diagnostic error code	The self-diagnostic error code is stored here when a self-diagnostic error occurs.	A	N/A
DT9001	FP-e screen display switching	Switches the FP-escreen to the screen of the mode specified.   KO: N mode first screen   K1: N mode second screen   K2: S mode first screen   K3: S mode second screen   K4: R mode first screen   K5: R mode second screen   K6: I mode first screen   K7: I mode second screen	A	N/A
$\begin{aligned} & \hline \text { DT9002 } \\ & \text { DT9003 } \end{aligned}$	Analog input data	Ch. 0 analog input data (2-word real data)	A	N/A
$\begin{aligned} & \text { DT9004 } \\ & \text { DT9005 } \end{aligned}$	Analog input data	Ch. 1 analog input data (2-word real data)	A	N/A
DT9014	Operation auxiliary register for data shift instruction	One shift-out hexadecimal digit is stored in bit positions 0 to 3 when the data shift instruction, F 105 (BSR) or F 106 (BSL) is executed. The value can be read and written by executing the F0 (MV) instruction.		
DT9015	Operation auxiliary register for division instruction	The divided remainder (16-bit) is stored in DT9015 when the division instruction F32(\%) or F52(B\%) instruction is executed. The divided remainder (32-bit) is stored in DT9015 and DT9016 when the division instruction	A	A
DT9016		F33(D\%) or F53(DB\%) is executed. The value can be read and written by executing the FO(MV) instruction.		
DT9017	Operation error address (hold type)	After commencing operation, the address where the first operation error occurred is stored. Monitor the address using decimal display.		
DT9018	Operation error address (non-hold type)	The address where an operation error occurred is stored. Each time an error occurs, the new address overwrites the previous address. At the beginning of a scan, the address is 0 . Monitor the address using decimal display.	A	N/A
DT9019	2.5 ms ring counter Note1)	The data stored here is increased by one every 2.5 ms . (H0 to HFFFF)   Difference between the values of the two points (absolute value) $\times 2.5 \mathrm{~ms}=$ Elapsed time between the two points.		

FP-e (A: Available, N/A: Not available)

Register No.	Name	Descriptions	Read -ing	Writ -ing
DT9020	Not used	-	N/A	N/A
DT9021	Not used	-		
DT9022	Scan time (current value) ${ }^{\text {Note) }}$	The current scan time is stored here. Scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) $\times 0.1 \mathrm{~ms}$ Example: K50 indicates 5 ms .	A	N/A
DT9023	Scan time $\left(\right.$ minimum $_{\text {Note) }}$ value)	The minimum scan time is stored here. Scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) $\times 0.1 \mathrm{~ms}$ Example: K50 indicates 5 ms .		
DT9024	Scan time (maximum value) Note)	The maximum scan time is stored here. The scan time is calculated using the formula: Scan time (ms) = stored data (decimal) $\times 0.1 \mathrm{~ms}$ Example: K125 indicates 12.5 ms .		
DT9025	Mask condition monitoring register for interrupts	The mask conditions of interrupts using the instruction can be stored here. Monitor using binary display.   0 : Interrupt disabled (masked)   1: Interrupt enabled (unmasked)		
DT9026	Not used	-	N/A	N/A
DT9027	Periodical interrupt interval (INT24)	The value set by the ICTL instruction is stored. KO: periodical interrupt is not used. K1 to K3000: 0.5 ms to 1.5 s or 10 ms to 30 s	A	N/A
DT9028	Not used	-	N/A	N/A
DT9029	Not used	-		
DT9030	Message 0	The contents of the specified message (Data lenght) are stored in these special data registers when F149 (MSG) instruction is executed.	A	N/A
DT9031	Message 1			
DT9032	Message 2			
DT9033	Message 3			
DT9034	Message 4			
DT9035	Message 5			

Note) Scan time display is only possible in RUN mode and shows the operation cycle time. (in PROG mode, the scan time for the operation is not displayed.) The maximum and minimum values are cleared each time the mode is switched from RUN to PROG.

FP-e (A: Available, N/A: Not available)

Register   No.	Name	Descriptions	Read   -ing	Writ   -ing
DT9036	Not used	-	N/A	N/A
DT9037	Operation auxiliary   register for search   instruction   F96(SRC)	The number of data that match the searched   data is stored here when F96 (SRC) insturction   is executed.	A	A
DT9038	Operation auxiliary   register for search   instruction   F96(SRC)	The position of the first matching data is stored   here when an F96 (SRC) instruction is   executed.	A	N

FP-e (A: Available, N/A: Not available)

Register No.	Name	Descriptions	$\begin{gathered} \text { Read } \\ \text {-ing } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Writ } \\ & \text {-ing } \\ & \hline \end{aligned}$
DT9050   DT9051	High-speed   counter For   target value    area CH1	The target value (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here. Target values have been preset for the various instructions to be used when the high-speed counter related instruction is executed. The value can be read by executing F1 (DMV) instruction.	A	N/A
DT9052	High-speed counter and pulse output control flag	A value can be written with $\mathrm{FO}(\mathrm{MV})$ instruction to reset the high-speed counter, disable counting, continue or clear high-speed counter instruction.	N/A	A
DT9053	Real-Time Clock (Clock/Calendar) monitor (hour/minute)	Hour and minute data of the Real-Time Clock (Clock/Calendar) are stored here. This data is read-only data. It cannot be overwritten.	A	N/A

FP-e (A: Available, N/A: Not available)


FP-e (A: Available, N/A: Not available)

Register No.	Name	Descriptions					Read -ing	$\begin{aligned} & \text { Writ } \\ & \text {-ing } \end{aligned}$
DT9059	Serial communication error code	Error code is sotred here when a communication error occurs.					A	N/A
DT9060	Step ladder process (0 to 15)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on.   Monitor using binary display.   Example:   A programming tool software can be used to write data.					A	A
DT9061	Step ladder process (16 to 31)							
DT9062	Step ladder process $\text { (32 to } 47 \text { ) }$							
DT9063	Step ladder process $\text { ( } 48 \text { to } 63 \text { ) }$							
DT9064	Step ladder process (64 to 79)							
DT9065	Step ladder process (80 to 95)							
DT9066	Step ladder process (96 to 111)							
DT9067	Step ladder process (112 to 127)							

FP-e (A: Available, N/A: Not available)

Register No.	Name		Descriptions	Read -ing	Writ -ing
DT9104	High-speed counter elapsed value	For ch2	The elapsed value (24-bit data) for the highspeed conter is stored here. The value can be read and written by executing the F1 (DMV) instruciton.	A	A
DT9105					
DT9106	High-speed counter target value	For ch2	The target valeu (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here.   Target values have been preset for the various instructions, to be used when the high-speed counter related instruction is executed. The value can be read by executing the F1 (DMV) instruction.	A	N/A
DT9107					
DT9108	High-speed counter elapsed value	For ch3	The elapsed value (24-bit data) for the highspeed counter is stored here. The value can be read and written by executing the F1 (DMV) instruction.	A	A
DT9109					
DT9110	High-speed counter target value	For ch3	The target value (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here.   Target values have been preset for the various instructions, to be used when the high-speed counter related instruction is executed. The value can be read by executing the F1 (DMV) instruction.	A	N/A
DT9111					

### 5.1.7 Table of System Registers for FPOR

	No.	Name	Default value	Descriptions
Hold/ Nonhold 1	5	Starting number setting for counter	1008	0 to 1024
	6	Hold type area starting number setting for timer and counter (T32/F32)	1008	0 to 1024
	7	Hold type area starting number setting for internal relays (T32/F32)	248	0 to 256
	8	Hold type area starting number setting for data registers (T32/F32)	0	0 to 32765
	14	Hold or non-hold setting for step ladder process (T32/F32)	Non-hold	Hold/Non-hold
	4	Previous value is held for a leading edge detection instruction (DF instrucion) with MC ${ }^{\text {Note) }}$	Hold	Hold/   Non-hold
Hold/ Nonhold 2	10	Hold type area starting word number for PC(PLC) link relays (for PC(PLC) link 0) (T32/F32)	0	0 to 64
	11	Hold type area starting word number for PC(PLC) link relays (for PC(PLC) link 1) (T32/F32)	64	64 to 128
	12	Hold type area starting number for PC(PLC) link registers (for PC(PLC) link 0) (T32/F32)	0	0 to 128
	13	Hold type area starting number for PC(PLC) link registers (for PC(PLC) link 1) (T32/F32)	128	128 to 256
Action on error	20	Disable or enable setting for duplicated output	Disabled	Disabled/Enabled
	23	Operation setting when an I/O verification error occurs	Stop	Stop/Continuation of operation
	26	Operation setting when an operation error occurs	Stop	Stop/Continuation of operation
Time setting	31	Wait time setting for multi-frame communication	$\begin{aligned} & 6500.0 \\ & \mathrm{~ms} \end{aligned}$	10 to 81900 ms
	32	Communication timeout setting for SEND/RECV, RMRD/RMWT commands	$\begin{aligned} & 10000.0 \\ & \mathrm{~ms} \end{aligned}$	10 to 81900 ms
	34	Constant value settings for scan time	Normal scan	0: Normal scan 0 to 600 ms : Scans once each specified time interval

FPOR

	No.	Name	Default value	Descriptions
PC (PLC) link 0 setting	40	Range of link relays used for PC(PLC) link	0	0 to 64 words
	41	Range of link data registers used for PC(PLC) link	0	0 to 128 words
	42	Starting word number for link relay transmission	0	0 to 63
	43	Link relay transmission size	0	0 to 64 words
	44	Starting number for link data register tranmission	0	0 to 127
	45	Link data register transmission size	0	0 to 127 words
	46	PC(PLC) link switch flag	Normal	Normal/reverse
	47	Maximum unit number setting for MEWNET-W0 PC(PLC) link	16	1 to 16
PC (PLC) link 1 setting)	50	Range of link relays used for PC(PLC) link	0	0 to 64 words
	51	Range of link data registers used for PC(PLC) link	0	0 to 128 words
	52	Starting word number for link relay transmission	64	64 to 127
	53	Link relay transmission size	0	0 to 64 words
	54	Starting number for link data register tranmission	128	128 to 255
	55	Link data register transmission size	0	0 to 127 words
	57	Maximum unit number setting for MEWNET-W0 PC(PLC) link	16	1 to 16

FPOR

		No.	Name	Default value		Descriptions
		400	High-speed counter operation mode settings (X0 to X2)	CHO :   Do not set input X0 as high-speed counter	CH0	Do not set input $\mathrm{X0}$ as high-speed counter.   Two-phase input ( $\mathrm{X} 0, \mathrm{X} 1$ )   Two-phase input ( $\mathrm{X} 0, \mathrm{X} 1$ ), Reset input ( X 2 )   Incremental input (X0)   Incremental input (X0), Reset input (X2)   Decremental input (X0)   Decremental input (X0), Reset input (X2)   Individual input ( $\mathrm{X} 0, \mathrm{X} 1$ )   Individual input (X0, X1), Reset input (X2)   Incremental/decremental control input (X0, X1)   Incremental/decremental control input ( $\mathrm{X} 0, \mathrm{X} 1$ ),   Reset input (X2)
				CH1:   Do not set input X1 as high-speed counter	CH1	Do not set input X1 as high-speed counter. Incremental input (X1)   Incremental inptu (X1), Reset input (X2)   Decremental input (X1)   Decremental input (X1), Reset input (X2)
		400	High-speed counter operation mode settings (X3 to X5)	CH2:   Do not set input X3 as high-speed counter	CH2	Do not set input X3 as high-speed counter.   Two-phase input (X3, X4)   Two-phase input (X3, X4), Reset input (X5)   Incremental input (X3)   Incremental input (X3), Reset input (X5)   Decremental input (X5)   Decremental input (X5), Reset input (X5)   Individual input (X3, X4)   Individual input (X3, X4), Reset input (X5)   Incremental/decremental control (X3, X4)   Incremental/decremental control (X3, X4),   Reset input (X5)
				CH3:   Does not set input X4 as highspeed counter	CH3	Does not set input X 4 as high-speed counter.   Incremental input (X4)   Incremental input (X4), Reset input (X5)   Decremental input (X4)   Decremental input (X4), Reset input (X5)
		401	High-speed counter/ pulse output settings (X6 to X7)	CH4:   Do not set input X6 as high-speed counter	CH4	Do not set input X 6 as high-speed counter.   Incremental input (X6)   Decremental input (X6)   Two-phase input (X6, X7)   Individual input (X6, X7)   Incremental/decremental control input (X6, X7)
				CH5:   Do not set input X7 as high-speed counter	CH5	Do not set input $\mathrm{X7}$ as high-speed counter.   Incremental input (X7)   Decremental input (X7)

Note1) If the operation mode is set to Two-phase, incremental/decremental, or incremental/decremental control, the setting for CH 1 or CH 3 is invalid in system register 400 and the setting for CH 5 is invalid in system register 401.
Note2) If reset input settings overlap, the CH 1 setting takes precedence in system register 400 and the CH 3 setting takes precedence in system register 401.
Note3) If system register 400 to 403 have been set simultaneously for the same input relay, the follwing precedence order is effective: [High-speed counter] $\rightarrow$ [Pulse catch] $\rightarrow$ [Interrupt input].
<Example>
When the high-speed counter is being used in the addition input mode, even if input X 0 is specified as an interrupt input or as pulse catch input, those settings are invalid, and X0 functions as counter input for the high-speed counter.


Note1) When using the pulse output/PWM output, the controller output settings must be specified. The output that has been set to the pulse output/PWM output cannot be used as the normal output.
Note2) X 4 to X 7 can be used as the home input of the pulse output CH 0 to CH 3 .
When using the home return function of the pulse output, always set the home input. In that case, X 4 to X 7 cannot be set as the high-speed counter.
Note3) C16 type:

- For performing the home return for the pulse output CH 0 with deviation counter clear, the above Y 6 should be set to the normal output to use Y 6 for the deviation counter clear signal. - For performing the home return for the pulse output CH 1 with deviation counter clear, the above Y 7 should be set to the normal output to use Y 7 for the deviation counter clear signal.
- The home return cannot be performed for the pulse output CH 2 with deviation counter clear.

Note4) C32/T32/F32 type:
When performing theo home return with deviation counter clear, the deviation counter clear signals corresponding to each CH are used fixedly as follows; $\mathrm{CHO}=\mathrm{Y} 8, \mathrm{CH} 1=\mathrm{Y} 9, \mathrm{CH} 2=\mathrm{YA}$, CH3=YB
For performing the home return for each type,
it is necessary to specify the home input corresponding to each channel to be used for the home return in the system register 401.
Home input corresponding to each channel: $\mathrm{CH} 0=4, \mathrm{CH} 1=\mathrm{X} 5, \mathrm{CH} 2=\mathrm{X} 6, \mathrm{CH} 3=\mathrm{X} 7$
For performing the JOG positioning for each type,
it is necessary to specify the position control starting input signal corresponding to each channel to be used for the JOG positioning.
Note3) The settings for pulse catch and interrupt input can only be specified in system registers 403 to 405.

FPOR

	No.	Name	Default value	Descriptions
Tool port setting	410	Unit No. setting	1	1 to 99
	412	Communication mode setting	Computer link	Computer link General-purpose communications ${ }^{\text {Note2) }}$
		Selection of modem connection	Disabled	Enabled/Disabled
	413	Communication format setting	Data lenght bit: 8 bits Parity check: "with odd" Stop bit: 1 bit	Enter the settings for the various items.   - Data lenght bit: 7 bits/8 bits   - Parity check: none/with odd/with even   - Stop bit: 1 bit/2 bits   - The following setting is valid only when the communication mode specified by system register 412 has been set to "General-purpose serial communication".   - Terminator CR/CR+LF/None   - Header: STX not exist/STX exist
	415	Communication speed (Baud rate) setting	9600 bps	2400 bps / 4800 bps / 9600 bps / 19200 bps / 38400 bps / 57600 bps / 115200 bps
	420	Starting address for received buffer of general (serial data) communication mode	4096	0 to 32764
	421	Buffer capacity setting for data received of general (serial data) communication mode	2048	0 to 2048
	410	Unit No. setting	1	1 to 99
	412	Communication mode setting	Computer link	Computer link General-purpose serial communication PC(PLC) link MODBUS RTU
		Selection of modem connection	Disabled	Enabled/Disabled
$\begin{aligned} & \text { COM } \\ & \text { port } \\ & \text { set- } \\ & \text { ting } \end{aligned}$	413	Communication format setting	Data lenght bit: 8 bits Parity check: Odd Stop bit: 1 bit	Enter the settings for the various items.   - Data lenght bit: 7 bits/8 bits   - Parity check: none/with odd/with even   - Stop bit: 1 bit/2 bits   - The following setting is valid only when the communication mode specified by system register 412 has been set to "General-purpose serial communication".   - Terminator CR/CR+LF/None/ETX   - Header: STX not exist/STX exist
	415	Communication speed (Baud rate) setting	9600 bps	$\begin{aligned} & 2400 \mathrm{bps} / 4800 \mathrm{bps} / 9600 \mathrm{bps} / \\ & 19200 \mathrm{bps} / 38400 \mathrm{bps} / 57600 \mathrm{bps} / \\ & 115200 \mathrm{bps} \\ & \hline \end{aligned}$
	416	Starting address for received buffer of general (serial data) communication mode	0	0 to 32764
	417	Buffer capacity setting for data received of general (serial data) communication mode	2048	0 to 2048

Note1) The communication format in a PLC link is fixed at the following settings:
Data length is 8 bits, odd parity, stop bit is 1.
The communication speed (baud rate) is fixed at 115200 bps.
Note2) The general-purpose communication with the tool port is available only in RUN mode. In PROG mode, the computer link mode must be used regardless of settings.

FPOR

Item	Address	Name	Default value	Description
Cont-   roller   input   time   cons-   tant   set-   tings	430	Controller input time constant setting 1 X0 to X3	1 ms	None   0.1 ms   0.5 ms   1 ms   2 ms   4 ms   8 ms   16 ms   32 ms   64 ms
	431	Controller input time constant setting 1 X4 to X7		
	432	Controller input time constant setting 2 X8 to XB (C32/T32/F32)		
	433	Controller input time constant setting 2 XC to XF (C32/T32/F32)		

Note) X6 and X7 is invalid for C10.

### 5.1.8 Table of Special Internal Relays for FPOR

The special internal relays turn on and off under special conditions. The on and off states are not output externally. Writing is not possible with a programming tool or an instruction.

## WR900 FPOR

Relay No.	Name	Description
R9000	Self-diagnostic error flag	Turns on when a self-diagnostic error occurs.   $\Rightarrow$ The content of self-diagnostic error is stored in DT90000.
R9001	Not used	
R9002	Not used	
R9003	Not used	
R9004	I/O verification error flag	Turns on when an I/O verification error occurs.
R9005	Not used	
R9006	Not used	
R9007	Operation error flag (hold)	Turns on and keeps the on state shen an operation error occurs. $\Rightarrow$ The address where the error occurred is stored in DT90017. (indicates the first operation error which occurred).
R9008	Operation error flag (non-hold)	Turns on for an instant when an operation error occurs. $\Rightarrow$ The address where the operation error occurred is stored in DT90018. The contents change each time a new error occurs.
R9009	Carry flag	This is set if an overflow or underflow occurs in the calculation results, and as a result of a shift system instruction being executed.
R900A	> Flag	Turns on for an instant when the compared results become larger in the comparison instructions (F60 to F63).
R900B	= Flag	Turns on for an instant, - when the compared results are equal in the comparison instructions (F60 to F63).   - when the calculated results become 0 in the arithmetic instructions.
R900C	< Flag	Turns on for an instant when the compared results become smaller in the comparison instructions (F60 to F63).
R900D	Auxiliary timer instruction flag	Turns on when the set time elapses (set value reaches 0 ) in the timing operation of the F137(STMR)/F183(DSTM) auxiliary timer instruction. The flag turns off when the trigger for auxiliary timer instruction turns off.
R900E	Tool port communication error	Turns on when communication error at tool port is occurred.
R900F	Constant scan error flag	Turns on when scan time exceeds the time specified in system register 34 during constant scan execution.   This goes on if 0 has been set using system register 34 .

A: Available, N/A: Not available

WR901 FP0R

Relay No.	Name	Description
R9010	Always on relay	Always on.
R9011	Always off relay	Always off.
R9012	Scan pulse relay	Turns on and off alternately at each scan.
R9013	Initial (on type) pulse relay	Goes on for only the first scan after operation (RUN) has been started, and goes off for the second and subsequent scans.
R9014	Initial (off type) pulse relay	Goes off for only the first scan after operation (RUN) has been started, and goes on for the second and subsequent scans.
R9015	Step ladder initial pulse relay (on type)	Turns on for only the first scan of a process after the boot at the step ladder control.
R9016	Not used	
R9017	Not used	
R9018	0.01 s clock pulse relay	Repeats on/off operations in 0.01 sec . cycles.
R9019	0.02 s clock pulse relay	Repeats on/off operations in 0.02 s. cycles.
R901A	0.1 s clock pulse relay	Repeats on/off operations in 0.1 s. cycles.
R901B	0.2 s clock pulse relay	Repeats on/off operations in 0.2 s. cycles.
R901C	1 s clock pulse relay	Repeats on/off operations in 1 s . cycles.
R901D	2 s clock pulse relay	Repeats on/off operations in 2 s . cycles.
R901E	1 min clock pulse relay	Repeats on/off operations in 1 min. cycles.
R901F	Not used	

A: Available, N/A: Not available

WR902 FPOR

Relay No.	Name	Description   R9020		
RUN mode flag	Turns off while the mode selector is set to PROG.   Turns on while the mode selector is set to RUN.			
R9021	Not used			
R9022	Not used			
R9023	Not used			
R9024	Not used			
R9025	Not used	Turns on while the F149 (MSG) instruction is executed.		
R9026	Message flag			
R9027	Not used	Not used	Forcing flag $\quad$	Turns on during forced on/off operation for input/output relay
---	---	---	---	---
timer/counter contacts.	$	$	R9028	Interrupt enable   flag
:---	:---	:---		
R9029	Interrupt error   flag	Turns on when an interrupt error occurs.		
R902B	Sample point flag	Sampling by the instruction=0   Sampling at constant time intervals=1		
R902C	Sample trace end   flag	When the sampling operation stops=1,   When the sampling operation starts=0		
R902D	Sampling stop   trigger flag	When the sampling stop trigger activates=1   When the sampling stop trigger stops=0		
R902E	Sampling enable   flag	When sampling starts=1   When sampling stops=0		
R902F				

A: Available, N/A: Not available

Relay No.	Name	Description
R9030	Not used	
R9031	Not used	
R9032	COM port communication mode flag	- Turns on when the general-purpose communication function is being used   - Goes off when the MEWTOCOL-COM or the PLC link function is being used.
R9033	Print instruction execution flag	Off: Printing is not executed. On: Execution is in progress.
R9034	RUN overwrite complete flag	Goes on for ony the first scan following completion of a rewrite during the RUN operation.
R9035	Not used	
R9036	Not used	
R9037	COM port communication error flag	- Goes on is a transmission error occurs during data communication.   - Goes off when a request is made to send data, using the F159 (MTRN) instruction.
R9038	COM port reception done flag during general purpose communication	- Turns on when the terminator is received during general purpose serial communication.
R9039	COM port transmission done flag during generalpurpose serial communication	- Goes on when transmission has been completed in generalpurpose serial communication.   - Goes off when transmission is requested in general-purpose serial communication.
R903A	Not used	
R903B	Not used	
R903C	Not used	
R903D	Not used	
R903E	TOOL port reception done flag during general purpose communication	- Turns on the terminator is received during general -purpose serial communication.
R903F	TOOL port transmission done flag during generalpurpose serial communication	- Goes on when transmission has been completed in generalpurpose serial communication.   - Goes off when transmission is requested in general-purpose serial communication.

A: Available, N/A: Not available
Note) R9030 to R9030F can be changed during 1 scan.

WR904 FPOR

Relay   No.	Name	Description
R9040	TOOL port   operation mode   flag	- Turns on when the general-purpose communication function is being   used   - Goes off when the computer link function is being used.
R9041	COM port PLC   link flag	Turn on while the PLC link function is used.
R9042	Not used	
R9043	Not used	R9044
COM port   SEND/RECV   instruction   execution flag	Monitors whether the F145 (SEND) or F146 (RECV) instructions can   be executed or not.   Off: None of the above mentioned instructions can be executed.   (During executing the instruction)   On: One of the above mentioned instructions can be executed.	
R9045	COM port   SEND/RECV   instruction   execution end   flag	Monitors if an abnormality has been detected during the execution of   the FF145 (SEND) or F146 (RECV) instructions as follows:   Off: No abonormality detected.   On: An abnormality detected. (communication error)   End code: DT90124
R9046	Not used	
R9047	Not used	R9048
Not used	Not used	
R9049	Not	
R904A	Not used	
R904B	Not used	
R904C   to R904F	Not used	

A: Available, N/A: Not available
Note) R9040 to R904F can be changed during 1 scan.
WR905 FPOR

Relay   No.	Name	Description
R9050	MEWNET-W0   PLC link   transmission   error flag	When using MEWNET-W0   - Turns on when a transmission error occurs at PLC link.   - Turns on when there is an error in the PLC link area settings.
R9051 to   R905F	Not used	

WR906 FPOR

Relay No.	Name		Description
R9060	MEWNET-   W0   PC(PLC)   link 0   trans-   mission   assurance   relay	Unit No. 1	Turns on when Unit No. 1 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R9061		Unit   No. 2	Turns on when Unit No. 2 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R9062		Unit No. 3	Turns on when Unit No. 3 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R9063		Unit No. 4	Turns on when Unit No. 4 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R9064		$\begin{array}{\|l\|} \hline \text { Unit } \\ \text { No. } \end{array}$	Turns on when Unit No. 5 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R9065		Unit No. 6	Turns on when Unit No. 6 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R9066		Unit No. 7	Turns on when Unit No. 7 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R9067		Unit No. 8	Turns on when Unit No. 8 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R9068		$\begin{array}{\|l\|} \hline \text { Unit } \\ \text { No. } 9 \end{array}$	Turns on when Unit No. 9 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R9069		Unit No. 10	Turns on when Unit No. 10 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R906A		Unit No. 11	Turns on when Unit No. 11 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R906B		$\begin{aligned} & \text { Unit } \\ & \text { No. } 12 \end{aligned}$	Turns on when Unit No. 12 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R906C		Unit No. 13	Turns on when Unit No. 13 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R906D		Unit No. 14	Turns on when Unit No. 14 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R906E		$\begin{aligned} & \text { Unit } \\ & \text { No. } 15 \end{aligned}$	Turns on when Unit No. 15 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R906F		Unit No. 16	Turns on when Unit No. 16 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.

A: Available, N/A: Not available

WR907 FPOR

Relay No.	Name		Description
R9070	MEWNET-   W0   PC(PLC)   link 0   operation   mode relay	Unit No. 1	Turns on when Unit No. 1 is in the RUN mode. Turns off when Unit No. 1 is in the PROG. mode.
R9071		Unit $\text { No. } 2$	Turns on when Unit No. 2 is in the RUN mode. Turns off when Unit No. 2 is in the PROG. mode.
R9072		Unit No. 3	Turns on when Unit No. 3 is in the RUN mode. Turns off when Unit No. 3 is in the PROG. mode.
R9073		Unit No. 4	Turns on when Unit No. 4 is in the RUN mode. Turns off when Unit No. 4 is in the PROG. mode.
R9074		Unit No. 5	Turns on when Unit No. 5 is in the RUN mode. Turns off when Unit No. 5 is in the PROG. mode.
R9075		Unit No. 6	Turns on when Unit No. 6 is in the RUN mode. Turns off when Unit No. 6 is in the PROG. mode.
R9076		$\begin{array}{\|l\|} \hline \text { Unit } \\ \text { No. } 7 \\ \hline \end{array}$	Turns on when Unit No. 7 is in the RUN mode. Turns off when Unit No. 7 is in the PROG. mode.
R9077		Unit No. 8	Turns on when Unit No. 8 is in the RUN mode. Turns off when Unit No. 8 is in the PROG. mode.
R9078		Unit   No. 9	Turns on when Unit No. 9 is in the RUN mode. Turns off when Unit No. 9 is in the PROG. mode.
R9079		$\begin{array}{\|l\|} \hline \text { Unit } \\ \text { No. } 10 \\ \hline \end{array}$	Turns on when Unit No. 10 is in the RUN mode. Turns off when Unit No. 10 is in the PROG. mode.
R907A		Unit No. 11	Turns on when Unit No. 11 is in the RUN mode. Turns off when Unit No. 11 is in the PROG. mode.
R907B		Unit No. 12	Turns on when Unit No. 12 is in the RUN mode. Turns off when Unit No. 12 is in the PROG. mode.
R907C		Unit No. 13	Turns on when Unit No. 13 is in the RUN mode. Turns off when Unit No. 13 is in the PROG. mode.
R907D		Unit No. 14	Turns on when Unit No. 14 is in the RUN mode. Turns off when Unit No. 14 is in the PROG. mode.
R907E		Unit No. 15	Turns on when Unit No. 15 is in the RUN mode. Turns off when Unit No. 15 is in the PROG. mode.
R907F		Unit No. 16	Turns on when Unit No. 16 is in the RUN mode. Turns off when Unit No. 16 is in the PROG. mode.

A: Available, N/A: Not available

WR908 FPOR

Relay No.	Name		Description
R9080	MEWNET-   W0   PC(PLC)   link 1   trans-   mission   assurance   relay	Unit No. 1	Turns on when Unit No. 1 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R9081		Unit No. 2	Turns on when Unit No. 2 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R9082		Unit No. 3	Turns on when Unit No. 3 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R9083		Unit No. 4	Turns on when Unit No. 4 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R9084		$\begin{aligned} & \text { Unit } \\ & \text { No. } \end{aligned}$	Turns on when Unit No. 5 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R9085		Unit No. 6	Turns on when Unit No. 6 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R9086		Unit No. 7	Turns on when Unit No. 7 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R9087		Unit No. 8	Turns on when Unit No. 8 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R9088		Unit No. 9	Turns on when Unit No. 9 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9089		Unit No. 10	Turns on when Unit No. 10 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R908A		Unit No. 11	Turns on when Unit No. 11 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R908B		Unit No. 12	Turns on when Unit No. 12 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R908C		Unit No. 13	Turns on when Unit No. 13 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R908D		Unit No. 14	Turns on when Unit No. 14 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R908E		Unit No. 15	Turns on when Unit No. 15 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R908F		Unit No. 16	Turns on when Unit No. 16 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.

A: Available, N/A: Not available

WR909 FPOR

Relay No.	Name		Description
R9090	MEWNET-   W0   PC(PLC)   link 1   operation   mode relay	Unit No. 1	Turns on when Unit No. 1 is in the RUN mode. Turns off when Unit No. 1 is in the PROG. mode.
R9091		Unit	Turns on when Unit No. 2 is in the RUN mode. Turns off when Unit No. 2 is in the PROG. mode.
R9092		Unit No. 3	Turns on when Unit No. 3 is in the RUN mode. Turns off when Unit No. 3 is in the PROG. mode.
R9093		$\begin{aligned} & \text { Unit } \\ & \text { No. } 4 \\ & \hline \end{aligned}$	Turns on when Unit No. 4 is in the RUN mode. Turns off when Unit No. 4 is in the PROG. mode.
R9094		$\begin{aligned} & \text { Unit } \\ & \text { No. } 5 \end{aligned}$	Turns on when Unit No. 5 is in the RUN mode. Turns off when Unit No. 5 is in the PROG. mode.
R9095		$\begin{aligned} & \hline \text { Unit } \\ & \text { No. } 6 \\ & \hline \end{aligned}$	Turns on when Unit No. 6 is in the RUN mode. Turns off when Unit No. 6 is in the PROG. mode.
R9096		Unit No. 7	Turns on when Unit No. 7 is in the RUN mode. Turns off when Unit No. 7 is in the PROG. mode.
R9097		Unit No. 8	Turns on when Unit No. 8 is in the RUN mode. Turns off when Unit No. 8 is in the PROG. mode.
R9098		$\begin{aligned} & \text { Unit } \\ & \text { No. } 9 \\ & \hline \end{aligned}$	Turns on when Unit No. 9 is in the RUN mode. Turns off when Unit No. 9 is in the PROG. mode.
R9099		$\begin{aligned} & \text { Unit } \\ & \text { No. } 10 \\ & \hline \end{aligned}$	Turns on when Unit No. 10 is in the RUN mode. Turns off when Unit No. 10 is in the PROG. mode.
R909A		Unit No. 11	Turns on when Unit No. 11 is in the RUN mode. Turns off when Unit No. 11 is in the PROG. mode.
R909B		Unit No. 12	Turns on when Unit No. 12 is in the RUN mode. Turns off when Unit No. 12 is in the PROG. mode.
R909C		Unit No. 13	Turns on when Unit No. 13 is in the RUN mode. Turns off when Unit No. 13 is in the PROG. mode.
R909D		Unit No. 14	Turns on when Unit No. 14 is in the RUN mode. Turns off when Unit No. 14 is in the PROG. mode.
R909E		$\begin{aligned} & \text { Unit } \\ & \text { No. } 15 \\ & \hline \end{aligned}$	Turns on when Unit No. 15 is in the RUN mode. Turns off when Unit No. 15 is in the PROG. mode.
R909F		Unit No. 16	Turns on when Unit No. 16 is in the RUN mode. Turns off when Unit No. 16 is in the PROG. mode.

A: Available, N/A: Not available

WR910	OR		
Relay No.	Name		Description
R9110	High-speed counter control flag	HSC-CHO	- Turns on the channel of high-speed counter during the control using F165(CAM0), F166(HC1S), F167(HC1R), F178(PLSM) instructions.   - Turns off when the control is cleared or this instruction is completed.
R9111		HSC-CH1	
R9112		HSC-CH2	
R9113		HSC-CH3	
R9114		HSC-CH4	
R9115		HSC-CH5	
R9116 to R911F	Not used		
R9120	Pulse output instruction flag	PLS-CH0	- Turns on while the pulses are being output using F171(SPDH), F172 (PLSH), F173(PWMH), F174 (SPOH), F175(SPSH), F177(HOME) instructions.
R9121		PLS-CH1	
R9122		PLS-CH2	
R9123		PLS-CH3	
R9124 to R912F	Not used		
R9130	Pulse output control flag	PLS-CH0	- Turns on the channel of pulse output during the control using F166(HC1S), F167(HC1R) instructions.   - Turns off when the control is cleared or this instruction is completed.
R9131		PLS-CH1	
R9132		PLS-CH2	
R9133		PLS-CH3	
R9134 to R913F	Not used		

A: Available, N/A: Not available

### 5.1.9 Table of Special Data Registers for FPOR

FPOR (A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90000	Self-diagnostic error code	The self-diagnostic error code is stored here when a self-diagnostic error occurs.	A	N/A
DT90001	Not used	-	N/A	N/A
DT90002	Not used		N/A	N/A
DT90003	Not used	-	N/A	N/A
DT90004	Not used	-	N/A	N/A
DT90005	Not used	-	N/A	N/A
DT90006	Not used	-	N/A	N/A
DT90007	Not used	-	N/A	N/A
DT90008	Not used	-	N/A	N/A
DT90009	Not used	-	N/A	N/A
DT90010	Extension (right side) I/O verify error unit [0 to 3]	When the state of installation of FPO expansion I/O unit has changed since the power was turned on, the bit corresponding to the unit No. will turn on. Monitor using binary display.   (Bit No.)	A	N/A
DT90011	Not used	-	N/A	N/A
DT90012	Not used	-	N/A	N/A
DT90013	Not used	-	N/A	N/A

FPOR (A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90014	Operation auxiliary register for data shift instruction	One shift-out hexadecimal digit is stored in bit positions 0 to 3 when the data shift instruction, F 105 (BSR) or F 106 (BSL) is executed. The value can be read and written by executing F0 (MV) instruction.	A	A
DT90015	Operation auxiliary register for division instruction	The divided remainder (16-bit) is stored in DT90015 when the division instruction F32(\%) or F52(B\%) instruction is executed. The divided remainder (32-bit) is stored in DT90015 and DT90016 when the division instruction F33(D\%) or F53(DB\%) is executed. The value can be read and written by executing F0(MV) instruction.	A	A
DT90016			A	A
DT90017	Operation error address (hold type)	After commencing operation, the address where the first operation error occurred is stored. Monitor the address using decimal display.	A	N/A
DT90018	Operation error address (latest type)	The address where an operation error occurred is stored. Each time an error occurs, the new address overwrites the previous address.	A	N/A
DT90019	2.5 ms ring counter Note1)	The data stored here is increased by one every 2.5 ms . (H0 to HFFFF)   Difference between the values of the two points (absolute value) $\times 2.5 \mathrm{~ms}=$ Elapsed time between the two points.	A	N/A
DT90020	$10 \mu$ s ring counter Note1) Note2)	The data stored here is increased by one every $10.67 \mu \mathrm{~s}$. (H0 to HFFFF)   Difference between the values of the two points (absolute value) $\times 10.67 \mu \mathrm{~s}=$ Elapsed time between the two points.   Note) The exact value is $10.67 \mu \mathrm{~s}$.	A	N/A
DT90021	Not used		N/A	N/A

Note1) It is renewed once at the beginning of each one scan.
Note2) As DT90020 is renewed even if F0(MV), DT90020 and D instruction is being executed, it can be used to measure the block time.

FPOR (A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90022	Scan time (current value) ${ }^{\text {Note) }}$	The current scan time is stored here. Scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) 0.1 ms   Example: K 50 indicates 5 ms .	A	N/A
DT90023	Scan time (minimum value) ${ }^{\text {Note) }}$	The minimum scan time is stored here. Scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) 0.1 ms   Example: K 50 indicates 5 ms .	A	N/A
DT90024	Scan time (maximum value) ${ }^{\text {Note) }}$	The maximum scan time is stored here. The scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) $\times 0.1$ ms   Example: K125 indicates 12.5 ms .	A	N/A
DT90025	Mask condition monitoring register for interrupts (INTO to 11)	The mask conditions of interrupts using the instruction can be stored here. Monitor using binary display.   0 : interrupt disabled   1: interrupt enabled	A	N/A
DT90026	Not used	-	N/A	N/A
DT90027	Periodical interrupt interval (INT24)	The value set by ICTL instruction is stored. KO: periodical interrupt is not used. K1 to K3000: 0.5 ms to 1.5 s or 10 ms to 30 s	A	N/A
DT90028	Sample trace interval	K0: Sampling by the SMPL instruction K1 to K3000 (x 10 ms ): 10 ms to 30 s	A	N/A
DT90029	Not used		N/A	N/A
DT90030	Character storage by F149 MSG instruction	The contents of the specified message (Data length) are stored in these special data registers when F149 (MSG) instruction is executed.	A	N/A
DT90031				
DT90032				
DT90033				
DT90034				
DT90035				
DT90036	Not used	-	N/A	N/A

Note) Scan time display is only possible in RUN mode, and shows the operation cycle time. (In PROG. mode, the scan time for the operation is not displayed.) The maximum and minimum values are cleared each time the mode is switched from RUN to PROG.

FPOR (A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90037	Work1 for SRC instructions	The number of data that match the searched data is stored here when F96 (SRC) insturction is executed.	A	N/A
DT90038	Work2 for SRC instructions	The position of the first matching data is stored here when an F96 (SRC) instruction is executed.	A	N/A
DT90039	Not used	-	N/A	N/A
DT90040	Not used	-	N/A	N/A
DT90041	Not used	-	N/A	N/A
DT90042	Not used	-	N/A	N/A
DT90043	Not used	-	N/A	N/A
DT90044	Not used	-	N/A	N/A
DT90045	Not used	-	N/A	N/A
DT90046	Not used	-	N/A	N/A
DT90047	Not used	-	N/A	N/A
DT90048	Not used	-	N/A	N/A
DT90049	Not used	-	N/A	N/A
DT90050	Not used	-	N/A	N/A
DT90051	Not used	-	N/A	N/A
DT90052	High-speed counter control flag	The pulse output instruction can be continued or cleared by writing a value with MV instruction (FO).   Control code setting【FPOR type】	A	A

FPOR (A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90052	Pulse output control flag	A value can be written with F0 (MV) instruction to reset the high-speed counter, disable counting, continue or clear high-speed counter instruction.   Control code setting [FPOR type】	A	A

FPOR (A: Available, N/A: Not available)

Address	Name	Description			Reading	Writing
DT90053	Clock/calender monitor (hour/minute) (T32 only)	Hour and minute data of the clock/calender are stored here. This data is read-only data. It cannot be overwritten.			A	N/A
DT90054	Clock/calender setting (minute/second)   (T32 only)	The year, month, day, hour, minute, second and day-of-the-week data for the clock/calender is stored. The built-in clock/calender will operate correctly through the year 2099 and supports leap years. The clock/calender can be set by writing a value using a programming tool software or a program that uses the F0 (MV) instruction.(see example for DT90058)			A	A
DT90055	Clock/calender setting (day/hour)   (T32 only)					
DT90056	Clock/calender setting (year/month)   (T32 only)		Higher byte	$\begin{aligned} & \text { Lower byte } \\ & \hdashline \\ & \hline \end{aligned}$		
		DT90054	$\begin{array}{\|c\|} \hline \text { Minute data } \\ \text { (H00 to H59) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Second data } \\ \text { (H00 to H59) } \end{array}$		
DT90057	Clock/calender setting   (day-of-the-week)   (T32 only)	DT90055	$\begin{gathered} \text { Day data } \\ (\mathrm{H} 01 \text { to } \mathrm{H} 31) \\ \hline \end{gathered}$	$\begin{gathered} \text { Hour data } \\ (\mathrm{H} 00 \text { to } \mathrm{H} 23) \end{gathered}$		
		DT90056	$\begin{array}{c\|} \hline \text { Year data } \\ (\mathrm{H} 00 \text { to } \mathrm{H} 99) \\ \hline \end{array}$	$\begin{gathered} \text { Month data } \\ (\mathrm{H} 01 \text { to H12) } \\ \hline \end{gathered}$		
		DT90057		$\begin{gathered} \text { Day-of-the-week } \\ (\mathrm{H} 00 \text { to H06) } \end{gathered}$		
		As a day of the week is not automatially set on FPWIN GR, fix what day is set to 00 , and set each value for 00 to 06 .				

FPOR (A: Available, N/A: Not available)

Address	Name	Description	$\begin{aligned} & \text { Read- } \\ & \text { ing } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Writ- } \\ \text { ing } \\ \hline \end{gathered}$
DT90058	Clock/calender setting and 30 seconds correction register (T32 only)	The clock/calender is adjusted as follows.   When setting the clock/calender by program   By setting the highest bit of DT90058 to 1, the time becomes that written to DT90054 to DT90057 by F0 (MV) instruction. After the time is set, DT90058 is cleared to 0 . (Cannot be performed with any instruction other than F0 (MV) instruction.)   <Example>   Set the time to 12:00:00 on the 5th day when the X0 turns on.   Note) If the values of DT90054 to DT90057 are changed with the programming tool software, the time will be set when the new values are written. Therefore, it is unnecessary to write to DT90058.   When the correcting times less than 30 seconds   By setting the lowest bit of DT90058 to 1, the value will be moved up or down and become exactly 0 seconds. After the correction is completed, DT90058 is cleared to 0 .   Example:   Correct to 0 seconds with XO : on $\left\|\begin{array}{\|l\|l} \text { X0 } \\ \text { HF } & \text { DFO MV, H 1, DT90058] } \end{array}\right\| \begin{aligned} & \text { Correct to } \\ & 0 \text { seconds. } \end{aligned}$   At the time of coorection, if between 0 and 29 seconds, it will be moved down, and if between 30 and 59 seconds, it will be moved up.   In the example above, if the time was 5 minutes 29 seconds, it will become 5 minutes 0 seconds;and, if the time was 5 minutes 35 seconds, it will become 6 minutes 0 seconds.	A	A
DT90059	Communication error code	Error code is sotred here when a communication error occurs.	N/A	N/A

FPOR (A: Available, N/A: Not available)

Address	Name	Description	Reading	Writ-   ing
DT90060	Step ladder process (0 to 15)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on.	A	A Note)
DT90061	Step ladder process (16 to 31)			
DT90062	Step ladder process $\text { ( } 32 \text { to } 47 \text { ) }$			
DT90063	Step ladder process (48 to 63)			
DT90064	Step ladder process $\text { ( } 64 \text { to } 79 \text { ) }$			
DT90065	Step ladder process $\text { ( } 80 \text { to } 95 \text { ) }$			
DT90066	Step ladder process (96 to 111)			
DT90067	Step ladder process (112 to 127)			
DT90068	Step ladder process (128 to 143)			
DT90069	Step ladder process (144 to 159)			
DT90070	Step ladder process (160 to 175)			
DT90071	Step ladder process (176 to 191)			
DT90072	Step ladder process (192 to 207)	  1: During running $0:$ During stopping		
DT90073	Step ladder process (208 to 223)	Note) A programming tool software can be used to write data.		
DT90074	Step ladder process (224 to 239)			
DT90075	Step ladder process (240 to 255)			
DT90076	Step ladder process ( 256 to 271)			
DT90077	Step ladder process (272 to 287)			
DT90078	Step ladder process $\begin{array}{\|l\|} \hline(288 \text { to } 303) \\ \hline \end{array}$			
DT90079	Step ladder process (304 to 319)			
DT90080	Step ladder process (320 to 335)			
DT90081	Step ladder process ( 336 to 351)			

FPOR (A: Available, N/A: Not available)

Address	Name	Description	Reading	$\begin{gathered} \begin{array}{c} \text { Writ- } \\ \text { ing } \end{array} \\ \hline \end{gathered}$
DT90082	Step ladder process (352 to 367)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on.   Monitor using binary display.	A	A   Note)
DT90083	Step ladder process ( 368 to 383)			
DT90084	Step ladder process ( 384 to 399)			
DT90085	Step ladder process $(400 \text { to } 415)$			
DT90086	Step ladder process (416 to 431)			
DT90087	Step ladder process $(432 \text { to } 447)$			
DT90088	Step ladder process (448 to 463)			
DT90089	Step ladder process $\text { (464 to } 479)$			
DT90090	Step ladder process (480 to 495)			
DT90091	Step ladder process ( 496 to 511)	$\iota_{655} \iota_{651} \bigsqcup_{647} \iota_{643} __{640}$ (Process No.)   1: During running 0 : During stopping		
DT90092	Step ladder process $\text { ( } 512 \text { to } 527 \text { ) }$	Note) A programming tool software can be used to write data.		
DT90093	Step ladder process (528 to 543)			
DT90094	Step ladder process (544 to 559)			
DT90095	Step ladder process (560 to 575)			
DT90096	Step ladder process (576 to 591)			
DT90097	Step ladder process (592 to 607)			

FPOR (A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90098	Step ladder process (608 to 623)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on.   Monitor using binary display	A	ing
DT90099	Step ladder process (624 to 639)			
DT90100	Step ladder process ( 640 to 655)			
DT90101	Step ladder process ( 656 to 671)			
DT90102	Step ladder process (672 to 687)			
DT90103	Step ladder process ( 688 to 703)			
DT90104	Step ladder process ( 704 to 719)			
DT90105	Step ladder process ( 720 to 735)			
DT90106	$\begin{aligned} & \text { Step ladder process } \\ & \text { (736 to 751) } \end{aligned}$			
DT90107	Step ladder process (752 to 767)			
DT90108	Step ladder process (768 to 783)			
DT90109	Step ladder process (784 to 799)			
DT90110	Step ladder process ( 800 to 815)			
DT90111	Step ladder process ( 816 to 831)			
DT90112	Step ladder process ( 832 to 847)	$\iota_{655} \bigsqcup_{651} \bigsqcup_{647} \bigsqcup_{643}\left\llcorner_{640}\right.$ (Process No.)   1: During running 0 : During stopping		
DT90113	Step ladder process ( 848 to 863)	A programming tool software can be		
DT90114	$\begin{aligned} & \text { Step ladder process } \\ & \text { (864 to 879) } \end{aligned}$	write data.		
DT90115	$\begin{aligned} & \text { Step ladder process } \\ & \text { (880 to 895) } \end{aligned}$			
DT90116	Step ladder process ( 896 to 911)			
DT90117	Step ladder process (912 to 927)			
DT90118	Step ladder process (928 to 943)			
DT90119	Step ladder process (944 to 959)			
DT90120	Step ladder process (960 to 975)			
DT90121	Step ladder process (976 to 991)			
DT90122	Step ladder process (992 to 999)   (higher byte is not used.)			

FPOR (A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90123	Not used	-	N/A	N/A
DT90124	COM SEND/RECV instruction end code	For details, refer to Programming Manual (F145 and F146).	N/A	N/A
DT90125	Not used	-	N/A	N/A
DT90126	Forced ON/OFF operating station display	Used by the system	N/A	N/A
DT90127   to   DT90139	Not used	-	N/A	N/A
DT90140	MEWNET-WO   $\mathrm{PC}(\mathrm{PLC})$ link 0 status	The number of times the receiving operation is performed.	A	N/A
DT90141		The current interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90142		The minimum inerval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90143		The maximum interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90144		The number of times the sending operation is performed.		
DT90145		The current interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90146		The minimum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90147		The maximum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90148	MEWNET-W0   $\mathrm{PC}(\mathrm{PLC})$ link 1 status	The number of times the receiving operation is performed.	A	N/A
DT90149		The current interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90150		The minimum inerval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90151		The maximum interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90152		The number of times the sending operation is performed.		
DT90153		The current interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90154		The minimum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90155		The maximum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90156	MEWNET-W0   PC(PLC) link 0 status	Area used for measurement of receiving interval.	A	N/A
DT90157		Area used for measurement of sending interval.		

FPOR (A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90158	MEWNET-WO   PC(PLC) link 1 status	Area used for measurement of receiving interval.	A	N/A
DT90159		Area used for measurement of sending interval.		
DT90160	MEWNET-W0   PC(PLC) link 0 unit No.	Stores the unit No. of PC(PLC) link 0.	A	N/A
DT90161	MEWNET-W0 PC(PLC) link 0 error flag	Stores the error contents of PC(PLC) link 0.	A	N/A
DT90162   to   DT90169	Not used	-	N/A	N/A
DT90170	MEWNET-W0   PC(PLC) link 0 status	Duplicated destination for PC(PLC) inter-link address	A	N/A
DT90171		Counts how many times a token is lost.		
DT90172		Counts how many times two or more tokens are detected.		
DT90173		Counts how many times a signal is lost.		
DT90174		No. of times underfined commands have been received.		
DT90175		No. of times sum check errors have occurred during reception.		
DT90176		No. of times format errors have occurred in received data.		
DT90177		No. of times transmission errors have occurred.		
DT90178		No. of times procedural errors have occurred.		
DT90179		No. of times overlapping parent units have occurred.		
$\begin{aligned} & \text { DT90180 } \\ & \text { to } \\ & \text { DT90189 } \end{aligned}$	Not used	-	N/A	N/A
DT90190	Not used	-	N/A	N/A
DT90191	Not used	-	N/A	N/A
DT90192	Not used	-	N/A	N/A
DT90193	Not used	-	N/A	N/A
$\begin{aligned} & \text { DT90194 } \\ & \text { to } \\ & \text { DT90218 } \end{aligned}$	Not used	-	N/A	N/A

FPOR (A: Available, N/A: Not available)

Address	Name		Description	Reading	Writing
DT90219	Unit No. (Station No.) selection for DT90220 to DT90251		0: Unit No. (Station No.) 1 to 8,   1: Unit No. (Station No.) 9 to 16	A	A
DT90220	PC(PLC)   link   Unit   (station)   No. 1 or 9	System register 40 and 41	The contents of the system register settings partaining to the PLC inter-link function for the various unit numbers are stored as shown below.	A	N/A
DT90221		System register 42 and 43			
DT90222		System register 44 and 45			
DT90223		System register 46 and 47			
DT90224	PC(PLC)   link   Unit   (station)   No. 2 or 10	System register 40 and 41	<Example> When DT90219 is 0		
DT90225		System register 42 and 43			
DT90226		System register 44 and 45			
DT90227		System register 46 and 47	$\overbrace{L_{\text {Setting contents }}}^{\text {Unit(Station) }}$		
DT90228	PC(PLC)   link   Unit   (station)   No. 3 or 11	System register 40 and 41	$L_{\text {Setting contents of system }}^{$ of system register    $40,42,44$$}$		
DT90229		System register 42 and 43	register $41,43,45$ and 47		
DT90230		System register 44 and 45	- When the system register 46 in the home unit is in the standard setting, the values in the home unit are copied in the system registers 46 and 47.   When the system register 46 in the home unit is in the reverse setting, the registers 40 to 45 and 47 corresponding to the home unit mentioned in the left column will be changed to 50 to 55 and 57, and the system register 46 will be set as it is. Also, the system registers 40 to 45 corresponding to other units will be changed to the values which the received values are corrected, and the registers 46 and 57 in the home unit are set for the registers 46 and 47.		
DT90231		System register 46 and 47			
DT90232		System register 40 and 41			
DT90233	link	System register 42 and 43			
DT90234	(station)   No. 4 or 12	System register 44 and 45			
DT90235		System register 46 and 47			
DT90236	PC(PLC)   link   Unit   (station)   No. 5 or 13	System register 40 and 41			
DT90237		System register 42 and 43			
DT90238		System register 44 and 45			
DT90239		System register 46 and 47			

FPOR (A: Available, N/A: Not available)

Address	Name		Description	Reading	Writing
DT90240	PC(PLC)   link   Unit   (station)   No. 6 or 14	System register 40 and 41	The contents of the system register settings partaining to the PLC inter-link function for the various unit numbers are stored as shown below.   - When the system register 46 in the home unit is in the standard setting, the values in the home unit are copied in the system registers 46 and 47 . When the system register 46 in the home unit is in the reverse setting, the registers 40 to 45 and 47 corresponding to the home unit mentioned in the left column will be changed to 50 to 55 and 57, and the system register 46 will be set as it is. Also, the system registers 40 to 45 corresponding to other units will be changed to the values which the received values are corrected, and the registers 46 and 57 in the home unit are set for the registers 46 and 47 .	A	N/A
DT90241		System register 42 and 43			
DT90242		System register 44 and 45			
DT90243		System register 46 and 47			
DT90244	PC(PLC)   link   Unit (station) No. 7 or 15	System register 40 and 41			
DT90245		System register 42 and 43			
DT90246		System register 44 and 45			
DT90247		System register 46 and 47			
DT90248	PC(PLC)   link   Unit (sta-   tion) No. 8   or 16	System register 40 and 41			
DT90249		System register 42 and 43			
DT90250		System register 44 and 45			
DT90251		System register 46 and 47			
DT90252	Not used			N/A	N/A
DT90253	Not used				
DT90254	Not used				
DT90255	Not used				
DT90256	Not used			N/A	N/A

FPOR (A: Available, N/A: Not available)

Address	Name			Description	Reading	Writing
DT90300	Elapsed value area	Lower words	HSC-CHO	Counting area for input (X0) or ( $\mathrm{X} 0, \mathrm{X} 1$ ) of the main unit.	A	$A^{\text {Note) }}$
DT90301		Higher words			A	$A^{\text {Note) }}$
DT90302	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and F167 (HC1R) are executed.	A	$A^{\text {Note) }}$
DT90303		Higher words			A	$A^{\text {Note) }}$
DT90304	Elapsed value area	Lower words	HSC-CH1	Counting area for input (X1) of the main unit.	A	$A^{\text {Note) }}$
DT90305		Higher words			A	$A^{\text {Note) }}$
DT90306	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and F167 (HC1R) are executed.	A	$A^{\text {Note) }}$
DT90307		Higher words			A	$A^{\text {Note) }}$
DT90308	Elapsed value area	Lower words	HSC-CH2	Counting area for input (X2) or (X2, X3) of the main unit.	A	$A^{\text {Note) }}$
DT90309		Higher words			A	$A^{\text {Note) }}$
DT90310	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and	A	$A^{\text {Note) }}$
DT90311		Higher words		F167 (HC1R) are executed.	A	$A^{\text {Note) }}$
DT90312	Elapsed value area	Lower words	HSC-CH3	Counting area for input (X3) of the main unit.	A	$A^{\text {Note) }}$
DT90313		Higher words			A	$A^{\text {Note) }}$
DT90314	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and	A	$A^{\text {Note) }}$
DT90315		Higher words		F167 (HC1R) are executed.	A	$A^{\text {Note) }}$
DT90316	Elapsed value area	Lower words	HSC-CH4	Counting area for input (X4) or ( $\mathrm{X} 4, \mathrm{X} 5$ ) of the main unit.	A	$A^{\text {Note) }}$
DT90317		Higher words			A	$A^{\text {Note) }}$
DT90318	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and F167 (HC1R) are executed.	A	$A^{\text {Note }}$
DT90319		Higher words			A	$A^{\text {Note) }}$

Note) Writing in the elapsed value area is available by F1 (DMV) instruction only.
Writing in the target value area is available by F166 (HC1S) and F167 (HC1R) instructions only.

FPOR (A: Available, N/A: Not available)

Address	Name			Description	Reading	Writing
DT90320	Elapsed value area	Lower words	HSC-CH5	Counting area for input (X5) of the main unit.	A	$\underset{\text { Note1) }}{\text { A }}$
DT90321		Higher words			A	$\underset{\text { Note1) }}{\text { A }}$
DT90322	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and	A	$\underset{\text { Notei) }}{\text { A }}$
DT90323		Higher words		F167 (HC1R) are executed.	A	$\underset{\text { Note1) }}{\text { A }}$
DT90324	Not used				N/A	N/A
DT90325	Not used				N/A	N/A
DT90326	Not used				N/A	N/A
DT90327	Not used				N/A	N/A
DT90328	Not used				N/A	N/A
DT90329	Not used				N/A	N/A
DT90330	Not used				N/A	N/A
DT90331	Not used				N/A	N/A
DT90332	Not used				N/A	N/A
DT90333	Not used				N/A	N/A
DT90334	Not used				N/A	N/A
DT90335	Not used				N/A	N/A
DT90336	Not used				N/A	N/A
DT90337	Not used				N/A	N/A
DT90338	Not used				N/A	N/A
DT90339	Not used				N/A	N/A
DT90340	Not used				N/A	N/A
DT90341	Not used				N/A	N/A
DT90342	Not used				N/A	N/A
DT90343	Not used				N/A	N/A
DT90344	Not used				N/A	N/A
DT90345	Not used				N/A	N/A
DT90346	Not used				N/A	N/A
DT90347	Not used				N/A	N/A
DT90348	Not used				N/A	N/A
DT90349	Not used				N/A	N/A
DT90350	Not used				N/A	N/A
DT90351	Not used				N/A	N/A
DT90352	Not used				N/A	N/A
DT90353	Not used				N/A	N/A
DT90354	Not used				N/A	N/A
DT90355	Not used				N/A	N/A
DT90356	Not used				N/A	N/A
DT90357	Not used				N/A	N/A
DT90358	Not used				N/A	N/A
DT90359	Not used				N/A	N/A
DT90360	Not used				N/A	N/A
DT90361	Not used				N/A	N/A
DT90362					N/A	N/A
DT90363	Not used				N/A	N/A

Note1) Writing in the elapsed value area is available by F1 (DMV) instruction only.
Writing in the target value area is available by F166 (HC1S) and F167 (HC1R) instructions only.

FPOR (A: Available, N/A: Not available)

Address	Name		Description	Reading	Writing
DT90370	Control flag monitor area	HSC-CHO	When HSC control is executed by F0 (MV)S, DT90052 instruction, the setting value for the target CH is stored in each CH .	A	N/A
DT90371		HSC-CH1		A	N/A
DT90372		HSC-CH2		A	N/A
DT90373		HSC-CH3		A	N/A
DT90374		HSC-CH4		A	N/A
DT90375		HSC-CH5		A	N/A
DT90376	Not used		-	N/A	N/A
DT90377	Not used		-	N/A	N/A
DT90378	Not used			N/A	N/A
DT90379	Not used		-	N/A	N/A
DT90380	Control flag monitor area (Transistor output type only)	PLS-CH0	When pulse output control is executed by F0 (MV)S, DT90052 instruction, the setting value for the target CH is stored in each CH .	A	N/A
DT90381		PLS-CH1		A	N/A
DT90382		PLS-CH2		A	N/A
DT90383		PLS-CH3		A	N/A
DT90384	Not used		-	N/A	N/A
DT90385	Not used		-	N/A	N/A
DT90386	Not used		-	N/A	N/A
DT90387	Not used		-	N/A	N/A
DT90388	Not used		-	N/A	N/A
DT90389	Not used		-	N/A	N/A

FPOR (A: Available, N/A: Not available)

Address	Name			Description	Reading	Writing
DT90400	Elapsed value area	Lower words	$\begin{aligned} & \text { PLS- } \\ & \text { CHO } \end{aligned}$	Available for the transistor output type only.   Note) When controlling the pulse output CH by F166(HC1S), F167(HC1R) instructions, the target value is stored. The target value for match ON/OFF is stored.	A	A
DT90401		Higher words			A	A
DT90402	Target value area	Lower words			A	N/A
DT90403		Higher words			A	N/A
DT90404	Target value area for match ON/OFF	Lower words			A	N/A
DT90405		Higher words			A	N/A
DT90406	Corrected speed of initial speed	Lower words		The initial speed of the calculated result is stored.	A	N/A
DT90407	Deceleration minimum speed			The minimum speed for the change of speed.	A	N/A
DT90408	Acceleration forbidden area starting position	Lower words		If the elapsed value corsses over this position when	A	N/A
DT90409		Higher words		acceleration cannot be performed.	A	N/A
DT90410	Elapsed value area	Lower words	$\begin{aligned} & \text { PLS- } \\ & \text { CH1 } \end{aligned}$	Available for the transistor output type only.   Note) When controlling the pulse output CH by F166(HC1S), F167(HC1R) instructions, the target value is stored.   The target value for match ON/OFF is stored.	A	A
DT90411		Higher words			A	A
DT90412	Target value area	Lower words			A	N/A
DT90413		Higher words			A	N/A
DT90414	Target value area for match ON/OFF	Lower words			A	N/A
DT90415		Higher words			A	N/A
DT90416	Corrected speed of initial speed	Lower words		The initial speed of the calculated result is stored.	A	N/A
DT90417	Deceleration minimum speed			The minimum speed for the change of speed.	A	N/A
DT90418	Acceleration forbidden area starting position	Lower words		If the elapsed value corsses over this position when	A	N/A
DT90419		Higher words		acceleration cannot be performed.	A	N/A

FPOR (A: Available, N/A: Not available)

Address	Name			Description	Reading	Writing
DT90420	Elapsed value area	Lower words	$\begin{aligned} & \text { PLS- } \\ & \text { CH2 } \end{aligned}$	Available for the transistor output type only.   Note) When controlling the pulse output CH by F166(HC1S), F167(HC1R) instructions, the target value is stored. The target value for match ON/OFF is stored.	A	A
DT90421		Higher words			A	A
DT90422	Target value area	Lower words			A	N/A
DT90423		Higher words			A	N/A
DT90424	Target value area for match ON/OFF	Lower words			A	N/A
DT90425		Higher words			A	N/A
DT90426	Corrected speed of initial speed	Lower words		The initial speed of the calculated result is stored.	A	N/A
DT90427	Deceleration minimum speed			The minimum speed for the change of speed.	A	N/A
DT90428	Acceleration forbidden area starting position	Lower words		If the elapsed value corsses over this position when	A	N/A
DT90429		Higher words		acceleration cannot be performed.	A	N/A
DT90430	Elapsed value area	Lower words	$\begin{aligned} & \text { PLS- } \\ & \text { CH3 } \end{aligned}$	Available for the transistor output type only.   Note) When controlling the pulse output CH by F166(HC1S), F167(HC1R) instructions, the target value is stored.   The target value for match ON/OFF is stored.	A	A
DT90431		Higher words			A	A
DT90432	Target value area	Lower words			A	N/A
DT90433		Higher words			A	N/A
DT90434	Target value area for match ON/OFF	Lower words			A	N/A
DT90435		Higher words			A	N/A
DT90436	Corrected speed of initial speed	Lower words		The initial speed of the calculated result is stored.	A	N/A
DT90437	Deceleration minimum speed			The minimum speed for the change of speed.	A	N/A
DT90438	Acceleration forbidden area starting position	Lower words		If the elapsed value corsses over this position when	A	N/A
DT90439		Higher words		changing the speed, acceleration cannot be performed.	A	N/A

### 5.1.10 Table of System Registers for FP $\Sigma$

	No.	Name	Default value	Descriptions	
Hold Nonhold 1	5	Starting number setting for counter	1008	0 to 1024	- These settings are effective if the optional backup battery is installed.   - If no backup battery is used, do not change the default settings. Otherwise proper functioning of hold/non-hold values cannot be guaranteed.
	6	Hold type area starting number setting for timer and counter	1008	0 to 1024	
	7	Hold type area starting number setting for internal relays	$\begin{aligned} & \text { 12k: } 90 \\ & \text { 32k: } 0 \text { to } \\ & 256 \end{aligned}$	$\begin{aligned} & \text { 12k: } 0 \text { to } 98 \\ & \text { 32k: } 0 \text { to } 256 \end{aligned}$	
	8	Hold type area starting number setting for data registers	32710	0 to 32765	
	14	Hold or non-hold setting for step ladder process	Non-hold	Hold/Non-hold	
	4	Previous value is held for a leading edge detection instruction (DF instrucion) with MC ${ }^{\text {Note) }}$	Hold	Hold/ Non-hold	
Hold/ Nonhold 2	10	Hold type area starting word number for PC(PLC) link relays (for PC(PLC) link 0)	64	0 to 64	
	11	Hold type area starting word number for PC(PLC) link relays (for PC(PLC) link 1)	$\begin{aligned} & 128 \\ & \text { (32k only) } \end{aligned}$	64 to 128	
	12	Hold type area starting number for PC(PLC) link registers (for PC(PLC) link 0)	128	0 to 128	
	13	Hold type area starting number for PC(PLC) link registers (for PC(PLC) link 1)	$\begin{aligned} & 256 \\ & \text { (32k only) } \end{aligned}$	128 to 256	
Action on error	20	Disable or enable setting for duplicated output	Disabled	Disabled/Enabled	
	23	Operation setting when an I/O verification error occurs	Stop	Stop/Continuation of operation	
	26	Operation setting when an operation error occurs	Stop	Stop/Continuation of operation	
	4	Alarm battery error (Operating setting when battery error occurs)	Disabled	Dis- When a battery error occurs, abled: a self-diagnostic error is not issued and the ERROR/ ALARM LED does not flash.   Ena- When a battery error occurs, bled: a self-diagnostic error is issued and the ERROR/ ALARM LED flashes.	

Note) The 12k type is available with Ver. 1.4 to 1.9, 2.4 or later.

	No.	Name	Default value	Descriptions
Time setting	31	Wait time setting for multi-frame communication	$\begin{array}{\|l} \hline 6500.0 \\ \mathrm{~ms} \\ \hline \end{array}$	10 to 81900 ms
	32	Communication timeout setting for SEND/RECV, RMRD/RMWT commands	$\begin{aligned} & 10000.0 \\ & \mathrm{~ms} \end{aligned}$	10 to 81900 ms
	34	Constant value settings for scan time	Normal scan	0: Normal scan 0 to 350 ms : Scans once each specified time interval
PC   (PLC)   link 0   set-   ting	40	Range of link relays used for PC(PLC) link	0	0 to 64 words
	41	Range of link data registers used for PC(PLC) link	0	0 to 128 words
	42	Starting word number for link relay transmission	0	0 to 63
	43	Link relay transmission size	0	0 to 64 words
	44	Starting number for link data register tranmission	0	0 to 127
	45	Link data register transmission size	0	0 to 127 words
	46	PC(PLC) link switch flag	Normal (32k only)	Normal/reverse
	47	Maximum unit number setting for MEWNET-W0 PC(PLC) link	16	1 to 16
$\begin{gathered} \text { PC } \\ \text { (PLC) } \\ \text { link } 1 \\ \text { set- } \\ \text { ting } \\ \text { (32k } \\ \text { only) } \end{gathered}$	50	Range of link relays used for PC(PLC) link	0	0 to 64 words
	51	Range of link data registers used for PC(PLC) link	0	0 to 128 words
	52	Starting word number for link relay transmission	64	64 to 127
	53	Link relay transmission size	0	0 to 64 words
	54	Starting number for link data register tranmission	128	128 to 255
	55	Link data register transmission size	0	0 to 127 words
	57	Maximum unit number setting for MEWNET-W0 PC(PLC) link	16	1 to 16


	No.	Name	Default value		Descriptions
Highspeed counter	400	High-speed counter operation mode settings (X0 to X2)	CHO:   Do not set input X0 as highspeed counter	CHO	Do not set input X0 as high-speed counter.   Two-phase input (X0, X1)   Two-phase input (X0, X1), Reset input (X2) Incremental input (X0)   Incremental input (X0), Reset input (X2)   Decremental input (X0)   Decremental input (X0), Reset input (X2) incremental/decremental input (X0, X1) incremental/decremental input (X0, X1), Reset input (X2) Incremental/decremental control input (X0, X1)   Incremental/decremental control input (X0, X1), Reset input (X2)
			CH1:   Do not set input X1 as highspeed counter	CH1	Do not set input X 1 as high-speed counter.   Incremental input (X1)   Incremental inptu (X1), Reset input (X2)   Decremental input (X1)   Decremental input (X1), Reset input (X2)
	401	High-speed counter operation mode settings (X3 to X5)	CH2:   Do not set input X3 as highspeed counter	CH2	Do not set input X3 as high-speed counter.   Two-phase input (X3, X4)   Two-phase input (X3, X4), Reset input (X5)   Incremental input (X3)   Incremental input (X3), Reset input (X5)   Decremental input (X5)   Decremental input (X5), Reset input (X5)   Incremental/decremental input (X3, X4)   Incremental/decremental input (X3, X4),   Reset input (X5)   Incremental/decremental control   (X3, X4)   Incremental/decremental control   (X3, X4), Reset input (X5)
			HC3: Does not set input X4 as highspeed counter	CH3	Does not set input X4 as high-speed counter.   Incremental input (X4)   Incremental input (X4), Reset input (X5)   Decremental input (X4)   Decremental input (X4), Reset input (X5)


	No.	Name	Default value	Descriptions
	402	Pulse catch input settings	Not set	X0 $61 \times 2 \times 3$ X1   Specify the input contacts used as pulse catch input.
Inter-ruptinput	403	Interrupt input settings	Not set	$\begin{array}{llllllll}\text { X0 } & \text { X1 } & \text { X2 } & \text { X3 } & \text { X4 } & \text { X5 } & \text { X6 } & \text { X7 }\end{array}$ $\square$   Specify the input contacts used as intrrupt input.   Specify the effective interrupt edge.   (When set: ON $\rightarrow$ OFF is valid)

Note1) If the operation mode is set to Two-phase, incremental/decremental, or incremental/decremental control, the setting for CH 1 is invalid in part 2 of system register 400 and the setting for CH 3 is invalid in part2 of system register 401.
Note2) If reset input settings overlap, the CH 1 setting takes precedence in system register 400 and the CH 3 setting takes precedence in system register 401.
Note3) The settings for pulse catch and interrupt input can only be specified in system registers 402 and 403.

Note4) If system register 400 to 403 have been set simultaneously for the same input relay,the follwing precedence order is effective: [High-speed counter] $\rightarrow$ [Pulse catch $] \rightarrow$ [Interrupt input]. <Example>
When the high-speed counter is being used in the addition input mode, even if input X 0 is specified as an interrupt input or as pulse catch input, those settings are invalid, and X0 functions as counter input for the high-speed counter.

	No.	Name	Default value	Descriptions
$\begin{aligned} & \text { Tool } \\ & \text { port } \\ & \text { set- } \\ & \text { ting } \end{aligned}$	410	Unit No. setting	1	1 to 99
	412	Communication mode setting	Computer link	Computer link General-purpose communications
		Selection of modem connection	Disabled	Enabled/Disabled
	413	Communication format setting	Data lenght bit: 8 bits Parity check: "with odd" Stop bit: 1 bit	Enter the settings for the various items.   - Data lenght bit: 7 bits/8 bits   - Parity check: none/with odd/with even   - Stop bit: 1 bit/2 bits   - The following setting is valid only when the communication mode specified by system register 412 has been set to   "General-purpose serial communication".   - Terminator CR/CR+LF/None   - Header: STX not exist/STX exist
	415	Communication speed (Baud rate) setting	9600 bps	2400 bps / 4800 bps / 9600 bps /   19200 bps / 38400 bps / 57600 bps /   115200 bps
	420	Starting address for received buffer of general (serial data) communication mode	0	0 to 32764
	421	Buffer capacity setting for data received of general (serial data) communication mode	0	0 to 2048
	410	Unit No. setting	1	1 to 99
	412	Communication mode setting	Computer link	Computer link General-purpose serial communication PC(PLC) link MODBUS RTU
		Selection of modem connection	Disabled	Enabled/Disabled
COM   1 port setting	413	Communication format setting	Data lenght   bit: 8 bits   Parity check:   Odd   Stop bit: 1 bit	Enter the settings for the various items.   - Data lenght bit: 7 bits/ 8 bits   - Parity check: none/with odd/with even   - Stop bit: 1 bit/2 bits   The following setting is valid only when the communication mode specified by system register 412 has been set to "General-purpose serial communication".   - Terminator CR/CR+LF/None   - Header: STX not exist/STX exist
	415	Communication speed (Baud rate) setting	9600 bps	2400 bps / 4800 bps / 9600 bps / 19200 bps / 38400 bps / 57600 bps / 115200 bps
	416	Starting address for received buffer of general (serial data) communication mode	0	0 to 32764
	417	Buffer capacity setting for data received of general (serial data) communication mode	2048	0 to 2048

Note) The communication format in a PLC link is fixed at the following settings: Data length is 8 bits, odd parity, stop bit is 1 .
The communication speed (baud rate) is fixed at 115200 bps.
The transmission speed of the RS485 port (COM1) of AFPG806 must be identically set by the system register and the dip switch in the communication cassette.

	No.	Name	Default value	Descriptions
$\begin{gathered} \text { COM } \\ 2 \\ \text { port } \\ \text { set- } \\ \text { ting } \end{gathered}$	411	Unit No. setting	1	1 to 99
	412	Communication mode setting	Computer link	Computer link General-purpose serial communication MODBUS RTU
		Selection of modem connection	Disabled	Enabled/Disabled
	414	Communication format setting	Data lenght bit: 8 bits Parity check: "with odd" Stop bit: 1 bit	Enter the settings for the various items.   - Data lenght bit: 7 bits/8 bits   - Parity check: none/odd/even   -Stop bit: 1 bit/2 bits   - The following setting is valid only when the communication mode specified by system register 412 has been set to "General-purpose serial communication".   - Terminator: CR/CR+LF/None   - Header: STX not exist/STX exist
	415	Communication speed (Baud rate) setting	9600 bps	2400 bps 4800 bps 9600 bps 19200 bps 38400 bps 57600 bps 115200 bps
	416	Starting address for received buffer of general (serial data) communication mode	2048	0 to 32764
	417	Buffer capacity setting for data received of general (serial data) communication mode	2048	0 to 2048

Note) The communication format in a PLC link is fixed at the following settings:
the data length is 8 bits, odd parity, stop bit is 1 .
The communication speed (baud rate) is fixed at 115200 bps.
The transmission speed of the RS485 port (COM1) of AFPG806 must be identically set by the system register and the dip switch in the communication cassette.

### 5.1.11 Table of Special Internal Relays for FP $\Sigma$

The special internal relays turn on and off under special conditions. The on and off states are not output externally. Writing is not possible with a programming tool or an instruction.

WR900

Relay No.	Name	Description
R9000	Self-diagnostic error flag	Turns on when a self-diagnostic error occurs. $\Rightarrow$ The content of self-diagnostic error is stored in DT90000.
R9001	Not used	
R9002	Not used	
R9003	Not used	
R9004	I/O verification error flag	Turns on when an I/O verification error occurs.
R9005	Backup battery error flag (non-hold)	Turns on when an backup battery error occurs.
R9006	Backup battery error flag (hold)	Turns on when a backup battery error occurs. Once a battery error has been detected, this is held even after recovery has been made. It goes off if the power supply is turned off, or if the system is initialized.
R9007	Operation error flag (hold)	Turns on and keeps the on state shen an operation error occurs.   $\Rightarrow$ The address where the error occurred is stored in DT90017. (indicates the first operation error which occurred).
R9008	Operation error flag (non-hold)	Turns on for an instant when an operation error occurs. $\Rightarrow$ The address where the operation error occurred is stored in DT90018. The contents change each time a new error occurs.
R9009	Carry flag	This is set if an overflow or underflow occurs in the calculation results, and as a result of a shift system instruction being executed.
R900A	> Flag	Turns on for an instant when the compared results become larger in the comparison instructions.
R900B	= Flag	Turns on for an instant,   - when the compared results are equal in the comparison instructions.   - when the calculated results become 0 in the arithmetic instructions.
R900C	< Flag	Turns on for an instant when the compared results become smaller in the comparison instructions.
R900D	Auxiliary timer instruction flag	Turns on when the set time elapses (set value reaches 0 ) in the timing operation of the F137(STMR)/F183(DSTM) auxiliary timer instruction. The flag turns off when the trigger for auxiliary timer instruction turns off.
R900E	Tool port communication error	Turns on when communication error at tool port is occurred.
R900F	Constant scan error flag	Turns on when scan time exceeds the time specified in system register 34 during constant scan execution. This goes on if 0 has been set using system register 34 .

WR901

Relay No.	Name	Description
R9010	Always on relay	Always on.
R9011	Always off relay	Always off.
R9012	Scan pulse relay	Turns on and off alternately at each scan.
R9013	Initial (on type) pulse relay	Goes on for only the first scan after operation (RUN) has been started, and goes off for the second and subsequent scans.
R9014	Initial (off type) pulse relay	Goes off for only the first scan after operation (RUN) has been started, and goes on for the second and subsequent scans.
R9015	Step ladder initial pulse relay (on type)	Turns on for only the first scan of a process after the boot at the step ladder control.
R9016	Not used	-
R9017	Not used	-
R9018	0.01 s clock pulse relay	Repeats on/off operations in 0.01 sec. cycles.
R9019	0.02 s clock pulse relay	Repeats on/off operations in 0.02 s . cycles.
R901A	0.1 s clock pulse relay	Repeats on/off operations in 0.1 s . cycles.
R901B	0.2 s clock pulse relay	Repeats on/off operations in 0.2 s . cycles.
R901C	1 s clock pulse relay	Repeats on/off operations in 1 s . cycles.
R901D	2 s clock pulse relay	Repeats on/off operations in 2 s . cycles.
R901E	1 min clock pulse relay	Repeats on/off operations in 1 min . cycles.
R901F	Not used	-

WR902

Relay No.	Name	Description
R9020	RUN mode flag	Turns off while the mode selector is set to PROG.   Turns on while the mode selector is set to RUN.
R9021	Not used	
R9022	Not used	
R9023	Not used	
R9024	Not used	Turns on while the F149 (MSG) instruction is executed.
R9025	Not used	Turns on during forced on/off operation for input/output   relay timer/counter contacts.
R9026	Message flag	Turns on while the external interrupt trigger is enabled by   the ICTL instruction.
R9027	Not used	Turns on when an interrupt error occurs.
R9028	Not used	Forcing flag
R9029	Interrupt enable flag	Sampling by the instruction=0   Sampling at constant time intervals=1
R902A	Interrupt error flag	When the sampling operation stops=1,   When the sampling operation starts=0
R902B	R902C	Sample point flag Note)   Note)
R902D	When the sampling stop trigger activates=1   When the sampling stop trigger stops=0	
R902E	Sampling stop trigger   flag Note)	When sampling starts=1   When sampling stops=0
R902F	Sampling enable flag   Note)	

Note) Available for the 32k type only.

WR903

Relay No.	Name		Description
R9030	Not used		
R9031	Not used		-
R9032	COM1 port communication mode flag		- Turns on when the general-purpose communication function is being used   - Goes off when the MEWTOCOL-COM or the PLC link function is being used.
R9033	Print instruction execution flag		Off: Printing is not executed. On: Execution is in progress.
R9034	RUN overwrite complete flag		Goes on for ony the first scan following completion of a rewrite during the RUN operation.
R9035	Not used		-
R9036	Not used		-
R9037	COM1 port communication error flag		- Goes on is a transmission error occurs during data communication.   - Goes off when a request is made to send data, using the F159 (MTRN) instruction.
R9038	COM1 port reception done flag during general purpose communication		- Turns on when the terminator is received during general purpose serial communication.
R9039	COM1 port transmission done flag during general-purpose serial communication		- Goes on when transmission has been completed in general-purpose serial communication.   - Goes off when transmission is requested in generalpurpose serial communication.
R903A	High-speed counter control flag	ch0	Turn on while the high-speed counter instructions F166(HC15), F167(HC1R) and the pulse output instructions F171(SPDH) to F176(PWMH) are executed.
R903B	High-speed counter control flag	ch1	Turn on while the high-speed counter instructions F166(HC15), F167(HC1R) and the pulse output instructions F171(SPDH) to F176(PWMH) are executed.
R903C	High-speed counter control flag	ch2	Turn on while the high-speed counter instructions F166(HC15), F167(HC1R) and the pulse output instructions F171(SPDH) to F176(PWMH) are executed.
R903D	High-speed counter control flag	ch3	Turn on while the high-speed counter instructions F166(HC15), F167(HC1R) and the pulse output instructions F171(SPDH) to F176(PWMH) are executed.
R903E	TOOL port reception done flag during general purpose communication		- Turns on when the terminator is received during general purpose serial communication.
R903F	TOOL port transmission done flag during general-purpose serial communication		- Goes on when transmission has been completed in general-purpose serial communication.   - Goes off when transmission is requested in generalpurpose serial communication.

Note) R9030 to R9030F can be changed during 1 scan.

Relay No.	Name	Description
R9040	TOOL port operation mode flag	- Turns on when the general-purpose communication function is being used   - Goes off when the computer link function is being used.
R9041	COM1 port PLC link flag	Turn on while the PLC link function is used.
R9042	COM2 port communication mode flag	- Goes on when the general-purpose serial communication is used.   - Goes off when the MEWTOCOL is used.
R9043	Not used	
R9044	COM1 port SEND/RECV instruction execution flag	Monitors whether the F145 (SEND) or F146 (RECV) instructions can be executed or not.   Off: None of the above mentioned instructions can be executed. (During executing the instruction)   On: One of the above mentioned instructions can be executed.
R9045	COM1 port SEND/RECV instruction execution end flag	Monitors if an abnormality has been detected during the execution of the F145 (SEND) or F146 (RECV) instructions as follows:   Off: No abonormality detected.   On: An abnormality detected. (communication error)   The error code is stored in DT90039.   End code: DT90124
R9046	Not used	
R9047	COM2 port communication error flag	- Goes on if a transmission error occurs during data communication.   - Goes off when a request is made to send data, using the F159 (MTRN) instruction.
R9048	COM2 port port reception done flag during general-purpose communicating	- Turn on when the terminator is received during generalpurpose serial communication.
R9049	COM2 port transmission done flag during general-purpose communication	Goes on when transmission has been completed in general-purpose serial communication. Goes off when transmission is requested in generalpurpose communication.
R904A	COM2 port SEND/RECV instruction execution flag	Monitors whether the F145 (SEND) or F146 (RECV) instructions can be executed or not.   Off: None of the above mentioned instructions can be executed. (During executing the instruction)   On: One of the above mentioned instructions can be executed.
R904B	COM2 port SEND/RECV instruction execution end flag	Monitors if an abnormality has been detected during the execution of the F145 (SEND) or F146 (RECV) instructions as follows:   Off: No abonormality detected.   On: An abnormality detected. (communication error)   The error code is stored in DT90039.   End code: DT90125
$\begin{aligned} & \text { R904C to } \\ & \text { R904D } \\ & \hline \end{aligned}$	Not used	-
R904E	Circular interpolation control flag	Goes on when the F176 (SPCH) circular interpolation instruction is executed.
R904F	Circular interpolation data overwrite confirmation flag	It is used to overwrite next data when the circular interpolation instruction is used in the continuation mode.

Note) R9040 to R904F can be changed during 1 scan.

## WR905

Relay No.	Name	Description
R9050	MEWNET-W0   PLC link transmission   error flag	When using MEWNET-W0   - Turns on when a transmission error occurs at PLC link.   - Turns on when there is an error in the PLC link area   settings.
R9051 to   R905F	Not used	

WR906

Relay No.	Name		Description
R9060	MEWNET-W0 PC(PLC) link 0   transmission assurance relay	Unit No. 1	Turns on when Unit No. 1 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R9061		Unit No. 2	Turns on when Unit No. 2 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the $\mathrm{PC}(\mathrm{PLC})$ link 0 mode.
R9062		Unit No. 3	Turns on when Unit No. 3 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R9063		Unit No. 4	Turns on when Unit No. 4 is communicating properly in PC(PLC) link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R9064		Unit No. 5	Turns on when Unit No. 5 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the $\mathrm{PC}(\mathrm{PLC})$ link 0 mode.
R9065		Unit No. 6	Turns on when Unit No. 6 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R9066		Unit No. 7	Turns on when Unit No. 7 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the $\mathrm{PC}(\mathrm{PLC})$ link 0 mode.
R9067		Unit No. 8	Turns on when Unit No. 8 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R9068		Unit No. 9	Turns on when Unit No. 9 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the $\mathrm{PC}(\mathrm{PLC})$ link 0 mode.
R9069		Unit No. 10	Turns on when Unit No. 10 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R906A		Unit No. 11	Turns on when Unit No. 11 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R906B		Unit No. 12	Turns on when Unit No. 12 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R906C		Unit No. 13	Turns on when Unit No. 13 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R906D		Unit No. 14	Turns on when Unit No. 14 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R906E		Unit No. 15	Turns on when Unit No. 15 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 0 mode.
R906F		Unit No. 16	Turns on when Unit No. 16 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 0 mode. Turns off when operation is stopped, when an error occurs, or when not in the $\mathrm{PC}(\mathrm{PLC})$ link 0 mode.


Relay No.	Name		Description
R9070	MEWNET-WO PC(PLC) link 0 operation mode relay	Unit No. 1	Turns on when Unit No. 1 is in the RUN mode. Turns off when Unit No. 1 is in the PROG. mode.
R9071		$\begin{aligned} & \hline \text { Unit } \\ & \text { No. } 2 \\ & \hline \end{aligned}$	Turns on when Unit No. 2 is in the RUN mode. Turns off when Unit No. 2 is in the PROG. mode.
R9072		Unit No. 3	Turns on when Unit No. 3 is in the RUN mode. Turns off when Unit No. 3 is in the PROG. mode.
R9073		Unit No. 4	Turns on when Unit No. 4 is in the RUN mode. Turns off when Unit No. 4 is in the PROG. mode.
R9074		$\begin{aligned} & \hline \text { Unit } \\ & \text { No. } 5 \\ & \hline \end{aligned}$	Turns on when Unit No. 5 is in the RUN mode. Turns off when Unit No. 5 is in the PROG. mode.
R9075		$\begin{aligned} & \hline \text { Unit } \\ & \text { No. } 6 \\ & \hline \end{aligned}$	Turns on when Unit No. 6 is in the RUN mode. Turns off when Unit No. 6 is in the PROG. mode.
R9076		Unit No. 7	Turns on when Unit No. 7 is in the RUN mode. Turns off when Unit No. 7 is in the PROG. mode.
R9077		Unit No. 8	Turns on when Unit No. 8 is in the RUN mode. Turns off when Unit No. 8 is in the PROG. mode.
R9078		Unit No. 9	Turns on when Unit No. 9 is in the RUN mode. Turns off when Unit No. 9 is in the PROG. mode.
R9079		$\begin{aligned} & \hline \text { Unit } \\ & \text { No. } 10 \\ & \hline \end{aligned}$	Turns on when Unit No. 10 is in the RUN mode. Turns off when Unit No. 10 is in the PROG. mode.
R907A		Unit No. 11	Turns on when Unit No. 11 is in the RUN mode. Turns off when Unit No. 11 is in the PROG. mode.
R907B		Unit No. 12	Turns on when Unit No. 12 is in the RUN mode. Turns off when Unit No. 12 is in the PROG. mode.
R907C		$\begin{aligned} & \hline \text { Unit } \\ & \text { No. } 13 \\ & \hline \end{aligned}$	Turns on when Unit No. 13 is in the RUN mode. Turns off when Unit No. 13 is in the PROG. mode.
R907D		Unit No. 14	Turns on when Unit No. 14 is in the RUN mode. Turns off when Unit No. 14 is in the PROG. mode.
R907E		Unit No. 15	Turns on when Unit No. 15 is in the RUN mode. Turns off when Unit No. 15 is in the PROG. mode.
R907F		Unit No. 16	Turns on when Unit No. 16 is in the RUN mode. Turns off when Unit No. 16 is in the PROG. mode.

WR908

Relay No.	Name		Description
R9080	MEWNET-W0 PC(PLC) link 1   transmission assurance relay (32k only)	Unit No. 1	Turns on when Unit No. 1 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the $\mathrm{PC}(\mathrm{PLC})$ link 1 mode.
R9081		Unit No. 2	Turns on when Unit No. 2 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R9082		Unit No. 3	Turns on when Unit No. 3 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the $\mathrm{PC}(\mathrm{PLC})$ link 1 mode.
R9083		Unit No. 4	Turns on when Unit No. 4 is communicating properly in PC(PLC) link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R9084		Unit No. 5	Turns on when Unit No. 5 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R9085		Unit No. 6	Turns on when Unit No. 6 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the $\mathrm{PC}(\mathrm{PLC})$ link 1 mode.
R9086		Unit No. 7	Turns on when Unit No. 7 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the $\mathrm{PC}(\mathrm{PLC})$ link 1 mode.
R9087		Unit No. 8	Turns on when Unit No. 8 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R9088		Unit No. 9	Turns on when Unit No. 9 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9089		Unit No. 10	Turns on when Unit No. 10 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the $\mathrm{PC}(\mathrm{PLC})$ link 1 mode.
R908A		Unit No. 11	Turns on when Unit No. 11 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R908B		Unit No. 12	Turns on when Unit No. 12 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the $\mathrm{PC}(\mathrm{PLC})$ link 1 mode.
R908C		Unit No. 13	Turns on when Unit No. 13 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R908D		Unit No. 14	Turns on when Unit No. 14 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R908E		Unit No. 15	Turns on when Unit No. 15 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link 1 mode.
R908F		Unit No. 16	Turns on when Unit No. 16 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link 1 mode. Turns off when operation is stopped, when an error occurs, or when not in the $\mathrm{PC}(\mathrm{PLC})$ link 1 mode.


Relay No.	Name		Description
R9090	MEWNET-W0 PC(PLC) link 1 operation mode relay (32k only)	Unit No. 1	Turns on when Unit No. 1 is in the RUN mode. Turns off when Unit No. 1 is in the PROG. mode.
R9091		Unit No. 2	Turns on when Unit No. 2 is in the RUN mode. Turns off when Unit No. 2 is in the PROG. mode.
R9092		$\begin{aligned} & \hline \text { Unit } \\ & \text { No. } 3 \\ & \hline \end{aligned}$	Turns on when Unit No. 3 is in the RUN mode. Turns off when Unit No. 3 is in the PROG. mode.
R9093		$\begin{array}{\|l} \hline \text { Unit } \\ \text { No. } 4 \\ \hline \end{array}$	Turns on when Unit No. 4 is in the RUN mode. Turns off when Unit No. 4 is in the PROG. mode.
R9094		$\begin{aligned} & \hline \text { Unit } \\ & \text { No. } 5 \\ & \hline \end{aligned}$	Turns on when Unit No. 5 is in the RUN mode. Turns off when Unit No. 5 is in the PROG. mode.
R9095		Unit No. 6	Turns on when Unit No. 6 is in the RUN mode. Turns off when Unit No. 6 is in the PROG. mode.
R9096		Unit No. 7	Turns on when Unit No. 7 is in the RUN mode. Turns off when Unit No. 7 is in the PROG. mode.
R9097		Unit $\text { No. } 8$	Turns on when Unit No. 8 is in the RUN mode. Turns off when Unit No. 8 is in the PROG. mode.
R9098		$\begin{array}{\|l} \hline \text { Unit } \\ \text { No. } 9 \\ \hline \end{array}$	Turns on when Unit No. 9 is in the RUN mode. Turns off when Unit No. 9 is in the PROG. mode.
R9099		Unit No. 10	Turns on when Unit No. 10 is in the RUN mode. Turns off when Unit No. 10 is in the PROG. mode.
R909A		Unit No. 11	Turns on when Unit No. 11 is in the RUN mode. Turns off when Unit No. 11 is in the PROG. mode.
R909B		Unit No. 12	Turns on when Unit No. 12 is in the RUN mode. Turns off when Unit No. 12 is in the PROG. mode.
R909C		$\begin{array}{\|l\|} \hline \text { Unit } \\ \text { No. } 13 \\ \hline \end{array}$	Turns on when Unit No. 13 is in the RUN mode. Turns off when Unit No. 13 is in the PROG. mode.
R909D		Unit No. 14	Turns on when Unit No. 14 is in the RUN mode. Turns off when Unit No. 14 is in the PROG. mode.
R909E		Unit No. 15	Turns on when Unit No. 15 is in the RUN mode. Turns off when Unit No. 15 is in the PROG. mode.
R909F		Unit No. 16	Turns on when Unit No. 16 is in the RUN mode. Turns off when Unit No. 16 is in the PROG. mode.

### 5.1.12 Table of Special Data Registers for FP $\Sigma$

The special data registers are one word (16-bit) memory areas which store specific information.
(A: Available, N/A: Not available)

Register No.	Name	Descriptions	Read -ing	Writing
DT90000	Self-diagnostic error code	The self-diagnostic error code is stored here when a self-diagnostic error occurs.	A	N/A
DT90001	Not used		N/A	N/A
DT90002	Position of abnormal I/O unit for FPE left side expansion	When an error occurs at FPE expansion I/O unit, the bit corresponding to the unit No . will be set on " 1 ". Monitor using binary display. on "1": error, off "0": normal	A	N/A
DT90003	Not used		N/A	N/A
DT90004	Not used		N/A	N/A
DT90005	Not used		N/A	N/A
DT90006	Position of abnormal intelligent unit for FP $\Sigma$ left side expansion	When an error condition is detected in an intelligent unit, the bit corresponding to the unit No. will turn on. Monitor using binary display.   on "1": error, off "0": normal	A	N/A
DT90007	Not used		N/A	N/A
DT90008	Not used		N/A	N/A
DT90009	Communication error flag for COM2	Stores the error contents when using COM2 port.	A	N/A
DT90010	Position of I/O verify error unit for FPO right side expansion	When the state of installation of FPO expansion I/O unit has changed since the power was turned on, the bit corresponding to the unit No. will turn on. Monitor using binary display.   on "1": error, off "0": normal	A	N/A

(A: Available, N/A: Not available)

Register No.	Name	Descriptions	Read -ing	Writing
DT90011	Position of I/O verify error unit for FP $\Sigma$ left side expansion	When the state of installation of an FP乏 expansion I/O unit has changed since the power was turned on, the bit corresponding to the unit No. will turn on. Monitor using binary display.   on "1": error, off "0": normal	A	N/A
DT90012	Not used		N/A	N/A
DT90013	Not used		N/A	N/A
DT90014	Operation auxiliary register for data shift instruction	One shift-out hexadecimal digit is stored in bit positions 0 to 3 when the data shift instruction, F 105 (BSR) or F 106 (BSL) is executed. The value can be read and written by executing F0 (MV) instruction.	A	A
DT90015	Operation auxiliary register for division	The divided remainder (16-bit) is stored in DT90015 when the division instruction F32(\%) or F52(B\%) instruction is executed. The divided remainder (32-bit) is stored in	A	A
DT90016		The value can be read and written by executing FO(MV) instruction.	A	A
DT90017	Operation error address (hold type)	After commencing operation, the address where the first operation error occurred is stored. Monitor the address using decimal display.	A	N/A
DT90018	Operation error address (non-hold type)	The address where an operation error occurred is stored. Each time an error occurs, the new address overwrites the previous address. At the beginning of a scan, the address is 0 . Monitor the address using decimal display.	A	N/A
DT90019	2.5 ms ring counter Note1)	The data stored here is increased by one every 2.5 ms . (H0 to HFFFF) Difference between the values of the two points (absolute value) $\times 2.5 \mathrm{~ms}=$ Elapsed time between the two points.	A	N/A
DT90020	$10 \mu \mathrm{~s}$ ring counter Note1) Note2)	The data stored here is increased by one every $10.24 \mu \mathrm{~s}$. (H0 to HFFFF)   Difference between the values of the two points (absolute value) $\times 10.24 \mu \mathrm{~s}=$ Elapsed time between the two points.   Note) The exact value is $10.24 \mu \mathrm{~s}$.	A	N/A
DT90021	Not used		N/A	N/A

Note1) It is renewed once at the beginning of each one scan.
Note2) As DT90020 is renewed even if F0(MV), DT90020 and D instruction is being executed, it can be used to measure the block time.
(A: Available, N/A: Not available)

$\begin{aligned} & \text { Register } \\ & \text { No. } \\ & \hline \end{aligned}$	Name	Descriptions	Read -ing	Writing
DT90022	Scan time (current value) ${ }^{\text {Note) }}$	The current scan time is stored here. Scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) $\times 0.1$ ms   Example: K50 indicates 5 ms .	A	N/A
DT90023	Scan time (minimum value) ${ }^{\text {Note) }}$	The minimum scan time is stored here. Scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) $\times 0.1$ ms   Example: K50 indicates 5 ms .	A	N/A
DT90024	Scan time (maximum value) ${ }^{\text {Note) }}$	The maximum scan time is stored here. The scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) 0.1 ms   Example: K125 indicates 12.5 ms .	A	N/A
DT90025	Mask condition monitoring register for interrupts (INTO to 7)	The mask conditions of interrupts using the instruction can be stored here. Monitor using binary display.   0 : interrupt disabled   1: interrupt enabled	A	N/A
DT90026	Not used		N/A	N/A
DT90027	Periodical interrupt interval (INT24)	The value set by ICTL instruction is stored. KO: periodical interrupt is not used. K 1 to K 3000 : 0.5 ms to 1.5 s or 10 ms to 30 s	A	N/A
DT90028	Not used		N/A	N/A
DT90029	Not used		N/A	N/A
DT90030	Message 0	The contents of the specified message (Data lenght) are stored in these special data registers when F149 (MSG) instruction is executed.	A	N/A
DT90031	Message 1			
DT90032	Message 2			
DT90033	Message 3			
DT90034	Message 4			
DT90035	Message 5			
DT90036	Not used		N/A	N/A

Note) Scan time display is only possible in RUN mode, and shows the operation cycle time. (In PROG. mode, the scan time for the operation is not displayed.) The maximum and minimum values are cleared earh time the mode is switched from RUN to PROG.
(A: Available, N/A: Not available)

Register No.	Name		Descriptions	Reading	Writing
DT90037	Operation auxiliary register for search instruction F96(SRC)		The number of data that match the searched data is stored here when F96 (SRC) insturction is executed.	A	N/A
DT90038	Operation auxiliary register for search instruction F96(SRC)		The position of the first matching data is stored here when an F96 (SRC) instruction is executed.	A	N/A
DT90039	Not used			N/A	N/A
DT90040	Potentiometer (volume) input V0		The potentiometer value (K0 to K1000) is stored here. This value can be used in analog tiemrs and other applications by using the program to read this value to a data register.   V0 $\rightarrow$ DT90040   V1 $\rightarrow$ DT90041	A	N/A
DT90041	Potentiometer (volume) input V1				
DT90042			Used by the system.	N/A	N/A
DT90043			Used by the system.	N/A	N/A
DT90044	High-speed	For	The elapsed value (32-bit data) of the highspeed counter is stored here. The value can	A	A
DT90045	elapsed value	CHO	be read or written by executing F1 (DMV) instruction.		
DT90046	High-speed	For	The targe value (32-bit data) of the highspeed counter specified by the high-speed counter instruction is stored here. Target values have been preset for the various		
DT90047			counter related instruction F166, F167, F171, F175 or F176 is executed. The value can be read by executing F1 (DMV) instruction.		
DT90048	High-speed counter	For	The elapsed value (32-bit data) of the highspeed counter is stored here. The value can	A	A
DT90049	elapsed value area	CH1	be read and written by executing F1 (DMV) instruction.		
DT90050	High-speed	For	The target value (32-bit data) of the highspeed counter specified by the high-speed counter instruction is stored here. Target values have been preset for the various		
DT90051			counter related instruction F166 or F167 is executed. The value can be read by executing F1 (DMV) instruction.		

(A: Available, N/A: Not available)

(A: Available, N/A: Not available)

Register No.	Name	Descriptions	Reading	Writing
DT90058	Real-Time Clock (Clock/Calendar) time setting	The Real-Time Clock(Clock/Calendar) is adjusted as follows.   When setting the Real-Time Clock(Clock/Calendar) by program By setting the highest bit of DT90058 to 1 , the time becomes that written to DT90054 to DT90057 by F0 (MV) instruction. After the time is set, DT90058 is cleared to 0 . (Cannot be performed with any instruction other than FO (MV) instruction.)   <Example>   Set the time to 12:00:00 on the $5^{\text {th }}$ day when the X0 turns on.   Note) If the values of DT90054 to DT90057 are changed with the programming tool software, the time will be set when the new values are written. Therefore, it is unnecessary to write to DT90058.	A	A
DT90059	Serial communication error code	Error code is sotred here when a communication error occurs.	N/A	N/A

(A: Available, N/A: Not available)

Register No.	Name	Descriptions	Reading	Writing
DT90060	Step ladder process (0 to 15)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on.   Monitor using binary display.	A	A
DT90061	Step ladder process (16 to 31)			
DT90062	Step ladder process $\text { ( } 32 \text { to } 47 \text { ) }$			
DT90063	Step ladder process $\text { ( } 48 \text { to } 63 \text { ) }$			
DT90064	Step ladder process (64 to 79)			
DT90065	Step ladder process $\text { ( } 80 \text { to } 95 \text { ) }$			
DT90066	Step ladder process (96 to 111)			
DT90067	Step ladder process (112 to 127)			
DT90068	Step ladder process (128 to 143)			
DT90069	Step ladder process (144 to 159)			
DT90070	Step ladder process (160 to 175)			
DT90071	Step ladder process (176 to 191)			
DT90072	Step ladder process (192 to 207)	$\qquad$		
DT90073	Step ladder process (208 to 223)	A programming tool software can be used to		
DT90074	Step ladder process (224 to 239)	write data.		
DT90075	Step ladder process (240 to 255)			
DT90076	Step ladder process (256 to 271)			
DT90077	Step ladder process (272 to 287)			
DT90078	Step ladder process (288 to 303)			
DT90079	Step ladder process (304 to 319)			
DT90080	Step ladder process $(320 \text { to } 335)$			
DT90081	Step ladder process (336 to 351)			

(A: Available, N/A: Not available)

Register No.	Name				tio	Reading	Writ- ing
DT90082	Step ladder process (352 to 367)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on.				A	A
DT90083	$\begin{aligned} & \text { Step ladder process } \\ & \text { (368 to } 383 \text { ) } \\ & \hline \end{aligned}$						
DT90084	Step ladder process (384 to 399)						
DT90085	Step ladder process ( 400 to 415)						
DT90086	Step ladder process (416 to 431)						
DT90087	Step ladder process $(432 \text { to } 447)$						
DT90088	Step ladder process (448 to 463)						
DT90089	Step ladder process ( 464 to 479)	Monitor using binary display.					
DT90090	Step ladder process (480 to 495)						
DT90091	Step ladder process (496 to 511)						
DT90092	Step ladder process (512 to 527)	A programming tool software can be used to write data.					
DT90093	Step ladder process (528 to 543)						
DT90094	Step ladder process (544 to 559)						
DT90095	Step ladder process (560 to 575)						
DT90096	Step ladder process ( 576 to 591)						
DT90097	Step ladder process (592 to 607)						

(A: Available, N/A: Not available)

$\begin{aligned} & \text { Register } \\ & \text { No. } \end{aligned}$	Name	Descriptions	Reading	Writing
DT90098	Step ladder process (608 to 623)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on " 1 ".   Monitor using binary display   <Example>	A	A
DT90099	Step ladder process ( 624 to 639)			
DT90100	Step ladder process ( 640 to 655)			
DT90101	Step ladder process ( 656 to 671)			
DT90102	Step ladder process ( 672 to 687)			
DT90103	Step ladder process (688 to 703)			
DT90104	Step ladder process ( 704 to 719)			
DT90105	Step ladder process ( 720 to 735)			
DT90106	Step ladder process ( 736 to 751)			
DT90107	Step ladder process (752 to 767)			
DT90108	Step ladder process (768 to 783)			
DT90109	Step ladder process ( 784 to 799)			
DT90110	Step ladder process ( 800 to 815)			
DT90111	Step ladder process ( 816 to 831)	$\begin{array}{\|c\|cc\|c\|c} 15 & 11 & 7 & 3 & 0 \\ \hline \text { DT90060 (Bit No.) } & \begin{array}{lll} \hline & & \\ \hline \end{array} & \end{array}$		
DT90112	Step ladder process ( 832 to 847)	$\dagger$ $\dagger$ $\dagger$ $\dagger$ $\dagger$   655 651 647 643 640 (Process No.)		
DT90113	Step ladder process ( 848 to 863)	1: Executing 0: Not-executing		
DT90114	$\begin{aligned} & \text { Step ladder process } \\ & \text { (864 to 879) } \end{aligned}$	A programming tool software can be used to		
DT90115	Step ladder process (880 to 895)	write data.		
DT90116	Step ladder process ( 896 to 911)			
DT90117	Step ladder process ( 912 to 927)			
DT90118	Step ladder process ( 928 to 943)			
DT90119	Step ladder process (944 to 959)			
DT90120	Step ladder process ( 960 to 975)			
DT90121	Step ladder process (976 to 991)			
DT90122	Step ladder process (992 to 999)   (higher byte is not used.)			

(A: Available, N/A: Not available)

Register No.	Name	Descriptions	Reading	Writing
DT90123	Not used	-	N/A	N/A
DT90124	COM1 SEND/RECV instruction end code	For details, refer to Programming Manual (F145 and F146).	N/A	N/A
DT90125	COM2 SEND/RECV instruction end code	For details, refer to Programming Manual (F145 and F146).	N/A	N/A
DT90126	Forced Input/Outptu unit No.	Used by the system	N/A	N/A
DT90127 to DT90139	Not used	-	N/A	N/A
DT90140	MEWNET-W0   PC(PLC) link 0 status	The number of times the receiving operation is performed.	A	N/A
DT90141		The current interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90142		The minimum inerval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90143		The maximum interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90144		The number of times the sending operation is performed.		
DT90145		The current interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90146		The minimum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90147		The maximum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90148	MEWNET-W0   PC(PLC) link 1 status   (32k type only)	The number of times the receiving operation is performed.	A	N/A
DT90149		The current interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90150		The minimum inerval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90151		The maximum interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90152		The number of times the sending operation is performed.		
DT90153		The current interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90154		The minimum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90155		The maximum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		

(A: Available, N/A: Not available)

(A: Available, N/A: Not available)

Register No.	Name		Descriptions	Reading	Writing
DT90194 to DT90199	Not used			N/A	N/A
DT90200	High-speed counter elapsed value	For CH2	The elapsed value (32-bit data) for the highspeed counter is stored here. The value can be read and written by executing the F1 (DMV) instruction.	A	A
DT90201					
DT90202	High-speed counter target value	For CH2	The targe value (32-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here. Target values have been preset for the various instructions, to be used when the high-speed counter related instruction F166, F167, F171, F175 or F176 is executed. The value can be read by executing F1 (DMV) instruction.	A	N/A
DT90203					
DT90204	High-speed counter elapsed value	For CH3	The elapsed value (32-bit data) for the highspeed counter is stored here. The value can be read and written by executing F1 (DMV) instruction.	A	A
DT90205					
DT90206	High-speed counter target value	$\begin{aligned} & \text { For } \\ & \text { CH3 } \end{aligned}$	The target value (32-bit data) of the highspeed counter specified by the high-speed counter instruction is stored here. Target values have been preset for the various instructions, to be used when the high-speed counter related instruction F166 or F167 is executed. The value can be read by executing the F1 (DMV) instruction.	A	N/A
DT90207					
$\begin{aligned} & \text { DT90208 } \\ & \text { to } \\ & \text { DT90218 } \end{aligned}$	Not used			N/A	N/A

(A: Available, N/A: Not available)

Register No.	Name		Descriptions			Reading	Writing
DT90219	Unit No. (Station No.) selection for DT90220 to DT90251		0: Unit No. (Station No.) 1 to 8,   1: Unit No. (Station No.) 9 to 16			A	N/A
DT90220	PLC link Unit (station) No. 1 or 9	System register 40 and 41	The contents of the system register settings partaining to the PLC inter-link function for the various unit numbers are stored as shown below.   <Example>   When DT90219 is 0			A	
DT90221		System register 42 and 43					
DT90222		System register 44 and 45					
DT90223		System register 46 and 47					
DT90224	PLC link Unit (station) No. 2 or 10	System register 40 and 41					
DT90225		System register 42 and 43					
DT90226		System register 44 and 45					
DT90227		System register 46 and 47					
DT90228	PLC link Unit (station) No. 3 or 11	System register 40 and 41					
DT90229		System register 42 and 43				N/A	
DT90230		System register 44 and 45	DT90220 to DT90243 Unit(Station) No. 1	Higher byte	Lower byt		
DT90231		System register 46 and 47			$\overbrace{s}$		
DT90232	PLC link Unit (station) No. 4 or 12	System register 40 and 41					
DT90233		System register 42 and 43		$\mathrm{L}_{\mathrm{r}}^{\mathrm{s}}$	g contents er 41, 43,		
DT90234		System register 44 and 45					
DT90235		System register 46 and 47					
DT90236	PLC link Unit (station) No. 5 or 13	System register 40 and 41					
DT90237		System register 42 and 43					
DT90238		System register 44 and 45					
DT90239		System register 46 and 47					

(A: Available, N/A: Not available)

Register No.	Name		Descriptions	Reading	Writing
DT90240	PLC link Unit (station) No. 6 or 14	System register 40 and 41	The contents of the system register settings partaining to the PLC inter-link function for the various unit numbers are stored as shown below.   <Example> when DT90219 is 0 . Higher byte Lower byte	A	N/A
DT90241		System register 42 and 43			
DT90242		System register 44 and 45			
DT90243		System register 46 and 47			
DT90244	PLC link Unit (station) No. 7 or 15	System register 40 and 41			
DT90245		System register 42 and 43			
DT90246		System register 44 and 45			
DT90247		System register 46 and 47			
DT90248	PLC link Unit (station) No. 8 or 16	System register 40 and 41			
DT90249		System register 42 and 43			
DT90250		System register 44 and 45			
DT90251		System register 46 and 47			
DT90252	Not used			N/A	
DT90253	Not used				
DT90254	Not used				N/A
D590255	Not used				
DT90256	Unit No. (Station No.) switch monitor for COM port		Used by the system	N/A	N/A

### 5.1.13 Table of System Registers for FP-X

Item	Address	Name	Default value	Description	
Hold/ Nonhold 1	5	Starting number setting for counter	1008	0 to 1024	- These settings are effective if the optional backup battery is installed.   - If no backup battery is used, do not change the default settings. Otherwise proper functioning of hold/non-hold values cannot be guaranteed.
	6	Hold type area starting number setting for timer and counter	1008	0 to 1024	
	7	Hold type area starting number setting for internal relays	248	0 to 256	
	8	Hold type area starting number setting for data registers	$\begin{aligned} & \text { C14: 12230 } \\ & \text { C30, C60: } \\ & 32710 \end{aligned}$	0 to 32765	
	14	Hold or non-hold setting for step ladder process	Non-hold	Hold/   Non-hold	
	4	Previous value is held for a leading edge detection instruction (DF instruction) with MC	Hold	Hold/   Non-hold	
Hold/ Nonhold 2	10	Hold type area starting number for PC(PLC) W0-0 link relays	64	0 to 64	
	11	Hold type area starting number for PC(PLC) W0-1 link relays	128	64 to 128	
	12	Hold type area starting number for PC(PLC) W0-0 link registers	128	0 to 128	
	13	Hold type area starting number for PC(PLC) W0-1 link registers	256	128 to 256	
Action on error	20	Disable or enable setting for duplicated output	Disabled	Disabled/Enabled	
	23	Operation setting when an I/O verification error occurs	Stop	Stop/Continuation of operation	
	26	Operation setting when an operation error occurs	Stop	Stop/Continuation of operation	
	4	Alarm battery error (Operating setting when battery error occurs)	Disabled	Dis- When a battery error abled: occurs, a self-diagnostic error is not issued and the ERROR/ALARM LED does not flash.   Ena- When a battery error bled: occurs, a self-diagnostic error is issued and the ERROR/ALARM LED flashes.	
Time setting	31	Wait time setting for multi-frame communication	6500.0 ms	10 to 81900 ms	
	32	Timeout setting for SEND/RECV, RMRD/RMWT commands	10000.0 ms	10 to 81900 ms	
	34	Constant value settings for scan time	Normal scan	0: Normal scan   0 to 350 ms : Scans once each specified time interval	
	36	Expansion unit recognition time	0   (No wait time)	0 to 10 s ( 0.1 second bit)	

FP-X

Item	Address	Name	Default value	Description
PC (PLC) link W0-0 setting	40	Range of link relays used for PC(PLC) link	0	0 to 64 words
	41	Range of link data registers used for PC(PLC) link	0	0 to 128 words
	42	Starting number for link relay transmission	0	0 to 63
	43	Link relay transmission size	0	0 to 64 words
	44	Starting number for link data register transmission	0	0 to 127
	45	Link data register transmission size	0	0 to 127 words
	46	PC(PLC) link switch flag	Normal	Normal/reverse
	47	Maximum unit number setting for MEWNET-W0 PC(PLC) link	16	1 to 16
PC (PLC) link W0-1 setting	50	Range of link relays used for PC(PLC) link	0	0 to 64 words
	51	Range of link data registers used for PC(PLC) link	0	0 to 128 words
	52	Starting number for link relay transmission	64	64 to 127
	53	Link relay transmission size	0	0 to 64 words
	54	Starting number for link data register transmission	128	128 to 255
	55	Link data register transmission size	0	0 to 127 words
	57	Maximum unit number setting for MEWNET-W0 PC(PLC) link	16	1 to 16

FP-X Tr type

Item	Address	Name	Default value	Description
	400	Highspeed counter settings (X0 to X3)	CHO:   Do not set input X0 as high-speed counter	Do not set input X0 as high-speed counter.   Incremental input (X0)   Decremental input (X0)   Two-phase input (X0, X1)   Individual input (X0, X1)   Incremental/decremental control input (X0,   X1)
			CH1:   Do not set input X1 as high-speed counter	Do not set input X1 as high-speed counter.   Incremental input (X1)   Decremental input (X1)
			CH 2 :   Do not set input X2 as high-speed counter	Do not set input X2 as high-speed counter.   Incremental input (X2)   Decremental input (X2)   Two-phase input (X2, X3)   Individual input (X2, X3)   Incremental/decremental control input (X2,   X3)
			CH3:   Do not set input X3 as high-speed counter	Do not set input X 3 as high-speed counter.   Incremental input (X3)   Decremental input (X3)
	401	Highspeed counter/ pulse output settings (X4 to X7)	CH4:   Do not set input X4 as high-speed counter	Do not set input X4 as high-speed counter.   Incremental input (X4)   Decremental input (X4)   Two-phase input (X4, X5)   Individual input (X4, X5)   Incremental/decremental control input (X4, X5)
			X4:   Normal input	Normal input Home input of pulse output CHO
			CH5:   Do not set input X5 as high-speed counter	Do not set input X5 as high-speed counter.   Incremental input (X5)   Decremental input (X5)
			X5:   Normal input	Normal input Home input of pulse output CH1
			CH6:   Do not set input X6 as high-speed counter	Do not set input X6 as high-speed counter. Incremental input (X6)   Decremental input (X6)   Two-phase input (X6, X7)   Individual input (X6, X7)   Incremental/decremental control input (X6, X7)
			X6:   Normal input	Normal input   Home input of pulse output CH2   Reset input of high-speed counter CHO
			CH7:   Do not set input X7 as high-speed counter	Do not set input $\mathrm{X7}$ as high-speed counter. Incremental input (X7) Decremental input (X7)
			X7:   Normal input	Normal input   Home input of pulse output CH3   Reset input of high-speed counter CH2

FP-X Tr type


Note1) If $\mathrm{CH} 0, \mathrm{CH} 2, \mathrm{CH} 4$ and CH 6 of the high-speed counter is set to the two-phase input, individual input or incremental/decremental control input, the settings of $\mathrm{CH} 1, \mathrm{CH} 3, \mathrm{CH}$ and CH 7 will be invalid.
Note2) Only CH 0 and CH 2 are available for the reset input of the high-speed counter. X 6 for CH 0 and X 7 for CH 2 can be allocated.
Note3) X 4 to X 7 can be used as the home input of the pulse output CH 0 to CH 3 . When using the home return function of the pulse output, always set the home input. In that case, X 4 to X 7 cannot be set as the high-speed counter.
Note4) When using the pulse output/PWM output, the controller output settings must be specified. The output that has been set to the pulse output/PWM output cannot be used as the normal output.
Note5) If the same input has been set to the high-speed, pulse catch and interrupt input simultaneously, the following precedence order is effective:
[High-speed counter] $\rightarrow$ [Pulse catch] $\rightarrow$ [Interrupt input]

FP-X Ry type

Item	Address	Name	Default value	Description
Pulse I/O cassette settings (HSC/ PLS)	400	High-speed   counter   settings   (X100 to X102)	CH8:   Do not set input X100 as high-speed counter	Do not set input X100 as high-speed counter. Two-phase input (X100, X101)   Two-phase input (X100, X101), Reset input (X102)   Incremental input (X100)   Incremental input (X100), Reset input (X102)   Decremental input (X100)   Decremental input (X100), Reset input (X102) Incremental/decremental input (X100, X101) Incremental/decremental input (X100, X101), Reset input (X102)   Incremental/decremental control input (X100, X101)   Incremental/decremental control input (X100, X101), Reset input (X102)
			CH9:   Do not set input X101 as high-speed counter	Do not set input X101 as high-speed counter.   Incremental input (X101)   Incremental input (X101), Reset input (X102)   Decremental input (X101)   Decremental input (X101), Reset input (X102)
		Pulse output settings (Y100 to Y101)	CHO:   Normal output	Normal output (Y100, Y101)   Pulse output (Y100, Y101)   PWM output (Y100), Normal output (Y101)
	401	High-speed counter settings (X200 to X202)	CHA:   Do not set input X200 as high-speed counter	Do not set input X200 as high-speed counter.   Two-phase input (X200, X201)   Two-phase   input (X200, X201), Reset input (X202)   Incremental input (X200)   Incremental input (X200), Reset input (X202)   Decremental input (X202)   Decremental input (X202), Reset input (X202)   Incremental/decremental input (X200, X201)   Incremental/decremental input (X200, X201),   Reset input (X202)   Incremental/decremental control   (X200, X201)   Incremental/decremental control   (X200, X201), Reset input (X202)
			CHB:   Do not set input X201 as high-speed counter	Does not set input X201 as high-speed counter.   Incremental input (X201)   Incremental input (X201), Reset input (X202)   Decremental input (X201)   Decremental input (X201), Reset input (X202)
		Pulse output settings (Y200 to Y201)	CH 1 :   Normal output	Normal output (Y200, Y201)   Pulse output (Y200, Y201)   PWM output (Y200), Normal output (Y201)

Note1) If the operation mode is set to Two-phase, incremental/decremental, or incremental/decremental control, the setting for CH9 is invalid in system register 400 and the setting for CHB is invalid in system register 401.
Note2) If reset input settings overlap, the CH 9 setting takes precedence in system register 400 and the CHB setting takes precedence in system register 401.
Note3) CHA, CHB and CH1 input signals in system register 401 are the signals when the pulse I/O cassette (AFPX-PLS) is installed in the cassette mounting part 2.
Note4) If the operation mode setting for the pulse output CH 0 and CH 1 is carried out, it cannot be used as normal output.
When the operation mode for the pulse output CH 0 is set to 1 , the reset input setting for the high-speed counter CH 8 and CH 9 is invalid.
When the operation mode for the pulse output CH 1 is set to 1 , the reset input setting for the high-speed counter CHA and CHB is invalid.
Note5) Upgrade FPWIN GR to Ver2.6 or higher version if the No. of I/O allocation is indicated with 1-digit number such as X0 in the setting window No. 400 and 401 of FPWIN GR.

FP-X Ry type

Item	Address	Name	Default value	Description
Controller input settings (HSC)	402	High-   speed   counter   settings   (X0 to X7)	CHO:   Do not set input X0 as high-speed counter	Do not set input X0 as high-speed counter.   Incremental input (X0)   Decremental input (X0)   Two-phase input (X0, X1)
			CH1:   Do not set input X1 as high-speed counter	Do not set input X1 as high-speed counter.   Incremental input (X1)   Decremental input (X1)   Two-phase input (X0, X1)
			CH2:   Do not set input X2 as high-speed counter	Do not set input X2 as high-speed counter.   Incremental input (X2)   Decremental input (X2)   Two-phase input (X2, X3)
			CH3:   Do not set input X3 as high-speed counter	Do not set input X3 as high-speed counter.   Incremental input (X3)   Decremental input (X3)   Two-phase input (X2, X3)
			CH4:   Do not set input X4 as high-speed counter	Do not set input X4 as high-speed counter.   Incremental input (X4)   Decremental input (X4)   Two-phase input (X3 X4)
			CH5:   Do not set input X5 as high-speed counter	Do not set input X5 as high-speed counter.   Incremental input (X5)   Decremental input (X5)   Two-phase input (X4, X5)
			CH6:   Do not set input X6 as high-speed counter	Do not set input $X 6$ as high-speed counter.   Incremental input (X6)   Decremental input (X6)   Two-phase input (X5, X6)
			CH7:   Do not set input X 7 as high-speed counter	Do not set input $\mathrm{X7}$ as high-speed counter.   Incremental input (X7)   Decremental input (X7)   Two-phase input (X6, X7)
Interrupt/ pulse catch settings	403	Pulse   catch   input   settings	Not set	The pressed contact is set for the pulse catch input.
	404	Interrupt input settings	Not set	The pressed contact is set for the interrupt input.

FP-X Ry type

Item	Address	Name	Default value	Description						
Interrupt edge settings	405	Interrupt edge setting for controller input	Leading edge	The pressed contact is up and set to trailing edge.						
	406	Interrupt edge setting for pulse I/O cassette	Leading edge	  The pressed contact is up and set to trailing edge.						

Note1) For counting two-phase input, only $\mathrm{CH} 0, \mathrm{CH} 2, \mathrm{CH} 4$ and CH 6 can be used.
When two-phase input is specified for $\mathrm{CH} 0, \mathrm{CH} 2, \mathrm{CH} 4$ and CH 6 , the settings for $\mathrm{CH} 1, \mathrm{CH} 3$, CH 5 and CH 7 corresponding to each CH No . are ignored, however, specify the same setting for those channels.
Note2) The settings for pulse catch and interrupt input can only be specified in system registers 403 and 404.

Note3) If system register 400 to 404 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter] $\rightarrow$ [Pulse catch] $\rightarrow$ [Interrupt input].
<Example>
When the high-speed counter is being used in the addition input mode, even if input X 0 is specified as an interrupt input or as pulse catch input, those settings are invalid, and X0 functions as counter input for the high-speed counter.
Note4) Upgrade FPWIN GR to Ver2.6 or higher version if the No. of I/O allocation is indicated with 1 -digit number such as X0 in the setting window No. 403,404 and 406 of FPWIN GR.

Item	Address	Name	Default value	Description
Tool port setting	410	Unit No. setting	1	1 to 99
	412	Communication mode setting	Computer link	Computer link General-purpose communications
		Selection of modem connection	Disabled	Enabled/Disabled
	413	Communication format setting	Data length bit: 8 bits Parity check: "with odd" Stop bit: 1 bit	Enter the settings for the various items.   - Data length bit: 7 bits/8 bits   - Parity check: none/with odd/with even   Stop bit: 1 bit/2 bits   - The following setting is valid only when the communication mode specified by system register 412 has been set to   "General-purpose serial communication".   - Terminator: CR/CR+LF/None   - Header: STX not exist/STX exist
	415	Baud rate setting	9600 bps	$\begin{aligned} & 2400 \mathrm{bps} \\ & 4800 \mathrm{pps} \\ & 9600 \mathrm{bps} \\ & 19200 \mathrm{bps} \\ & 38400 \mathrm{bps} \\ & 57600 \mathrm{bps} \\ & 115200 \mathrm{bps} \end{aligned}$
	420	Starting address for received buffer of general (serial data) communication mode	0	0 to 32764
	421	Buffer capacity setting for data received of general (serial data) communication mode	2048	0 to 2048

FP-X

Item	Address	Name	Default value	Description
$\begin{gathered} \text { COM. } \\ 1 \\ \text { port } \\ \text { set- } \\ \text { ting } \end{gathered}$	410	Unit No. setting	1	1 to 99
	412	Communication mode setting	Computer link	Computer link General-purpose serial communication PC(PLC) link MODBUS RTU
		Selection of modem connection	Disabled	Enabled/Disabled
	413	Communication format setting	Data length bit: 8 bits Parity check: Odd Stop bit: 1 bit	Enter the settings for the various items.   - Data length bit: 7 bits/8 bits   - Parity check: none/with odd/with even   - Stop bit: 1 bit/2 bits   - The following setting is valid only when the communication mode specified by system register 412 has been set to "General-purpose serial communication".   - Terminator: CR/CR+LF/None   - Header: STX not exist/STX exist
	415	Baud rate setting	9600 bps	2400 bps 4800 bps 9600 bps 19200 bps 38400 bps 57600 bps 115200 bps
	416	Starting address for received buffer of general (serial data) communication mode	0	0 to 32764
	417	Buffer capacity setting for data received of general (serial data) communication mode	2048	0 to 2048

Note1) The communication format in a PC(PLC) link is fixed at the following settings:
Data length is 8 bits, odd parity, stop bit is 1 .
The communication speed (baud rate) is fixed at 115200 bps.
Note2)
Reference: For information on MODBUS RTU mode operation, <MODBUS RUT Specifications>.

## FP-X

Item	Address	Name	Default value	Description
COM.   2 port setting	411	Unit No. setting	1	1 to 99
	412	Communication mode setting	Computer link	Computer link General-purpose serial communication MODBUS RTU
		Selection of modem connection	Disabled	Enabled/Disabled
		Selection of port	Built-in USB	Built-in USB   Communication cassette
	414	Communication format setting	Data length bit: 8 bits Parity check: "with odd" Stop bit: 1 bit	Enter the settings for the various items.   - Data length bit: 7 bits/8 bits   - Parity check: none/odd/even   - Stop bit: 1 bit/2 bits   - The following setting is valid only when the communication mode specified by system register 412 has been set to "General-purpose serial communication".   - Terminator: CR/CR+LF/None   - Header: STX not exist/STX exist
	415	Baud rate setting	9600 bps	2400 bps 4800 bps 9600 bps 19200 bps 38400 bps 57600 bps 115200 bps
	416	Starting address for received buffer of general (serial data) communication mode	2048	0 to 32764
	417	Buffer capacity setting for data received of general (serial data) communication mode	2048	0 to 2048

Note1) The communication format in a PC(PLC) link is fixed at the following settings:
the data length is 8 bits, odd parity, stop bit is 1 .
The communication speed (baud rate) is fixed at 115200 bps.
Note2) The USB port for C30 and C60 can be selected by the system register setting.
The USB port has been selected for the COM2 port of C30 and C60 as default setting. The USB port is 115.2 kbps despite of the baud rate setting No. 415.
The setting for No. 412 must be changed to communication cassette for using the COM2 port of the communication cassette.
The COM2 port of the USB port and the communication cassette cannot be used at the same time.

FP-X

Item	Address	Name	Default value	Description
Controller input time constant settings (Note1)	430	Controller input time constant setting 1 X0 to X3	None	None   1 ms   2 ms   4 ms   8 ms   16 ms   32 ms   64 ms   128 ms   156 ms
	431	Controller input time constant setting 1 X4 to X7		
	432	Controller input time constant setting 2 X8 to XB		
	433	Controller input time constant setting 2 XC to XF		
	434	Controller input time constant setting 3 X10 to X13		
	435	Controller input time constant setting 3 X14 to X17		
	436	Controller input time constant setting 4 X18 to X1B		
	437	Controller input time constant setting 4 X1C to X1F		

Note1) These settings are available for the FP-X V2.0 or later.

### 5.1.14 Table of Special Internal Relays for FP-X

The special internal relays turn on and off under special conditions. The on and off states are not output externally. Writing is not possible with a programming tool or an instruction.

Address	Name	Description
R9000	Self-diagnostic error flag	Turns on when a self-diagnostic error occurs. $\Rightarrow$ The content of self-diagnostic error is stored in DT90000.
R9001	Not used	-
R9002	Application cassette I/O error flag	Turns on when an error is detected in the I/O type application cassette.
R9003	Application cassette abnormal error flag	Turns on when an error is detected in the application cassette.
R9004	I/O verification error flag	Turns on when an I/O verification error occurs.
R9005	Backup battery error flag (non-hold)	Turns on when a backup battery error occurs. Turns on when the battery has run out even if the system register No. 4 has been set not to inform the battery error.
R9006	Backup battery error flag (hold)	Turns on when a backup battery error occurs.   Turns on when the battery has run out even if the system register No. 4 has been set not to inform the battery error. Once a battery error has been detected, this is held even after recovery has been made.   $\Rightarrow \mathrm{It}$ goes off if the power supply is turned off, or if the system is initialized.
R9007	Operation error flag (hold)	Turns on and keeps the on state when an operation error occurs.   $\Rightarrow$ The address where the error occurred is stored in DT90017. (indicates the first operation error which occurred).
R9008	Operation error flag (non-hold)	Turns on for an instant when an operation error occurs. $\Rightarrow$ The address where the operation error occurred is stored in DT90018. The contents change each time a new error occurs.
R9009	Carry flag	This is set if an overflow or underflow occurs in the calculation results, and as a result of a shift system instruction being executed.
R900A	> Flag	Turns on for an instant when the compared results become larger in the comparison instructions.
R900B	= Flag	Turns on for an instant,   - when the compared results are equal in the comparison instructions.   - when the calculated results become 0 in the arithmetic instructions.
R900C	< Flag	Turns on for an instant when the compared results become smaller in the comparison instructions.
R900D	Auxiliary timer Contact	Turns on when the set time elapses (set value reaches 0 ) in the timing operation of the F137(STMR)/F183(DSTM) auxiliary timer instruction. The flag turns off when the trigger for auxiliary timer instruction turns off.
R900E	Tool port communication error	Turns on when communication error at tool port is occurred.
R900F	Constant scan error flag	Turns on when scan time exceeds the time specified in system register 34 during constant scan execution. This goes on if 0 has been set using system register 34 .


WR902 FP-X

Address	Name	Description
R9020	RUN mode flag	Turns off while the mode selector is set to PROG.   Turns on while the mode selector is set to RUN.
R9021	Not used	-
R9022	Not used	-
R9023	Not used	-
R9024	Not used	-
R9025	Not used	-
R9026	Message flag	Turns on while the F149 (MSG) instruction is executed.
R9027	Not used	-
R9028	Not used	-
R9029	Forcing flag	Turns on during forced on/off operation for input/output   relay timer/counter contacts.
R902A	Interrupt enable flag	Turns on while the external interrupt trigger is enabled by   the ICTL instruction.
R902B	Interrupt error flag	Turns on when an interrupt error occurs.
R902C	Sample point flag	Sampling by the instruction=0   Sampling at constant time intervals=1
R902D	Sample trace end flag	When the sampling operation stops=1,   When the sampling operation starts=0
R902E	Sampling stop trigger   flag	When the sampling stop trigger activates=1   When the sampling stop trigger stops=0
R902F	Sampling enable flag	When sampling starts=1   When sampling stops=0


WR903 FP-X		
Address	Name	Description
R9030	Not used	-
R9031	Not used	-
R9032	COM1 port mode flag	- Turns on when the general-purpose communication function is being used   - Goes off when any function other than the generalpurpose communication function is being used.
R9033	PR instruction flag	Off: Printing is not executed.   On: Execution is in progress.
R9034	Editing in RUN mode flag	Goes on for ony the first scan following completion of a rewrite during the RUN operation.
R9035	Not used	-
R9036	Not used	-
R9037	COM1 port communication error flag	- Goes on if a transmission error occurs during data communication.   - Goes off when a request is made to send data, using the F159 (MTRN) instruction.
R9038	COM1 port reception done flag during general- purpose serial communication	- Turns on when the terminator is received during general purpose serial communication.
R9039	COM1 port transmission done flag during general-purpose serial communication	- Goes on when transmission has been completed in general-purpose serial communication.   - Goes off when transmission is requested in generalpurpose serial communication.
R903A	Not used	-
R903B	Not used	-
R903C	Not used	-
R903D	Not used	-
R903E	TOOL port reception done flag during general purpose communication	- Turns on when the terminator is received during general purpose serial communication.
R903F	TOOL port transmission done flag during general-purpose serial communication	- Goes on when transmission has been completed in general-purpose serial communication.   - Goes off when transmission is requested in generalpurpose serial communication.

Note) R9030 to R903F can be changed during 1 scan.

Address	Name	Description
R9040	TOOL port mode flag	Goes on when the general-purpose serial communication is used.   - Goes off when the MEWTOCOL is used.
R9041	COM1 port PC(PLC) link flag	Turn on while the PC(PLC) link function is used.
R9042	COM2 port mode flag	- Goes on when the general-purpose serial communication is used.   - Goes off when the MEWTOCOL is used.
R9043	Not used	
R9044	COM1 port SEND/RECV instruction execution flag	Monitors whether the F145 (SEND) or F146 (RECV) instructions can be executed or not for the COM1 port. Off: None of the above mentioned instructions can be executed. (During executing the instruction)   On: One of the above mentioned instructions can be executed.
R9045	COM1 port SEND/RECV instruction execution end flag	Monitors if an abnormality has been detected during the execution of the F145 (SEND) or F146 (RECV) instructions for the COM1 port as follows:   Off: No abonormality detected.   On: An abnormality detected. (communication error) The error code is stored in DT90124.
R9046	Not used	-
R9047	COM2 port communication error flag	- Goes on if a transmission error occurs during data communication.   - Goes off when a request is made to send data, using the F159 (MTRN) instruction.
R9048	COM2 port reception done flag during general-purpose communicating	- Turn on when the terminator is received during general-purpose serial communication.
R9049	COM2 port transmission done flag during general-purpose communication	- Goes on when transmission has been completed in general-purpose serial communication.   - Goes off when transmission is requested in generalpurpose communication.
R904A	COM2 port SEND/RECV instruction execution flag	Monitors whether the F145 (SEND) or F146 (RECV) instructions can be executed or not for the COM2 port.   Off: None of the above mentioned instructions can be executed. (During executing the instruction)   On: One of the above mentioned instructions can be executed.
R904B	COM2 port SEND/RECV instruction execution end flag	Monitors if an abnormality has been detected during the execution of the F145 (SEND) or F146 (RECV) instructions for the COM2 port as follows:   Off: No abonormality detected.   On: An abnormality detected. (communication error) The error code is stored in DT90125.
R904C to R904F	Not used	-

Note) R9040 to R904F can be changed during 1 scan.

WR905 FP-X

Address	Name	Description
R9050	MEWNET-wo   PC(PLC) link   transmission error flag	When using MEWNET-W0   - Turns on when a transmission error occurs at   PC(PLC) link.   - Turns on when there is an error in the PC(PLC) link area   settings.
R9051 to   R905F	Not used	

WR906 FP-X

Address	Name		Description
R9060	MEWNET-WO PC(PLC) link 0 transmission assurance relay	Unit No. 1	Turns on when Unit No. 1 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9061		Unit No. 2	Turns on when Unit No. 2 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9062		Unit No. 3	Turns on when Unit No. 3 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9063		Unit No. 4	Turns on when Unit No. 4 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9064		Unit No. 5	Turns on when Unit No. 5 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9065		Unit No. 6	Turns on when Unit No. 6 is communicating properly in PLC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PLC link mode.
R9066		Unit No. 7	Turns on when Unit No. 7 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9067		Unit No. 8	Turns on when Unit No. 8 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9068		Unit No. 9	Turns on when Unit No. 9 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9069		Unit No. 10	Turns on when Unit No. 10 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R906A		Unit No. 11	Turns on when Unit No. 11 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R906B		Unit No. 12	Turns on when Unit No. 12 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R906C		Unit No. 13	Turns on when Unit No. 13 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R906D		Unit No. 14	Turns on when Unit No. 14 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R906E		Unit No. 15	Turns on when Unit No. 15 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R906F		Unit No. 16	Turns on when Unit No. 16 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.


WR907 FP-X			
Address	Name		Description
R9070	MEWNET-W0 PC(PLC) link 0 operation mode relay	Unit No. 1	Turns on when Unit No. 1 is in the RUN mode. Turns off when Unit No. 1 is in the PROG. mode.
R9071		Unit   No. 2	Turns on when Unit No. 2 is in the RUN mode. Turns off when Unit No. 2 is in the PROG. mode.
R9072		$\begin{array}{\|l\|} \hline \text { Unit } \\ \text { No. } 3 \\ \hline \end{array}$	Turns on when Unit No. 3 is in the RUN mode. Turns off when Unit No. 3 is in the PROG. mode.
R9073		Unit   No. 4	Turns on when Unit No. 4 is in the RUN mode. Turns off when Unit No. 4 is in the PROG. mode.
R9074		Unit   No. 5	Turns on when Unit No. 5 is in the RUN mode. Turns off when Unit No. 5 is in the PROG. mode.
R9075		$\begin{aligned} & \hline \text { Unit } \\ & \text { No. } 6 \\ & \hline \end{aligned}$	Turns on when Unit No. 6 is in the RUN mode. Turns off when Unit No. 6 is in the PROG. mode.
R9076		$\begin{array}{\|l\|} \hline \text { Unit } \\ \text { No. } 7 \\ \hline \end{array}$	Turns on when Unit No. 7 is in the RUN mode. Turns off when Unit No. 7 is in the PROG. mode.
R9077		Unit No. 8	Turns on when Unit No. 8 is in the RUN mode. Turns off when Unit No. 8 is in the PROG. mode.
R9078		Unit No. 9	Turns on when Unit No. 9 is in the RUN mode. Turns off when Unit No. 9 is in the PROG. mode.
R9079		Unit No. 10	Turns on when Unit No. 10 is in the RUN mode. Turns off when Unit No. 10 is in the PROG. mode.
R907A		Unit No. 11	Turns on when Unit No. 11 is in the RUN mode. Turns off when Unit No. 11 is in the PROG. mode.
R907B		Unit No. 12	Turns on when Unit No. 12 is in the RUN mode. Turns off when Unit No. 12 is in the PROG. mode.
R907C		Unit No. 13	Turns on when Unit No. 13 is in the RUN mode. Turns off when Unit No. 13 is in the PROG. mode.
R907D		Unit No. 14	Turns on when Unit No. 14 is in the RUN mode. Turns off when Unit No. 14 is in the PROG. mode.
R907E		Unit No. 15	Turns on when Unit No. 15 is in the RUN mode. Turns off when Unit No. 15 is in the PROG. mode.
R907F		Unit No. 16	Turns on when Unit No. 16 is in the RUN mode. Turns off when Unit No. 16 is in the PROG. mode.


Address	Name		Description
R9080	MEWNET-WO PC(PLC) link 1 transmission assurance relay	Unit No. 1	Turns on when Unit No. 1 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9081		Unit No. 2	Turns on when Unit No. 2 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9082		Unit No. 3	Turns on when Unit No. 3 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9083		Unit No. 4	Turns on when Unit No. 4 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9084		Unit No. 5	Turns on when Unit No. 5 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9085		Unit No. 6	Turns on when Unit No. 6 is communicating properly in PLC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PLC link mode.
R9086		Unit No. 7	Turns on when Unit No. 7 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9087		Unit No. 8	Turns on when Unit No. 8 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9088		Unit No. 9	Turns on when Unit No. 9 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R9089		Unit No. 10	Turns on when Unit No. 10 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R908A		Unit No. 11	Turns on when Unit No. 11 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R908B		Unit No. 12	Turns on when Unit No. 12 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R908C		Unit No. 13	Turns on when Unit No. 13 is communicating properly in $\mathrm{PC}(\mathrm{PLC})$ link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R908D		Unit No. 14	Turns on when Unit No. 14 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R908E		Unit No. 15	Turns on when Unit No. 15 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.
R908F		Unit No. 16	Turns on when Unit No. 16 is communicating properly in PC(PLC) link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC(PLC) link mode.


WR909 FP-X			
Address	Name		Description
R9090	MEWNET-wo PC(PLC) link 1 operation mode relay	Unit No. 1	Turns on when Unit No. 1 is in the RUN mode. Turns off when Unit No. 1 is in the PROG. mode.
R9091		$\begin{aligned} & \hline \text { Unit } \\ & \text { No. } 2 \\ & \hline \end{aligned}$	Turns on when Unit No. 2 is in the RUN mode. Turns off when Unit No. 2 is in the PROG. mode.
R9092		Unit No. 3	Turns on when Unit No. 3 is in the RUN mode. Turns off when Unit No. 3 is in the PROG. mode.
R9093		Unit No. 4	Turns on when Unit No. 4 is in the RUN mode. Turns off when Unit No. 4 is in the PROG. mode.
R9094		Unit   No. 5	Turns on when Unit No. 5 is in the RUN mode. Turns off when Unit No. 5 is in the PROG. mode.
R9095		$\begin{aligned} & \hline \text { Unit } \\ & \text { No. } 6 \\ & \hline \end{aligned}$	Turns on when Unit No. 6 is in the RUN mode. Turns off when Unit No. 6 is in the PROG. mode.
R9096		$\begin{aligned} & \hline \text { Unit } \\ & \text { No. } 7 \\ & \hline \end{aligned}$	Turns on when Unit No. 7 is in the RUN mode. Turns off when Unit No. 7 is in the PROG. mode.
R9097		$\begin{aligned} & \text { Unit } \\ & \text { No. } 8 \\ & \hline \end{aligned}$	Turns on when Unit No. 8 is in the RUN mode. Turns off when Unit No. 8 is in the PROG. mode.
R9098		$\begin{aligned} & \text { Unit } \\ & \text { No. } 9 \\ & \hline \end{aligned}$	Turns on when Unit No. 9 is in the RUN mode. Turns off when Unit No. 9 is in the PROG. mode.
R9099		Unit No. 10	Turns on when Unit No. 10 is in the RUN mode. Turns off when Unit No. 10 is in the PROG. mode.
R909A		Unit No. 11	Turns on when Unit No. 11 is in the RUN mode. Turns off when Unit No. 11 is in the PROG. mode.
R909B		Unit No. 12	Turns on when Unit No. 12 is in the RUN mode. Turns off when Unit No. 12 is in the PROG. mode.
R909C		Unit No. 13	Turns on when Unit No. 13 is in the RUN mode. Turns off when Unit No. 13 is in the PROG. mode.
R909D		Unit No. 14	Turns on when Unit No. 14 is in the RUN mode. Turns off when Unit No. 14 is in the PROG. mode.
R909E		Unit No. 15	Turns on when Unit No. 15 is in the RUN mode. Turns off when Unit No. 15 is in the PROG. mode.
R909F		Unit   No. 16	Turns on when Unit No. 16 is in the RUN mode. Turns off when Unit No. 16 is in the PROG. mode.


Address		Name	Description
R9100 to R910F	Not used		
R9110	Control flag	HSC-CHO	- Turns on while the F166 (HC1S) and F167 (HC1R) instructions are executed.   - Turns off when the F166 (HC1S) and F167 (HC1R) instructions are completed.
R9111		HSC-CH1	
R9112		HSC-CH2	
R9113		HSC-CH3	
R9114		HSC-CH4	
R9115		HSC-CH5	
R9116		HSC-CH6	
R9117		HSC-CH7	
R9118		HSC-CH8 ${ }^{\text {Note1) }}$	
R9119		HSC-CH9 ${ }^{\text {Note1) }}$	
R911A		HSC-CHA ${ }^{\text {Note1) }}$	
R911B		HSC-CHB ${ }^{\text {Note1) }}$	
R911C		PLS-CH0	- Turns on while the pulses are being output by the F171 (SPDH), F172 (PLSH), F173 (PWMH) and F174 (SPOH) instructions.
R911D		PLS-CH1	
R911E		PLS-CH2 ${ }^{\text {Note2) }}$	
R911F		PLS-CH3 ${ }^{\text {Note2) }}$	

Note1) This relay is avaialble for the FP-X Ry type only.
Note2) This relay is available for the FP-X Tr type only.

### 5.1.15 Table of Special Data Registers for FP-X

FP-X (A: Available, N/A: Not available)

Address	Name	Description	Read -ing	Writing
DT90000	Self-diagnostic error code	The self-diagnostic error code is stored here when a self-diagnostic error occurs.	A	N/A
DT90001	Not used	-	N/A	N/A
DT90002	Position of abnormal I/O board for application cassette	When an error occurs at the I/O board for the application cassette, the bit corresponding to the board will be set on.   15 11 7 3210 (Bit No.)$\square$   21 (Expansion No.)   on "1": error, off "0": normal	A	N/A
DT90003	Not used	-	N/A	N/A
DT90004	Not used	-	N/A	N/A
DT90005	Not used	-	N/A	N/A
DT90006	Position of abnormal application cassette	When an error occurs at the intelligent board for the application cassette, the bit corresponding to the board will be set on.   21 (Expansion No.)   on "1": error, off "0": normal	A	N/A
DT90007	Not used	-	N/A	N/A
DT90008	Not used	-	N/A	N/A
DT90009	Communication error flag for COM2	Stores the error contents when using COM2 port.	A	N/A
DT90010	Extension I/O verify error unit	When the state of installation of FP-X expansion I/O unit has changed since the power was turned on, the bit corresponding to the unit No. will turn on. Monitor using binary display.   on " 1 ": error, off " 0 ": normal	A	N/A

FP-X (A: Available, N/A: Not available)

Address	Name	Description	Read -ing	Writing
DT90011	Add-on cassette verify error unit	When the state of installation of an FP-X addon cassette has changed since the power was turned on, the bit corresponding to the unit No. will turn on. Monitor using binary display.   21 (Expansion No.)   on "1": error, off "0": normal	A	N/A
DT90012	Not used		N/A	N/A
DT90013	Not used	-	N/A	N/A
DT90014	Operation auxiliary register for data shift instruction	One shift-out hexadecimal digit is stored in bit positions 0 to 3 when the data shift instruction, F 105 (BSR) or F 106 (BSL) is executed. The value can be read and written by executing F0 (MV) instruction.	A	A
DT90015	Operation auxiliary register for division instruction	The divided remainder (16-bit) is stored in DT90015 when the division instruction F32(\%) or F52(B\%) instruction is executed. The divided remainder (32-bit) is stored in DT90015 and DT90016 when the division instruction $\mathrm{F} 33(\mathrm{D} \%)$ or $\mathrm{F} 53(\mathrm{DB} \mathrm{\%}$ ) is executed. The value can be read and written by executing FO(MV) instruction.	A	A
DT90016			A	A
DT90017	Operation error address (hold type)	After commencing operation, the address where the first operation error occurred is stored. Monitor the address using decimal display.	A	N/A
DT90018	Operation error address (non-hold type)	The address where an operation error occurred is stored. Each time an error occurs, the new address overwrites the previous address. At the beginning of a scan, the address is 0 . Monitor the address using decimal display.	A	N/A
DT90019	2.5 ms ring counter Note1)	The data stored here is increased by one every 2.5 ms . (H0 to HFFFF)   Difference between the values of the two points (absolute value) $\times 2.5 \mathrm{~ms}=$ Elapsed time between the two points.	A	N/A
DT90020	$10 \mu \mathrm{~s}$ ring counter Note1) Note2)	The data stored here is increased by one every $10.24 \mu \mathrm{~s}$. (H0 to HFFFF) Difference between the values of the two points (absolute value) $\times 10.24 \mu \mathrm{~s}=$ Elapsed time between the two points. Note) The exact value is $10.24 \mu \mathrm{~s}$.	A	N/A
DT90021	Not used	-	N/A	N/A

Note1) It is renewed once at the beginning of each one scan.
Note2) As DT90020 is renewed even if F0(MV), DT90020 and D instruction is being executed, it can be used to measure the block time.

FP-X (A: Available, N/A: Not available)

Address	Name	Description	Read -ing	Writing
DT90022	Scan time (current value) ${ }^{\text {Note) }}$	The current scan time is stored here. Scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) $\times 0.1$ ms   Example: K 50 indicates 5 ms .	A	N/A
DT90023	Scan time (minimum value) ${ }^{\text {Note) }}$	The minimum scan time is stored here. Scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) $\times 0.1$ ms   Example: K50 indicates 5 ms .	A	N/A
DT90024	Scan time (maximum value) ${ }^{\text {Note) }}$	The maximum scan time is stored here. The scan time is calculated using the formula: Scan time (ms) = stored data (decimal) $\times 0.1$ ms   Example: K125 indicates 12.5 ms .	A	N/A
DT90025	Mask condition monitoring register for interrupts (INTO to 13)	The mask conditions of interrupts using the instruction can be stored here. Monitor using binary display.   0: Interrupt disabled   1: Interrupt enabled	A	N/A
DT90026	Not used	-	N/A	N/A
DT90027	Periodical interrupt interval (INT24)	The value set by ICTL instruction is stored. KO: periodical interrupt is not used. K1 to K 3000 : 0.5 ms to 1.5 s or 10 ms to 30 s	A	N/A
DT90028	Sample trace interval	K0: Sampling by the SMPL instruction K1 to K3000 (x 10 ms ): 10 ms to 30 s	A	N/A
DT90029	Not used	-	N/A	N/A
DT90030	Message 0	The contents of the specified message (Data length) are stored in these special data registers when F149 (MSG) instruction is executed.	A	N/A
DT90031	Message 1			
DT90032	Message 2			
DT90033	Message 3			
DT90034	Message 4			
DT90035	Message 5			
DT90036	Not used	-	N/A	N/A

Note) Scan time display is only possible in RUN mode, and shows the operation cycle time. (In PROG. mode, the scan time for the operation is not displayed.) The maximum and minimum values are cleared each time the mode is switched from RUN to PROG.

FP-X (A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90037	Work1 for SRC instructions	The number of data that match the searched data is stored here when F96 (SRC) insturction is executed.	A	N/A
DT90038	Work2 for SRC instructions	The position of the first matching data is stored here when an F96 (SRC) instruction is executed.	A	N/A
DT90039	Not used	-	N/A	N/A
DT90040	Volume input 0	The potentiometer value (K0 to K 1000 ) is stored here. This value can be used in analog timers and other applications by using the program to read this value to a data register.   V0 $\rightarrow$ DT90040   V1 $\rightarrow$ DT90041	A	N/A
DT90041	Volume input 1			
DT90042	Volume input 2	For C60 only:   The potentiometer value ( K 0 to K 1000 ) is stored here. This value can be used in analog timers and other applications by using the program to read this value to a data register.   V2 $\rightarrow$ DT90042   V3 $\rightarrow$ DT90043	A	N/A
DT90043	Volume input 3			
DT90044	System work	Used by the system.	A	A
DT90045	Not used	-	N/A	N/A
DT90046	Not used	-	N/A	N/A
DT90047	Not used	-	N/A	N/A
DT90048	Not used	-	N/A	N/A
DT90049	Not used	-	N/A	N/A
DT90050	Not used	-	N/A	N/A
DT90051	Not used	-	N/A	N/A

FP-X (A: Available, N/A: Not available)

		Description	Read -ing	Writing

FP－X（A：Available，N／A：Not available）

Address	Name	Description	Read －ing	Writ－ ing
DT90052	Pulse output control flag	A value can be written with F0（MV）instruction to reset the high－speed counter，disable counting，continue or clear high－speed counter instruction．   Control code setting   【FP－X Ry type】   【FP－X Tr type】	N／A	A

FP-X (A: Available, N/A: Not available)

Address	Name	Description	Read -ing	Writing
DT90053	Real-Time Clock monitor (hour/minute)	Hour and minute data of the Real-Time Clock are stored here. This data is read-only data. It cannot be overwritten.	A	N/A
DT90054	Real-Time Clock setting (minute/second)	The year, month, day, hour, minute, second and day-of-the-week data for the Real-Time Clock is stored. The built-in Real-Time Clock will operate correctly through the year 2099 and supports leap years. The Real-Time Clock can be set by writing a value using a programming tool software or a program that uses the F0 (MV) instruction.(see example for DT90058)	A	A
DT90055	Real-Time Clock setting (day/hour)			
DT90056	Real-Time Clock setting (year/month)	Higher byte		
		DT90054Minute data   (H00 to H59)Second data   (H00 to H59)		
DT90057	Real-Time Clock setting (day-of-theweek)	DT90055Day data   (H01 to H31)Hour data   (H00 to H23)		
		DT90056Year data   (H00 to H99)Month data   $(\mathrm{H} 01$ to H12)		
		DT90057 - Day-of-the-week   (H00 to H06)		
		As a day of the week is not automatially set on FPWIN GR, fix what day is set to 00 , and set each value for 00 to 06 .		

FP-X (A: Available, N/A: Not available)

Address	Name	Description	Reading	$\begin{gathered} \text { Writ- } \\ \text { ing } \\ \hline \end{gathered}$
DT90058	Real-Time Clock time setting and 30 seconds correction register	The Real-Time Clock is adjusted as follows. When setting the Real-Time Clock by program   By setting the highest bit of DT90058 to 1, the time becomes that written to DT90054 to DT90057 by F0 (MV) instruction. After the time is set, DT90058 is cleared to 0 . (Cannot be performed with any instruction other than F0 (MV) instruction.)   <Example>   Set the time to 12:00:00 on the 5th day when the X0 turns on.   Note) If the values of DT90054 to DT90057 are changed with the programming tool software, the time will be set when the new values are written. Therefore, it is unnecessary to write to DT90058.   When the correcting times less than 30 seconds   By setting the lowest bit of DT90058 to 1 , the value will be moved up or down and become exactly 0 seconds. After the correction is completed, DT90058 is cleared to 0 .   Example:   Correct to 0 seconds with XO : on $\left\|\left.\right\|^{\text {X0 }} \text { - DF〉-[FO MV, H 1, DT90058] }\right] \left\lvert\, \begin{aligned} & \text { Correct to } \\ & 0 \text { seconds. } \end{aligned}\right.$   At the time of coorection, if between 0 and 29 seconds, it will be moved down, and if between 30 and 59 seconds, it will be moved up.   In the example above, if the time was 5 minutes 29 seconds, it will become 5 minutes 0 seconds;and, if the time was 5 minutes 35 seconds, it will become 6 minutes 0 seconds.	A	A
DT90059	Communication error code	Error code is sotred here when a communication error occurs.	N/A	N/A

FP-X (A: Available, N/A: Not available)

Address	Name	Description	Reading	Writ-   ing
DT90060	Step ladder process (0 to 15)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on.   Monitor using binary display.	A	A
DT90061	Step ladder process (16 to 31)			
DT90062	Step ladder process $\text { ( } 32 \text { to } 47 \text { ) }$			
DT90063	Step ladder process (48 to 63)			
DT90064	Step ladder process $\text { ( } 64 \text { to } 79 \text { ) }$			
DT90065	Step ladder process $\text { ( } 80 \text { to } 95 \text { ) }$			
DT90066	Step ladder process (96 to 111)			
DT90067	Step ladder process (112 to 127)			
DT90068	Step ladder process (128 to 143)			
DT90069	Step ladder process (144 to 159)			
DT90070	Step ladder process $\text { ( } 160 \text { to } 175 \text { ) }$			
DT90071	Step ladder process (176 to 191)			
DT90072	Step ladder process (192 to 207)	$\begin{array}{lcccc} 15 & 11 & 7 & 3 & 0 \\ \text { 1: Executing } & 0 \text { : } & \text { Not-executing } \end{array}$		
DT90073	Step ladder process (208 to 223)	A programming tool software can be used to		
DT90074	Step ladder process (224 to 239)	write data.		
DT90075	Step ladder process (240 to 255)			
DT90076	Step ladder process ( 256 to 271)			
DT90077	Step ladder process (272 to 287)			
DT90078	Step ladder process (288 to 303)			
DT90079	Step ladder process (304 to 319)			
DT90080	Step ladder process (320 to 335)			
DT90081	Step ladder process (336 to 351)			

FP-X (A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90082	Step ladder process $\text { ( } 352 \text { to } 367 \text { ) }$	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on.	A	A
DT90083	Step ladder process   ( 368 to 383)			
DT90084	Step ladder process (384 to 399)			
DT90085	Step ladder process (400 to 415)			
DT90086	Step ladder process (416 to 431)			
DT90087	$\begin{aligned} & \text { Step ladder process } \\ & \text { (432 to 447) } \\ & \hline \end{aligned}$			
DT90088	Step ladder process $\text { (448 to } 463 \text { ) }$			
DT90089	Step ladder process (464 to 479)	Monitor using binary display.		
DT90090	Step ladder process (480 to 495)			
DT90091	Step ladder process ( 496 to 511)	$\begin{array}{lcccc} 15 & 11 & 7 & 3 & 0 \\ 15 & 11 & \text { (Process } \text { No.) } \\ \text { 1: Executing } & 0: & \text { Not-executing } \end{array}$		
DT90092	Step ladder process $\text { ( } 512 \text { to } 527 \text { ) }$	A programming tool software can be used to		
DT90093	Step ladder process (528 to 543)	write data.		
DT90094	Step ladder process (544 to 559)			
DT90095	Step ladder process $\text { ( } 560 \text { to 575) }$			
DT90096	Step ladder process (576 to 591)			
DT90097	Step ladder process (592 to 607)			

FP-X (A: Available, N/A: Not available)

Address	Name	Description	Reading	Writ- ing
DT90098	Step ladder process (608 to 623)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on.   Monitor using binary display	A	ing
DT90099	Step ladder process (624 to 639)			
DT90100	Step ladder process ( 640 to 655)			
DT90101	Step ladder process ( 656 to 671)			
DT90102	Step ladder process (672 to 687)			
DT90103	Step ladder process ( 688 to 703)			
DT90104	Step ladder process ( 704 to 719)			
DT90105	Step ladder process ( 720 to 735)			
DT90106	Step ladder process ( 736 to 751)			
DT90107	Step ladder process (752 to 767)			
DT90108	Step ladder process ( 768 to 783)			
DT90109	Step ladder process (784 to 799)			
DT90110	Step ladder process ( 800 to 815)			
DT90111	Step ladder process ( 816 to 831)	<Example> $\begin{array}{llllll} 15 & 11 & 7 & 3 & 0 & \text { (Bit No.) } \end{array}$		
DT90112	Step ladder process ( 832 to 847)	DT90100 11  1       15 11 7 3 0 (Process No.)		
DT90113	Step ladder process ( 848 to 863)	1: Executing 0: Not-executing		
DT90114	$\begin{aligned} & \text { Step ladder process } \\ & \text { (864 to 879) } \end{aligned}$	A programming tool software can be used to write data.		
DT90115	Step ladder process ( 880 to 895)			
DT90116	Step ladder process ( 896 to 911)			
DT90117	Step ladder process (912 to 927)			
DT90118	Step ladder process (928 to 943)			
DT90119	Step ladder process (944 to 959)			
DT90120	Step ladder process (960 to 975)			
DT90121	Step ladder process (976 to 991)			
DT90122	Step ladder process (992 to 999)   (higher byte is not used.)			

FP-X (A: Available, N/A: Not available)

Address	Name	Description	Read -ing	Writ -ing
DT90123	Not used	-	N/A	N/A
DT90124	COM1 SEND/RECV instruction end code	For details, refer to Programming Manual (F145 and F146).	N/A	N/A
DT90125	COM2 SEND/RECV instruction end code	For details, refer to Programming Manual (F145 and F146).	N/A	N/A
DT90126	Forced ON/OFF operating station display	Used by the system	N/A	N/A
DT90127   to   DT90139	Not used	-	N/A	N/A
DT90140	MEWNET-W0   PC(PLC) link 0 status	The number of times the receiving operation is performed.	A	N/A
DT90141		The current interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90142		The minimum inerval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90143		The maximum interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90144		The number of times the sending operation is performed.		
DT90145		The current interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90146		The minimum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90147		The maximum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90148	MEWNET-W0   PC(PLC) link 1 status	The number of times the receiving operation is performed.	A	N/A
DT90149		The current interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90150		The minimum inerval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90151		The maximum interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90152		The number of times the sending operation is performed.		
DT90153		The current interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90154		The minimum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90155		The maximum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT90156	MEWNET-WO   PC(PLC) link 0 status	Area used for measurement of receiving interval.	A	N/A
DT90157		Area used for measurement of sending interval.		

FP-X (A: Available, N/A: Not available)

Address	Name	Description	Reading	Writing
DT90158	MEWNET-WO   PC(PLC) link 1 status	Area used for measurement of receiving interval.	A	N/A
DT90159		Area used for measurement of sending interval.		
DT90160	MEWNET-W0   PC(PLC) link 0 unit No.	Stores the unit No. of PC(PLC) link 0.	A	N/A
DT90161	MEWNET-W0 PC(PLC) link 0 error flag	Stores the error contents of PC(PLC) link 0.	A	N/A
$\begin{aligned} & \text { DT90162 } \\ & \text { to } \\ & \text { DT90169 } \end{aligned}$	Not used	-	N/A	N/A
DT90170	MEWNET-W0   PC(PLC) link 0 status	Duplicated destination for PC(PLC) inter-link address	A	N/A
DT90171		Counts how many times a token is lost.		
DT90172		Counts how many times two or more tokens are detected.		
DT90173		Counts how many times a signal is lost.		
DT90174		No. of times underfined commands have been received.		
DT90175		No. of times sum check errors have occurred during reception.		
DT90176		No. of times format errors have occurred in received data.		
DT90177		No. of times transmission errors have occurred.		
DT90178		No. of times procedural errors have occurred.		
DT90179		No. of times overlapping parent units have occurred.		
$\begin{aligned} & \hline \text { DT90180 } \\ & \text { to } \\ & \text { DT90189 } \\ & \hline \end{aligned}$	Not used	-	N/A	N/A
DT90190	Not used	-	N/A	N/A
DT90191	Not used	-	N/A	N/A
DT90192	Not used	-	N/A	N/A
DT90193	Not used	-	N/A	N/A
DT90194   to   DT90218	Not used	-	N/A	N/A

FP-X (A: Available, N/A: Not available)

Address	Name		Description	Reading	Writing
DT90219	Unit No. (Station No.) selection for DT90220 to DT90251		0: Unit No. (Station No.) 1 to 8,   1: Unit No. (Station No.) 9 to 16	A	N/A
DT90220	PC(PLC)   link   Unit   (station)   No. 1 or 9	System register 40 and 41	The contents of the system register settings partaining to the PLC inter-link function for the various unit numbers are stored as shown below.	A	N/A
DT90221		System register 42 and 43			
DT90222		System register 44 and 45			
DT90223		System register 46 and 47			
DT90224	PC(PLC)   link   Unit   (station)   No. 2 or 10	System register 40 and 41	<Example>   When DT90219 is 0		
DT90225		System register 42 and 43			
DT90226		System register 44 and 45			
DT90227		System register 46 and 47			
DT90228	PC(PLC)   link   Unit   (station)   No. 3 or 11	System register 40 and 41			
DT90229		System register 42 and 43			
DT90230		System register 44 and 45	- When the system register 46 in the home unit is in the standard setting, the values in the home unit are copied in the system registers 46 and 47.   When the system register 46 in the home unit is in the reverse setting, the registers 40 to 45 and 47 corresponding to the home unit mentioned in the left column will be changed to 50 to 55 and 57 , and the system register 46 will be set as it is. Also, the system registers 40 to 45 corresponding to other units will be changed to the values which the received values are corrected, and the registers 46 and 57 in the home unit are set for the registers 46 and 47.		
DT90231		System register 46 and 47			
DT90232		System register 40 and 41			
DT90233	link	System register 42 and 43			
DT90234	(station)   No. 4 or 12	System register 44 and 45			
DT90235		System register 46 and 47			
DT90236	PC(PLC)   link   Unit   (station)   No. 5 or 13	System register 40 and 41			
DT90237		System register 42 and 43			
DT90238		System register 44 and 45			
DT90239		System register 46 and 47			

FP-X (A: Available, N/A: Not available)

Address	Name		Description	Reading	Writing
DT90240	PC(PLC)   link   Unit   (station)   No. 6 or 14	System register 40 and 41	The contents of the system register settings partaining to the PLC inter-link function for the various unit numbers are stored as shown below.   - When the system register 46 in the home unit is in the standard setting, the values in the home unit are copied in the system registers 46 and 47. When the system register 46 in the home unit is in the reverse setting, the registers 40 to 45 and 47 corresponding to the home unit mentioned in the left column will be changed to 50 to 55 and 57 , and the system register 46 will be set as it is.   Also, the system registers 40 to 45 corresponding to other units will be changed to the values which the received values are corrected, and the registers 46 and 57 in the home unit are set for the registers 46 and 47 .	A	N/A
DT90241		System register 42 and 43			
DT90242		System register 44 and 45			
DT90243		System register 46 and 47			
DT90244	PC(PLC) link Unit (station) No. 7 or 15	System register 40 and 41			
DT90245		System register 42 and 43			
DT90246		System register 44 and 45			
DT90247		System register 46 and 47			
DT90248	PC(PLC) link Unit (station) No. 8 or 16	System register 40 and 41			
DT90249		System register 42 and 43			
DT90250		System register 44 and 45			
DT90251		System register 46 and 47			
DT90252	Not used			N/A	N/A
DT90253	Not used				
DT90254	Not used				
DT90255	Not used				
DT90256	Not used			N/A	N/A

FP-X (A: Available, N/A: Not available)

Address	Name			Description	Reading	Writing
DT90300	Elapsed value area	Lower words	HSC-CHO	Counting area for input (X0) or ( $\mathrm{X} 0, \mathrm{X} 1$ ) of the main unit.	A	$A^{\text {Note) }}$
DT90301		Higher words			A	$A^{\text {Note) }}$
DT90302	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and F167 (HC1R) are executed.	A	$A^{\text {Note }}$
DT90303		Higher words			A	$A^{\text {Note) }}$
DT90304	Elapsed value area	Lower words	HSC-CH1	Counting area for input (X1) of the main unit.	A	$A^{\text {Note }}$
DT90305		Higher words			A	$A^{\text {Note }}$
DT90306	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and F167 (HC1R) are executed.	A	$A^{\text {Note) }}$
DT90307		Higher words			A	$A^{\text {Note) }}$
DT90308	Elapsed value area	Lower words	HSC-CH2	Counting area for input (X2) or $(\mathrm{X} 2, \mathrm{X} 3$ ) of the main unit.	A	$A^{\text {Note) }}$
DT90309		Higher words			A	$A^{\text {Note) }}$
DT90310	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and F167 (HC1R) are executed.	A	$A^{\text {Note) }}$
DT90311		Higher words			A	$A^{\text {Note) }}$
DT90312	Elapsed value area	Lower words	HSC-CH3	Counting area for input (X3) of the main unit.	A	$A^{\text {Note) }}$
DT90313		Higher words			A	$A^{\text {Note) }}$
DT90314	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and F167 (HC1R) are executed.	A	$A^{\text {Note) }}$
DT90315		Higher words			A	$A^{\text {Note) }}$
DT90316	Elapsed value area	Lower words	HSC-CH4	Counting area for input (X4) or ( $\mathrm{X} 4, \mathrm{X} 5$ ) of the main unit.	A	$A^{\text {Note) }}$
DT90317		Higher words			A	$A^{\text {Note) }}$
DT90318	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and F167 (HC1R) are executed.	A	$A^{\text {Note) }}$
DT90319		Higher words			A	$A^{\text {Note) }}$

Note) Writing in the elapsed value area is available by F1 (DMV) instruction only.
Writing in the target value area is available by F166 (HC1S) and F167 (HC1R) instructions only.

FP-X (A: Available, N/A: Not available)

Address	Name			Description	Reading	Writing
DT90320	Elapsed value area	Lower words	HSC-CH5	Counting area for input (X5) of the main unit.	A	$\begin{gathered} \mathrm{A} \\ \text { Note1) } \end{gathered}$
DT90321		Higher words			A	$\underset{\substack{\text { Note } 1)}}{ }$
DT90322	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and F167 (HC1R) are executed.	A	$\underset{\text { Note } 1 \text { ) }}{\mathrm{A}}$
DT90323		Higher words			A	$\underset{\substack{\text { Note } 1)}}{\text { A }}$
DT90324	Elapsed value area	Lower words	HSC-CH6	Counting area for input (X6) or ( $\mathrm{X} 6, \mathrm{X} 7$ ) of the main unit.	A	$\underset{\text { Note } 1 \text { 1) }}{\mathrm{A}}$
DT90325		Higher words			A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90326	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and F167 (HC1R) are executed.	A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90327		Higher words			A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90328	Elapsed value area	Lower words	HSC-CH7	Counting area for input (X7) of the main unit.	A	$\underset{\text { Note1) }}{\text { A }}$
DT90329		Higher words			A	$\underset{\substack{\text { Note } 1)}}{ }$
DT90330	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and	A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90331		Higher words		F167 (HC1R) are executed.	A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90332	Elapsed value area	Lower words	HSC-CH8 Note2)	Counting area for input (X0) or ( $\mathrm{X} 0, \mathrm{X} 1$ ) of the main unit.	A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90333		Higher words			A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90334	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and F167 (HC1R) are executed.	A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90335		Higher words			A	$\underset{\substack{\mathrm{A} \\ \text { Note1) }}}{ }$

Note1) Writing in the elapsed value area is available by F1 (DMV) instruction only.
Writing in the target value area is available by F166 (HC1S) and F167 (HC1R) instructions only.
Note2) Available for the FP-X Ry type only.

FP-X (A: Available, N/A: Not available)

Address	Name			Description	Reading	Writing
DT90336	Elapsed value area	Lower words   Higher words	HSC-CH9	Counting area for input (X1) of the pulse I/O cassette.	A	$\underset{\text { Note1 }}{\mathrm{A}}$
DT90337					A	$\underset{\text { Note1) }}{\text { A }}$
DT90338	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and F167 (HC1R) are executed.	A	$\underset{\substack{\text { Note1) }}}{ }$
DT90339		Higher words			A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90340	Elapsed value area	Lower words	HSC-CHA Note2)	Counting area for input (X3) or (X3, X4) of the pulse I/O cassette.	A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90341		Higher words			A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90342	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and F167 (HC1R) are executed.	A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90343		Higher words			A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90344	Elapsed value area	Lower words	HSC-CHB	Counting area for input (X4) of the pulse I/O cassette.	A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90345		Higher words			A	$\underset{\text { Note1) }}{\mathrm{A}}$
DT90346	Target value area	Lower words		The target value is set when instructions F166 (HC1S) and F167 (HC1R) are executed.	A	$\underset{\text { Note1 }}{ }$
DT90347		Higher words			A	$\underset{\text { Note1) }}{\mathrm{A}}$

Note1) Writing in the elapsed value area is available by F1 (DMV) instruction only.
Writing in the target value area is available by F166 (HC1S) and F167 (HC1R) instructions only.
Note2) Available for the FP-X Tr type only.

FP-X Tr type FP-X (A: Available, N/A: Not available)

Address	Name			Description	Reading	Writing
DT90348	Elapsed value area	Lower words	PLS-CH0	Counting area for the pulse I/O CHO (Y0, Y1).	A	$A^{\text {Note) }}$
DT90349		Higher words			A	$A^{\text {Note) }}$
DT90350	Target value area	Lower words		The target value is set when instructions F171 (SPDH), F172 (PLSH), F174 (SPOH) and F175 (SPSH) are executed.	A	$A^{\text {Note) }}$
DT90351		Higher words			A	$A^{\text {Note }}$
DT90352	Elapsed value area	Lower words	PLS-CH1	Counting area for the pulse I/O CH1 (Y2, Y3).	A	$A^{\text {Note) }}$
DT90353		Higher words			A	$A^{\text {Note) }}$
DT90354	Target value area	Lower words		The target value is set when instructions F171 (SPDH), F172 (PLSH), F174 (SPOH) and F175 (SPSH) are executed.	A	$A^{\text {Note) }}$
DT90355		Higher words			A	$A^{\text {Note) }}$
DT90356	Elapsed value area	Lower words	PLS-CH2	Counting area for the pulse I/O CH2 (Y4, Y5).	A	$A^{\text {Note) }}$
DT90357		Higher words			A	$A^{\text {Note) }}$
DT90358	Target value area	Lower words		The target value is set when instructions F171 (SPDH),	A	$A^{\text {Note) }}$
DT90359		Higher words		and F175 (SPSH) are executed.	A	$A^{\text {Note }}$
DT90360	Elapsed value area	Lower words	PLS-CH3	Counting area for the pulse I/O CH3 (Y6, Y7).	A	$A^{\text {Note) }}$
DT90361		Higher words			A	$A^{\text {Note) }}$
DT90362	Target value area	Lower words		The target value is set when instructions F171 (SPDH), F172 (PLSH), F174 (SPOH) and F175 (SPSH) are executed.	A	$A^{\text {Note) }}$
DT90363		Higher words			A	$A^{\text {Note }}$

Note) Writing in the elapsed value area is available by F1 (DMV) instruction only.
Writing in the target value area is available by F171 (SPDH), F172 (PLSH), F174 (SPOH) and F175 (SPSH) instructions only.

FP-X (A: Available, N/A: Not available)

Address	Name		Description	Reading	Writing
DT90370	Control flag monitor area	HSC-CHO	When HSC control is executed by F0 (MV)S, DT90052 instruction, the setting value for the target CH is stored in each CH .	A	N/A
DT90371		HSC-CH1		A	N/A
DT90372		HSC-CH2		A	N/A
DT90373		HSC-CH3		A	N/A
DT90374		HSC-CH4		A	N/A
DT90375		HSC-CH5		A	N/A
DT90376		HSC-CH6		A	N/A
DT90377		HSC-CH7		A	N/A
DT90378					
DT90379					
DT90380		PLS-CHO		A	N/A
DT90381		PLS-CH1		A	N/A
DT90382		PLS-CH2		A	N/A
DT90383		PLS-CH3		A	N/A

Note) Writing in the elapsed value area is available by F1 (DMV) instruction only.
Writing in the target value area is available by F171 (SPDH), F172 (PLSH), F174 (SPOH) and F175 (SPSH) instructions only.

Address	Name			Description	Reading	Writing
DT90348	Elapsed value area	Lower words	PLS-CH0	Counting area for output (Y100, Y101) of the pulse I/O cassette.	A	$A^{\text {Note) }}$
DT90349		Higher words			A	$A^{\text {Note) }}$
DT90350	Target value area	Lower words		The target value is set when instructions F171 (SPDH),	A	$A^{\text {Note) }}$
DT90351		Higher words		and F175 (SPSH) are executed.	A	$A^{\text {Note) }}$
DT90352	Elapsed value area	Lower words	PLS-CH1	Counting area for output (Y200, Y201) of the pulse I/O	A	$A^{\text {Note) }}$
DT90353		Higher words		cassette.	A	$A^{\text {Note) }}$
DT90354	Target value area	Lower words		The target value is set when instructions F171 (SPDH),	A	$A^{\text {Note) }}$
DT90355		Higher words		and F175 (SPSH) are executed.	A	$A^{\text {Note) }}$
DT90356	Not used			-	N/A	N/A
DT90357	Not used			-	N/A	N/A
DT90358	Not used			-	N/A	N/A
DT90359	Not used			-	N/A	N/A
DT90360	Control flag monitor area		HSC-CHO	When HSC control is executed by F0 (MV)S, DT90052 instruction, the setting value for the target CH is stored in each CH.	A	N/A
DT90361			HSC-CH1		A	N/A
DT90362			HSC-CH2		A	N/A
DT90363			HSC-CH3		A	N/A
DT90364			HSC-CH4		A	N/A
DT90365			HSC-CH5		A	N/A
DT90366			HSC-CH6		A	N/A
DT90367			HSC-CH7		A	N/A
DT90368			HSC-CH8		A	N/A
DT90369			HSC-CH9		A	N/A
DT90370			HSC-CHA		A	N/A
DT90371			HSC-CHB		A	N/A
DT90372			PLS-CHO		A	N/A
DT90373			PLS-CH1		A	N/A

Note) Writing in the elapsed value area is available by F1 (DMV) instruction only.
Writing in the target value area is available by F171 (SPDH), F172 (PLSH), F174 (SPOH) and F175 (SPSH) instructions only.

### 5.1.16 Table of System Registers for FP2/FP2SH/FP10SH

## Allocation of user memory (system registers 0,1 and 2) <br> Available PLC: FP2

The configuration of user memory of FP2 is as follows:

Area for system registers	$\begin{aligned} & 512 \text { words } 4 \\ & \text { (fixed) } \end{aligned}$	
Area for sequence program	(set using system register 0)	
Area for machine language program	B (set using system register 1)	Users memory capacity
Area for configuration	${ }_{\text {C }}^{\text {C }}$ (set using system register 2)	
Area for file registers	$\square_{1}^{0}$ D	

Be sure to set the $A$ (using system ergister 0 ), $B$ (using system register 1), and $C$ (using system register 2) as even numbers.

The area remaining in A after 512 words are subtracted is the sequence program area that can actually be used.
File register area $D$ is the area that remains after $A, B$, and $C$ have been subracted from the user memory capacity.
The configuration area is reserved for future expansion.

## FP2 (16K)

Users memory capacity : 16K words
Setting range of $A \quad: 2 \mathrm{~K}$ to 16 K words (default value: 12 k )
Setting range of $B \quad: 0$ to 14 K words (default value: 0 )
Setting range of $C \quad: 0$ to 14 K words (default value: 0 )
Allocate so that $A+B+C \geqq 16$

Setting example: The values of $D$ when $B=C=0$.

$\mathbf{A}$	Area for sequence program   $(\mathbf{1 0 2 4} \mathbf{x}$ A-512)	Area for file registers (D)
$\mathbf{2}$	1,535 steps	14,333 words
$\mathbf{4}$	3,583 steps	12,285 words
$\mathbf{6}$	5,631 steps	10,237 words
$\mathbf{8}$	7,679 steps	8,189 words
$\mathbf{1 0}$	9,727 steps	6,141 words
$\mathbf{1 2}$	$\mathbf{1 1 , 7 7 5}$ steps (default value)	$\mathbf{4 , 0 9 3}$ words (default value)
$\mathbf{1 4}$	13,823 steps	2,045 words
$\mathbf{1 6}$	15,871 steps	0 word

FP2 (32K)
Users memory capacity : 32K words
Setting range of $A \quad: 2 \mathrm{~K}$ to 32 K words (default value: 12k)
Setting range of $B \quad: 0$ to 30 K words (default value: 0 )
Setting range of $\mathrm{C} \quad: 0$ to 30 K words (default value: 0 )
Allocate so that $\mathrm{A}+\mathrm{B}+\mathrm{C} \leqq 32$.

Setting example: The values of $D$ when $B=C=0$.

A	Area for sequence program   $(\mathbf{1 0 2 4} \mathbf{x}$ A-512)	Area for file registers (D)
$\mathbf{2}$	1,535 steps	30,717 words
$\mathbf{4}$	3,583 steps	28,669 words
$\mathbf{6}$	5,631 steps	26,621 words
$\mathbf{8}$	$\mathbf{7 , 6 7 9}$ steps	24,573 words
$\mathbf{1 0}$	$\mathbf{9 , 7 2 7}$ steps	22,525 words
$\mathbf{1 2}$	$\mathbf{1 1 , 7 7 5}$ steps (default value)	$\mathbf{2 0 , 4 7 7}$ words (default value)
$\mathbf{1 4}$	$\mathbf{1 3 , 8 2 3}$ steps	18,429 words
$\mathbf{1 6}$	$\mathbf{1 5 , 8 7 1}$ steps	16,381 words
$\mathbf{1 8}$	$\mathbf{1 7 , 9 1 9}$ steps	14,333 words
$\mathbf{2 0}$	$\mathbf{1 9 , 9 6 7}$ steps	12,285 words
$\mathbf{2 2}$	$\mathbf{2 2 , 0 1 5}$ steps	10,237 words
$\mathbf{2 4}$	$\mathbf{2 4 , 0 6 3}$ steps	8,189 words
$\mathbf{2 6}$	$\mathbf{2 6 , 1 1 1}$ steps	6,141 words
$\mathbf{2 8}$	$\mathbf{2 8 , 1 5 9}$ steps	4,093 words
$\mathbf{3 0}$	$\mathbf{3 0 , 2 0 7}$ steps	$\mathbf{2 , 0 4 5}$ words
$\mathbf{3 2}$	32,255 steps	0 word

Setting example for each area
When not using the machine language program area
Refer to the tables for the different types given above.
When using the machine language program area

A	Area for machine language program	B	Area for machine language program
$\mathbf{2}$	4,096 words		
$\mathbf{4}$	$\mathbf{8 , 1 9 2}$ words		
$\mathbf{6}$	12,288 words		
$\mathbf{8}$	16,384 words		
$\mathbf{1 0}$	20,480 words		
$\mathbf{1 2}$	24,576 words		
$\mathbf{1 4}$	28,672 words		
$\mathbf{1 6}$	32,768 words	$\mathbf{1 8}$	36,864 words
$\mathbf{2 0}$	40,960 words		
$\mathbf{2 2}$	45,056 words		
$\mathbf{2 4}$	49,152 words		
$\mathbf{2 4}$	53,248 words		
$\mathbf{2 8}$	57,344 words		
$\mathbf{3 0}$	61,440 words		

For example, for the FP2 (16K-step type), when the area for the sequence program (A) is set to 10K words and the area for configuration $(\mathrm{C})$ is set to OK words, the area for the machine language program can be set up to 6K words.

## Setting the number of timers and counter (system register 5)

Timers and counters share the same area. If the method of dividing the area is changed, the number of timers and counters will also change.

Type	Total point   numbers	Default value of   system register 5	Timer	Counter
FP2	1,024 points	1000	1000 points   (No. 0 to 999 )	24 points   (No. 1000 to 1023)
FP2SH/FP10SH	3,072 points	3000	3000 points   (No. 0 to 2999)	72 points   (No. 3000 to 3071)



For FP2/FP2SH, set the system registers 5 and 6 to the same value. This sets the timer to a non-hold type and counter to a hold type.
By setting system register 5 to " 0 ", the whole area becomes the counter. Also, by setting it to the value 1 higher than the last number, the whole area becomes the timer.

Hold type area starting address (system registers 6 to 13)
Set each relay and register to a hold type or non-hold type.


For normal situations, set the system registers 5 and 6 to the same value. This sets the timer to a nonhold type and counter to a hold type.
By setting this value to the first number, the whole area becomes hold type. Also, by setting it to the valeu 1 higher than the last number, the whold area becomes non-hold type.
The relays and registers for links not specified in the send area of system registers 40 to 55 are non-hold type regardless of what is set here.

For the FP2SH/FP10SH, the index registers can be set to hold type or non-hold type. The register numbers and settings are related as shown below.

Bank number	Set value for IO to ID	Bank number	Set value for I0 to ID
Bank 0	0 to 13	Bank 8	112 to 125
Bank 1	14 to 27	Bank 9	126 to 139
Bank 2	28 to 41	Bank A	140 to 153
Bank 3	42 to 45	Bank B	154 to 167
Bank 4	56 to 69	Bank C	168 to 181
Bank 5	70 to 83	Bank D	182 to 195
Bank 6	84 to 97	Bank E	196 to 209
Bank 7	98 to 111	Bank F	210 to 223

Default value of hold type area setting

Type   Area	FP2	FP2SH
Timer	All non-hold type	
Counter	All hold type	
rnal relay	Non-hold type: 200 words (WR0 to WR199)	Non-hold type: 500 words (WR0 to WR499)
rnal relay	Hold type: 53 words (WR200 to WR252)	Hold type: 387 words (WR500 to WR886)
Data register	All hold type	
File register	All hold type	
Link relay for MEWNET-W	All hold type	
Link register for MEWNET-W	All hold type	
Index register	-	All hold type


Type	FP10SH
	All non-hold type
Counter	All hold type
Internal relay	Non-hold type: 500 words (WR0 to WR499)
	Hold type: 387 words (WR500 to WR886)
Data register	All hold type
File register	All hold type
Link relay for MEWNET-W/P	All hold type
Link register for MEWNET-W/P	All hold type
Link relay for MEWNET-H	All hold type
Link register for MEWNET-H	All hold type
Index register for FP10SH	All hold type

## MEWNET-W PC link setting

For PC link (W) 0: System register 40 to 45
For PC link (W) 1: System register 50 to 55
Regarding the link relays and link data registers, specify the range for communication and divide it up for sending and receiving.


The default settings have the range for communication (system register $40,41,50$ and 51 ) set to 0 so that PC link communication is not possible.
If the range for sending (system register $43,45,53$ and 55 ) is set to 0 , the range for communication will all be for receiving.
The link relay and link data register ranges not used for communication, can each be used as internal relays and data registers.

Table of system registers for FP2/FP2SH/FP10SH

Item	Address	Name		Default value	Descriptions
Allocation of user memory	0	Sequence program area capacity setting Available PLC: FP2		12K words	FP2 (16K): 2 to 16K words FP2 (32K): 2 to 32 K words
	1	Machine language program area capacity setting   Available PLC: FP2		0 word	FP2 (16K): 0 to 14 K words FP2 (32K): 0 to 30K words
	2	Configuration capacity setting   Available PLC: FP2		0 word	FP2 (16K): 0 to 14 K words FP2 (32K): 0 to 30K words
Action on error	4	Battery error alarm		Enabled	Enabled: When a battery error   occurs, a self-diagnostic   error is issued and the    ERROR LED lights.   Disabled: (BATT. LED lights.)         When a battery error   occurs, a self-diagnostic   error is not issued and   the ERROR LED does   not light. (BATT. LED   does not lights.)  
		Memory area contents setting at INITIALIZE position   Available PLC: FP2SH, FP10SH	Internal relay (R)	Cleared	When the initialize/ test switch is set to INITIALIZE position while in the PROG. mode, you can specify the type of memory to be cleared.   When the initialize/test switch is set to INITIALIZE position while in the PROG. mode, you can specify the tyep of memory to be not cleared
			Link relay (L)	Cleared	
			Timers/ Counters (T, C, SV, EV)	Cleared	
			Data register (DT)	Cleared	
			Link data register (LD)	Cleared	
			File register (FL)	Cleared	
			Index register (I)	Cleared	
			Error alarm relay (E)	Cleared	
		Differential type instructions setting between MC and MCE instructions   Available PLC: FP2SH, FP10SH		Conventional	Conventional: Holds preceded result in the MC and MCE instruction set. New: Disregards preceded result in the MC and MCE instruction set.
		TM instruction operation setting   Available PLC: FP2SH, FP10SH		Conventional	Conventional: Scan synchronous New: Scan asynchronous
		Index modifier check setting		Enabled	Enabled: Checks for overflow of the index modifier area, and performs normal processing.   Disabled: Performs processing without checking for overflow of the index modifier area.

FP2/FP2SH/FP10SH


Note) Available PLC MEWNET-W: FP10SH, FP2, FP2SH
MEWNET-P: FP10SH

Item	Address	Name	Default value	Descriptions
Hold/ Nonhold	16	Hold type area starting address setting for MEWNET-H link relays Available PLC: FP10SH	128	128 to 640
	17	Hold type area starting address setting for MEWNET-H link data registers Available PLC: FP10SH	256	256 to 8448
	18	Hold type area starting address setting for index register   Available PLC: FP2SH/ FP10SH	0	0 to 224
	19	Hold type area starting address setting for file register (for bank 2)	0	0 to 32765
Action on error	20	Disable or enable setting for duplicated output	Disable	Disable/enable
	21	Operation settings when MEWNET-TR   communication error occurs   Available PLC: FP10SH	Stop	Stop/continuation
		Operation setting when I/O error occurs Available PLC: FP2SH/ FP2	Stop	Stop/continuation
	22	Operation settings when an intelligent unit error occurs	Stop	Stop/continuation
	23	Operation settings when an I/O verification error occurs	Stop	Stop/continuation
	24	Operation settings when a system watching dog timer error occurs Available PLC: FP2SH/ FP10SH	Stop	Stop/continuation   Set the time-out time for watching dog timer with system register 30.
	25	Operation settings when connection time error occurs in the remote slave station Available PLC: FP2SH	Stop	Stop/continuation
	26	Operation settings when an operation error occurs	Stop	Stop/continuation
	27	Operation settings when communication error occurs in the MEWNET-F system	Stop	Stop/continuation
	28	Operation settings when error occurs in the slave station of the MEWNET-F system	Stop	Stop/continuation


Item	Address	Name	Default value	Descriptions
Time setting for FP2SH/ FP10SH	29	Operation time setting for communication processing	$240 \mu \mathrm{~s}$	0 to $52428 \mu \mathrm{~s}$   If the response of the connected programmable display is show, please make the value bigger.
	30	Time-out time setting of system watching dog timer	100 ms	0.4 to 640 ms
	31	Multi-frame communication time settings in the computer link and communication time setting for data sending buffer	6500 ms	10 to 81917.5 ms
	32	Time-out time setting for the F145 (SEND)/P145 (PSEND), F146 (RECV)/P146 (PRECV), F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instructions	10000 ms	10 to 81917.5 ms
	33	Effective time setting for monitoring	$\begin{aligned} & 163837.5 \\ & \mathrm{~ms} \end{aligned}$	2500 to 163837.5 ms
	34	Constant scan time setting	0 ms :   Normal   scan	0 to 640 ms :   Scans once each specified time interval.   Set "0": Normal scan   Setting time can be obtained using the formula   "Set time" = "Set value" x 0.1 (ms)
Time setting for FP2	31	Multi-frame communication time settings in the computer link	6500 ms	10.0 to 8190.0 ms
	32	Time-out time setting for the F145 (SEND)/P145 (PSEND), F146 (RECV)/P146 (PRECV), F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instructions	2000 ms	10.0 to 8190.0 ms
	33	Program block-editing time in the RUN mode	10000 s	800.0 to 52428.0 ¢s
	34	Constant scan time setting	0 :   Normal scan	0 to 640 ms :   Scans once each specified time interval.   Set "0": Normal scan

FP2/FP2SH/FP10SH

Item	Add-   ress	Name		Default value	Descriptions
Remote I/O control	25	Operation settings when connection time error occurs in the remote slave station Available PLC: FP2SH		Stop	Stop/continuation
	35	Operation mode setting when the MEWNET-F system is used		Enabled (wait for connection)	Enabled: CPU starts operation after   all the salve stations are   recognized.   Disabled:CPU starts operation   without waiting for slave   station connections.    Only effective when registering    remote I/O allocation.
	36	I/O data updating mode settings for MEWNET-F system		Scan synchronous	Scan asynchronous mode/ Scan synchronous mode
$\begin{aligned} & \text { PC link } \\ & 0 \\ & \text { setting } \end{aligned}$	40	PC link 0 settings for MEWNET-   W/-P link   system   Available   PLC:   MEWNET-   W:   FP10SH,   FP2, FP2SH   MEWNET-   P:   FP10SH	Size of link relays used for communication	0	0 to 64 words
	41		Size of link data registers used for communication	0	0 to 128 words
	42		Send area starting address of link relay	0	0 to 63
	43		Size of link relays used for send area	0	0 to 64 words
	44		Send area starting address of link data register	0	0 to 127
	45		Size of link data registers used for send area	0	0 to 127 words
	46	PC link 0 and 1 allocation setting for MEWNET-W/-P link system Available PLC: MEWNET-W: FP10SH, FP2, FP2SH MEWNET-P: FP10SH		Normal allocation	Normal allocation:   (PC link 0 for the link unit with a smaller slot number and PC link 1 for one with a larger slot number) Reverse allocation: (PC link 1 for the link unit with a smaller slot number and PC link 0 for one with a larger slot number)

FP2/FP2SH/FP10SH

| Item | Add- <br> ress | Name | Default <br> value | Descriptions |
| :---: | :---: | :--- | :--- | :--- | :--- |


Item	Add-   ress	Name	Default value	Descriptions	
Tool port setting	414	Baud rate setting for the tool port	19200 bps	In the FP10SH, when the dip switch SW1 on the CPU is off, the baud rate setting is effective.   In the FP2/FP2SH, when the dip switch SW1 on the rear of the CPU is off, the baud rate setting is effective.   19200 bps 19200 bps   1200 bps 38400 bps   2400 bps 57600 bps   4800 bps 115200 bps   9600 bps	
COM port setting	412	Communication method setting for COM port	$\begin{aligned} & \text { FP2: Not } \\ & \text { used } \\ & \hline \text { FP2SH/ } \\ & \text { FP10SH: } \\ & \text { Computer } \\ & \text { link } \end{aligned}$	UNUSED: COM port is not used. COMPUTER LINK: computer link mode (when connecting C-NET) GENERAL: serial data communication mode	
	413	Communication format setting (Common setting for both computer link and serial data communication) When used for computer link, the start and end code settings of format for MEWTOCOL-COM will not be effective. Available PLC: FP2/ FP2SH	Character bit: 8 bits, Parity chk: "With, odd" Stop bit: 1 bit, End code: CR, Start code: NO STX	Character bit: 7 b Paritch chk: non/w Stop bit: 1 bit/2 bit End code: CR/CR Start code: NO S	s/8 bits ith odd/with even   +LF/NON/ETX X/STX
	414	Baud rate setting for the COM port   Available PLC: FP2/   FP2SH	19200 bps	19200 bps 19200 1200 bps 38760 2400 bps 5600 4800 bps 115200 9600 bps	$\begin{aligned} & 0 \mathrm{bps} \\ & \mathrm{bps} \\ & \mathrm{bps} \\ & \mathrm{bps} \end{aligned}$
	415	Unit number setting for COM port   Available PLC: FP2/   FP2SH	1	1 to 99 (unit No. 1	to 99)
	416	Modem compatibility setting for COM port Available PLC: FP2/ FP2SH	Modem disabled	Modem enabled/M When connecting unit number to 1 415.	odem disabled a modem, set the with system register
General communication setting	417	Starting address setting for received buffer of serial data communication mode (data register number)	0	$\begin{aligned} & \text { FP2SH/FP10SH: } \\ & 0 \text { to } 10240 \\ & \text { FP2: } 0 \text { to } 5999 \end{aligned}$	For details about its usage, refer to the F144 (TRNS)/ P144 (PTRNS) instructions.
	418	Capacity setting for received buffer of serial data communication mode (word number)	1024	0 to 1024	

## Operation of DF instruction between MC and MCE instructions

When a leading edge detection instruction (DF instruction) is used with the MC and MCE instructions, the derivative output may change as follows depending on the trigger of MC instruction and input timing of DF instruction. Take care regarding this point.


## Example 1:

When system register 4 sets 0 (conventional)
Time chart 1


Time chart 2

of DF instruction
The trigger X 1 for the DF instruction has changed from off to on since the time of the previous execution, thus derivative output is obtained.

## Example 2:

When system register 4 sets 1 (new)
Time chart 1


Time chart 2


### 5.1.17 Table of Special Internal Relays for FP1/FP-M/FP2/FP2SH/FP10SH/FP3

FP1/FP-M/FP2/FP2SH/FP10SH/FP3

Address	Name	Description
R9000	Self-diagnostic error flag   (Available PLC: All types)	Turns on when a self-diagnostic error occurs. The self-diagnostic error code is stored in:   - FP1/FP-M/FP3: DT9000   - FP2/FP2SH/FP10SH: DT90000
R9001	Not used	-
R9002	MEWNET-TR master error flag (Available PLC: FP3/ FP10SH)	Turns on when a communication error occurs in the MEWNET-TR master unit or MEWNET-TR network. The slot, where the erroneous MEWNET-TR master unit is installed, can be checked using:   - FP3: DT9002 and DT9003   - FP10SH: DT90002, DT90003
	I/O error flag (Available PLC: FP2/ FP2SH)	Turns on when the error occurs in the I/O unit. The slot number of the unit where the error was occurred is stored in DT90002, DT90003.
R9003	Intelligent unit error flag	Turns on when an error occurs in an intelligent unit. The slot number, where the erroneous intelligent unit is installed is stored in:   - FP3: DT9006 and DT9007   - FP2/FP2SH/FP10SH: DT90006, DT90007
R9004	I/O verification error flag	Turns on when an I/O verification error occurs.   The slot number of the I/O unit where the verification error was occurred is stored in:   - FP3: DT9010 and DT9011   -FP2/FP2SH/FP10SH: DT90010, DT90011
R9005	Backup battery error flag (non-hold) (Available PLC: FP-M C20, C32/FP1 C24, C40, C56, C72/FP2/ FP2SH/FP3/FP10SH)	Turns on for an instant when a backup battery error occurs.
R9006	Backup battery error flag (hold)   (Available PLC: FP-M C20, C32/FP1 C24,   C40, C56, C72/FP2/   FP2SH/FP3/FP10SH)	Turns on and keeps the on state when a backup battery error occurs. To reset R9006,   - turn the power to off and then turn it on,   - initialize, after removing the cause of error.
R9007	Operation error flag (hold)	Turns on and keeps the on state when an operation error occurs. The address where the error occurred is stored in:   - FP1/FP-M/FP3: DT9017   - FP2/FP2SH/FP10SH: DT90017   (Indicates the first operation error which occurred).
R9008	$\begin{aligned} & \hline \text { Operation error flag } \\ & \text { (non-hold) } \\ & \text { (Available PLC: } \\ & \text { FP1/FP-M/FP2/FP2SH/ } \\ & \text { FP10SH) } \\ & \hline \end{aligned}$	Turns on for an instant when an operation error occurs. The address where the operation error occurred is stored in:   - FP1/FP-M/FP3: DT9018   -FP2/FP2SH/FP10SH: DT90018   The contents change each time a new error occurs.

FP1/FP-M/FP2/FP2SH/FP10SH/FP3

Address	Name	Description
R9009	Carry flag	Turns on for an instant,   - when an overflow or underflow occurs.   - when " 1 " is set by one of the shift instructions.
R900A	> Flag	Turns on for an instant when the compared results become larger in the "F60 (CMP)/P60 (PCMP),   F61(DCMP)P61(PDCMP),F62 (WIN)/P62 (PWIN) or F63 (DWIN)/P63 (PDWIN) comparison instructions."
R900B	= Flag	Turns on for an instant, - when the compared results are equal in the comparison instructions.   - when the calculated results become 0 in the arithmetic instructions.
R900C	< Flag	Turns on for an instant when the compared results become smaller in the "F60 (CMP)/P60 (PCMP),   F61(DCMP)P61(PDCMP), F62 (WIN)/P62 ,(PWIN) or F63 (DWIN)/P63 (PDWIN) comparison instructions."
R900D	Auxiliary timer contact (Available PLC: FP-M C20, C32/FP1 C56, C72/FP2/FP2SH/FP3/ FP10SH)	Turns on when the set time elapses (set value reaches 0 ) in the timing operation of the F137(STMR)/F183(DSTM) auxiliary timer instruction.   Available PLC for F183 (DSTM) instruction: FP2/FP2SH/ FP10SH   The R900D turns off when the trigger for auxiliary timer instruction turns off.
R900E	Tool port error flag (Available PLC: FP1/ FP-M/FP2SH/FP10SH)	Turns on when communication error at tool port is occurred.
R900F	Constant scan error flag	Turns on when the scan time exceeds the time specified in system register 34 during constant scan execution.
R9010	Always on relay	Always on.
R9011	Always off relay	Always off.
R9012	Scan pulse relay	Turns on and off alternately at each scan.
R9013	Initial on pulse relay	Turns on only at the first scan in the operation.   Turns off from the second scan and maintains the off state.
R9014	Initial off pulse relay	Turns off only at the first scan in the operation. Turns on from the second scan andmaintains the on state.
R9015	Step ladder initial on pulse relay	Turns on for an instant only in the first scan of the process the moment step ladder process is opened.
R9016, R9017	Not used	-
R9018	0.01 s clock pulse relay	Repeats on/off operations in 0.01 s cycles.
R9019	0.02 s clock pulse relay	Repeats on/off operations in 0.02 s cycles.
R901A	0.1 s clock pulse relay	Repeats on/off operations in 0.1 s cycles.
R901B	0.2 s clock pulse relay	Repeats on/off operations in 0.2 s cycles.
R901C	1 s clock pulse relay	Repeats on/off operations in 1 s cycles.

FP1/FP-M/FP2/FP2SH/FP10SH/FP3

Address	Name	Description
R901D	2 s clock pulse relay	Repeats on/off operations in 2 s cycles.
R901E	1 min clock pulse relay	Repeats on/off operations in 1 min cycles.
R901F	Not used	-
R9020	RUN mode flag	Turns off while the mode selector is set to PROG. Turns on while the mode selector is set to RUN.
R9021	Test RUN mode flag (Available PLC: FP2/ FP2SH/FP3/FP10SH)	Turns on while the initialize/test switch of the CPU is set to TEST and mode selector is set to RUN. (test run operation start)   Turns off during the normal RUN mode.
R9022	Break flag   (Available PLC: FP2/   FP2SH/FP3/FP10SH)	Turns on while the BRK instruction is executing or the step run is executing.
R9023	Break enable flag (Available PLC: FP2/   FP2SH/FP3/FP10SH)	Turns on while the BRK instruction is enabled in the test RUN mode.
R9024	Output update enable flag in the test RUN mode   (Available PLC: FP2/   FP2SH/FP3/FP10SH)	Turns on while the output update is enabled in the test RUN mode.
R9025	Single instruction flag (Available PLC: FP2/ FP2SH/FP3/FP10SH)	Turns on while the single instruction execution is selected in the test RUN mode.
R9026	Message flag (Available PLC: FP-M C20, C32/FP1 C24, C40, C56, C72/FP2/ FP2SH/FP3/FP10SH)	Turns on while the F149 (MSG)/P149 (PMSG) instruction is executed.
R9027	Remote mode flag	Turns on while the mode selector is set to REMOTE.
R9028	Break clear flag (Available PLC: FP2/ FP2SH/FP3/FP10SH)	Turns on when the break operation is cleared.
R9029	Forcing flag	Turns on during forced on/off operation for I/O relay and timer/counter contacts.
R902A	External interrupt enable flag   (Available PLC: FP-   M/FP1 C24, C40, C56,   C72/FP2/FP2SH/FP3/   FP10SH)	Turns on while the external interrupt trigger is enabled by the ICTL instruction.
	Interrupt flag (Available PLC: FP2)	Turns on while the periodical interrupt is executed by the ICTL instruction.
R902B	Interrupt error flag (Available PLC:   FP-M/FP1 C24, C40,   C56, C72/FP2/FP2SH/   FP3/FP10SH)	Turns on when an interrupt error occurs.
R902C	Sampling point flag	Turns off during instructed sampling.   Turns on while sampling is triggered by the periodical interrupt.

FP1/FP-M/FP2/FP2SH/FP10SH/FP3

Address	Name	Description
R902D	Sampling trace end flag   (Available PLC: FP2/   FP2SH/FP3/FP10SH)	Turns on when the sampling trace ends.
R902E	Sampling trigger flag (Available PLC: FP2/ FP2SH/FP3/FP10SH)	Turns on when the sampling trace trigger of the F156 (STRG)/P156 (PSTGR) instruction is turned on.
R902F	Sampling enable flag (Available PLC: FP2/ FP2SH/FP3/FP10SH)	Turns on when the starting point of sampling is specified.
R9030	F145 (SEND)/P145 (PSEND) and F146 (RECV)/P146 (PRECV) instruction executing flag	Monitors if CPU is in the F145 (SEND)/P145 (PSEND) and F146 (RECV)/P146 (PRECV) instructions executable condition as follows:   - off: None of the above mentioned instructions can be executed.   - on: One of the above mentioned instructions can be executed.
R9031	F145 (SEND)/P145 (PSEND) and F146 (RECV)/P146 (PRECV) instruction end flag (Available PLC: FP2/ FP2SH/FP3/FP10SH)	Monitors if an abnormality has been detected during the execution of the F145 (SEND)/P145 (PSEND) and F146 (RECV)/P146 (PRECV) instructions as follows:   - off: No abnormality detected.   - on: An abnormality detected. (communication error)   The error code is stored in:   - FP3: DT9039   - FP2/FP10SH: DT90039
R9032	COM port mode flag (Available PLC: FP-M C20C, C32C/FP1 C24C, C40C, C56C, C72C/FP2/FP2SH/ FP10SH)	Monitors the mode of the COM port as:   - on: Serial data communication mode   - off: Computer link mode
R9033	F147 (PR) instruction flag   (Available PLC:   FP-M C20, C32/FP1   C24, C40, C56,C72/   FP2/FP2SH/FP3/   FP10SH)	Turns on while a F147 (PR) instruction is executed. Turns off when a F147 (PR) instruction is not executed.
R9034	Editing in RUN mode flag   (Available PLC: FP2/   FP2SH/FP3/FP10SH)	Turns on while editing a program in the RUN mode.
R9035	F152 (RMRD)/P152   (PRMRD) and F153   (RMWT)/P153   (PRMWT) instruction execution flag   (Available PLC: FP2/   FP2SH/FP3/FP10SH)	Monitors if FP3/FP10SH is in the F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instructions executable condition as follows:   - off: None of the above mentioned instructions can be executed.   - on: One of the above mentioned instructions can be executed.


Address	Name	Description
	$\begin{array}{l}\text { F152 (RMRD)/P152 } \\ \text { (PRMRD) and F153 } \\ \text { (RMWT)/P153 } \\ \text { (RMP } \\ \text { (PRMWT) instruction } \\ \text { end flag } \\ \text { (Available PLC: FP2/ } \\ \text { FP2SH/FP3/FP10SH) }\end{array}$	$\begin{array}{l}\text { Monitors if an abnormality has been detected during the } \\ \text { execution of the F152 (RMRD)/P152 (PRMRD) and F153 } \\ \text { (RMWT)/P153 (PRMWT) instructions as follows: } \\ \text { - off: No abnormality detected. } \\ \text { - on: An abnormality detected. (access error) } \\ \text { The error code is stored in: } \\ \text { - FP3: DT9036 } \\ \text { - FP2/FP2SH/FP10SH: DT90036 }\end{array}$
	$\begin{array}{l}\text { l/O link error flag } \\ \text { (Available PLC: FP-M } \\ \text { C20, C23/FP1) }\end{array}$	Turns on when the erroro occurs using the I/O link function.


Address	Name	Description
R9050	MEWNET-W/-P link transmission error flag [W/P LINK 1] for FP3/ FP10SH   [W LINK 1] for FP2/FP2SH	When using MEWNET-W link unit or MEWNET-P link unit:   - turns on when transmission error occurs at link 1.   - turns on when there is an error in the link area settings.
R9051	MEWNET-W/-P link transmission error flag [W/P LINK 2] for FP3/ FP10SH   [W LINK 2] for FP2/FP2SH	When using MEWNET-W link unit or MEWNET-P link unit:   - turns on when transmission error occurs at link 2.   - turns on when there is an error in the link area settings.
R9052	MEWNET-W/-P link transmission error flag [W/P LINK 3] for FP3/ FP10SH   [W LINK 3] for FP2/FP2SH	When using MEWNET-W link unit or MEWNET-P link unit:   - turns on when transmission error occurs at link 3.   - turns on when there is an error in the link area settings.
R9053	MEWNET-W/-P link transmission error flag [W/P LINK 4] for FP2/ FP10SH   [W LINK 4] for FP2SH	When using MEWNET-W link unit or MEWNET-P link unit:   - turns on when transmission error occurs at link 4.   - turns on when there is an error in the link area settings.
R9054	MEWNET-W/-P link transmission error flag [W/P LINK 5] for FP2/ FP10SH   [W LINK 5] for FP2SH	When using MEWNET-W link unit or MEWNET-P link unit:   - turns on when transmission error occurs at link 5.   - turns on when there is an error in the link area settings.
R9055	MEWNET-H link transmission error flag [H LINK 1]: for FP3/ FP10SH	When using MEWNET -H link unit:   - turns on when transmission error occurs at H link 1.   - turns on when there is an error in the link area settings.
R9056	MEWNET-H link transmission error flag [H LINK 2]: for FP3/ FP10SH	When using MEWNET -H link unit:   - turns on when transmission error occurs at H link 2.   - turns on when there is an error in the link area settings.
R9057	MEWNET-H link transmission error flag [H LINK 3]: for FP3/ FP10SH	When using MEWNET-H link unit:   - turns on when transmission error occurs at H link 3.   - turns on when there is an error in the link area settings.
R9058	Remote I/O transmis-sion error flag (master 1) (Available PLC: FP2/ FP2SH/FP3/FP10SH)	When using MEWNET -F (remote I/O) system:   - turns on when transmission error occurs on master 1.   - turns on when there is an error in the settings.
R9059	Remote I/O transmis-sion error flag (master 2) (Available PLC: FP2/ FP2SH/FP3/FP10SH)	When using MEWNET -F (remote I/O) system:   - turns on when transmission error occurs on master 2.   - turns on when there is an error in the settings.
R905A	Remote I/O transmission error flag (master 3) (Available PLC: FP2/ FP2SH/FP3/FP10SH)	When using MEWNET -F (remote I/O) system:   - turns on when transmission error occurs on master 3.   - turns on when there is an error in the settings.
R905B	Remote I/O transmis-sion error flag (master 4) (Available PLC: FP2/ FP2SH/FP3/FP10SH)	When using MEWNET -F (remote I/O) system:   - turns on when transmission error occurs on master 4.   - turns on when there is an error in the settings.
$\begin{aligned} & \text { R905C to } \\ & \text { R905F } \end{aligned}$	Not used	-


Address	Name		Description
R9060	MEWNET-W/ -P   PC link transmission assurance relay [for PC link 0 (W/P)]	Unit No. 1	Turns on when Unit No. 1 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9061		Unit No. 2	Turns on when Unit No. 2 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9062		Unit No. 3	Turns on when Unit No. 3 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9063		Unit No. 4	Turns on when Unit No. 4 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9064		Unit No. 5	Turns on when Unit No. 5 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9065		Unit No. 6	Turns on when Unit No. 6 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9066		Unit No. 7	Turns on when Unit No. 7 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9067		Unit No. 8	Turns on when Unit No. 8 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9068		Unit No. 9	Turns on when Unit No. 9 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9069		Unit No. 10	Turns on when Unit No. 10 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906A		Unit No. 11	Turns on when Unit No. 11 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906B		Unit No. 12	Turns on when Unit No. 12 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906C		Unit No. 13	Turns on when Unit No. 13 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906D		Unit No. 14	Turns on when Unit No. 14 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906E		Unit No. 15	Turns on when Unit No. 15 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906F		Unit No. 16	Turns on when Unit No. 16 is communicating properly In the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.

Note) When the system registers 46=K0, PC link 0 for the link unit with a smaller slot No. and PC link 1 for one with a larger slot No.
When the system registers $46=K 1$, PC link 1 for the link unit with a smaller slot No. and PC link 0 for one with a larger slot No.

FP1/FP-M/FP2/FP2SH/FP10SH/FP3

Address	Name		Description
R9070	MEWNET-W/-P   PC link operation mode relay [for PC link 0 (W/P)]	Unit No. 1	Turns on when unit No. 1 is in the RUN mode. Turns off when unit No. 1 is in the PROG. mode.
R9071		$\begin{array}{\|l\|} \hline \text { Unit } \\ \text { No. } 2 \\ \hline \end{array}$	Turns on when unit No. 2 is in the RUN mode. Turns off when unit No. 2 is in the PROG. mode.
R9072		$\begin{array}{\|l} \hline \text { Unit } \\ \text { No. } 3 \\ \hline \end{array}$	Turns on when unit No. 3 is in the RUN mode. Turns off when unit No. 3 is in the PROG. mode.
R9073		Unit No. 4	Turns on when unit No. 4 is in the RUN mode. Turns off when unit No. 4 is in the PROG. mode.
R9074		Unit No. 5	Turns on when unit No. 5 is in the RUN mode. Turns off when unit No. 5 is in the PROG. mode.
R9075		Unit   No. 6	Turns on when unit No. 6 is in the RUN mode. Turns off when unit No. 6 is in the PROG. mode.
R9076		Unit $\text { No. } 7$	Turns on when unit No. 7 is in the RUN mode. Turns off when unit No. 7 is in the PROG. mode.
R9077		$\begin{array}{\|l} \hline \text { Unit } \\ \text { No. } 8 \\ \hline \end{array}$	Turns on when unit No. 8 is in the RUN mode. Turns off when unit No. 8 is in the PROG. mode.
R9078		$\begin{aligned} & \hline \text { Unit } \\ & \text { No. } 9 \\ & \hline \end{aligned}$	Turns on when unit No. 9 is in the RUN mode. Turns off when unit No. 9 is in the PROG. mode.
R9079		Unit No. 10	Turns on when unit No. 10 is in the RUN mode. Turns off when unit No. 10 is in the PROG. mode.
R907A		Unit No. 11	Turns on when unit No. 11 is in the RUN mode. Turns off when unit No. 11 is in the PROG. mode.
R907B		Unit No. 12	Turns on when unit No. 12 is in the RUN mode. Turns off when unit No. 12 is in the PROG. mode.
R907C		Unit No. 13	Turns on when unit No. 13 is in the RUN mode. Turns off when unit No. 13 is in the PROG. mode.
R907D		Unit No. 14	Turns on when unit No. 14 is in the RUN mode. Turns off when unit No. 14 is in the PROG. mode.
R907E		Unit No. 15	Turns on when unit No. 15 is in the RUN mode. Turns off when unit No. 15 is in the PROG. mode.
R907F		Unit No. 16	Turns on when unit No. 16 is in the RUN mode. Turns off when unit No. 16 is in the PROG. mode.

Note) When the system registers 46=K0, PC link 0 for the link unit with a smaller slot No. and PC link 1 for one with a larger slot No.
When the system registers $46=$ K1, PC link 1 for the link unit with a smaller slot No. and PC link 0 for one with a larger slot No.

Address	Name		Description
R9080	MEWNET-W/-P   PC link transmission assurance relay [for PC link 1 (W/P)]	Unit No. 1	Turns on when unit No. 1 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9081		Unit No. 2	Turns on when unit No. 2 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9082		Unit No. 3	Turns on when unit No. 3 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9083		Unit No. 4	Turns on when unit No. 4 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9084		Unit No. 5	Turns on when unit No. 5 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9085		Unit No. 6	Turns on when unit No. 6 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9086		Unit No. 7	Turns on when unit No. 7 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9087		Unit No. 8	Turns on when unit No. 8 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9088		Unit No. 9	Turns on when unit No. 9 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9089		Unit No. 10	Turns on when unit No. 10 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908A		Unit No. 11	Turns on when unit No. 11 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908B		Unit No. 12	Turns on when unit No. 12 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908C		Unit No. 13	Turns on when unit No. 13 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908D		Unit No. 14	Turns on when unit No. 14 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908E		Unit No. 15	Turns on when unit No. 15 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908F		Unit No. 16	Turns on when unit No. 16 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.

Note) When the system registers 46=K0, PC link 0 for the link unit with a smaller slot No. and PC link 1 for one with a larger slot No.
When the system registers $46=K 1$, PC link 1 for the link unit with a smaller slot No. and PC link 0 for one with a larger slot No.

Address	Name		Description
R9090	MEWNET-W/-P PC link operation mode relay [for PC link 1 (W/P)]	Unit No. 1	Turns on when unit No. 1 is in the RUN mode. Turns off when unit No. 1 is in the PROG. mode.
R9091		Unit No. 2	Turns on when unit No. 2 is in the RUN mode. Turns off when unit No. 2 is in the PROG. mode.
R9092		Unit No. 3	Turns on when unit No. 3 is in the RUN mode. Turns off when unit No. 3 is in the PROG. mode.
R9093		Unit No. 4	Turns on when unit No. 4 is in the RUN mode. Turns off when unit No. 4 is in the PROG. mode.
R9094		$\begin{aligned} & \text { Unit } \\ & \text { No. } 5 \\ & \hline \end{aligned}$	Turns on when unit No. 5 is in the RUN mode. Turns off when unit No. 5 is in the PROG. mode.
R9095		Unit   No. 6	Turns on when unit No. 6 is in the RUN mode. Turns off when unit No. 6 is in the PROG. mode.
R9096		Unit No. 7	Turns on when unit No. 7 is in the RUN mode. Turns off when unit No. 7 is in the PROG. mode.
R9097		Unit No. 8	Turns on when unit No. 8 is in the RUN mode. Turns off when unit No. 8 is in the PROG. mode.
R9098		Unit No. 9	Turns on when unit No. 9 is in the RUN mode. Turns off when unit No. 9 is in the PROG. mode.
R9099		Unit No. 10	Turns on when unit No. 10 is in the RUN mode. Turns off when unit No. 10 is in the PROG. mode.
R909A		Unit No. 11	Turns on when unit No. 11 is in the RUN mode. Turns off when unit No. 11 is in the PROG. mode.
R909B		Unit No. 12	Turns on when unit No. 12 is in the RUN mode. Turns off when unit No. 12 is in the PROG. mode.
R909C		Unit No. 13	Turns on when unit No. 13 is in the RUN mode. Turns off when unit No. 13 is in the PROG. mode.
R909D		Unit No. 14	Turns on when unit No. 14 is in the RUN mode. Turns off when unit No. 14 is in the PROG. mode.
R909E		Unit No. 15	Turns on when unit No. 15 is in the RUN mode. Turns off when unit No. 15 is in the PROG. mode.
R909F		Unit No. 16	Turns on when unit No. 16 is in the RUN mode. Turns off when unit No. 16 is in the PROG. mode.
R9100	IC memory card installation flag (Available PLC: FP2SH/ FP10SH)		Monitors whether the IC memory card is installed or not:   - on: IC memory card is installed.   - off: IC memory card is not installed.
R9101 (*Note)	IC memory card backup battery flag 1   (Available PLC: FP2SH/ FP10SH)		Monitors the voltage drop condition for the IC memory card as:   - on: Data in the IC memory card cannot be guaranteed.   - off: Data in the IC memory card can be maintained.
R9102 (*Note)	IC memory card backup battery flag 2   (Available PLC: FP2SH/ FP10SH)		Monitors the voltage drop condition for the IC memory card as:   - on: Battery replacement is required.   - off: Battery replacement is not required.

Note) When the system registers $46=K 0$, PC link 0 for the link unit with a smaller slot No. and PC link 1 for one with a larger slot No.
When the system registers $46=K 1$, $P C$ link 1 for the link unit with a smaller slot No. and PC link 0 for one with a larger slot No.

FP1/FP-M/FP2/FP2SH/FP10SH/FP3

Address	Name	Description
R9103	IC memory card protect   switch flag   (Available PLC: FP2SH/   FP10SH)	Monitors the protective condition of the IC memory card as:   - on: The protect switch is not in the write-protected (WP)   position.   - off: The protect switch is in the write-protected (WP)   position.
R9104	IC memory card access   switch flag   (Available PLC: FP2SH/   FP10SH)	Monitors the condition of the IC memory card access enables   switch as:   - on (access enabled): The access enable switch is in the on   position.   - off (access disabled): The access enable switch is in the off   position.
R9105   Through   R910F	Note used	-

Note) The IC memory card backup battery condition can be judged using special internal relays R9101 and R9102 as follows:

R9101	R9102	IC memory card condition
OFF	OFF	Not battery replacement required.
ON	OFF	Replace backup battery.   The data in the IC memory card is maintained.
ON	ON	The data in the IC memory card cannot be maintained.   Replace backup battery.

### 5.1.18 Special Data Registers for FP2/FP2SH/FP3/FP10SH

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions					Reading	Writing
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \\ \hline \end{gathered}$								
DT9000	DT90000	Self-diagnostic error code	The self-diag here when Monitor th display.	gnost a selferror	ic error diagnos code us	code is tic error ing decim	stored occurs. mal	A	N/A
DT9001	DT90001	Not used	-					N/A	N/A
DT9002	DT90002	Communication error of MEWNET-TR master unit (slot No. 0 to 15) (Available PLC: FP3/FP10SH)	The slot number, where an erroneous unit is installed, can be monitored here. " 1 " (on) is set in the bit position corresponding to the slot number when one of the errors below id detected.   Communication error MEWNET-TR master unit   When a communication error occurs at the MEWNET-TR master unit, the bit corresponding to the slot no. of the unit will be set on " 1 ". Monitor using binary display.   (1: erroneous MEWNET-TR master unit,					A	N/A
		Position of abnormal I/O slot (slot No. 0 to 15)   (Available PLC: FP2/FP2SH)							
DT9003	DT90003	Communication error of MEWNET-TR   master unit (slot No. 16 to 31)   (Available PLC: FP3/FP10SH)	0: normal)   Position of abnormal I/O slot   When an error occurs at an I/O unit, the bit corresponding to the slot of the unit will be set on " 1 ". Monitor sing binary display.   (1: error, 0: normal)						
		Position of abnormal I/O slot (slot No. 16 to 31)   (Available PLC: FP2/FP2SH)	Bit position   Slot No.   DT9002DT90002   Bit position   Slot No.   ot9003BT90003		$\begin{aligned} & \hline 11 . \end{aligned} 8^{11} \begin{gathered} 11 . \end{gathered}$				

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{aligned} & \text { FP2/ } \\ & \text { FP2SH } \\ & \text { FP10SH } \\ & \hline \end{aligned}$				
DT9006	DT90006	Abnormal intelligent unit (slot No. 0 to 15)	When an error condition is detected in an intelligent unit, the bit corresponding to the slot of the unit will be set to on. Monitor using binary display.   (1: abnormal intelligent unit, 0 : normal intelligent unit)		
DT9007	DT90007	Abnormal intelligent unit (slot No. 16 to 31)			
DT9010	DT90010	1/O verify error unit (slot No. 0 to 15)	When the state of installation of an I/O unit has changed since the power was turned on, the bit corresponding to the slot of the unit will be set to on. Monitor using binary display.   (1: error, 0 : normal)		
DT9011	DT90011	1/O verify error unit (slot No. 16 to 31)		A	N/A
DT9014	DT90014	Auxiliary register for operation	One shift-out hexadecimal digit is stored in bit positions 0 to 3 when F105 (BSR)/P105 (PBSR) or f106 (BSL)/P106 (PBSL) instruction is executed.		
DT9015	DT90015	Auxiliary register for	The divided remainder (16-bit) is stored in DT9015/DT90015 when F32 (\%)/P32 (P\%) or F52(B\%)/P52 (PB\%) instruction is executed.   The divided remainder (32-bit) is stored		
DT9016	DT90016	operation	in DT9015 and DT9016/DT90015 and DT90016 when F33 (D\%)/P33 (PD\%) or F53(DB\%)/P53 (PDB\%) instruction is executed.		
DT9017	DT90017	Operation error address (hold)	After commencing operation, the address whre the first operation error occurred is stored. Monitor the address using decimal display.   (Reference: DT90257)		

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
DT9018	DT90018	Operation error address (non-hold)	The address whre an operation error occurred is stored. Each time an error occurs, the new address overwrites the previous address. At the beginning of scan, the addressis 0 . Monitor the address using decimal display. (Reference: DT90258)	A	N/A
DT9019	DT90019	2.5 ms ring counter	The data stored here is increased by one very 2.5 ms ( H 0 to HFFFF)   Difference between the values of the two points (absolute value) $\times 2.5 \mathrm{~ms}=$ Elapsed time between the two points.		
DT9020	-	Maximu value of program (Available PLC: FP3)	The last address of sequence program area set in system register 0 is stored.	N/A	N/A
-	DT90020	Display of program capacity (Available PLC: FP10SH)	The program capacity is stored in decimal.   Example:   K30: approx. 30 K steps   K60: approx. 60 K steps (with memory expansion)		
		Display of program capacity (Available PLC: FP2)	The program capacity is stored in decimal.   Example:   K16: approx. 16 K steps (K15870) K32: approx. 32 K steps (with memory expansion)		
DT9021   (*Note)	-	Maximum value of file register (Available PLC: FP3)	The maximum (last) address of the file registers available are stored in here.		
-	DT90021 (*Note)	Maximum value of file register (Available PLC: FP2/FP10SH)	The maximum (last) address of the file registers available are stored in here.		

[^8]FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions		Reading	Writing
FP3	$\begin{aligned} & \text { FP2/ } \\ & \text { FP2SH } \\ & \text { FP10SH } \end{aligned}$					
DT9022	DT90022	Scan time (current value)	The current scan time is stored here. Scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) 0.1   Example:   K50 indicates 5 ms .	Scan time display is only possible in RUN mode, and shows the		
DT9023	DT90023	Scan time (minimum value)	The minimum scan time is stored here. Scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) $\times 0.1$   Example:   K50 indicates 5 ms .	cycle time.   The   maximum   and   minimum   values are   cleared		
DT9024	DT90024	Scan time (maximum value)	The maximum scan time is stored here. Scan time is calculated using the formula:   Scan time (ms) = stored data (decimal) 0.1   Example:   K125 indicates 12.5 ms .	the mode is switched between RUN mode and PROG. mode.	A	N/A
DT9025 (*Note)	DT90025 (*Note)	Mask condition monitoring register for interrupt unit initiated interrupts (INT 0 to 15) (*FP2: Not used)	The mask conditions of int initiated interrupts using IC can be monitored here. M binary display.   0 : interrupt disabled (mask   1: interrupt enabled (unma	rrupt unit TL instruciton nitor using   d)   ked)		
DT9026   (*Note)	DT90026	Mask condition monitoring register for interrupt unit initiated interrupts (INT 16 to 23) (*FP2: Not used)	The mask conditions of int initiated interrupts using IC can be monitored here. M binary display.   0 : interrupt disabled (mask   1: interrupt enabled (unma	rrupt unit TL instruciton nitor using   d)   ked)		
DT9027   (*Note)	DT90027	Periodical interrupt interval (INT24)	The value set by ICTL inst stored.   K0: periodical interrupt is K1 to K3000: 10ms to 30s 1.5s	uction is   ot used. or 0.5 ms to		


Address		Name	Descriptions	$\begin{gathered} \text { Read- } \\ \text { ing } \end{gathered}$	Writing
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
DT9028   (*Note)	DT90028 (*Note)	Sample trace interval	The value registered using programming tool software is stored.   - K0: sampling triggered by F155 (SMPL)/P155 (PSMPL) instruciton   - K1 to K3000 (x 10 ms ): 10 ms to 30 s	A	N/A
DT9029   (*Note)	DT90029 (*Note)	Break address	The address ( K constant) of a break in a test run is stored.		
DT9030   (*Note)	DT90030 (*Note)	Message 0	The contents of the specified message are stored in these special data registers when F149 (MSG)/P149 (PMSG) instruction is executed.		
$\begin{aligned} & \text { DT9031 } \\ & \text { (*Note) } \\ & \hline \end{aligned}$	DT90031 (*Note)	Message 1			
DT9032   (*Note)	$\begin{aligned} & \text { DT90032 } \\ & \text { (*Note) } \\ & \hline \end{aligned}$	Message 2			
DT9033   (*Note)	DT90033 (*Note)	Message 3			
DT9034   (*Note)	DT90034 (*Note)	Message 4			
DT9035   (*Note)	DT90035 (*Note)	Message 5			
DT9036	DT90036	$\begin{array}{\|l\|} \hline \text { F152 (RMRD)/ } \\ \text { P152 (PRMRD) } \\ \text { and } \\ \text { F153 (RMWT)/ } \\ \text { P153 (PRMWT) } \\ \text { instructions end } \\ \text { code } \end{array}$	The error code is stored here if F152 (RMRD)/P152 (PRMRD) or F153 (RMWT)/P153 (PRMWT) instruction was executed abnormally. When the instruction was successfully executed, " 0 " is stored.	A	N/A
		Abnormal unit display	If an abnormal unit is installed to the backplane, the slot number of that unit will be stored. Monitor using decimal display.		
DT9037	DT90037	Work 1 for F96 (SRC)/ P96 (PSRC) instructions	The number of data that match the searched data is stored here when F96 (SRC)/P96 (PSRC) instruction is executed.	A	A
DT9038	DT90038	Work 2 for F96 (SRC)/ P96 (PSRC) instructions	The position of the first matching data, counting from the starting 16-bit area, is stored here when an F96 (SRC)/P96 (PSRC) instruction is executed.		
DT9039	DT90039	F145 (SEND)/   P145 (PSEND)   and   F146 (RECV)/   P146 (PRECV)   instructions end   code	The error code is stored here if F145 (SEND)/P145 (PSEND) or F146 (RECV)/ P146 (PRECV) instruction was executed abnormally.   When the instruction was successfully executed, " 0 " is stored.	A	N/A

Note) Used by the system.

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions			Reading	Writing
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \\ \hline \end{gathered}$						
DT9053	DT90053   (*Note)	Real-Time Clock (Clock/Calendar ) monitor (hour/minute)	Hour and Clock(Clock This data is overwritten $\qquad$   Hour din H00 to H23	minute data of ck/Calendar) ar is read-only data. . $\qquad$ 8 bits   Lower	he Real-Time stored here.   a. It cannot be   8 bits   data   59 ( BCD )	A	N/A
DT9054	DT90054 (*Note)	Real-Time Clock (Clock/Calendar ) monitor and setting (minute/second)	The year, second and calender Real-Time will opera 2099 and	month, day, ho day-of-the-w imer is stored. Clock(Clock/C te correctly thro supports leap	ur, minute, ek data for the The built-in alendar) ugh the year ears		
DT9055	DT90055 (*Note)	Real-Time Clock (Clock/Calendar ) monitor and setting (day/hour)	The Real(Clock/Cal set) by wri programm	Time Clock lendar) can be iting a value us ing tool softwar	(the time ing a e or a program		
DT9056	DT90056 (*Note)	Real-Time Clock   (Clock/Calendar   ) monitor and setting (year/month)	instruction	Minute data	Second data	A	A
DT9057	DT90057 (*Note)	Real-Time Clock (Clock/Calendar ) monitor and setting (day-of-the-week)	DT90054   DT9055/   DT90055   DTT056/   DT90056   DT9057//   DT90057		Ho0 to H59 (BCD)   Hour data   H00 to H23 (BCD)   Month data   H01 to H12 (BCD)   Day-of-the-week data   H00 to H06 (BCD)		

[^9]| Address |  | Name | Descriptions | Reading | Writing |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FP3 | $\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$ |  |  |  |  |
| DT9058 | DT90058 (*Note) | Real-Time Clock <br> (Clock <br> /Calendar) setting and 30 seconds correction | The Real-Time Clock(Clock/Calendar) is adjusted as follows. <br> When setting the Real-Time Clock (Clock/Calendar) by program By setting the highest bit of DT9058/DT90058 to 1, the time becomes that written to DT9054 to DT9057/DT90054 to DT90057 by F0 (MV) instruction. After the time is set, DT9058/DT90058 is cleared to 0 . (Cannot be performed with any instruciton other than F0 (MV) instruction.) <br> <Example> <br> Set the time to 12:00:00 on the $5^{\text {th }}$ day when the X0 turns on. <br> If you changed the values of DT9054 to DT9057/DT90054 to DT90057 with programming tool software, the time will be set when the new values are written. Therefore, it is unnecessary to write to DT9058/DT90058. <br> When the correcting times less than 30 seconds- <br> By setting the lowest bit of DT9058/DT90058 to 1 , the value will be moved up or down and become exactly 0 seconds. After the correction is completed, DT9058/DT90058 is cleared to 0 . <br> <Example> <br> Correct to 0 seconds with X0 turns on. $\left.\left\|\begin{array}{\|ll} \text { XO } \end{array}\right\| \begin{array}{ll} \text { FO MV, H } & \text { 1, DT9058 } \end{array}\right] \left\lvert\, \begin{aligned} & \text { Correct to } \\ & 0 \text { second. } \end{aligned}\right.$ <br> At the time of correction, if between 0 and 29 seconds, it will be moved down, and if the etween 30 and 59 seconds, it will be moved up. In the example above, if the time was 5 minutes 29 seconds, it will become 5 minutes 0 second; and, if the time was 5 minutes 35 seconds, it will become 6 minutes 0 second. | A | A |

Note) In the FP2, an expansion memory unit is necessary.

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Read -ing	Writing
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \\ \hline \end{gathered}$				
DT9059	DT90059	Serial communication error code	The system uses this as a communication status when communication error occurs.	A	N/A
DT9060	DT90060	Step ladder process (0 to 15)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on "1".   Monitor using binary display.   (0: not-executing, 1 : executing)   Example:	A	A
DT9061	DT90061	Step ladder process (16 to 31)			
DT9062	DT90062	Step ladder process (32 to 47)			
DT9063	DT90063	Step ladder process (48 to 63)			
DT9064	DT90064	Step ladder process (64 to 79)			
DT9065	DT90065	Step ladder process (80 to 95)			
DT9066	DT90066	Step ladder process (96 to 111)			
DT9067	DT90067	Step ladder process (112 to 127)			
DT9068	DT90068	Step ladder process (128 to 143)			
DT9069	DT90069	Step ladder process (144 to 159)			
DT9070	DT90070	Step ladder process (160 to 175)	Since bit position 0 of DT9060/DT90060 is " 1 ", step ladder process 0 is executing.   A programming tool software can be used to write data.		
DT9071	DT90071	Step ladder process (176 to 191)			
DT9072	DT90072	Step ladder process (192 to 207)			
DT9073	DT90073	Step ladder process (208 to 223)			
DT9074	DT90074	Step ladder process (224 to 239)			
DT9075	DT90075	Step ladder process (240 to 255)			
DT9076	DT90076	Step ladder process (256 to 271)			
DT9077	DT90077	Step ladder process (272 to 287)			

Note) Used by the system.

Address		Name	Descriptions	Read -ing	Writing
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
DT9078	DT90078	Step ladder process (288 to 303)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on "1".   Monitor using binary display.   (0: not-executing, 1 : executing)   Example:	A	A
DT9079	DT90079	Step ladder process (304 to 319)			
DT9080	DT90080	Step ladder process (320 to 335)			
DT9081	DT90081	Step ladder process ( 336 to 351)			
DT9082	DT90082	Step ladder process (352 to 367)			
DT9083	DT90083	Step ladder process (368 to 383)			
DT9084	DT90084	Step ladder process (384 to 399)			
DT9085	DT90085	Step ladder process (400 to 415)			
DT9086	DT90086	Step ladder process (416 to 431)			
DT9087	DT90087	Step ladder process (432 to 447)			
DT9088	DT90088	Step ladder process (448 to 463)			
DT9089	DT90089	Step ladder process (464 to 479)			
DT9090	DT90090	Step ladder process (480 to 495)	Since bit position 0 of DT9080/DT90080 is " 1 ", step ladder process 320 is executing.   A programming tool software can be used to write data.		
DT9091	DT90091	Step ladder process (496 to 511)			
DT9092	DT90092	Step ladder process (512 to 527)			
DT9093	DT90093	Step ladder process (528 to 543)			
DT9094	DT90094	Step ladder process (544 to 559)			
DT9095	DT90095	Step ladder process (560 to 575)			
DT9096	DT90096	Step ladder process (576 to 591)			
DT9097	DT90097	Step ladder process (592 to 607)			
DT9098	DT90098	Step ladder process (608 to 623)			
DT9099	DT90099	Step ladder process ( 624 to 639)			

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Read -ing	Writing
FP3	$\begin{aligned} & \text { FP2/ } \\ & \text { FP2SH } \\ & \text { FP10SH } \end{aligned}$				
DT9100	DT90100	Step ladder process (640 to 655)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on "1".   Monitor using binary display.   (0: not-executing, 1 : executing)   Example:	A	A
DT9101	DT90101	Step ladder process (656 to 671)			
DT9102	DT90102	Step ladder pro- cess ( 672 to 687 )			
DT9103	DT90103	Step ladder pro- cess (688 to 703)			
DT9104	DT90104	Step ladder process (704 to 719)			
DT9105	DT90105	Step ladder process ( 720 to 735)			
DT9106	DT90106	Step ladder process ( 736 to 751)			
DT9107	DT90107	Step ladder process (752 to 767)			
DT9108	DT90108	Step ladder process (768 to 783)			
DT9109	DT90109	Step ladder process (784 to 799)			
DT9110	DT90110	Step ladder process ( 800 to 815)			
DT9111	DT90111	Step ladder process ( 816 to 831)			
DT9112	DT90112	Step ladder pro- cess (832 to 847)	Example:   Bit position $15 \ldots 12[11 \ldots 8 \mid 7 \ldots 43 \ldots 0$		
DT9113	DT90113	Step ladder process (848 to 863)			
DT9114	DT90114	Step ladder process (864 to 879)	Since bit position 0 of DT9100/DT90100 is " 1 ", step ladder process 640 is executing.   A programming tool software can be used to write data.		
DT9115	DT90115	Step ladder process (880 to 895)			
DT9116	DT90116	Step ladder pro- cess (896 to 911 )			
DT9117	DT90117	Step ladder process (912 to 927)			
DT9118	DT90118	Step ladder process (928 to 943)			
DT9119	DT90119	Step ladder process (944 to 959)			
DT9120	DT90120	$\begin{aligned} & \text { Step ladder pro- } \\ & \text { cess ( } 960 \text { to } 975 \text { ) } \end{aligned}$			
DT9121	DT90121	Step ladder process (976 to 991)			
DT9122	DT90122	Step ladder process (992 to 999) (higher byte is not used.)			

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Read -ing	Writing
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
DT9123	DT90123	Not used	-		
DT9124	DT90124	Not used	-	N/A	N/A
DT9125	DT90125	Not used	-		
DT9126   (*Note)	DT90126   (*Note)	Forced on/off operating station display	This displays the unit number that has executed forced on/off operation.		
DT9127   (*Note)	DT90127   (*Note)	MEWNET-F	The number of times, which MEWNETF remote I/O service was performed by each master, is stored.	A	N/A
DT9128   (*Note)	DT90128   (*Note)	/O service time	The number of times, which MEWNETF remote I/O service was performed by each master, is stored.		
DT9129	DT90129	Not used	- For		
DT9130	DT90130	Not used	-	N/A	N/A
DT9131	DT90131	MEWNET-F   (remote I/O)   slave stations   abnormality   checking (for   selecting the   display contents   and master of   DT9132 to   DT9135/DT90132   to DT90135)	The contents displayed by DT9132 to DT9135/DT90132 to DT90135 will change depending on the contents of stored in DT9131/DT90131. Use the programming tools software to write the settings for what you want to display (this can also be done with the FO (MV) move instruction).   Set the code ( H 0 or H 1 ) specifying the display contents in the higher 8 bits and set the code ( H 0 to H 3 ) specifying the display master in the lower 8 bits.	A	N/A

Note) Used by the system.

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Read -ing	Writing
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
DT9132   DT9133	DT90132   DT90133	MEWNET-F   (remote I/O) error   slave station   number - current   condition   (when DT9131/   DT90131 is H0,   $\mathrm{H} 1, \mathrm{H} 2$ or H3)	The bit corresponding to the station number of the MEWNET-F where an error is occurring is set to on. Monitor using binary display.   (1: Error slave station, 0: Normal slave station)	A	N/A
		MEWNET-F (remote I/O) I/O verify error slave station number (when DT9131/ DT90131 is H100, H101, H102 or H103)	When the installed condition of a MEWNET-F slave station set unit has changed since the power was turned on, the bit corresponding to that slave station number will be set to on. Monitor using ibnary display.   (1: Error slave station, 0: Normal slave station)		
DT9134 DT9135	DT90134   DT90135	MEWNET-F (remote I/O) error slave station number - record (when DT9131/ DT90131 is H0, H1, H2 or H3)	The bit corresponding to the slave station number of the MEWNET-F where an error is occurring will be set to on. Monitor using binary display.   (1: Error slave station, 0: Normal slave station)		
		MEWNET-F   (remote I/O) momentary voltage drop slave station number (when DT9131/ DT90131 is H100, H101, H102 or H103)	If a momentary voltage drop at MEWNET-F slave station set, the bit corresponding to that slave station number will be set to on. Monitor using binary display.   (1: Error slave station, 0: Normal slave station)		

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Read -ing	Writing
FP3					
DT9136 DT9137	DT90136 DT90137	Error code of   MEWNET-F   (remote I/O)   system	Display the error conditions for 8 types of errors using 1 byte.	A	N/A
DT9138	DT90138	Not used	-		N/A
DT9139	DT90139	Not used			
DT9140   (*Note1)	DT90140 (*Note1)	MEWNET-   W/-P PC   link status [PC link 0 (W/P)]   (*Note2, 3)	The number of times the receiving operation is performed (counted using ring counter)	N/A	N/A
DT9141   (*Note1)	DT90141   (*Note1)		The current interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT9142   (*Note1)	DT90142   (*Note1)		The minimum interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT9143   (*Note1)	DT90143   (*Note1)		The maximum interval between two receiving operations: value in the register x 2.5 ms		
DT9144   (*Note1)	DT90144   (*Note1)		The number of times the sending operation is performed (counted using ring counter)		
DT9145   (*Note1)	DT90145 (*Note1)		The current interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT9146   (*Note1)	DT90146   (*Note1)		The minimum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT9147 (*Note1)   (*Note1)	DT90147   (*Note1)		The maximum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		

Note1) Used by the system.
Note2) When the system register $46=$ K0, First: PC link 0, second: PC link 1
When the system register $46=$ K1, First: PC link 1, second: PC link 0
Note3) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	$\begin{gathered} \text { Read } \\ \text {-ing } \end{gathered}$	Writing
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
DT9148   (*Note1)	$\begin{aligned} & \text { DT90148 } \\ & \text { (*Note1) } \\ & \hline \end{aligned}$	MEWNET-   W/-P PC   link status [PC link 1 (W/P)]   (*Note2, 3)	The number of times the receiving operation is performed (counted using ring counter)	N/A	N/A
DT9149   (*Note1)	$\begin{aligned} & \text { DT90149 } \\ & \text { (*Note1) } \\ & \hline \end{aligned}$		The current interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT9150   (*Note1)	$\begin{aligned} & \hline \text { DT90150 } \\ & \text { (*Note1) } \\ & \hline \end{aligned}$		The minimum interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT9151   (*Note1)	DT90151   (*Note1)		The maximum interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT9152   (*Note1)	$\begin{aligned} & \text { DT90152 } \\ & \text { (*Note1) } \\ & \hline \end{aligned}$		The number of times the sending operation is performed (counted using ring counter)		
DT9153 (*Note1)   (*Note1)	$\begin{aligned} & \text { DT90153 } \\ & \text { (*Note1) } \\ & \hline \end{aligned}$		The current interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT9154   (*Note1)	$\begin{aligned} & \text { DT90154 } \\ & \text { (*Note1) } \\ & \hline \end{aligned}$		The minimum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT9155   (*Note1)	$\begin{aligned} & \text { DT90155 } \\ & \text { (*Note1) } \\ & \hline \end{aligned}$		The maximum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT9156   (*Note1)	DT90156   (*Note1)	MEWNET-W/-P PC link status	Area used for measurement of receiving interval.		
DT9157   (*Note1)	DT90157   (*Note1)	[PC link 0 (W/P)]   (*Note2, 3)	Area used for measurement of sending interval.		
DT9158   (*Note1)	DT90158   (*Note1)	MEWNET-W/-P PC link status	Area used for measurement of receiving interval.		
DT9159   (*Note1)	DT90159   (*Note1)	[PC link 1 (W/P)]   (*Note2, 3)	Area used for measurement of sending interval.		

Note1) Used by the system.
Note2) When the system register $46=$ K0, First: PC link 0, second: PC link 1 When the system register $46=K 1$, First: PC link 1, second: PC link 0
Note3) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Read -ing	$\begin{aligned} & \text { Writ- } \\ & \text { ing } \end{aligned}$
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
DT9160	DT90160	Link unit no. [W/P link 1] (*Note)	Stores the unit No. of link 1.		
DT9161	DT90161	Error flag [W/P link 1] (*Note)	Stores the error flag of link 1.		
DT9162	DT90162	Link unit no. [W/P link 2] (*Note)	Stores the unit No. of link 2.		
DT9163	DT90163	Error flag [W/P link 2] (*Note)	Stores the error flag of link 2.		
DT9164	DT90164	Link unit no. [W/P link 3] (*Note)	Stores the unit No. of link 3.		
DT9165	DT90165	Error flag [W/P link 3] (*Note)	Stores the error flag of link 3.		
DT9166	DT90166	Link unit no. [W/P link 4] Available PLC: FP2SH, FP10SH	Stores the unit No. of link 4.	A	N/A
DT9167	DT90167	Error flag [W/P link 4] Available PLC: FP2SH, FP10SH	Stores the error flag of link 4.		
DT9168	DT90168	Link unit no. [W/P link 5] Available PLC: FP2SH, FP10SH	Stores the unit No. of link 5.		
DT9169	DT90169	Error flag [W/P link 5] Available PLC: FP2SH, FP10SH	Stores the error flag of link 5.		

Note) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Read -ing	Writing
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \\ \hline \end{gathered}$				
DT9170	DT90170	MEWNET-   W/-P link   status   [W/P link 1]   (*Note)	Station number, whre the send area address for the PC link is overlapped with this station, is stored here.	A	N/A
DT9171	DT90171		Test result in the optical transmission path test mode for MEWNET-P link system is stored here.		
DT9172	DT90172		Counts how many times a token is lost.		
DT9173	DT90173		Counts how many times two or more tokens are detected.		
DT9174	DT90174		Counts how many times a signal is lost.		
DT9175	DT90175		Counts how many times a synchronous abnormality is detected.		
DT9176	DT90176		Send NACK		
DT9177	DT90177		Send NACK		
DT9178	DT90178		Send WACK		
DT9179	DT90179		Send WACK		
DT9180	DT90180		Send answer		
DT9181	DT90181		Send answer		
DT9182	DT90182		Unidentified command		
DT9183	DT90183		Counts how many times a parity error is detected.		
DT9184	DT90184		End code receiving error		
DT9185	DT90185		Format error		
DT9186	DT90186		Not support error		
DT9187	DT90187		Self-diagnostic result		
DT9188	DT90188		Counts how many times loop change is detected.   Available PLC: FP3, FP10SH		
DT9189	DT90189		Counts home many times link error is detected.		
DT9190	DT90190		Counts how many times main loop break is detected.   Available PLC: FP3, FP10SH		
DT9191	DT90191		Counts how many times sub loop break is detected.   Available PLC: FP3, FP10SH		
DT9192	DT90192		Loop reconstruction condition Available PLC: FP3, FP10SH		
DT9193	DT90193		Loop operation mode Available PLC: FP3, FP10SH		
DT9194	DT90194		Loop input status Available PLC: FP3, FP10SH		

Note) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

Address		Name	Descriptions	Read -ing	Writing
FP3					
DT9195	DT90195	MEWNET-H   link status/   link unit   number ( H   link 1)   (For FP2/   FPSH, using   W2 mode)	The link status for the MEWNET-H link is monitored as:		
DT9196	DT90196	MEWNET-H   link status/ link unit number ( H link 2) (For FP2/ FPSH, using W2 mode)	The link status for the MEWNET-H link is monitored as:	A	N/A
DT9197	DT90197	MEWNET-H   link status/   link unit   number ( H   link 3)   (For FP2/   FPSH, using   W2 mode)	The link status for the MEWNET-H link is monitored as:		
DT9198	DT90198	Not used	-		
DT9199	DT90199	Not used	-		
DT9200	DT90200	MEWNET-   W/-P link   status   [W/P link 2]   (*Note)	Station number, whre the send area address for the PC link is overlapped with this station, is stored here.	A	N/A
DT9201	DT90201		Test result in the optical transmission path test mode for MEWNET-P link system is stored here.		
DT9202	DT90202		Counts how many times a token is lost.		
DT9203	DT90203		Counts how many times two or more tokens are detected.		
DT9204	DT90204		Counts how many times a signal is lost.		
DT9205	DT90205		Counts how many times a synchronous abnormality is detected.		
DT9206	DT90206		Send NACK		
DT9207	DT90207		Send NACK		
DT9208	DT90208		Send WACK		
DT9209	DT90209		Send WACK		
DT9210	DT90210		Send answer		
DT9211	DT90211		Send answer		
DT9212	DT90212		Unidentified command		

Note) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Read -ing	$\begin{aligned} & \text { Writ- } \\ & \text { ing } \end{aligned}$
FP3	$\begin{aligned} & \text { FP2/ } \\ & \text { FP2SH } \\ & \text { FP10SH } \\ & \hline \end{aligned}$				
DT9213	DT90213	MEWNET-   W/-P link   status   [W/P link 2]   (*Note)	Counts how many times a parity error is detected.	A	N/A
DT9214	DT90214		End code receiving error		
DT9215	DT90215		Format error		
DT9216	DT90216		Not support error		
DT9217	DT90217		Self-diagnostic result		
DT9218	DT90218		Counts how many times loop change is detected.   Available PLC: FP3, FP10SH		
DT9219	DT90219		Counts home many times link error is detected.		
DT9220	DT90220		Counts how many times main loop break is detected.   Available PLC: FP3, FP10SH		
DT9221	DT90221		Counts how many times sub loop break is detected.   Available PLC: FP3, FP10SH		
DT9222	DT90222		Loop reconstruction condition Available PLC: FP3, FP10SH		
DT9223	DT90223		Loop operation mode Available PLC: FP3, FP10SH		
DT9224	DT90224		Loop input status Available PLC: FP3, FP10SH		
DT9225	DT90225	Not used	- Avala		
DT9226	DT90226	Not used	-		
DT9227	DT90227	Not used	-		
DT9228	DT90228	Not used	-		
DT9229	DT90229	Not used	-		
DT9230	DT90230	MEWNET-   W/-P link   status   [W/P link 3]   (*Note)	Station number, whre the send area address for the PC link is overlapped with this station, is stored here.	A	N/A
DT9231	DT90231		Test result in the optical transmission path test mode for MEWNET-P link system is stored here.		
DT9232	DT90232		Counts how many times a token is lost.		
DT9233	DT90233		Counts how many times two or more tokens are detected.		
DT9234	DT90234		Counts how many times a signal is lost.		
DT9235	DT90235		Counts how many times a synchronous abnormality is detected.		
DT9236	DT90236		Send NACK		
DT9237	DT90237		Send NACK		

Note) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Read -ing	Writing
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
DT9238	DT90238	MEWNET-   W/-P link   status   [W/P link 3]   (*Note)	Send WACK	A	N/A
DT9239	DT90239		Send WACK		
DT9240	DT90240		Send answer		
DT9241	DT90241		Send answer		
DT9242	DT90242		Unidentified command		
DT9243	DT90243		Counts how many times a parity error is detected.		
DT9244	DT90244		End code receiving error		
DT9245	DT90245		Format error		
DT9246	DT90246		Not support error		
DT9247	DT90247		Self-diagnostic result		
DT9248	DT90248		Counts how many times loop change is detected.   Available PLC: FP3, FP10SH		
DT9249	DT90249		Counts home many times link error is detected.		
DT9250	DT90250		Counts how many times main loop break is detected.   Available PLC: FP3, FP10SH		
DT9251	DT90251		Counts how many times sub loop break is detected.   Available PLC: FP3, FP10SH		
DT9252	DT90252		Loop reconstruction condition Available PLC: FP3, FP10SH		
DT9253	DT90253		Loop operation mode Available PLC: FP3, FP10SH		
DT9254	DT90254		Loop input status Available PLC: FP3, FP10SH		
-	DT90255	Monitoring tool port station No. (Available PLC: FP2SH/ FP10SH)	Station number BCD (H1 to H32) set for tool port is stored here.	A	N/A
-	DT90256	Monitoring COM port station No. (Available PLC: FP2SH/ FP10SH)	Station number BCD (H1 to H32) set for tool port is stored here.		

Note) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	$\begin{gathered} \text { Read } \\ \text {-ing } \end{gathered}$	Writing
FP3	$\begin{aligned} & \text { FP2/ } \\ & \text { FP2SH } \\ & \text { FP10SH } \\ & \hline \end{aligned}$				
-	DT90257	Operation error program No. (hold) (Available PLC: FP2SH/ FP10SH)	An Operation error program block number is stored (higher byte) here when an operation error is detected.   Program block number   - H1: In the first program block   - H2: In the 2nd program block		
-	DT90258	Operation error program No. (non-hold) (Available PLC: FP2SH/ FP10SH)	The program block number for the latest operation error is stored here each time an operation error is detected.   Program block number   - H1: In the first program block   - H2: In the 2nd program block		
-	DT90259	Break occurrence program number (Available PLC: FP2SH/ FP10SH)	The program block number where the BRK instruction occurred is stored here.   Program block number   - H1: In the first program block   - H2: In the 2nd program block		
-	DT90260	Type of IC memory card (Available PLC: FP2SH/ FP10SH)	Type of IC memory card is monitored here as:   - H5: Flash-EEPROM type IC memory card   - H6: SRAM type IC memory card   - H506: For FP10SH, flash-   EEPROM/SRAM mixed type IC memory card   - H6: No archival information is stored   - H6: No data is written   - Other than above: ERROneous condition (self-diagnostic error code E56)	A	N/A
-	DT90261	Capacity of IC memory card 1 (Available PLC: FP2SH/ FP10SH)	The capacity of IC memory card is stored in units of KB. If Flash-EEPROM/SRAM mixed type IC memory card is used, SRAM capacity is stored.		
-	DT90262	Capacity of IC memory card 2 (Available PLC: FP2SH/ FP10SH)	If Flash-EEPROM/SRAM mised type IC memory card is used, flash-EEPROM capacity is stored in units of KB.		
-	DT90263	File register bank (current value)	The current value of file register bank is stored here.		

Note) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Read -ing	Writing
FP3	FP2/ FP2SH FP10SH				
-	DT90264	File register bank (shelter number) (Available PLC: FP2SH)	The shelter number of the file register bank is stored here.	A	N/A
-	DT90265	Free compile memory capacity (Available PLC: FP2SH/ FP10SH)	Free capacity of compile memory is stored here. If the program memory is 120 K steps, the capacity of 1st program block is stored.		
-	DT90266	Free compile memory capacity for program block 2   (Available   PLC: FP2SH/   FP10SH)	If the program memory is 120 K steps, free caqpacity of program block 2 compile memory is stored here.		
-	DT90267	Not used	-	N/A	N/A
-	DT90268	Index register bank (current value) (Available PLC: FP2SH/ FP10SH)	The current value of index register bank is stored here.	A	A
-	DT90269	Index register bank (shelter number)   (Available   PLC: FP2SH/   FP10SH)	The shelter number of index register bank is stored here.		
-	DT90399	Not used	-	N/A	N/A
-	DT90400	Number of the error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The total of the error alarm relay which went on is stored here. (Max. 500) To reset all data in the error alarm buffer, use an RST instruction and DT90400. $\left.\mid \mathrm{H}^{\mathrm{X}} \mathrm{H}^{(D F)} \text {-R DT90400 }\right\rangle$	A	N/A

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Read -ing	Writing
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \\ \hline \end{gathered}$				
-	DT90401	First error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The first error alarm relay number which went on is stored. The error has been reset by executing a RST instruction. Example 1: Using RST instruction   Example 2: Using RST instruction and DT90401   X1		
-	DT90402	Second error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90403	Third error alarm relay which went on (Available PLC: FP2SH/ FP10SH)		A	N/A
-	DT90404	Forth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The error alarm relay number which went on is stored. To reset the specified error alarm relay, use an RST instruction only.		
-	DT90405	Fifth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90406	Sixth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90407	Seventh error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Read -ing	Writing
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
-	DT90408	Eighth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90409	Ninth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90410	Tenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90411	Eleventh error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The error alarm relay number which went on is stored. To reset the specified error alarm relay, use an RST instruction only.	A	N/A
-	DT90412	Twelth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	$\mid{ }^{\mathrm{X} 1} H_{(D F)} \quad \stackrel{E 12}{\langle R\rangle}$		
-	DT90413	Thirteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90414	Fourteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Read -ing	Writing
FP3	$\begin{aligned} & \hline \text { FP2/ } \\ & \text { FP2SH } \\ & \text { FP10SH } \end{aligned}$				
	DT90415	Fifteenth alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The error alarm relay number which went on is stored. To reset the specified error alarm relay, use an RST instruction only.	A	N/A
-	DT90416	Sixteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90417	Seventeenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90418	Eighteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90419	Nineteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			

FP2/FP2SH/FP3/FP10SH (A: Available, N/A: Not available)

Address		Name	Descriptions	Read -ing	Writing
FP3	$\begin{gathered} \text { FP2/ } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
-	DT90420	Time at which the first error alarm relay (DT90401) went on (for minute and second data) (Available PLC: FP2SH/ FP10SH)	The time (minute and second) data at which the first error alarm relay in DT90401 went on is stored.		
-	DT90421	Time at which the first error alarm relay (DT90401) went on (for day and hour data)   (Available   PLC: FP2SH/   FP10SH)	The time (day and hour) data at which the first error alarm relay in DT90401 went on is stored.	A	N/A
	DT90422	Time at which the first error alarm relay (DT90401) went on (for year and month data) (Available PLC: FP2SH/ FP10SH)	The time (year and month) data at which the first error alarm relay in DT90401 went on is stored.		

## 5．2 Table of Basic Instructions

Name	Boolean	Symbol	Description		这	은	$\left\|\begin{array}{c} \text { 뜽 } \\ \text { 눙} \end{array}\right\|$	W	$\begin{aligned} & \times \\ & \text { 닌 } \end{aligned}$	N	
Sequence basic instructions											
Start	ST	$\stackrel{\text { PY，RT，C，L，P，} \mathrm{E}}{ }$	Begins a logic operation with a Form A （normally open）contact．	$\begin{gathered} 1 \\ (2) \\ \hline \end{gathered}$	口	$\square$	$\square$	$\square$	$\square$	口	－
Start Not	ST／		Begins a logic operation with a Form B （normally closed）contact．	$\begin{gathered} 1 \\ 1 \\ (2) \\ \hline \end{gathered}$	口	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
Out	OT	$\stackrel{Y, R L, E}{[i]}$	Outputs the operated result to the specified output．	$\begin{gathered} 1 \\ 1 \\ (2) \end{gathered}$	口	$\square$	$\square$	$\square$	$\square$	$\square$	a
Not	1	－	Inverts the operated result up to this instruction．	1	口	$\square$	$\square$	$\square$	믐	$\square$	$\square$
AND	AN	$\stackrel{\text { X, }, R, T, C, L, P, E}{1}$	Connects a Form A（normally open）contact serially．	$\begin{gathered} \hline 1 \\ (2) \\ \hline \end{gathered}$	口	$\square$	$\square$	$\square$	ㅁ	$\square$	a
AND Not	AN／	$\begin{aligned} & \mathrm{X}, \mathrm{Y}, \mathrm{R}, \mathrm{C}, \mathrm{C}, \mathrm{P}, \mathrm{E} \\ & =/ /{ }^{2} \end{aligned}$	Connects a Form B（normally closed）contact serially．	$1$ (2)	口	$\square$	$\square$	$\square$	$\square$	口	$\square$
OR	OR	$\stackrel{\text { X,Y,R,T,C,L,P,E }}{1}$	Connects a Form A（normally open）contact in parallel．	1 （2）	口	$\square$	口	$\square$	$\square$	口	$\square$
OR Not	OR／	$\begin{aligned} & \hline X, R, T, C, L, P, E \\ & 1 / i \end{aligned}$	Connects a Form B（normally closed）contact in parallel．	$\begin{gathered} 1 \\ 1 \\ (2) \\ \hline \end{gathered}$	$\square$	$\square$	ㅁ	口	$\square$	口	$\square$
Leading edge start	$\mathbf{S T} \uparrow$	$\stackrel{X, Y, R, T, C, L, P, E}{ } \mid \uparrow$	Begins a logic operation only for one scan when the leading edge of the trigger is detected．	2	x	X	口	$\stackrel{\star}{\star}$	$\stackrel{\Delta}{\star}$	$\square$	$\square$
Trailing edge start	ST $\downarrow$	$\stackrel{X, Y, R, T, C, L, P, E}{ }$	Begins a logic operation only for one scan when the trailing edge of the trigger is detected．	2	$\times$	$\times$	$\square$	$\stackrel{\Delta}{*}$	$\stackrel{\Delta}{*}$	$\square$	$\square$
Leading edge AND	AN $\uparrow$	$\frac{X, Y, R, T, C, L, P, E}{\mid \uparrow!}$	Connects a Form A（normally open）contact serially only for one scan when the leading edge of the trigger is detected．	2	$\times$	$\times$	$\square$	$\stackrel{\Delta}{*}$	$\stackrel{\Delta}{\star}$	$\square$	$\square$
Trailing edge AND	AN $\downarrow$	$\xrightarrow[\mid \downarrow, ~]{\mathrm{X}, \mathrm{Y}, \mathrm{R}, \mathrm{C}, \mathrm{~L}, \mathrm{P}, \mathrm{E}}$	Connects a Form A（normally open）contact serially only for one scan when the trailing edge of the trigger is detected．	2	$\times$	$x$	$\square$	$\stackrel{\Delta}{*}$	$\stackrel{\Delta}{*}$	$\square$	$\square$
Leading edge OR	OR $\uparrow$		Connects a Form A（normally open）contact in parallel only for one scan when the leading edge of the trigger is detected．	2	$\times$	$x$	$\square$	$\stackrel{\Delta}{*}$	$\stackrel{\Delta}{*}$	$\square$	$\square$
Trailing edge OR	OR $\downarrow$	$\xrightarrow{\text { X，Y，RT，C，L，P，，}}$	Connects a Form A（normally open）contact in parallel only for one scan when the trailing edge of the trigger is detected．	2	$x$	x	口	$\stackrel{\Delta}{\star}$	$\stackrel{\Delta}{*}$	$\square$	$\square$
Leading edge out	OT $\uparrow$	$\stackrel{P}{P}[\uparrow]$	Outputs the operated result to the specified output only for one scan when leading edge of the trigger is detected．（for pulse relay）	2	$\times$	$x$	$\times$	$x$	$\times$	$\square$	$\square$
Trailing edge out	OT $\downarrow$	$\begin{array}{c\|} P \\ -\downarrow \downarrow] \end{array}$	Outputs the operated result to the specified output only for one scan when trailing edge of the trigger is detected．（for pulse relay）	2	$\times$	$\times$	$\times$	$\times$	$\times$	$\square$	$\square$
Alterna－ tive out	ALT	$\begin{array}{\|c\|} \hline Y, R, L, L, E \\ \langle A \\ \hline \end{array}$	Inverts the output condition（on／off）each time the leading edge of the trigger is detected．	3	$\times$	x	$\square$	$\square$	ㅁ	$\square$	$\square$
AND   stack	ANS	Wけ	Connects the multiple instruction blocks serially．	1	口	$\square$	$\square$	$\square$	ㅁ	$\square$	$\square$
OR stack	ORS	$\longmapsto \vdash \vdash$ $-\vdash \vdash$	Connects the multiple instruction blocks in parallel．	1	口	$\square$	$\square$	$\square$	ㅁ	$\square$	$\square$

Available， X ：Not available，$\triangle$ ：Not available partially
＊1）The type of the devices that can be specified depends on the models．
＊2）This instruction is available for FP－X Ver． 2.0 or later，and FPE Ver． 3.10 or later．
＊3）In the FP2／FP2SH／10SH，when using X1280，Y1280，R1120（special internal relay included），L1280，T256，C256 or anything beyond for the ST，ST／，OT，AN，AN／，OR and OR／instructions，the number of steps is shown in parentheses． Also，in the FP2／FP2SH／FP10SH，when a relay number has an index modifier，the number of steps is shown in parentheses．For the FPE and FP－X，the number of steps varies according to the relay number to be used．

Name	Boolean	Symbol	Description		-	은	뜽 난	W	$\begin{aligned} & \text { X } \\ & \text { in } \end{aligned}$	~	
Push stack	PSHS	$\longmapsto$	Stores the operated result up to this instruction. *2	1	[1]	$\square$	-	ㅁ	[	$\square$	민
Read stack	RDS		Reads the operated result stored by the PSHS instruction. *2	1	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$	민
Pop stack	POPS	$4 \vdash$	Reads and clears the operated result stored by the PSHS instruction	1	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$	민
Leading edge differential	DF	- ( DF )-	Turns on the contact for only one scan when the leading edge of the trigger is detected.	1	$\square$	[	민	-	민	$\square$	민
Trailing edge differential	DF/	- (DF/) -	Turns on the contact for only one scan when the trailing edge of the trigger is detected.	1	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$	믹
Leading edge differ-ential (initial execution type)	DFI	-( DFI) -	Turns on the contact for only one scan when the leading edge of the trigger is detected. The leading edge detection is possible on the first scan.	1	$x$	x	ㅁ	-	민	$\square$	민
Set	SET	$\langle s\rangle$	Output is set to and held at on.	3	$\square$	$\square$	$\square$	-	-	-	믹
Reset	RST		Output is set to and held at off.	3	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$	미
Keep	KP	$\underset{\sim}{\text { Resot }} \perp$	Outputs at set trigger and holds until reset trigger turns on.	$\begin{gathered} 1 \\ (2) \\ \hline \end{gathered}$	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$	민
No operation	NOP	- - -	No operation.	1	-	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
Basic function instructions											
On-delay timer	TML	$H \longmapsto \underbrace{T M a,} \quad n] \mid$	After set value " n " $\times 0.001$ seconds, timer contact "a" is set to on.	$\begin{gathered} 3 \\ (4) \end{gathered}$	$\square$	$\square$	$\square$	ㅁ	민	$\square$	*3
	TMR		After set value " n " x 0.01 seconds, timer contact "a" is set to on.	$\begin{gathered} \hline 3 \\ (4) \\ \hline \end{gathered}$	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$	*
	TMX		After set value "n" $x 0.1$ seconds, timer contact "a" is set to on.	$\begin{gathered} 3 \\ (4) \\ \hline \end{gathered}$	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$	* $\square$
	TMY		After set value " n " x 1 second, timer contact " $a$ " is set to on.	$\begin{gathered} 4 \\ (5) \\ \hline \end{gathered}$	민	$\square$	$\square$	-	$\square$	$\square$	*3
Auxiliary timer (16-bit)	F137   (STMR)		After set value " S " x 0.01 seconds, the specified output and R900D are set to on.	5	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$	민
Auxiliary timer (32-bit)	F183 (DSTM)	H HEFB3DSTM.S.	After set value " S " x 0.01 seconds, the specified output and R900D are set to on.	7	[]	ㅁ	$\square$	민	ㅁ	[	민
Time constant processing	F182		Executes the filter processing for the specified input.	9	$\times$	$\times$	$\square$	$\begin{aligned} & \Delta \\ & * 4 \end{aligned}$	$\begin{aligned} & \Delta \\ & * 4 \end{aligned}$	$x$	$x$
Counter	CT		Decrements from the preset value "n"	3 $(4)$	$\square$	$\square$	$\square$	*	* ${ }_{\text {* }}$	$\square$	*3

O: Available, $\times$ : Not available, $\triangle:$ Not available partially
*1) The type of the devices that can be specified depends on the models.
*2) The allowable number of using the PSHS and RDS instruction depends on the models.
*3) For FP2SH, FP10SH and FP-X Ver2.0 or later, any device can be set for the setting value of counter or timer instruction.
*4) This instruction is available for FP-X Ver. 2.0 or later.
*5) In the FP2/FP2SH/FP10SH, when using Y1280, R1120 (special internal relay included), L1280 or anything beyond for the KP instruction, the number of steps is shown in parentheses. Also, in the FP2/FP2SH/FP10SH, when a relay number has an index modifier, the number of steps is shown in parentheses.
*6) In the FP2/FP2SH/FP10SH, when timer 256 or higher, or counter 255 or lower, is used, the number of steps is the number in parentheses. Also, in the FP2/FP2SH/FP10SH, when a timer number or counter number has an index modifier, the number of steps is the number in parentheses. For the FPE and FP-X, the number of steps varies according to the specified timer number or counter number.

Name	Boolean	Symbol	Description	$\begin{aligned} & \text { n} \\ & \stackrel{0}{*} \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { d } \\ & \stackrel{i}{4} \end{aligned}$	은		쓴	$\begin{aligned} & x \\ & \text { ㅈ́ㄴ } \\ & \text { it } \end{aligned}$	Nㅡㄴ	
UP/DOWN counter	$\begin{aligned} & \text { F118 } \\ & \text { (UDC) } \end{aligned}$		Increments or decrements from the preset value "S" based on up/donw input.	5	$\square$	$\square$	$\square$	-	$\square$	$\square$	$\square$
Shift register	SR		Shifts one bit of 16-bit [word internal relay (WR)] data to the left.	$\begin{gathered} 1 \\ (2) \\ { }_{* 1} \end{gathered}$	$\square$						
Left/right shift register	$\begin{aligned} & \hline \text { F119 } \\ & \text { (LRSR) } \end{aligned}$		Shifts one bit of 16-bit data range specified by "D1" and "D2" to the left or to the right.	5	$\square$	$\square$	$\square$	$\square$	ㅁ	$\square$	$\square$
Control instructions											
Master control relay	MC		Starts the master control program.	2	ㅁ	$\square$	$\square$	-	$\square$	$\square$	$\square$
Master control relay end	MCE	$\longmapsto(M \subset E) N-\uparrow$	Ends the master control program.	2	ㅁ	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
Jump   Label	JP LBL	$-1 \longmapsto(\mathbb{P P} n)-1$	The program jumps to the label instruction and continues from there.	$\begin{gathered} 2 \\ (3) \\ \text { *2 } \\ 1 \\ 1 \end{gathered}$	$\square$	$\square$	$\square$	-	$\square$	$\square$	$\square$
Auxiliary jump   Label	F19 (SJP)   LBL		The program jumps to the label instruction specified by " S " and continues from there.	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\times$	$x$	$\times$	$\times$	$\times$	$\square$	ㅁ
Loop   Label	LOOP   LBL		The program jumps to the label instruction and continues from there (the number of jumps is set in " S ").	$\begin{gathered} 4 \\ (5) \\ \text { *3 } \\ \\ 1 \end{gathered}$	ㅁ	-	$\square$	$\square$	$\square$	ㅁ	$\square$
Break	BRK		Stops program execution when the predetermined trigger turns on in the TEST/RUN mode only.	1	x	$x$	$x$	x	$\times$	ㅁ	-

O: Available, $X:$ Not available, $\triangle$ : Not available partially
*1) In the FP2/FP2SH/FP10SH, when internal relay WR240 or higher is used, the number of steps is the number in parentheses. Also, in the FP2/FP2SH/FP10SH, when the specified internal relay number (word address has an index modfier, the number of steps is the number in parentheses.
*2) In the FP2/FP2SH/FP10SH, when the number " $n$ " in a jump instruction has an index modifier, the number of steps isthenumber in parentheses.
*3) In the FP2/FP2SH/FP10SH, when the number "n" in a loop instruction has an index modifier, the number of steps is the number in parentheses.

Name	Boolean	Symbol	Description	$\begin{aligned} & \stackrel{n}{2} \\ & \stackrel{4}{\omega} \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { ㄴㄴ } \end{aligned}$	은	$\begin{aligned} & \text { 뜽 } \\ & \text { 룐 } \end{aligned}$	带	$\begin{aligned} & \times \\ & \text { 린 } \end{aligned}$	N	
End	ED	$\longmapsto$ ¢ ${ }^{\text {H }}$	The operation of program is ended． Indicates the end of a main program．	1	ㅁ	ㅁ	－	$\square$	ㅁ	－	口
Conditional end	CNDE	H	The operation of program is ended when the trigger turns on．	1	口	口	ㅁ	－	$\square$	口	$\square$
Eject	EJECT	$\bigcirc$（EJECT－	Adds page break fo ruse when printing．	1	$\times$	$\times$	$\square$	$\square$	$\square$	－	$\square$
Step ladder instructions											
Start step	SSTP	$\longmapsto$（SSTPn）－	The start of program＂ n ＂for process control	3	ㅁ	$\square$	－	$\square$	$\square$	－	$\square$
Next step	NSTL	$H \longmapsto$（NSTL）－	Start the specified process＂ n ＂and clear the process currently started．（Scan execution type）	3	ㅁ	ㅁ	ㅁ	－	－	ㅁ	口
	NSTP	$H \longmapsto$（NSTP $)^{-1}$	Start the specified process＂ n ＂and clear the process currently started．（Pulse execution type）	3	ㅁ	－	ㅁ	－	ㅁ	ㅁ	口
Clear step	CSTP	$H \longmapsto(\operatorname{cstp})-1$	Resets the specified process＂ n ＂．	3	ㅁ	$\square$	－	$\square$	$\square$	－	$\square$
Clear multi－ ple steps	SCLR		Resets multiple processes specified by ＂n1＂ and＂n2＂．	5	ㅁ	$\times$	ㅁ	$\square$	$\square$	－	$\square$
Step end	STPE	$\square$（STPE H	End of step ladder area	1	ㅁ	－	ㅁ	－	$\square$	ㅁ	－
Subroutine instructions											
Subroutine call	CALL	$H \longmapsto$（callo -1	When the trigger is on：Executes the subroutine．   When the trigger is off：Not execute the subroutine．The output in the subroutine is maintained．	$\begin{gathered} \hline 2 \\ (3) \\ { }^{*} 1 \end{gathered}$	ㅁ	$\square$	ㅁ	$\square$	$\square$	ㅁ	ㅁ
Output off type subroutine call	FCAL	$H \longmapsto(F O A L N H$	When the trigger is on：Executes the subroutine．   When the trigger is off：Not execute the subroutine．But，the output in the subroutine is cleared．	$\begin{gathered} 4 \\ (5) \\ \left.{ }_{*}\right) \end{gathered}$	$\times$	$\times$	$\times$	$\times$	$x$	$x$	ㅁ
Subroutine entry	SUB		Indicates the start of the subroutine program＂ n ＂．	1	ㅁ	$\square$	－	$\square$	$\square$	－	口
Subroutine return	RET		Ends the subroutine program．	1	ㅁ	$\square$	－	$\square$	$\square$	$\square$	$\square$
Interrupt instructions											
Interrupt	INT		Indicates the start of the interrupt program ＂ n ＂．	1	ㅁ	ㅁ	－	$\square$	$\square$	ㅁ	－
Interrupt return	IRET		Ends the interrupt program．	1	ㅁ	$\square$	口	$\square$	口	口	口
Interrupt control	ICTL	H Hop－［ictl si，s2］	Select interrupt enable／disable or clear in ＂S1＂and＂S2＂and execute．	5	－	$\square$	$\square$	$\square$	$\square$	－	$\square$

：Available，$X$ ：Not available，$\triangle$ ：Not available partially
＊1）In the FP2／FP2SH／FP10SH，when the number＂n＂of a subroutine program has an index modifier，the number of steps is the number in parentheses．

Name	Boolean	Symbol	Description	号	$\left\|\begin{array}{c} 0 \\ \dot{1} \\ \mathbf{L} \end{array}\right\|$	은		W	$\begin{aligned} & \times \underset{1}{\text { a }} \\ & \text { it } \end{aligned}$	N	
Special setting instructions											
Communica－ tion condi－ tions setting	SYS1	$\mid \mathrm{H}$ HOFF－［SYSI，M ］	Change the communication conditions for the COM port or tool port based on the contents specified by the character constant．	13	$x$	$\times$	$\square$	$\begin{aligned} & \square \\ & { }_{*} \end{aligned}$	$\square$	$x$	$x$
Password setting			Change the password specified by the PLC based on the contents specified by the character constant．		$x$	$\times$	$\square$	＊2	＊2	$x$	$x$
Interrupt setting			Set the interrupt input based on the contents specified by the character constant．		$x$	$\times$	$\square$	$\square$	口	x	$\times$
PLC link time setting			Set the system setting time when a PLC link is used，based on the contents specified by the character constant．		$x$	$\times$	$\square$	$\square$	口	x	$x$
MEWTOCOL－ COM response control			Change the communication conditions of the COM．port or tool port for MEWTOCOL－COM based on the contents specified by the character constant．		$x$	$\times$	口	ㅁ	ㅁ	$x$	$x$
High－speed counter operation mode changing			Change the operation mode of the high－ speed counter，based on the contents specified by the character constant．		$x$	$x$	ㅁ	$\square$	$\square$	$x$	$x$
System registers ＂No． 40 to No．47＂ changing	SYS2	H H－sYs2 s． 01.02$]$	Change the setting value of the system register for the PLC link function．	7	$x$	$\times$	口	$\square$	－	$x$	$x$

：Available， X ：Not available，$\triangle$ ：Not available partially
＊1）With FP－X Ver2．0 or later，and FPE Ver 3.10 or later，the baud rate can be selected from 300， 600 or 1200 bps.
＊2）With FPE 32k type，the 8－digit password can be selected．
＊3）With FPE 32k type and FP－X Ver1． 10 or later，it can be used．

Name	Boolean	Symbol	Description	$\begin{aligned} & \stackrel{n}{2} \\ & \stackrel{y}{む} \end{aligned}$	$\begin{aligned} & \text { ¢ } \\ & \text { i } \end{aligned}$	은	$\begin{aligned} & \text { 뜽 } \\ & \text { 민 } \end{aligned}$	$\frac{\mathrm{W}}{\mathrm{~L}}$	$\begin{aligned} & x \\ & \text { 진 } \\ & \text { it } \end{aligned}$	ㄴ	
Data compare instructions											
16－bit   data   compare   （Start）	ST＝	$\left.\right\|^{\text {－}}$ S1，S2 $\simeq$	Begins a logic operation by comparing two 16－ bit data in the comparative condition＂ $\mathrm{S} 1=\mathrm{S} 2$＂．	5	ㅁ	$\square$	ㅁ	$\square$	口	$\square$	$\square$
	ST＜＞	$\left.\right\|^{\ll>S 1, S 2} \simeq$	Begins a logic operation by comparing two 16－ bit data in the comparative condition＂ $\mathrm{S} 1<\mathrm{S} 2$＂ or＂S1＞S2＂．	5	ㅁ	－	ㅁ	$\square$	口	口	$\square$
	ST＞	$\left.\right\|^{\text {¢ s }}$ ，s2 $\simeq$	Begins a logic operation by comparing two 16－ bit data in the comparative condition＂S1＞S2＂．	5	口	$\square$	ㅁ	$\square$	口	$\square$	$\square$
	ST＞＝		Begins a logic operation by comparing two 16－ bit data in the comparative condition＂S1＞S2＂ or＂ $\mathrm{S} 1=\mathrm{S} 2$＂．	5	口	$\square$	ㅁ	$\square$	口	$\square$	$\square$
	ST＜	$\vdash^{\ll 81, \mathrm{~S} 2} \simeq$	Begins a logic operation by comparing two 16－ bit data in the comparative condition＂S1＜S2＂．	5	口	$\square$	ㅁ	$\square$	$\square$	$\square$	$\square$
	ST＜＝	$\left.\right\|^{\lll 81, S 2} \simeq$	Begins a logic operation by comparing two 16－ bit data in the comparative condition＂S1＜S2＂ or＂ $\mathrm{S} 1=\mathrm{S} 2$＂．	5	ㅁ	$\square$	ㅁ	$\square$	口	$\square$	$\square$
16－bit   data   compare   （AND）	AN＝	$\Gamma^{=} \mathrm{s} 1 . \mathrm{S2}$＿	Connects a Form A（normally open）contact serially by comparing two 16 －bit data in the comparative condition＂S1＝S2＂．	5	口	$\square$	ㅁ	$\square$	口	$\square$	$\square$
	AN＜＞	$\left.\check{L}^{\langle \rangle S 1, S 2}\right]$	Connects a Form A（normally open）contact serially by comparing two 16 －bit data in the comparative condition＂S1＜S2＂or＂S1＞S2＂．	5	口	$\square$	ㅁ	$\square$	口	$\square$	$\square$
	AN＞	$\check{L}^{>} \mathrm{S1}, \mathrm{S2}$ 乙	Connects a Form A（normally open）contact serially by comparing two 16 －bit data in the comparative condition＂S1＞S2＂．	5	ㅁ	$\square$	ㅁ	$\square$	口	－	$\square$
	AN＞＝	$\check{L}^{\gg} \mathrm{S} 1 . \mathrm{S} 2 \ldots$	Connects a Form A（normally open）contact serially by comparing two 16 －bit data in the comparative condition＂ $\mathrm{S} 1>\mathrm{S} 2$＂or＂ $\mathrm{S} 1=\mathrm{S} 2$＂．	5	ㅁ	$\square$	ㅁ	$\square$	口	$\square$	$\square$
	AN＜	$\Gamma^{\ll \mathrm{S} 1, \mathrm{~S} 2}$＿	Connects a Form A（normally open）contact serially by comparing two 16 －bit data in the comparative condition＂S1＜S2＂．	5	口	$\square$	ㅁ	$\square$	ㅁ	$\square$	$\square$
	AN＜＝	$\left.\Gamma^{<=s 1, S 2}\right]$	Connects a Form A（normally open）contact serially by comparing two 16 －bit data in the comparative condition＂S1＜S2＂or＂S1＝S2＂．	5	口	$\square$	ㅁ	$\square$	口	$\square$	$\square$
16－bit   data compare （OR）	OR＝		Connects a Form A（normally open）contact in parallel by comparing two 16 －bit data in the comparative condition＂S1＝S2＂．	5	ㅁ	$\square$	$\square$	$\square$	口	$\square$	$\square$
	OR＜＞	$\overline{\Gamma^{\langle \rangle S 1, S 2} \beth}$	Connects a Form A（normally open）contact in parallel by comparing two 16－bit data in the comparative condition＂S1＜S2＂or＂S1＞S2＂．	5	ㅁ	$\square$	ㅁ	$\square$	ㅁ	$\square$	$\square$
	OR＞	$\check{L}^{\gg 1 .} \mathrm{S2} \square$	Connects a Form A（normally open）contact in parallel by comparing two 16 －bit data in the comparative condition＂S1＞S2＂．	5	ㅁ	$\square$	ㅁ	$\square$	口	$\square$	$\square$
	OR＞＝	$\Gamma^{\gg=S 1, S 2} \beth$	Connects a Form A（normally open）contact in parallel by comparing two 16 －bit data in the comparative condition＂ $\mathrm{S} 1>\mathrm{S} 2$＂or＂ $\mathrm{S} 1=\mathrm{S} 2$＂．	5	ㅁ	$\square$	ㅁ	－	口	口	$\square$
	OR＜	$\overline{\Gamma^{\ll 81, S 2} \beth}$	Connects a Form A（normally open）contact in parallel by comparing two 16 －bit data in the comparative condition＂S1＜S2＂．	5	口	$\square$	ㅁ	$\square$	ㅁ	$\square$	$\square$
	OR＜＝	$\Gamma^{<=S 1, \mathrm{~S} 2} \beth$	Connects a Form A（normally open）contact in parallel by comparing two 16 －bit data in the comparative condition＂ $\mathrm{S} 1<\mathrm{S} 2$＂or＂ $\mathrm{S} 1=\mathrm{S} 2$＂．	5	$\square$	$\square$	ㅁ	$\square$	－	$\square$	$\square$

：Available，$\times$ ：Not available，$\triangle:$ Not available partially

Name	Boolean	Symbol	Description	$\begin{aligned} & \text { n } \\ & \stackrel{2}{*} \\ & \omega \end{aligned}$	$\begin{gathered} \text { O } \\ \text { iL } \end{gathered}$	은	$\begin{aligned} & \text { 뜽 } \\ & \text { 문 } \end{aligned}$	啇	$\begin{aligned} & x \\ & \text { 슨 } \end{aligned}$	Nㅡㄴ	
32－bit   data   compare   （Start）	STD＝		Begins a logic operation by comparing two 32－ bit data in the comparative condition＂（S1＋1， S 1 ）＝（S2＋1，S2）＂．	9	ㅁ	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
	STD＜＞	$\vdash^{\text {D＜＞S1，S2 }}$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ，   $\mathrm{S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2)$＂or＂（S1＋1， S 1$)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	ㅁ	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
	STD＞	$\mid\left[^{\text {D＞}}\right.$ S1，S2 $\rceil$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂（S1＋1， $\mathrm{S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	ㅁ	$\square$	$\square$	$\square$	－	$\square$	$\square$
	STD＞＝	$\mid \Gamma^{\mathrm{D}\rangle}=\mathrm{s} 1 . \mathrm{S} 2 \square$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， $\mathrm{S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂or＂ $\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	ㅁ	$\square$	－	口	口	口	$\square$
	STD＜	$\left.\vdash^{\text {D }} \mathrm{S1,S2}\right]$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂（ $\mathrm{S} 1+1$ ， $\mathrm{S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	ㅁ	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
	STD＜＝	$\vdash^{\text {d }}=\mathrm{s} 1 . \mathrm{S} 2 \square$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂（ $\mathrm{S} 1+1$ ， $\mathrm{S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2)$＂or＂$(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	ㅁ	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
32－bit   data   compare   （AND）	AND＝	$\left.\check{\sim}^{\mathrm{D}=\mathrm{S} 1, \mathrm{~S} 2}\right]$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂$(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	－	$\square$	－	$\square$	口	口	$\square$
	AND＜＞	$\left.\check{\sim}^{\mathrm{D}<>S 1, \mathrm{~S} 2}\right]$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂ or＂$(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	믄	$\square$	ㅁ	－	－	口	$\square$
	AND＞	$\check{L}^{\text {D＞}} \mathrm{S1}$ ，S2 $]$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂$(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	ㅁ	$\square$	口	$\square$	口	口	$\square$
	AND＞＝	$\left.\check{L}^{\mathrm{D}\rangle=S 1, S 2}\right]$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂ $\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂ or＂$(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	ㅁ	$\square$	－	$\square$	－	口	$\square$
	AND＜	$\left.\check{L}^{\mathrm{D}<\mathrm{S} 1, \mathrm{~S} 2}\right]$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂（ $\mathrm{S} 1+1, \mathrm{~S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	ㅁ	$\square$	－	$\square$	口	口	$\square$
	AND＜＝	$\check{L}^{\mathrm{D}\langle=\mathrm{S} 1, \mathrm{~S} 2}$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂（ $\mathrm{S} 1+1, \mathrm{~S} 1$ ）＜（S2＋1， S 2$)$＂ or＂（S1＋1，S1）＝（S2＋1，S2）＂．	9	ㅁ	$\square$	$\square$	$\square$	－	$\square$	$\square$
32－bit   data   compare   （OR）	ORD＝	$\left.\check{L}^{\mathrm{D}=\mathrm{Sl}, \mathrm{S2}}\right]$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（ $\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	ㅁ	$\square$	$\square$	$\square$	－	$\square$	$\square$
	ORD＜＞	$\Gamma^{\text {D＜＞S1，S2 }}$	Connects a Form A（normally open）contact in parallel by comparing two 32－bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂ or＂$(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	ㅁ	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
	ORD＞	$\Gamma^{\text {D＞S1．S2 }}$ ］	Connects a Form A（normally open）contact in parallel by comparing two 32－bit data in the comparative condition＂$(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	ㅁ	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
	ORD＞＝	$\left.\Gamma^{\mathrm{D}>=\mathrm{S1}, \mathrm{S2}}\right]$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂$(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂ or＂（S1＋1，S1）＝（S2＋1，S2）＂．	9	ㅁ	$\square$	$\square$	$\square$	－	$\square$	$\square$
	ORD＜	$工^{\text {D＜S1，S2 }}$ 工	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂．	9	ㅁ	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
	ORD＜＝	$工^{\mathrm{D}=\mathrm{S} 1 . \mathrm{S} 2}$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂ or＂$(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	밈	$\square$	ㅁ	$\square$	－	－	$\square$

：Available，$X$ ：Not available，$\triangle:$ Not available partially

Name	Boolean	Symbol	Description	$\begin{aligned} & \stackrel{n}{2} \\ & \stackrel{⿺}{\mathbf{\omega}} \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { 문 } \end{aligned}$	은	$\begin{array}{\|l\|} \text { 뜽 } \\ \text { 욘 } \end{array}$	会	잔	N	
Floating point type real number data compare （Start）	STF＝	$\vdash^{\mathrm{F}=\mathrm{s} 1, \mathrm{~s} 2} \beth$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂（S1＋1， $\mathrm{S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	$\times$	$x$	$\square$	$\triangle$ $* 1$	＊	x	$x$
	STF＜＞	$\vdash^{\mathrm{F}\langle>\mathrm{S} 1, \mathrm{~S} 2} \beth$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， $\mathrm{S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2)$＂or＂（S1＋1，S1）＞（S2＋1，S2）＂．	9	$\times$	$x$	민	A $* 1$	$\begin{aligned} & \Delta \\ & { }_{* 1} \end{aligned}$	x	$x$
	STF＞	$\mid \Gamma^{\mathrm{F}\rangle \mathrm{s} 1 . \mathrm{S} 2} \beth$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， S1）＞（S2＋1，S2）＂．	9	$\times$	$x$	$\square$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \Delta \\ & { }_{* 1} \end{aligned}$	x	$x$
	STF＞＝	$\left.\right\|^{\text {F }}$＝S1．S2 $工$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， $\mathrm{S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂or＂（S1＋1， S 1$)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	$\times$	$x$	$\square$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \triangle \\ & { }^{*} 1 \end{aligned}$	x	$x$
	STF＜	$\vdash^{\mathrm{F}<~ S 1, S 2} \beth$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， $\mathrm{S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	X	x	민	$\begin{aligned} & \triangle \\ & { }^{*} 1 \end{aligned}$	$\begin{aligned} & \triangle \\ & { }^{*} 1 \end{aligned}$	x	$x$
	STF＜＝	$\left.\vdash^{\mathrm{F}<=S 1 . \mathrm{S} 2}\right\rceil$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， $\mathrm{S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2)$＂or＂（S1＋1，S1）$=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	x	$x$	민	$\begin{aligned} & \triangle \\ & { }^{*} 1 \end{aligned}$	$\begin{aligned} & \Delta \\ & { }_{* 1} \end{aligned}$	x	$x$
Floating point type real number data compare （AND）	ANF＝	$工^{\mathrm{F}=\mathrm{S1}, \mathrm{~S} 2}$ 工	Connects a Form A（normally open）contact serially by comparing two 32－bit data in the comparative condition＂$(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	$\times$	$\times$	$\square$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \Delta \\ & { }_{* 1} \end{aligned}$	x	$x$
	ANF＜＞	$\left[^{\mathrm{F}\langle>\mathrm{S} 1, \mathrm{~S} 2}\right.$	Connects a Form A（normally open）contact serially by comparing two 32－bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂ or＂（S1＋1，S1）$>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	$\times$	$x$	$\square$	$\begin{aligned} & \triangle \\ & { }^{*} 1 \end{aligned}$	$\begin{aligned} & \Delta \\ & { }_{* 1} \end{aligned}$	x	$x$
	ANF＞	$\left[^{\text {F＞S S1，S2 }}\right]$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＞（S2＋1，S2）＂．	9	$\times$	$x$	$\square$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	x	$x$
	ANF＞＝	$\left[^{\mathrm{F}>=S 1, \mathrm{~S} 2}\right]$	Connects a Form A（normally open）contact serially by comparing two 32－bit data in the comparative condition＂（S1＋1，S1）＞（S2＋1，S2）＂ or＂（S1＋1，S1）＝（S2＋1，S2）＂．	9	x	$x$	$\square$	$\begin{aligned} & \Delta \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \Delta \\ & { }^{*} 1 \end{aligned}$	$x$	$x$
	ANF＜	$\left[^{\mathrm{F}<} \mathrm{S} 1, \mathrm{~S} 2 \ldots\right.$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂．	9	X	$x$	민	$\begin{aligned} & \triangle \\ & { }^{*} 1 \end{aligned}$	$\begin{aligned} & \Delta \\ & { }_{* 1} \end{aligned}$	X	$x$
	ANF＜＝	$\Gamma^{\mathrm{F}<=S 1, \mathrm{~S} 2}$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂ or＂（S1＋1，S1）＝（S2＋1，S2）＂．	9	$\times$	$x$	$\square$	$\begin{aligned} & \Delta \\ & { }^{*} 1 \end{aligned}$	$\begin{aligned} & \Delta \\ & { }^{*} 1 \end{aligned}$	x	$x$
Floating point type real number data compare （OR）	ORF＝	$\left.\Gamma^{\mathrm{F}=\mathrm{S} 1, \mathrm{~S} 2}\right]$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＝（S2＋1，S2）＂．	9	X	x	민	$\begin{aligned} & \triangle \\ & { }^{*} 1 \end{aligned}$	$\triangle$ $* 1$	x	$x$
	ORF＜＞	$\left[^{\mathrm{F}\langle>\mathrm{S} 1, \mathrm{~S} 2}\right]$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂ or＂（S1＋1，S1）＞（S2＋1，S2）＂．	9	$x$	$x$	$\square$	$\begin{aligned} & \triangle \\ & { }^{*} 1 \end{aligned}$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	x	$x$
	ORF＞	$\Gamma^{\mathrm{F}>\mathrm{S} 1, \mathrm{~S} 2} \beth$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＞（S2＋1，S2）＂．	9	x	$x$	$\square$	$\begin{aligned} & \triangle \\ & { }^{*} 1 \end{aligned}$	$\triangle$ $* 1$	x	$x$
	ORF＞＝	$\left.\Gamma^{\mathrm{F}>=\mathrm{S} 1, \mathrm{~S} 2}\right]$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＞（S2＋1，S2）＂ or＂ $\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	$\times$	$x$	$\square$	$\begin{aligned} & \Delta \\ & { }^{*} 1 \end{aligned}$	$\begin{aligned} & \Delta \\ & { }^{*} 1 \end{aligned}$	x	$x$
	ORF＜	$\left.\Gamma^{\mathrm{F}<\mathrm{S} 1, \mathrm{~S} 2}\right]$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂．	9	X	$\times$	$\square$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	＊$\stackrel{\text {＊}}{ }$	x	$x$
	ORF＜＝	$工^{\mathrm{F}<=\mathrm{S} 1, \mathrm{~S} 2} \beth$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂ or＂$(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	$x$	$x$	민	$\begin{aligned} & \Delta \\ & { }^{*} 1 \end{aligned}$	$\triangle$ $* 1$	x	$x$

O：Available，$\times$ ：Not available，$\triangle$ ：Not available partially
＊1）This instruction is available for FP－X V1．10 or later and FPE 32k type

## 5．3 Table of High－level Instructions

The high－level instructions are expressed by the prefixes＂ F ＂or＂ P ＂with numbers．For most of the high－level instructions，＂F＂and＂P＂types are available．The differences between the two types are explained as follows：
－Instructions with the prefix＂$F$＂are executed in every scan while its trigger is in the on．
－Instructions with the prefix＂P＂are executed only when the leading edge of its trigger is detected．
For the FP0／FP0R／FP $/$／FP－X，the P type high－level instructions are not available．

Num－ ber	Name	Boo－ lean	Ope－   rand	Description	$\begin{aligned} & \text { n } \\ & \stackrel{2}{む} \\ & \hline \end{aligned}$	－	은		啇	$\begin{aligned} & \text { 잧 } \\ & \text { it } \end{aligned}$	N	
Data transfer instructions												
$\begin{aligned} & \text { FO } \\ & \text { PO } \end{aligned}$	16－bit data move	$\begin{aligned} & \text { MV } \\ & \text { PMV } \end{aligned}$	S，D	$(\mathrm{S}) \rightarrow$（ D$)$	5	$\square$	口	$\square$	$\square$	－	ㅁ	$\square$
$\begin{aligned} & \text { F1 } \\ & \text { P1 } \end{aligned}$	32－bit data move	$\begin{aligned} & \text { DMV } \\ & \text { PDMV } \end{aligned}$	S，D	$(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	$\square$	－	$\square$	－	－	－	$\square$
$\begin{aligned} & \text { F2 } \\ & \text { P2 } \end{aligned}$	16－bit data invert and move	$\begin{aligned} & \text { MV } \\ & \text { PMV/ } \end{aligned}$	S，D	$(\mathrm{S}) \rightarrow(\mathrm{D})$	5	$\square$	口	$\square$	$\square$	$\square$	ㅁ	$\square$
$\begin{aligned} & \hline \text { F3 } \\ & \text { P3 } \end{aligned}$	32－bit data invert and move	DMV／ PDMV／	S，D	$\overline{(\mathrm{S}+1, \mathrm{~S})} \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	$\square$	$\square$	$\square$	－	$\square$	口	$\square$
$\begin{aligned} & \text { F4 } \\ & \text { P4 } \end{aligned}$	Reading of head word No．of the specified slot	$\begin{aligned} & \text { GETS } \\ & \text { PGETS } \end{aligned}$	S，D	The head word No．of the specified slot is read．	5	$x$	$x$	$x$	$x$	$\times$	$\begin{aligned} & \triangle \\ & \star_{1} \end{aligned}$	$\triangle$ $*$ $*$
$\begin{aligned} & \hline \text { F5 } \\ & \text { P5 } \end{aligned}$	Bit data move	BTM PBTM	$\begin{aligned} & \mathrm{S}, \mathrm{n}, \\ & \mathrm{D} \end{aligned}$	The specified one bit in＂ S ＂is transferred to the specified one bit in＂$D$＂．The bit is specified by＂ n ＂．	7	믄	$\square$	$\square$	口	－	ㅁ	$\square$
$\begin{aligned} & \text { F6 } \\ & \text { P6 } \end{aligned}$	Hexadecimal digit（4－bit） data move	$\begin{aligned} & \text { DGT } \\ & \text { PDGT } \end{aligned}$	S，n，d	The specified one digit in＂$S$＂is transferred to the specified one digit in＂ D ＂．The digit is specified by＂ n ＂．	7	믄	ㅁ	$\square$	口	－	ㅁ	$\square$
$\begin{aligned} & \hline \text { F7 } \\ & \text { P7 } \\ & \hline \end{aligned}$	Two 16－bit data move	$\begin{aligned} & \hline \text { MV2 } \\ & \text { PMV2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1) \rightarrow(\mathrm{D}), \\ & (\mathrm{S} 2) \rightarrow(\mathrm{D}+1) \end{aligned}$	7	$x$	$\times$	$\square$	口	－	口	$\square$
$\begin{aligned} & \text { F8 } \\ & \text { P8 } \\ & \hline \end{aligned}$	Two 32－bit data move	DMV2 PDMV2	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}), \\ & (\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+3, \mathrm{D}+2) \end{aligned}$	11	$x$	$\times$	$\square$	$\square$	$\square$	口	$\square$
$\begin{array}{r} \text { F10 } \\ \text { P10 } \\ \hline \end{array}$	Block move	$\begin{aligned} & \text { BKMV } \\ & \text { PBKMV } \end{aligned}$	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The data between＂ S 1 ＂and＂ S 2 ＂is transferred to the area starting at＂ D ＂．	7	$\square$	$\square$	$\square$	$\square$	－	ㅁ	$\square$
$\begin{aligned} & \hline \text { F11 } \\ & \text { P11 } \end{aligned}$	Block copy	$\begin{aligned} & \text { COPY } \\ & \text { PCOPY } \end{aligned}$	$\begin{aligned} & \text { S, D1, } \\ & \text { D2 } \\ & \hline \end{aligned}$	The data of＂ S ＂is transferred to the all area between＂D1＂and＂D2＂．	7	$\square$	ㅁ	$\square$	口	－	口	－
F12	Data read from EEP－ ROM	ICRD	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The data stored in the expansion memory of the EEP－ROM specified by＂S1＂and＂S2＂ are transferred to the area startign at＂D＂．	11	$\square$	$\begin{aligned} & \square \\ & \div \\ & \hline \end{aligned}$	$x$	x	$\times$	$\times$	$\times$
P13	Data write to EEP－ROM	PICWT	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \\ & \hline \end{aligned}$	The data specified by＂S1＂and＂S2＂are transferred to the EEP－ROM starting at＂D＂．	11	$\square$	$\begin{array}{\|l\|} \hline \square \\ \hline 2 \\ \hline \end{array}$	$x$	$\times$	$\times$	$\times$	$\times$
F12	$\begin{aligned} & \text { Data read } \\ & \text { from F-ROM } \end{aligned}$	ICRD	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The data stored in the expansion memory of the F－ROM specified by＂S1＂and＂S2＂ are transferred to the area startign at＂D＂．	11	$x$	$x$	$\square$	$\square$	$\square$	$\times$	$\times$
P13	$\begin{aligned} & \hline \text { Data write to } \\ & \text { F-ROM } \\ & \hline \end{aligned}$	PICWT	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \\ & \hline \end{aligned}$	The data specified by＂S1＂and＂S2＂are transferred to the F－ROM starting at＂D＂．	11	$\times$	$\times$	$\square$	口	－	$\times$	$\times$
$\begin{aligned} & \hline \text { F12 } \\ & \text { P12 } \end{aligned}$	Data read from IC card	ICRD PICRD	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The data stored in the expansion memory of the IC card specified by＂ S 1 ＂and＂ S 2 ＂ are transferred to the area startign at＂D＂．	11	$x$	$\times$	$x$	$x$	$\times$	$\times$	$\square$
$\begin{aligned} & \hline \text { F13 } \\ & \text { P13 } \end{aligned}$	Data write to IC card	$\begin{aligned} & \hline \text { ICWT } \\ & \text { PICWT } \end{aligned}$	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	The data specified by＂S1＂and＂S2＂are transferred to the IC card expansion memory area starting at＂D＂	11	$x$	$\times$	$x$	x	$\times$	$\times$	$\square$
$\begin{aligned} & \hline \text { F14 } \\ & \text { P14 } \end{aligned}$	Program read from IC memory card	$\begin{aligned} & \hline \text { PGRD } \\ & \text { PPGRD } \end{aligned}$	S	The program specified using＂$S$＂is transferred into the CPU from IC memory card and executes it．	3	$x$	$\times$	$x$	$x$	$\times$	$\times$	$\square$

：Available，$\times$ ：Not available，$\triangle:$ Not available partially
＊1）This instruction is available for FP2／FP2SH Ver． 1.5 or later．FP10SH cannot be used
$\left.{ }^{*} 2\right)$ This instruction is available for FPO Ver． 2.0 or later．

Number	Name	Boo-lean	Operand	Description		$\begin{aligned} & \text { © } \\ & \text { 는 } \end{aligned}$	은	$\begin{aligned} & \text { ๙ } \\ & \text { 은 } \end{aligned}$	W	$\begin{aligned} & \times \\ & \text { 민 } \end{aligned}$	N	
$\begin{aligned} & \text { F15 } \\ & \text { P15 } \end{aligned}$	16-bit data exchange	$\begin{aligned} & \mathrm{XCH} \\ & \mathrm{PXCH} \end{aligned}$	D1, D2	(D1) $\rightarrow$ (D2), (D2) $\rightarrow$ (D1)	5	민	$\square$	민	$\square$	$\square$	민	$\square$
$\begin{aligned} & \text { F16 } \\ & \text { P16 } \\ & \hline \end{aligned}$	32-bit data exchange	$\begin{aligned} & \text { DXCH } \\ & \text { PDXCH } \end{aligned}$	D1, D2	$\begin{aligned} & (\mathrm{D} 1+1, \mathrm{D} 1) \rightarrow(\mathrm{D} 2+1, \mathrm{D} 2) \\ & (\mathrm{D} 2+1, \mathrm{D} 2) \rightarrow(\mathrm{D} 1+1, \mathrm{D} 1) \\ & \hline \end{aligned}$	5	-	$\square$	민	$\square$	민	$\square$	$\square$
$\begin{aligned} & \hline \text { F17 } \\ & \text { P17 } \end{aligned}$	Higher/lower byte in 16-bit data exchange	SWAP PSWAP	D	The higher byte and lower byte of " D " are exchanged.	3	ㅁ]	$\square$	민	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F18 } \\ & \text { P18 } \end{aligned}$	16-bit data block exchange	$\begin{aligned} & \hline \text { BXCH } \\ & \text { PBXCH } \end{aligned}$	$\begin{aligned} & \hline \text { D1, } \\ & \text { D2, D3 } \end{aligned}$	Exchange the data between "D1" and "D2" with the data specified by "D3".	7	$x$	$x$	민	$\square$	$\square$	$\square$	$\square$
Control instruction												
F19	Auxiliary jump	SJP	S	The program jumps to the label instruction specified by " S " and continues from there.	3	$x$	$x$	$x$	$x$	X	$\square$	$\square$
Binary arithmetic instructions												
$\begin{aligned} & \text { F20 } \\ & \text { P20 } \\ & \hline \end{aligned}$	16-bit data addition	$+$ $\mathbf{P +}$	S, D	(D)+(S) $\rightarrow$ (D)	5	-	$\square$	민	[	민	$\square$	$\square$
$\begin{aligned} & \hline \text { F21 } \\ & \text { P21 } \\ & \hline \end{aligned}$	32-bit data addition	$\begin{aligned} & \text { D+ } \\ & \text { PD+ } \end{aligned}$	S, D	$(\mathrm{D}+1, \mathrm{D})+(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	-	$\square$	민	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F22 } \\ & \text { P22 } \\ & \hline \end{aligned}$	16-bit data addition	+ $\mathbf{P +}$	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	$(\mathrm{S} 1)+(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7	$\square$						
$\begin{aligned} & \hline \text { F23 } \\ & \text { P23 } \\ & \hline \end{aligned}$	32-bit data addition	$\begin{aligned} & \mathrm{D}+ \\ & \mathrm{PD}+ \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1)+(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	11	민	$\square$	$\square$	$\square$	$\square$	민	$\square$
$\begin{aligned} & \hline \text { F25 } \\ & \text { P25 } \\ & \hline \end{aligned}$	16-bit data subtraction	P.	S, D	(D)-(S) $\rightarrow$ (D)	5	$\square$						
$\begin{aligned} & \hline \text { F26 } \\ & \text { P26 } \\ & \hline \end{aligned}$	32-bit data subtraction	D-PD-	S, D	$(\mathrm{D}+1, \mathrm{D})-(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	-	$\square$	민	[	민	$\square$	$\square$
$\begin{aligned} & \hline \text { F27 } \\ & \text { P27 } \\ & \hline \end{aligned}$	16-bit data subraction	P.	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	$(\mathrm{S} 1)-(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7	-	$\square$	민	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F28 } \\ & \text { P28 } \\ & \hline \end{aligned}$	32-bit data subtraction	D-PD-	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1)-(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	11	$\square$						
$\begin{aligned} & \hline \text { F30 } \\ & \text { P30 } \\ & \hline \end{aligned}$	16-bit data multiplication	$\mathbf{P}^{*}$	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	$(\mathrm{S} 1) \mathrm{X}(\mathrm{S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	$\square$						
$\begin{aligned} & \hline \text { F31 } \\ & \text { P31 } \\ & \hline \end{aligned}$	32-bit data multiplication	$\begin{aligned} & \hline \mathbf{D}^{\star} \\ & \mathbf{P D}^{\star} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1) \mathrm{X}(\mathrm{~S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+3, \mathrm{D}+2, \mathrm{D}+1,$   D)	11	$\square$	$\square$	민	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F32 } \\ & \text { P32 } \\ & \hline \end{aligned}$	16-bit data division	$\begin{aligned} & \hline \% \\ & \text { P\% } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1) \div(\mathrm{S} 2) \rightarrow \text { quotient (D) } \\ & \text { remainder (DT9015) } \end{aligned}$	7	-	$\square$	민	[	민	$\square$	$\square$
$\begin{aligned} & \text { F33 } \\ & \text { P33 } \\ & \hline \end{aligned}$	32-bit data division	$\begin{aligned} & \hline \text { D\% } \\ & \text { PD\% } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	$\begin{aligned} & \hline(\mathrm{S} 1+1, \mathrm{~S} 1) \div(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \text { quotient (D+1, D) } \\ & \text { remainder (DT9016, DT9015) } \end{aligned}$	11	$\square$						
$\begin{aligned} & \hline \text { F34 } \\ & \text { P34 } \end{aligned}$	16-bit data multiplication (result in 16 bits)	$\begin{aligned} & \text { *W } \\ & \text { P*W } \end{aligned}$	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	$(\mathrm{S} 1) \mathrm{X}(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7	$x$	$x$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F35 } \\ & \text { P35 } \\ & \hline \end{aligned}$	16-bit data increment	$\begin{aligned} & +1 \\ & \mathrm{P}+1 \\ & \hline \end{aligned}$	D	$(\mathrm{D})+1 \rightarrow(\mathrm{D})$	3	$\square$	$\square$	민	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F36 } \\ & \text { P36 } \\ & \hline \end{aligned}$	32-bit data increment	$\begin{aligned} & \hline \mathrm{D}+1 \\ & \mathrm{PD}+1 \\ & \hline \end{aligned}$	D	$(\mathrm{D}+1, \mathrm{D})+1 \rightarrow(\mathrm{D}+1, \mathrm{D})$	3	$\square$	$\square$	$\square$	$\square$	$\square$	[1]	$\square$
$\begin{aligned} & \hline \text { F37 } \\ & \text { P37 } \\ & \hline \end{aligned}$	16-bit data decrement	$\begin{aligned} & \hline-1 \\ & \mathrm{P}-1 \\ & \hline \end{aligned}$	D	(D) $-1 \rightarrow$ (D)	3	$\square$						
$\begin{aligned} & \text { F38 } \\ & \text { P38 } \\ & \hline \end{aligned}$	32-bit data decrement	$\begin{aligned} & \hline \mathrm{D}-1 \\ & \text { PD-1 } \\ & \hline \end{aligned}$	D	$(\mathrm{D}+1, \mathrm{D})-1 \rightarrow(\mathrm{D}+1, \mathrm{D})$	3	$\square$	$\square$	$\square$	민	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F39 } \\ & \text { P39 } \end{aligned}$	32-bit data multiplication (result in 32 bits)	$\begin{aligned} & \text { D*D } \\ & \text { PD*D } \end{aligned}$	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1) \times(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	11	$x$	$x$	$\square$	$\square$	$\square$	$\square$	$\square$

Available, $X$ : Not available, $\triangle$ : Not available partially

Number	Name	Boo-lean	Ope-   rand	Description	$\begin{aligned} & \text { n } \\ & \stackrel{2}{む} \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { 문 } \end{aligned}$	욘	뜽 문	$\begin{aligned} & \text { W } \\ & \text { 는 } \end{aligned}$	$\begin{aligned} & \times \times \\ & \text { 민 } \end{aligned}$	N	
BCD arithmetic instructions												
$\begin{aligned} & \mathrm{F} 40 \\ & \text { P40 } \\ & \hline \end{aligned}$	4-digit BCD data addition	$\begin{aligned} & \mathrm{B}+ \\ & \mathrm{PB}+ \end{aligned}$	S, D	$(\mathrm{D})+(\mathrm{S}) \rightarrow(\mathrm{D})$	5	$\square$	$\square$	$\square$	미	민	$\square$	$\square$
$\begin{aligned} & \text { F41 } \\ & \text { P41 } \end{aligned}$	8-digit BCD data addition	DB+ PDB+	S, D	$(\mathrm{D}+1, \mathrm{D})+(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	$\square$	$\square$	$\square$	믹	민	$\square$	$\square$
$\begin{aligned} & \text { F42 } \\ & \text { P42 } \end{aligned}$	4-digit BCD data addition	$\begin{aligned} & \mathrm{B+} \\ & \mathrm{~PB}+ \end{aligned}$	S1, S2, D	$(\mathrm{S} 1)+(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7	$\square$	$\square$	$\square$	ㅁ	-7	$\square$	$\square$
$\begin{aligned} & \text { F43 } \\ & \text { P43 } \end{aligned}$	8-digit BCD data addition	DB+ PDB+	S1, S2, D	$(\mathrm{S} 1+1, \mathrm{~S} 1)+(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	11	ㅁ	$\square$	$\square$	ㅁ]	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F45 } \\ & \text { P45 } \end{aligned}$	4-digit BCD data subtraction	B- PB-	S, D	(D)-(S) $\rightarrow$ (D)	5	$\square$	$\square$	$\square$	믹	민	$\square$	$\square$
$\begin{aligned} & \text { F46 } \\ & \text { P46 } \end{aligned}$	8-digit BCD data subtraction	DB-PDB-	S, D	$(\mathrm{D}+1, \mathrm{D})-(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	$\square$	$\square$	$\square$	미	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F47 } \\ & \text { P47 } \end{aligned}$	4-digit BCD data subtraction	B-PB-	S1, S2, D	(S1)-(S2) $\rightarrow$ (D)	7	$\square$	$\square$	$\square$	ㅁ	민	$\square$	$\square$
$\begin{aligned} & \hline \text { F48 } \\ & \text { P48 } \\ & \hline \end{aligned}$	8-digit BCD data subraction	DB-PDB-	S1, S2, D	$(\mathrm{S} 1+1, \mathrm{~S} 1)-(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	11	$\square$	$\square$	$\square$	민	민	$\square$	$\square$
$\begin{aligned} & \text { F50 } \\ & \text { P50 } \end{aligned}$	4-digit BCD data multiplication	$\begin{aligned} & \text { B }^{*} \\ & \text { PB }^{\star} \end{aligned}$	S1, S2, D	$(\mathrm{S} 1) \mathrm{X}(\mathrm{S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	-	-	-	-	[1]	$\square$	$\square$
$\begin{aligned} & \text { F51 } \\ & \text { P51 } \end{aligned}$	8-digit BCD data multiplication	$\begin{aligned} & \text { DB* } \\ & \text { PDB* } \end{aligned}$	S1, S2, D	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1) \mathrm{X}(\mathrm{~S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+3, \mathrm{D}+2, \\ & \mathrm{D}+1, \mathrm{D}) \end{aligned}$	11	$\square$	$\square$	$\square$	미	민	$\square$	$\square$
$\begin{aligned} & \text { F52 } \\ & \text { P52 } \end{aligned}$	4-digit BCD data division	B\% PB\%	S1, S2, D	(S1) $\div(\mathrm{S} 2) \rightarrow$ quotient (D) remainder (DT9015)	7	$\square$	$\square$	$\square$	ㅁ	민	$\square$	$\square$
$\begin{aligned} & \text { F53 } \\ & \text { P53 } \end{aligned}$	8-digit BCD data division	DB\% PDB\%	S1, S2, D	$\begin{aligned} & (S 1+1, S 1) \div(S 2+1, S 2) \rightarrow \text { quotient } \\ & (\mathrm{D}+1, \mathrm{D}) \\ & \text { remainder (DT9016, DT9015) } \end{aligned}$	11	$\square$	$\square$	$\square$	-	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F55 } \\ & \text { P55 } \end{aligned}$	4-digit BCD data increment	$\begin{aligned} & \hline B+1 \\ & P B+1 \end{aligned}$	D	(D) $+1 \rightarrow$ (D)	3	$\square$	$\square$	$\square$	ㅁ	[1]	$\square$	$\square$
$\begin{aligned} & \text { F56 } \\ & \text { P56 } \\ & \hline \end{aligned}$	8-digit BCD data increment	$\begin{aligned} & \text { DB+1 } \\ & \text { PDB+1 } \end{aligned}$	D	$(\mathrm{D}+1, \mathrm{D})+1 \rightarrow(\mathrm{D}+1, \mathrm{D})$	3	$\square$	$\square$	$\square$	ㅁ	미	$\square$	$\square$
$\begin{aligned} & \text { F57 } \\ & \text { P57 } \end{aligned}$	4-digit BCD data decrement	B-1 PB-1	D	(D)-1 $\rightarrow$ (D)	3	-	-	-	민	닌	$\square$	$\square$
$\begin{aligned} & \hline \text { F58 } \\ & \text { P58 } \end{aligned}$	8-digit BCD data decrement	DB-1 PDB-1	D	$(\mathrm{D}+1, \mathrm{D})-1 \rightarrow(\mathrm{D}+1, \mathrm{D})$	3	ㅁ	$\square$	-	-	[]	$\square$	-
Data compare instructions												
$\begin{aligned} & \hline \text { F60 } \\ & \text { P60 } \end{aligned}$	16-bit data compare	CMP PCMP	S1, S2	$\begin{aligned} & \text { (S1)>(S2) } \rightarrow \text { R900A: on } \\ & (\mathrm{S} 1)=(\mathrm{S} 2) \rightarrow \mathrm{R} 900 \mathrm{~B}: \text { on } \\ & (\mathrm{S} 1)<(\mathrm{S} 2) \rightarrow \mathrm{R} 900 \mathrm{C}: \text { on } \end{aligned}$	5	[	$\square$	민	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F61 } \\ & \text { P61 } \end{aligned}$	32-bit data compare	DCMP PDCMP	S1, S2	$\begin{aligned} & (S 1+1, S 1)>(S 2+1, S 2) \rightarrow R 900 A: \text { on } \\ & (S 1+1, S 1)=(S 2+1, S 2) \rightarrow R 900 B: \text { on } \\ & (S 1+1, S 1)<(S 2+1, S 2) \rightarrow R 900 C: \text { on } \end{aligned}$	9	$\square$	$\square$	$\square$	믹	민	$\square$	$\square$
$\begin{aligned} & \text { F62 } \\ & \text { P62 } \end{aligned}$	16-bit data band compare	WIN PWIN	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1)>(\mathrm{S} 3) \rightarrow \mathrm{R} 900 \mathrm{~A}: \text { on } \\ & (\mathrm{S} 2)<\text { or }=(\mathrm{S} 1)<\text { or }=(\mathrm{S} 3) \rightarrow \mathrm{R} 900 \mathrm{~B}: \text { on } \\ & (\mathrm{S} 1)<(\mathrm{S} 2) \rightarrow \mathrm{R} 900 \mathrm{C}: \text { on } \end{aligned}$	7	$\square$	$\square$	$\square$	ㅁ	$\square$	$\square$	$\square$

: Available, $\mathrm{X}:$ Not available, $\triangle:$ Not available partially

Number	Name	Boolean	Ope-   rand	Description	$\begin{aligned} & n \\ & \stackrel{0}{0} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { 면 } \end{aligned}$	윤	$\begin{aligned} & \text { 뜽 } \\ & \text { 문 } \end{aligned}$	W	$\begin{aligned} & \times \times \\ & \text { 민 } \end{aligned}$	N	
$\begin{aligned} & \text { F63 } \\ & \text { P63 } \end{aligned}$	32-bit data band compare	DWIN PDWIN	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 3+1, \mathrm{~S} 3) \rightarrow \mathrm{R900A}: \text { on } \\ & (\mathrm{S} 2+1, \mathrm{~S} 2)<\text { or }=(\mathrm{S} 1+1, \mathrm{~S} 1)<\text { or }=(\mathrm{S} 3+1, \\ & \mathrm{S} 3) \rightarrow \mathrm{R} 900 \mathrm{~B}: \text { on } \\ & (\mathrm{S} 1+1, \mathrm{~S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \mathrm{R} 900 \mathrm{C}: \text { on } \end{aligned}$	13	-	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F64 } \\ & \text { P64 } \\ & \hline \end{aligned}$	Block data compare	BCMP PBCMP	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { S3 } \end{aligned}$	Compares the two blocks beginning with "S2" and "S3" to see if they are equal.	7	$\square$						
Logic operation instructions												
$\begin{aligned} & \text { F65 } \\ & \text { P65 } \end{aligned}$	16-bit data AND	WAN PWAN	S1, S2, D	(S1) AND (S2) $\rightarrow$ (D)	7	ㅁ	$\square$	-	$\square$	$\square$	$\square$	민
$\begin{aligned} & \hline \text { F66 } \\ & \text { P66 } \end{aligned}$	16-bit data OR	WOR PWOR	S1, S2, D	$(\mathrm{S} 1) \mathrm{OR}(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7	ㅁ	$\square$	$\square$	[	$\square$	$\square$	믄
$\begin{aligned} & \text { F67 } \\ & \text { P67 } \end{aligned}$	16-bit data exclusive OR	$\begin{aligned} & \text { XOR } \\ & \text { PXOR } \end{aligned}$	S1, S2, D	$\{(\mathrm{S} 1)$ AND (S2) $\}$ OR $\{(\mathrm{S} 1)$ AND $(\mathrm{S} 2)\} \rightarrow(\mathrm{D})$	7	$\square$	$\square$	[	$\square$	$\square$	$\square$	민
$\begin{aligned} & \text { F68 } \\ & \text { P68 } \end{aligned}$	16-bit data exclusive NOR	XNR   PXNR	S1, S2, D	$\{(\mathrm{S} 1) \text { AND (S2)\} OR \{(S1) AND (S2)\} } \rightarrow(\mathrm{D})$	7	$\square$						
$\begin{aligned} & \text { F69 } \\ & \text { P69 } \end{aligned}$	16-bit data unite	WUNI PWUNI	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { ([S1] AND [S3]) OR ([S2] AND [S3]) } \rightarrow \text { (D) } \\ & \text { When (S3) is H0, (S2) } \rightarrow \text { (D) } \\ & \text { When (S3) is HFFFF, (S1) } \rightarrow(\mathrm{D}) \end{aligned}$	9	$x$	$x$	$\square$	$\square$	$\square$	$\square$	$\square$
Data conversion instructions												
$\begin{aligned} & \text { F70 } \\ & \text { P70 } \end{aligned}$	Block check code calculation	$\begin{aligned} & \text { BCC } \\ & \text { PBCC } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	Creates the code for checking the data specified by "S2" and "S3" and stores it in "D".   The calculation method is specified by "S1".	9	민	$\square$	-	$\square$	$\square$	$\square$	-
$\begin{aligned} & \text { F71 } \\ & \text { P71 } \end{aligned}$	Hexadecima I data $\rightarrow$ ASCII code	HEXA PHEXA	S1, S2, D	Converts the hexadecimal data specified by "S1" and "S2" to ASCII code and stores it in "D".   Example: $\mathrm{HABCD} \rightarrow \mathrm{H} \frac{42}{\mathrm{~B}} \frac{41}{\mathrm{~A}} \frac{44}{\mathrm{D}} \frac{43}{\mathrm{C}}$	7	-	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F72 } \\ & \text { P72 } \end{aligned}$	ASCII code $\rightarrow$ Hexadecimal data	AHEX PAHEX	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to hexadecimal data and stores it in "D".   Example: $\mathrm{H} \frac{44}{\mathrm{D}} \frac{43}{\mathrm{C}} \frac{42}{\mathrm{~B}} \frac{41}{\mathrm{~A}} \rightarrow \mathrm{HCDAB}$	7	$\square$						
$\begin{aligned} & \text { F73 } \\ & \text { P73 } \end{aligned}$	4-digit BCD data $\rightarrow$ ASCII code	BCDA PBCDA	S1, S2, D	Converts the four digits of BCD data specified by "S1" and "S2" to ASCII code and stores it in " D ".   Example: $\mathrm{H} 1234 \rightarrow \mathrm{H} \frac{32}{2} \frac{31}{1} \frac{34}{4} \frac{33}{3}$	7	ㅁ	$\square$	$\square$	$\square$	$\square$	$\square$	민
$\begin{aligned} & \text { F74 } \\ & \text { P74 } \end{aligned}$	ASCII code $\rightarrow$ 4-digit BCD data	$\begin{aligned} & \text { ABCD } \\ & \text { PABCD } \end{aligned}$	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to four digits of BCD data and stores it in "D".   Example: $\mathrm{H} \frac{34}{4} \frac{33}{3} \frac{32}{2} \frac{31}{1} \rightarrow \mathrm{H} 3412$	9	-	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F75 } \\ & \text { P75 } \end{aligned}$	16-bit binary data $\rightarrow$ ASCII code	BINA PBINA	S1, S2, D	Converts the 16 bits of binary data specified by "S1" to ASCII code and stores it in "D" (area of "S2" bytes). Example: $\mathrm{K}-100 \rightarrow \mathrm{H} \frac{30}{0} \frac{30}{0} \frac{31}{1} \underline{2 D} \underline{20} \underline{20}$	7	$\square$						

: Available, $X$ : Not available, $\triangle:$ Not available partially

Num－ ber	Name	Boo－lean	Ope－   rand	Description	$\begin{aligned} & \text { n } \\ & \stackrel{2}{む} \\ & \hline \end{aligned}$	－	은	$\begin{array}{\|c\|} \text { 뜽 } \\ \text { 눈 } \end{array}$	$\left\|\begin{array}{c} \text { W } \\ \text { L } \end{array}\right\|$	$\begin{array}{\|l\|l} \times \times \\ \text { 년 } \end{array}$	N	
$\begin{aligned} & \text { F76 } \\ & \text { P76 } \end{aligned}$	ASCII code $\rightarrow$ 16－bit binary data	$\begin{array}{\|l\|} \hline \text { ABIN } \\ \text { PABIN } \end{array}$	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	Converts the ASCII code specified by ＂S1＂and＂S2＂to 16 bits of binary data and stores it in＂$D$＂．   Example： $\mathrm{H} \frac{30}{0} \frac{30}{0} \frac{31}{1} \frac{2 \mathrm{D}}{-} \underline{20} \underline{20} \rightarrow \mathrm{~K}-100$	7	$\square$						
$\begin{aligned} & \hline \text { F77 } \\ & \text { P77 } \end{aligned}$	$\begin{aligned} & \text { 32-bit binary } \\ & \text { data } \rightarrow \text { ASCII } \\ & \text { code } \end{aligned}$	$\begin{aligned} & \text { DBIA } \\ & \text { PDBIA } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	Converts the 32 bits of binary data （S1＋1，   S1）to ASCII code and stores it in D （area of＂S2＂bytes）．	11	$\square$	$\square$	$\square$	$\square$	－	$\square$	－
$\begin{aligned} & \hline \text { F78 } \\ & \text { P78 } \end{aligned}$	$\begin{array}{\|l} \hline \text { ASCII code } \rightarrow \text { - } \\ \text { 32-bit binary } \\ \text { data } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { DABI } \\ & \text { PDABI } \end{aligned}$	$\begin{aligned} & \hline \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	Converts the ASCII code specified by ＂S1＂and＂S2＂to 32 bits of binary data and stores it in（ $\mathrm{D}+1, \mathrm{D}$ ）．	11	－	－	$\square$	－	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F80 } \\ & \text { P80 } \end{aligned}$	16－bit binary data $\rightarrow$ 4－digit $B C D$ data	$\begin{aligned} & \hline \text { BCD } \\ & \text { PBCD } \end{aligned}$	S，D	Converts the 16 bits of binary data specified by＂ S ＂to four digits of BCD data and stores it in＂ D ＂．   Example： $\mathrm{K} 100 \rightarrow \mathrm{H} 100$	5	－	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F81 } \\ & \text { P81 } \end{aligned}$	$\begin{aligned} & \text { 4-digit BCD } \\ & \text { data } \rightarrow 16 \text {-bit } \\ & \text { binary data } \end{aligned}$	$\begin{aligned} & \hline \text { BIN } \\ & \text { PBIN } \end{aligned}$	S，D	Converts the four digits of BCD data specified by＂ S ＂to 16 bits of binary data and stores it in＂D＂．   Example： $\mathrm{H} 100 \rightarrow \mathrm{~K} 100$	5	$\square$	－	$\square$	$\square$	－	$\square$	$\square$
$\begin{aligned} & \hline \text { F82 } \\ & \text { P82 } \end{aligned}$	32－bit binary data $\rightarrow 8$－digit BCD data	$\begin{aligned} & \hline \text { DBCD } \\ & \text { PDBCD } \end{aligned}$	S，D	Converts the 32 bits of binary data specified by $(S+1, S)$ to eight digits of BCD data and stores it in（D＋1，D）．	7	ㅁ	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F83 } \\ & \text { P83 } \end{aligned}$	$\begin{aligned} & \text { 8-digit BCD } \\ & \text { data } \rightarrow 32 \text {-bit } \\ & \text { binary data } \end{aligned}$	$\begin{aligned} & \hline \text { DBIN } \\ & \text { PDBIN } \end{aligned}$	S，D	Converts the eight digits of BCD data specified by $(\mathrm{S}+1, \mathrm{~S})$ to 32 bits of binary data and stores it in（ $D+1, D$ ）．	7	口	$\square$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F84 } \\ & \text { P84 } \end{aligned}$	16－bit data invert（com－ plement of 1）	INV   PINV	D	Inverts each bit of data of＂D＂．	3	$\square$						
$\begin{aligned} & \hline \text { F85 } \\ & \text { P85 } \end{aligned}$	16－bit data complement of 2	NEG PNEG	D	Inverts each bit of data of＂D＂and adds 1 （inverts the sign）．	3	$\square$						
$\begin{aligned} & \text { F86 } \\ & \text { P86 } \end{aligned}$	32－bit data complement of 2	$\begin{aligned} & \hline \text { DNEG } \\ & \text { PDNEG } \end{aligned}$	D	Inverts each bit of data of（ $\mathrm{D}+1, \mathrm{D}$ ）and adds 1 （inverts the sign）．	3	$\square$	ㅁ	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F87 } \\ & \text { P87 } \end{aligned}$	16－bit data absolute	$\begin{aligned} & \hline \text { ABS } \\ & \text { PABS } \end{aligned}$	D	Gives the absolute value of the data of ＂D＂．	3	－	－	－	－	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F88 } \\ & \text { P88 } \\ & \hline \end{aligned}$	32－bit data absolute	$\begin{aligned} & \text { DABS } \\ & \text { PDABS } \end{aligned}$	D	Gives the absolute value of the data of （ $\mathrm{D}+1, \mathrm{D}$ ）．	3	$\square$	口	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F89 } \\ & \text { P89 } \end{aligned}$	16－bit data sign extension	$\begin{aligned} & \text { EXT } \\ & \text { PEXT } \end{aligned}$	D	Extends the 16 bits of data in＂$D$＂to 32 bits in（D＋1，D）．	3	口	ㅁ	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F90 } \\ & \text { P90 } \end{aligned}$	Decode	$\begin{aligned} & \hline \text { DECO } \\ & \text { PDECO } \end{aligned}$	S，n，D	Decodes part of the data of＂ S ＂and stores   it in＂ D ＂．The part is specified by＂ n ＂．	7	$\square$	ㅁ	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F91 } \\ & \text { P91 } \end{aligned}$	7－segment decode	$\begin{aligned} & \hline \text { SEGT } \\ & \text { PSEGT } \end{aligned}$	S，D	Converts the data of＂ S ＂for use in a 7－ segment display and stores it in（D＋1， D）．	5	－	밈	口	－	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F92 } \\ & \text { P92 } \end{aligned}$	Encode	$\begin{aligned} & \hline \text { ENCO } \\ & \text { PENCO } \end{aligned}$	S，n，D	Encodes part of the data of＂S＂and stores it in＂ D ＂．The part is specified by ＂n＂．	7	$\square$	밈	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F93 } \\ & \text { P93 } \end{aligned}$	16－bit data combine	UNIT PUNIT	S，n，D	The least significant digit of each of the ＂ n ＂words of data beginning at＂ S ＂are stored（united）in order in＂ D ＂．	7	口	$\square$	$\square$	$\square$	口	$\square$	$\square$

O：Available，$X$ ：Not available，$\triangle$ ：Not available partially

Number	Name	Boolean	Operand	Description	$\begin{aligned} & \stackrel{n}{2} \\ & \stackrel{2}{\omega} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { 는 } \end{aligned}$	은	뜽 문	$\begin{aligned} & \text { W } \\ & \text { 는 } \end{aligned}$	$\begin{aligned} & \times \times \\ & \text { 민 } \end{aligned}$	N	
$\begin{aligned} & \hline \text { F94 } \\ & \text { P94 } \end{aligned}$	16-bit data distribute	$\begin{aligned} & \hline \text { DIST } \\ & \text { PDIST } \end{aligned}$	$\begin{aligned} & \mathrm{S}, \mathrm{n}, \\ & \mathrm{D} \end{aligned}$	Each of the digits of the data of " S " are stored in (distriuted to) the least significant digits of the areas beginning at " $D$ ".	7	[1]	$\square$	ㅁ	-	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F95 } \\ & \text { P95 } \end{aligned}$	Character $\rightarrow$ ASCII code	$\begin{aligned} & \text { ASC } \\ & \text { PASC } \end{aligned}$	S, D	Twelve characters of the characer constants of "S" are converted to ASCII code and stored in "D" to "D+5".	15	$\square$	$\square$	민	-	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F96 } \\ & \text { P96 } \end{aligned}$	16-bit table data search	SRC PSRC	S1, S2, S3	The data of "S1" is searched for in the areas in the range "S2" to "S3" and the result is stored in DT9037 and DT9038	7	$\square$	$\square$	민	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F97 } \\ & \text { P97 } \end{aligned}$	32-bit table data search	DSRC PDSRC	$\begin{aligned} & \text { S1, } \\ & \text { S2, } \\ & \text { S3 } \end{aligned}$	The data of (S1+1, S1) is searched for in the 32-bit data designated by "S3", beginning from "S2", and the result if stored in DT90037 and DT90038.	11	$x$	$x$	민	ㅁ	민	민	[
Data shift instructions												
$\begin{aligned} & \text { F98 } \\ & \text { P98 } \end{aligned}$	Data table shift-out and compress	CMPR PCMPR	$\begin{aligned} & \text { D1, } \\ & \text { D2, } \\ & \text { D3 } \end{aligned}$	Transfer "D2" to "D3". Any parts of the data between "D1" and "D2" that are 0 are compressed, and shifted in order toward "D2".	7	$x$	$x$	$\square$	-	$\square$	$\square$	밈
$\begin{aligned} & \hline \text { F99 } \\ & \text { P99 } \end{aligned}$	Data table shift-in and compress	CMPW   PCMP   W	$\begin{aligned} & \text { S, D1, } \\ & \text { D2 } \end{aligned}$	Transfer "S" to "D1". Any parts of the data between "D1" and "D2" that are 0 are compressed, and shifted in order toward "D2".	7	$x$	$x$	ㅁ	-	$\square$	$\square$	밈
$\begin{aligned} & \text { F100 } \\ & \text { P100 } \end{aligned}$	Right shift of multiple bits ( n bits) in a 16-bit data	SHR PSHR	D, n	Shifts the " n " bits of " D " to the right.	5	-1	$\square$	민	미	$\square$	[	$\square$
$\begin{aligned} & \hline \text { F101 } \\ & \text { P101 } \end{aligned}$	Left shift of multiple bits (n bits) in a 16bit data	SHL PSHL	D, n	Shifts the "n" bits of "D" to the left.	5	미	$\square$	민	$\square$	$\square$	$\square$	밈
$\begin{aligned} & \hline \text { F102 } \\ & \text { P102 } \end{aligned}$	Right shift of $n$ bits in a 32-bit data	DSHR PDSHR	D, n	Shifts the "n" bits of the 32-bit data area specified by ( $D+1, D$ ) to the right.	5	$x$	$x$	믹	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F103 } \\ & \text { P103 } \\ & \hline \end{aligned}$	Left shift of $n$ bits in a 32-bit data	DSHL PDSHL	D, n	Shifts the "n" bits of the 32-bit data area specified by ( $\mathrm{D}+1, \mathrm{D}$ ) to the left.	5	$x$	x	민	ㅁ	$\square$	[	ㅁ
$\begin{aligned} & \hline \text { F105 } \\ & \text { P105 } \end{aligned}$	Right shift of one hexadecimal digit (4bit)	BSR PBSR	D	Shifts the one digit of data of "D" to the right.	3	[]	$\square$	민	미	ㅁ	[	믄
$\begin{aligned} & \text { F106 } \\ & \text { P106 } \end{aligned}$	Left shift of one hexade-cimal digit (4-bit)	BSL PBSL	D	Shifts the one digit of data of "D" to the left.	3	[1]	$\square$	ㅁ	-	$\square$	$\square$	밈
$\begin{aligned} & \text { F108 } \\ & \text { P108 } \end{aligned}$	Right shift of multiple bits ( n bits)	BITR PBITR	$\begin{aligned} & \hline \text { D1, } \\ & \text { D2, n } \end{aligned}$	Shifts the " n " bits of data range by "D1" and "D2" to the right.	7	$x$	$x$	미	$\square$	$\square$	$\square$	믐
$\begin{aligned} & \hline \text { F109 } \\ & \text { P109 } \end{aligned}$	Left shift of multiple bits ( n bits)	BITL PBITL	$\begin{aligned} & \text { D1, } \\ & \text { D2, } \end{aligned}$	Shifts the " n " bits of data range by "D1" and "D2" to the left.	7	$x$	x	미	-	$\square$	$\square$	口
$\begin{aligned} & \text { F110 } \\ & \text { P110 } \end{aligned}$	Right shift of one word (16-bit)	WSHR PWSHR	$\begin{aligned} & \text { D1, } \\ & \text { D2 } \\ & \hline \end{aligned}$	Shifts the one word of the areas by "D1" and "D2" to the right.	5	$\square$	$\square$	미	-	$\square$	$\square$	ㅁ
$\begin{aligned} & \hline \text { F111 } \\ & \text { P111 } \end{aligned}$	Left shift of one word (16-bit)	WSHL PWSHL	$\begin{aligned} & \hline \text { D1, } \\ & \text { D2 } \\ & \hline \end{aligned}$	Shifts the one word of the areas by "D1" and "D2" to the left.	5	[1]	$\square$	민	-	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F112 } \\ & \text { P112 } \end{aligned}$	Right shift of one hexade-cimal digit (4-bit)	WBSR PWBSR	$\begin{aligned} & \hline \text { D1, } \\ & \text { D2 } \end{aligned}$	Shifts the one digit of the areas by "D1" and "D2" to the right.	5	민	$\square$	민	$\square$	$\square$	$\square$	밈
$\begin{aligned} & \text { F113 } \\ & \text { P113 } \end{aligned}$	Left shift of one hexade-cimal digit (4-bit)	WBSL PWBSL	$\begin{aligned} & \mathrm{D} 1, \\ & \mathrm{D} 2 \end{aligned}$	Shifts the one digit of the areas by "D1" and "D2" to the left.	5	[1]	$\square$	미	$\square$	$\square$	$\square$	믐

[^10]| Num－ ber | Name | Boo－ lean | Ope－ <br> rand | Description | $\begin{aligned} & \text { n } \\ & \stackrel{2}{0} \\ & \dot{\omega} \end{aligned}$ | $\begin{aligned} & \text { O } \\ & \text { iL } \end{aligned}$ | 은 | $\begin{aligned} & \text { 뜽 } \\ & \text { ㄴㄴㄴ } \end{aligned}$ | 带 | $\begin{aligned} & x \\ & \text { x } \\ & \text { it } \end{aligned}$ | ～ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FIFO instructions |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { F115 } \\ & \text { P115 } \\ & \hline \end{aligned}$ | FIFO buffer define | $\begin{aligned} & \hline \text { FIFT } \\ & \text { PFIFT } \end{aligned}$ | $\mathrm{n}, \mathrm{D}$ | The＂n＂words beginning from＂ D ＂are defined in the buffer． | 5 | $x$ | $\times$ | 口 | 口 | 口 | $\square$ | $\square$ |
| $\begin{aligned} & \text { F116 } \\ & \text { P116 } \end{aligned}$ | Data read from FIFO buffer | FIFR PFIFR | S，D | The oldest data beginning from＂ S ＂ that was written to the buffer is read and stored in＂D＂． | 5 | $x$ | $x$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| $\begin{aligned} & \hline \text { F117 } \\ & \text { P117 } \end{aligned}$ | Data write into FIFO buffer | $\begin{aligned} & \hline \text { FIFW } \\ & \text { PFIFW } \end{aligned}$ | S，D | The data of＂ S ＂is written to the buffer starting from＂$D$＂． | 5 | $x$ | $\times$ | ロ | ロ | 口 | $\square$ | $\square$ |
| Basic function instructions |  |  |  |  |  |  |  |  |  |  |  |  |
| F118 | UP／DOWN counter | UDC | S，D | Counts up or down from the value preset in＂ S ＂and stores the elapsed value in＂D＂． | 5 | 口 | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| F119 | Left／right shift register | LRSR | $\begin{aligned} & \hline \text { D1, } \\ & \text { D2 } \end{aligned}$ | Shifts one bit to the left or right with the area between＂D1＂and＂D2＂as the register． | 5 | ㅁ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| Data rotate instructions |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \hline \text { F120 } \\ & \text { P120 } \\ & \hline \end{aligned}$ | 16－bit data right rotate | ROR PROR | D，n | Rotate the＂$n$＂bits in data of＂$D$＂to the right． | 5 | 口 | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| $\begin{aligned} & \text { F121 } \\ & \text { P121 } \end{aligned}$ | 16－bit data left rotate | ROL PROL | D，n | Rotate the＂ n ＂bits in data of＂ D ＂to the left． | 5 | 口 | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| $\begin{aligned} & \hline \text { F122 } \\ & \text { P122 } \end{aligned}$ | 16－bit data right rotate with carry flag（R9009）data | RCR PRCR | D，n | Rotate the＂$n$＂bits in 17－bit area consisting of＂D＂plus the carry flag （R9009）data to the right． | 5 | ㅁ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| $\begin{aligned} & \hline \text { F123 } \\ & \text { P123 } \end{aligned}$ | 16－bit data left rotate with carry flag（R9009）data | RCL PRCL | D，n | Rotate the＂$n$＂bits in 17－bit area consisting of＂D＂plus the carry flag （R9009）data to the left． | 5 | 口 | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| $\begin{aligned} & \hline \text { F125 } \\ & \text { P125 } \end{aligned}$ | 32－bit data right rotate | DROR PDROR | D，n | Rotate the number of bits specified by＂n＂of the double words data（32 bits）specified by $(\mathrm{D}+1, \mathrm{D})$ to the right． | 5 | $x$ | $\times$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| $\begin{aligned} & \hline \text { F126 } \\ & \text { P126 } \end{aligned}$ | 32－bit data left rotate | DROL PDROL | D，n | Rotate the number of bits specified by＂ n ＂of the double words data（ 32 bits）specified by $(\mathrm{D}+1, \mathrm{D})$ to the left． | 5 | $x$ | $\times$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| $\begin{aligned} & \text { F127 } \\ & \text { P127 } \end{aligned}$ | 32－bit data right rotate with carry flag（R9009）data | DRCR PDRCR | D，n | Rotate the number of bits specified by＂n＂of the double words data（32 bits）specified by $(\mathrm{D}+1, \mathrm{D})$ to the right together with carry flag （R9009）data． | 5 | $x$ | $\times$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| $\begin{aligned} & \hline \text { F128 } \\ & \text { P128 } \end{aligned}$ | 32－bit data left rotate with carry flag（R9009）data | DRCL PDRCL | D，n | Rotate the number of bits specified by＂n＂of the double words data（32 bits）specified by（ $\mathrm{D}+1, \mathrm{D}$ ）to the left together with carry flag（R9009） data． | 5 | $\times$ | $\times$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| Bit manipulation instructions |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { F130 } \\ & \text { P130 } \\ & \hline \end{aligned}$ | 16－bit data bit set | $\begin{aligned} & \text { BTS } \\ & \text { PBTS } \\ & \hline \end{aligned}$ | D，n | Set the value of bit position＂n＂of the data of＂ D ＂to 1 ． | 5 | 口 | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| $\begin{aligned} & \hline \text { F131 } \\ & \text { P131 } \\ & \hline \end{aligned}$ | 16－bit data bit reset | $\begin{aligned} & \hline \text { BTR } \\ & \text { PBTR } \end{aligned}$ | D，n | Set the value of bit position＂n＂of the data of＂ D ＂to 0 ． | 5 | ㅁ | $\square$ | $\square$ | 口 | 口 | $\square$ | $\square$ |
| $\begin{aligned} & \text { F132 } \\ & \text { P132 } \\ & \hline \end{aligned}$ | 16－bit data invert | $\begin{aligned} & \hline \text { BTI } \\ & \text { PBTI } \\ & \hline \end{aligned}$ | D，n | Invert the value of bit position＂$n$＂of the data of＂ D ＂． | 5 | 口 | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| $\begin{aligned} & \text { F133 } \\ & \text { P133 } \end{aligned}$ | 16－bit data bit test | $\begin{aligned} & \hline \text { BTT } \\ & \text { PBTT } \end{aligned}$ | D，n | Test the value of bit position＂ n ＂of the data of＂ D ＂and output the result to R900B． | 5 | 口 | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ |
| $\begin{aligned} & \hline \text { F135 } \\ & \text { P135 } \\ & \hline \end{aligned}$ | Number of on（1） bits in 16－bit data | $\begin{aligned} & \text { BCU } \\ & \text { PBCU } \end{aligned}$ | S，D | Store the number of on bits in the data of＂S＂in＂D＂． | 5 | 口 | $\square$ | － | － | $\square$ | $\square$ | $\square$ |

O：Available，$X$ ：Not available，$\triangle$ ：Not available partially

Num -ber	Name	Boolean	Operand	Description	$\begin{aligned} & \text { n } \\ & \stackrel{⿺}{\mathbf{N}} \\ & \dot{\omega} \end{aligned}$	-	은	뜽	W	잔	$\stackrel{N}{\mathrm{~N}}$	
$\begin{aligned} & \hline \text { F136 } \\ & \text { P136 } \end{aligned}$	Number of on (1) bits in 32-bit data	$\begin{aligned} & \hline \text { DBCU } \\ & \text { PDBCU } \end{aligned}$	S, D	Store the number of on bits in the data of ( $S+1, S$ ) in " $D$ ".	7	$\square$	-	민	$\square$	민	$\square$	$\square$
Basic function instruction												
F137	Auxiliary timer (16-bit)	STMR	S, D	Turn on the specified output and R900D after $0.01 \mathrm{~s} \times$ set value .	5	$\square$	$\square$	$\square$	$\square$	미	$\square$	$\square$
Special instructions												
$\begin{aligned} & \text { F138 } \\ & \text { P138 } \end{aligned}$	Hours, minutes and seconds to seconds data	HMSS PHMSS	S, D	Converts the hour, minute and second data of (S+1, S) to seconds data, and the converted data is stored in ( $D+1, D$ ).	5	■	$\begin{aligned} & \Delta \\ & { }_{* 1} \end{aligned}$	[]	-	-	ㅁ	-
$\begin{aligned} & \hline \text { F139 } \\ & \text { P139 } \end{aligned}$	Seconds to hours, minutes and seconds data	SHMS PSHMS	S, D	Converts the seconds data of (S+1, S) to hour, minute and second data, and the converted data is stored in ( $D+1$, D).	5	$\square$	$\stackrel{\Delta}{{ }^{1} 1}$	[1]	$\square$	민	$\square$	$\square$
$\begin{aligned} & \hline \text { F140 } \\ & \text { P140 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Carry flag } \\ & \text { (R9009) set } \end{aligned}$	$\begin{aligned} & \hline \text { STC } \\ & \text { PSTC } \\ & \hline \end{aligned}$	-	Turns on the carry flag (R9009).	1	$\square$	$\square$	$\square$	口	민	민	[
$\begin{aligned} & \text { F141 } \\ & \text { P141 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Carry flag } \\ & \text { (R9009) reset } \end{aligned}$	$\begin{aligned} & \text { CLC } \\ & \text { PCLC } \end{aligned}$	-	Turns off the carry flag (R9009).	1	$\square$	[	[]	-	-7	$\square$	$\square$
$\begin{aligned} & \hline \text { F142 } \\ & \text { P142 } \end{aligned}$	Watching dog timer update	WDT PWDT	S	The time (allowable scan time for the system) of watching dog timer is changed to " S " $\times 0.1(\mathrm{~ms})$ for that scan.	3	$\times$	x	$x$	x	$\times$	$x$	$\square$
$\begin{aligned} & \hline \text { F143 } \\ & \text { P143 } \end{aligned}$	Partial I/O update	IORF PIORF	D1, D2	Updates the I/O from the number specified by "D1" to the number specified by "D2".	5	$\square$						
F144	Serial data communication control	TRNS	S, n	The COM port received flag (R9038) is set to off to enable reception. Beginning at " S ", " n " bytes of the data registers are sent from the COM port.	5	$\square$	$\begin{aligned} & \square \\ & * 4 \end{aligned}$	$x$	x	$\times$	$\square$	$\square$
$\begin{aligned} & \hline \text { F145 } \\ & \text { P145 } \\ & \hline \end{aligned}$	Data send	SEND PSEND	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D}, \mathrm{~N} \end{aligned}$	Sends the data to another station in the network (MEWNET). (via link unit)	9	$\times$	X	$x$	X	X	민	$\square$
$\begin{aligned} & \hline \text { F146 } \\ & \text { P146 } \\ & \hline \end{aligned}$	Data receive	$\begin{aligned} & \hline \text { RECV } \\ & \text { PRECV } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \text { N, D } \end{aligned}$	Receives the data to another station in the network (MEWNET). (via link unit)	9	$\times$	x	$x$	x	$\times$	$\square$	$\square$
$\begin{aligned} & \text { F145 } \\ & \text { P145 } \\ & \hline \end{aligned}$	Data send	SEND	$\begin{aligned} & \mathrm{S} 1, \mathrm{~S} 2, \\ & \mathrm{D}, \mathrm{~N} \end{aligned}$	Sends the data to the slave station as the MOD bus master. (via COM port)	9	$\times$	x	민	$\begin{aligned} & \wedge \\ & * 2 \end{aligned}$	민	$x$	x
$\begin{aligned} & \text { F146 } \\ & \text { P146 } \\ & \hline \end{aligned}$	Data receive	RECV	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{N}, \mathrm{D} \end{aligned}$	Receives the data from the slave station as the MOD bus master. (via COM port)	9	$\times$	$x$	$\square$	$\begin{aligned} & \triangle \\ & * 2 \end{aligned}$	미	$x$	$x$
$\begin{aligned} & \text { F145 } \\ & \text { P145 } \end{aligned}$	Data send	SEND	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D}, \mathrm{~N} \end{aligned}$	Sends the data to the slave station of the MOD bus master, type II.	9	$\times$	x	$\square$	$$	$\stackrel{\wedge}{\text { * }}$	$x$	$x$
$\begin{aligned} & \hline \text { F146 } \\ & \text { P146 } \end{aligned}$	Data receive	RECV	$\begin{aligned} & \text { S1, S2, } \\ & \text { N, D } \end{aligned}$	Receives the data from the slave station of the MOD bus master, type II.	9	$\times$	x	민	$\begin{aligned} & \hline \AA \\ & * 3 \end{aligned}$	* ${ }_{\text {* }}$	$x$	$x$
$\begin{aligned} & \text { F145 } \\ & \text { P145 } \end{aligned}$	Data send	SEND	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D}, \mathrm{~N} \end{aligned}$	Sends the data to the slave station as the MEWTOCOL master. (via COM port)	9	$\times$	x	$\square$	$\begin{aligned} & \triangle \\ & * 2 \\ & \hline \end{aligned}$	$\stackrel{\text { *2 }}{ }$	$x$	$x$
$\begin{aligned} & \text { F146 } \\ & \text { P146 } \end{aligned}$	Data receive	RECV	$\begin{aligned} & \text { S1, S2, } \\ & \text { N, D } \end{aligned}$	Receives the data from the slave station as the MEWTOCOL master. (via COM port)	9	$\times$	x	민	$\stackrel{\Delta}{\star}$	*2	$x$	x
F147	Printout	PR	S, D	Converts the ASCII code data in the area starting with " S " for printing, and outputs it to the word external output relay WY specified by "D".	5	$\square$	[	-	$\square$	민	민	$\square$
$\begin{aligned} & \text { F148 } \\ & \text { P148 } \end{aligned}$	Selfdiagnostic error set	$\begin{aligned} & \text { ERR } \\ & \text { PERR } \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \text { (n: k100 } \\ & \text { to K299) } \end{aligned}$	Stores the self-diagnostic error number " n " in (DT9000), turns R9000 on, and turns on the ERROR LED.	3	$\square$	[	$\square$	$\square$	민	$\square$	$\square$
$\begin{aligned} & \text { F149 } \\ & \text { P149 } \end{aligned}$	Message display	MSG   PMSG	S	Displays the character constant of " S " in the connected programming tool.	13	$\square$						

O: Available, $X$ : Not available, $\triangle$ : Not available partially
*1) The instruction is available for FPO T32 type (V2.3 or later).
*2) This instruction is available for FP-X V1.20 or later and FPI 32k type.
*3) This instruction is available for FP-X V2.50 or later and FPE V3.20 or later.
*4) This instruction is available for FP0 V1.20 or later.

Number	Name	Boolean	Ope-   rand	Description	$\begin{aligned} & \text { n } \\ & \stackrel{2}{*} \\ & \omega \end{aligned}$	$\begin{gathered} \text { © } \\ \text { iL } \end{gathered}$	은	$\left.\begin{array}{\|c} \boldsymbol{r} \\ \mathbf{O} \\ \mathbf{ㄴ} \end{array} \right\rvert\,$	W	$\begin{aligned} & x \\ & \text { 신 } \end{aligned}$	~	
$\begin{aligned} & \hline \text { F150 } \\ & \text { P150 } \\ & \hline \end{aligned}$	Data read from intelli-gent unit	READ PREAD	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { n, D } \end{aligned}$	Reads the data from the intelligent unit.	9	$\times$	$\times$	$\times$	$\begin{aligned} & \hline \triangle \\ & \star \\ & \hline \end{aligned}$	$\times$	$\square$	$\square$
$\begin{aligned} & \hline \text { F151 } \\ & \text { P151 } \\ & \hline \end{aligned}$	Data write into intelli-gent unit	WRT PWRT	$\begin{aligned} & \mathrm{S} 1, \mathrm{~S} 2, \\ & \mathrm{n}, \mathrm{D} \end{aligned}$	Writes the data into the intelligent unit.	9	$x$	x	$\times$	$\begin{array}{\|c} \hline \triangle \\ * \\ \hline \end{array}$	$\times$	-	$\square$
$\begin{aligned} & \hline \text { F152 } \\ & \text { P152 } \end{aligned}$	Data read from MEWNET-F slave station	RMRD PRMRD	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{n}, \mathrm{D} \end{aligned}$	Reads the data from the intelligent unit at the MEWNET-F (remote I/O) slave station.	9	$x$	x	$\times$	$x$	x	$\square$	$\square$
$\begin{aligned} & \hline \text { F153 } \\ & \text { P153 } \end{aligned}$	Data write into MEWNET-F slave station	RMWT PRMWT	$\begin{aligned} & \mathrm{S} 1, \mathrm{~S} 2, \\ & \mathrm{n}, \mathrm{D} \end{aligned}$	Writes the data into the intelligent unit at the MEWNET-F (remote I/O) slave station.	9	$x$	$x$	$\times$	$x$	$\times$	$\square$	$\square$
$\begin{aligned} & \hline \text { F155 } \\ & \text { P155 } \\ & \hline \end{aligned}$	Sampling	SMPL PSMPL	-	Starts sampling data.	1	$\times$	$\times$	$\square$	$\begin{aligned} & \Delta \\ & { }_{*} \end{aligned}$	$\stackrel{\Delta}{*_{4}}$	$\square$	$\square$
$\begin{aligned} & \text { F156 } \\ & \text { P156 } \end{aligned}$	Sampling trigger	STRG PSTRG	${ }^{-}$	When the trigger of this instruction turns on, the sampling trace stops.	1	$\times$	$\times$	$\square$	$\stackrel{\Delta}{{ }_{*}}$	$\stackrel{\Delta}{*}$	$\square$	$\square$
$\begin{aligned} & \hline \text { F157 } \\ & \text { P157 } \end{aligned}$	Time addition	$\begin{aligned} & \hline \text { CADD } \\ & \text { PCADD } \end{aligned}$	$\begin{array}{ll} \hline \text { S1, } \\ \mathrm{D} \end{array}$	The time after (S2+1, S2) elapses from the time of ( $\mathrm{S} 1+2$, $S 1+1, S 1)$ is stored in ( $D+2, D+1$, D).	9	-	$\begin{array}{\|l\|} \stackrel{\Delta}{*} \end{array}$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F158 } \\ & \text { P158 } \end{aligned}$	Time substruction	$\begin{aligned} & \text { CSUB } \\ & \text { PCSUB } \end{aligned}$	$\begin{array}{ll} \hline \text { S1, } \\ \mathrm{D} \end{array}$	The time that results from subtracting ( $\mathrm{S} 2+1, \mathrm{~S} 2$ ) from the time ( $\mathrm{S} 1+2, \mathrm{~S} 1+1, \mathrm{~S} 1$ ) is stored in (D+2, D+1, D).	9	ㅁ	$\underset{\star_{1}}{\Delta}$	$\square$	믐	ㅁ	-	-
$\begin{aligned} & \text { F159 } \\ & \text { P159 } \end{aligned}$	Serial port communication	MTRN PMTRN	S, n, D	This is used to send data to an external device through the specified CPU COM port or MCU COM port.	7	$x$	$x$	$\square$	ㅁ	$\square$	$\stackrel{\Delta}{\star}$	$\stackrel{\text { * }}{ } \stackrel{ }{ }$
$\begin{aligned} & \hline \text { F161 } \\ & \text { P161 } \end{aligned}$	MCU serial port reception	$\begin{aligned} & \hline \text { MRCV } \\ & \text { PMRCV } \end{aligned}$	$\begin{array}{ll} \hline \mathrm{S}, & \mathrm{D} 1, \\ \mathrm{D} 2 & \end{array}$	Data is received from external equipment via the COM port of the specified MCU.	7	$x$	$x$	$\times$	$x$	$\times$	$\stackrel{\wedge}{*}$	$\stackrel{\Delta}{*}$
BIN arithmetic instruction												
$\begin{aligned} & \text { F160 } \\ & \text { P160 } \end{aligned}$	Double word (32-bit) data square root	$\begin{aligned} & \hline \text { DSQR } \\ & \text { PDSQR } \end{aligned}$	S, D	$\sqrt{(S)} \rightarrow(\mathrm{D})$	7	$x$	$x$	$\square$	$\square$	$\square$	$\square$	$\square$
High speed counter/Pulse output instruction for FPO, FP-e												
F0	High-speed counter and Pulse output controls	MV	$\begin{aligned} & \hline \text { S, } \\ & \text { DT9052 } \end{aligned}$	Performs high-speed counter and Pulse output controls according to the control code specified by " S ". The control code is stored in DT9052.	5	-	$\square$	,				
1	Change and read of the elapsed value of high-speed counter and Pulse output	DMV	$\begin{aligned} & \hline \text { S, } \\ & \text { DT9044 } \end{aligned}$	Transfers (S+1, S) to high-speed counter and Pulse output elapsed value area.	7	ㅁ	$\square$				$8$	
			$\begin{aligned} & \hline \text { DT9044, } \\ & \text { D } \end{aligned}$	Transfers value in high-speed counter and Pulse output elapsed value area to ( $\mathrm{D}+1, \mathrm{D}$ ).	7	$\square$	$\square$					
F166	High-speed counter output set (with channel specification)	HC1S	$\mathrm{n}, \mathrm{S}, \mathrm{Yn}$	Turns output Yn on when the elapsed value of the built-in highspeed counter reaches the target value of ( $\mathrm{S}+1, \mathrm{~S}$ ).	11	$\square$	$\square$					$\checkmark$

O: Available, $X$ : Not available, $\triangle$ : Not available partially
*1) The instruction is available for FP0 T32 type (V2.3 or later).
*2) The instruction is available for FP2/FP2SH Ver. 1.5 or later, and the pulse execution type can be specified. FP10SH cannot be used.
*3) This instruction is available for FPE Ver. 2.0 or later.
*4) This instruction is only available for FP-X Ver. 2.0 or later.
*5) This instruction is available for FPE Ver. 3.10 or later.

Number	Name	Boolean	Operand	Description	$$	$\begin{aligned} & \text { O } \\ & \text { 민 } \end{aligned}$	요	$\begin{aligned} & \text { 뜽 } \\ & \text { 문 } \end{aligned}$	W	ํ		
F167	High-speed counter output reset (with channel specification)	HC1R	n, S, Yn	Turns output Yn off when the elapsed value of the built-in highspeed counter reaches the target value of ( $\mathrm{S}+1, \mathrm{~S}$ ).	11	[	$\square$			$\checkmark$	$\checkmark$	
F168	Positioning control (with channel specification)	SPD1	S, n	Outputs a positioning pulse from the specified output (Y0 or Y1) according to the contents of the data table beginning at " $S$ ".	5	$\square$	$\square$					
F169	Pulse output (with channel specification)	PLS	S, n	Outputs a pulse from the specified output (Y0 or Y1) according to the contents of the data table beginning at " $S$ ".	5	-1	$\square$					
F170	PWM output (with channel specification)	PWM	S, n	Performs PWM output from the specified outptu (Y0 or Y1) according to the contents of the data table beginning at " $S$ ".	5	-	$\square$					
High speed counter/Pulse output instruction for FPOR												
F0	High-speed counter and Pulse output controls	MV	S, DT90052	Performs high-speed counter and Pulse output controls according to the control code specified by "S". The control code is stored in DT90052.	5	$\checkmark$	$V$	[1]	$\checkmark$	$\checkmark$	$\checkmark$	
F1	Change and read of the elapsed value of highspeed counter and Pulse output	DMV	$\begin{aligned} & \text { S, } \\ & \text { DT90300 } \end{aligned}$	Transfers (S+1, S) to high-speed counter and Pulse output elapsed value area (DT90045, DT90044).	7							
			$\begin{aligned} & \text { DT90300 } \\ & \text {, D } \end{aligned}$	Transfers value in high-speed counter and Pulse output elapsed value area (DT90045, DT90044) to (D+1, D).	7		$\checkmark$	$\square$				
F165	Cam control	CAMO	S	Controls cam operation (on/off patterns of each cam output) according to the elapsed value of the high-speed counter.	3			$\square$				
F166	Target value much on (with channel specification) (High-speed counter control/Pulse output control)	HC1S	n, S, D	Turns output Yn on when the elapsed value of the high-speed counter or pulse output reaches the target value of $(\mathrm{S}+1, \mathrm{~S})$.	11	$\$ &  & ㅁ &  &  & $\checkmark$						
F167	Target value much off (with channel specification) (High-speed counter control/Pulse output control)	HC1R	n, S, D	Turns output Yn off when the elapsed value of the high-speed counter or pulse output reaches the target value of $(\mathrm{S}+1, \mathrm{~S})$.	11	$\$ & $\$ & $\square$		$\checkmark$	$\$  \hline F171 & Pulse output (JOG positioning type 0/1) (Trapezoidal control) & SPDH & S, n & Positioning pulses are output from the specified channel, in accordance with the contents of the data table that starts with S. & 5 &  &  & $\square$	$\checkmark$	¢	
F172	Pulse output (JOG operation 0 and 1)	PLSH	S, n	Pulse strings are output from the specified output, in accordance with the contents of the data table that starts with S.	5			$\square$		¢		
F173	PWM output (with channel specification)	PWMH	S, n	PWM output is output from the specified output, in accordance with the contents of the data table that starts with S .	5			$\square$	$\checkmark$	$\checkmark$		



Num－ ber	Name	Boo－ lean	Operand	Description	$\begin{aligned} & \text { no } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{gathered} \text { i } \\ \text { 눈 } \end{gathered}$	은	年	赍	진	N	
High speed counter／Pulse output instruction for FP $\Sigma /$／PP－X												
F0	High－speed counter and Pulse output controls	MV	S，DT90052	Performs high－speed counter and Pulse output controls according to the control code specified by＂ S ＂． The control code is stored in DT90052．	5	$\checkmark$	$V$	$\checkmark$	$\square$	口	－	$\checkmark$
F1	Change and read of the elapsed value of high－ speed counter and Pulse output	DMV	FPE： S，DT90044 FP－X： S，DT90300 PD	Transfers（S＋1，S）to high－speed counter and Pulse output elapsed value area（DT90045， DT90044）．	7				$\square$	$\square$		
			FPE： DT90044，D FP－X： DT90300，D	Transfers value in high－speed counter and Pulse output elapsed value area（DT90045， DT90044）to（D＋1，D）．	7				$\square$	$\square$		
F166	Target value much on（with channel specification）	HC1S	n，S，D	Turns output Yn on when the elapsed value of the built－in high－speed counter reaches the target value of（ $\mathrm{S}+1, \mathrm{~S}$ ）．	11				$\square$	$\square$		
F167	Target value much off（with channel specification）	HC1R	$\mathrm{n}, \mathrm{S}, \mathrm{D}$	Turns output Yn off when the elapsed value of the built－in high－speed counter reaches the target value of（ $\mathrm{S}+1, \mathrm{~S}$ ）．	11				ㅁ	口		
F171	Pulse output （with channel specification） （Trapezoidal control and home return）	SPDH	S，n	Positioning pulses are output from the specified channel，in accordance with the contents of the data table that starts with S ．	5	$1$			$\square$	ㅁ		$\checkmark$
F172	Pulse output （with channel specification） （JOG operation）	PLSH	S，n	Pulse strings are output from the specified output，in accordance with the contents of the data table that starts with S ．	5				$\square$	ㅁ		
F173	PWM output （with channel specification）	PWMH	S，n	PWM output is output from the specified output，in accordance with the contents of the data table that starts with S．	5				$\square$	ㅁ		
F174	Pulse output （with channel specification） （Selectable data table control operation ）	SPOH	S，n	Outputs the pulses from the specified channel according to the data table specified by S ．	5				－	ㅁ	$\checkmark$	$\checkmark$

：Available，$X$ ：Not available，$\triangle$ ：Not available partially
＊1）The elapsed value area differs depending on used channels．

Num －ber	Name	Boolean	Ope－ rand	Description	$\begin{aligned} & \stackrel{n}{2} \\ & \stackrel{y}{*} \end{aligned}$	년	은	끙	W	잔	～	
F175	Pulse output （Linear interpolation）	SPSH	S，n	Pulses are output from channel，in accordance with the designated data table，so that the path to the target position forms a straight line．	5				$\stackrel{\wedge}{*}$		$\forall$	
F176	Pulse output （Circular interpolation）	SPCH	S，n	Pulses are output from channel，in accordance with the designated data table，so that the path to the target position forms an arc．	5				$\stackrel{\Delta}{*}$			
Screen display instructions												
F180	FP－e screen display registration	SCR	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, S4 } \end{aligned}$	Register the screen displayed on the FP－e．	9	$\square$	$x$	$x$	$x$	$\times$	$\times$	$\times$
F181	FP－e screen display switching	DSP	S	Specify the screen to be displayed on the FP－e．	3	$\square$	$x$	$\times$	$x$	$\times$	$\times$	$x$
Basic function instruction												
F182	Time constant processing	FILTR	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	Executes the filter processing for the specified input．	9	$x$	$x$	$\square$	$\stackrel{\Delta}{*}$	$\stackrel{\Delta}{*}$	$\times$	$\times$
F183	Auxiliary timer（32－bit）	DSTM	S，D	Turn on the specified output and R900D after $0.01 \mathrm{~s} . \times$ set value ．	7	$\square$	$\square$	$\square$	$\square$	$\square$	口	－${ }^{\square} 7$
Data transfer instructions												
$\begin{aligned} & \hline \text { F190 } \\ & \text { P190 } \\ & \hline \end{aligned}$	Three 16－bit data move	MV3 PMV3	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \\ & \hline \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1) \rightarrow(\mathrm{D}),(\mathrm{S} 2) \rightarrow(\mathrm{D}+1), \\ & (\mathrm{S} 3) \rightarrow(\mathrm{D}+2) \end{aligned}$	10	$\times$	$\times$	$\square$	－	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F191 } \\ & \text { P191 } \end{aligned}$	Three 32－bit data move	DMV3 PDMV3	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}),(\mathrm{S} 2+1, \\ & \mathrm{S} 2) \rightarrow(\mathrm{D}+3, \mathrm{D}+2),(\mathrm{S} 3+1, \\ & \mathrm{S} 3) \rightarrow(\mathrm{D}+5, \mathrm{D}+4) \end{aligned}$	16	$x$	$x$	$\square$	－	$\square$	$\square$	$\square$
Logic operation instructions												
$\begin{aligned} & \hline \text { F215 } \\ & \text { P215 } \end{aligned}$	$\begin{aligned} & \text { 32-bit data } \\ & \text { AND } \end{aligned}$	$\begin{aligned} & \hline \text { DAND } \\ & \text { PDAND } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \text { (S1+1, S1) AND (S2+1, } \\ & \text { S2) } \rightarrow(\mathrm{D}+1, \\ & \mathrm{D}) \end{aligned}$	7	$x$	$x$	$\square$	ㅁ	ㅁ	ㅁ	$\square$
$\begin{aligned} & \hline \text { F216 } \\ & \text { P216 } \end{aligned}$	32－bit data OR	$\begin{aligned} & \hline \text { DOR } \\ & \text { PDOR } \end{aligned}$	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { D } \\ & \hline \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1) \mathrm{OR}(\mathrm{~S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \\ & \mathrm{D}) \end{aligned}$	12	$\times$	$\times$	$\square$	口	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F217 } \\ & \text { P217 } \end{aligned}$	$\begin{aligned} & \text { 32-bit data } \\ & \text { XOR } \end{aligned}$	$\begin{aligned} & \text { DXOR } \\ & \text { PDXOR } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	$\begin{array}{ll} \{(\mathrm{S} 1+1, \mathrm{~S} 1) & \text { AND } \\ \begin{array}{ll} (\mathrm{S} 2+1, & \mathrm{S} 2)\} \\ \{(\mathrm{S} 1+1, & \mathrm{S} 1) \\ \mathrm{S} 2)\} \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{array} & \text { ORD } \\ (\mathrm{S} 2+1, \\ \hline \end{array}$	12	$x$	$x$	$\square$	ㅁ	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F218 } \\ & \text { P218 } \end{aligned}$	$\begin{aligned} & \hline \text { 32-bit data } \\ & \text { XNR } \end{aligned}$	DXNR PDXNR	$\begin{aligned} & \mathrm{S} 1, \mathrm{~S} 2, \\ & \mathrm{D} \end{aligned}$	$\{(\mathrm{S} 1+1, \mathrm{~S} 1)$ AND（S2＋1， S 2$)\}$   $\{(\mathrm{S} 1+1$, $\mathrm{S} 1)$   $\mathrm{S} 2)\} \rightarrow(\mathrm{D}+1, \mathrm{D})$  ORD   $(\mathrm{S} 2+1$,	12	$x$	$x$	$\square$	口	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F219 } \\ & \text { P219 } \end{aligned}$	Double word （32－bit）data unites	DUNI PDUNI	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{array}{lr} \{(\mathrm{S} 1+1, \mathrm{~S} 1) \text { AND } & \left.\left.\frac{(\mathrm{S} 3+1,}{\mathrm{S} 3}\right)\right\} \text { OR } \\ \{(\mathrm{S} 2+1, & \mathrm{S} 2) \\ \mathrm{S} 3)\} \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{array} \quad(\mathrm{S} 3+1,$	16	$x$	$x$	$\square$	－	$\square$	$\square$	$\square$
Data conversion instructions												
$\begin{aligned} & \text { F230 } \\ & \text { P230 } \end{aligned}$	Time data $\rightarrow$ second conversion	TMSEC PTMSEC	S，D	The specified time data（ a date and time）is changed to the second data．	6	$x$	$x$	$\square$	$\begin{aligned} & \triangle \\ & \text { *2 } \end{aligned}$	$\begin{aligned} & \triangle \\ & * 6 \end{aligned}$	$\stackrel{\Delta}{{ }_{* 1}}$	$\stackrel{\wedge}{\star}$
$\begin{aligned} & \hline \text { F231 } \\ & \text { P231 } \end{aligned}$	Second data $\rightarrow$ time conversion	SECTM PSECTM	S，D	The specified second data is changed into time data（a date and time）．	6	$x$	$x$	$\square$	＊2	$\stackrel{\wedge}{*}$ ¢	$\stackrel{\star}{*}$	$\stackrel{\Delta}{*}$

O：Available，$X$ ：Not available，$\triangle$ ：Not available partially
＊1）This instruction is available for FP2／FP2SH Ver． 1.5 or later．FP10SH cannot be used．
＊2）This instruction is available for FPE 32 k type．
＊3）This instruction is available for FPE C32T2，C28P2，C32T2H and C28P2H．
＊4）This instruction is only available for FP－X Ver． 2.0 or later．＊5）This instruction is available for FPE Ver． 3.10 or later．
＊6）This instruction is available for FP－X Ver． 1.13 or later．
＊7）This instruction is available for FP10SH Ver． 3.10 or later．

Number	Name	Boolean	Operand	Description	$\begin{aligned} & \text { n } \\ & \stackrel{2}{む} \\ & \omega \end{aligned}$	$\begin{aligned} & \text { ㄴ } \\ & \text { 문 } \end{aligned}$	은	$\begin{aligned} & \text { 뜽 } \\ & \text { 묘 } \end{aligned}$	W	$\begin{aligned} & \times \times \\ & \text { í } \end{aligned}$	N	
$\begin{aligned} & \text { F235 } \\ & \text { P235 } \end{aligned}$	16-bit binary data $\rightarrow$ Gray code conversion	GRY PGRY	S, D	Converts the 16-bit binary data of " S " to gray codes, and the converted result is stored in the "D".	6	$\times$	$x$	민	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F236 } \\ & \text { P236 } \end{aligned}$	32-bit binary data $\rightarrow$ Gray code conversion	DGRY PDGRY	S, D	Converts the 32-bit binary data of $(\mathrm{S}+1, \mathrm{~S})$ to gray code, and the converted result is stored in the (D+1, D).	8	$\times$	$x$	[	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F237 } \\ & \text { P237 } \end{aligned}$	16-bit gray code $\rightarrow$ binary data conversion	$\begin{aligned} & \text { GBIN } \\ & \text { PGBIN } \end{aligned}$	S, D	Converts the gray codes of " S " to binary data, and the converted result is stored in the "D".	6	X	$x$	$\square$	-	口	ㅁ	미
$\begin{aligned} & \text { F238 } \\ & \text { P238 } \end{aligned}$	32-bit gray code $\rightarrow$ binary data conversion	$\begin{aligned} & \hline \text { DGBIN } \\ & \text { PDGBIN } \end{aligned}$	S, D	Converts the gray codes of (S+1, S) to binary data, and the converted result is stored in the ( $\mathrm{D}+1, \mathrm{D}$ ).	8	X	$x$	$\square$	ㅁ	$\square$	ㅁ	민
$\begin{aligned} & \text { F240 } \\ & \text { P240 } \end{aligned}$	Bit line to bit column conversion	$\begin{aligned} & \text { COLM } \\ & \text { PCOLM } \end{aligned}$	$\begin{aligned} & \mathrm{S}, \mathrm{n}, \\ & \mathrm{D} \end{aligned}$	The values of bits 0 to 15 of " S " are stored in bit "n" of (D to DC+15).	8	$\times$	$x$	[]	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F241 } \\ & \text { P241 } \end{aligned}$	Bit column to bit line conversion	LINE PLINE	$\begin{aligned} & \mathrm{S}, \mathrm{n}, \\ & \mathrm{D} \end{aligned}$	The values of bit " n " of ( S ) to ( $\mathrm{S}+15$ ) are stored in bits 0 to 15 of " D ".	8	X	$x$	-	$\square$	$\square$	$\square$	$\square$
F250	Binary data $\rightarrow$ ASCII conversion	BTOA	$\begin{aligned} & \text { S1, } \\ & \text { S2, n, } \\ & \text { D } \end{aligned}$	Converts multiple binary data to multiple ASCII data.	12	$\times$	$x$	$\square$	$\stackrel{\Delta}{*_{1}}$	-	$x$	$\times$
F251	ASCII $\rightarrow$ binary data conversion	ATOB	$\begin{aligned} & \text { S1, } \\ & \text { S2, n, } \\ & \text { D } \end{aligned}$	Converts multiple ASCII data to multiple binary data.	12	$\times$	$x$	-1	$\stackrel{\Delta}{{ }^{1} 1}$	$\square$	$x$	$x$
F252	ASCII data check	ACHK	$\begin{aligned} & \text { S1, } \\ & \text { S2, n } \end{aligned}$	Checks the ASCII data strings to be used in F251 (ATOB) instruction.	10	$\times$	$x$	$\square$	$\begin{aligned} & \wedge \\ & \star \\ & \hline \end{aligned}$	$\begin{aligned} & \Delta \\ & * 2 \end{aligned}$	$\times$	$\times$
Character strings instructions												
$\begin{aligned} & \text { F257 } \\ & \text { P257 } \end{aligned}$	Comparing character strings	SCMP	$\begin{aligned} & \text { S1, } \\ & \text { S2 } \end{aligned}$	These instructions compare two specified character strings and output the judgment results to a special internal relay.	10	$\times$	$x$	민	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F258 } \\ & \text { P258 } \\ & \hline \end{aligned}$	Character string coupling	SADD	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	These instructions couple one character string with another.	12	$\times$	$x$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F259 } \\ & \text { P259 } \end{aligned}$	Number of characters in a character string	LEN	S, D	These instructions determine the number of characters in a character string.	6	X	$x$	[]	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F260 } \\ & \text { P260 } \\ & \hline \end{aligned}$	Search for character string	SSRC	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The specified character is searched in a character string.	10	$\times$	$x$	[	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F261 } \\ & \text { P261 } \end{aligned}$	Retrieving data from character strings (right side)	RIGHT	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	These instructions retrieve a specified number of characters from the right side of the character string.	8	X	x	-	ㅁ	-	믹	ㅁ)
$\begin{aligned} & \hline \text { F262 } \\ & \text { P262 } \end{aligned}$	Retrieving data from character strings (left side)	LEFT	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	These instructions retrieve a specified number of characters from the left side of the character string.	8	$x$	$x$	-	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F263 } \\ & \text { P263 } \end{aligned}$	Retrieving a character string from a character string	MIDR	$\begin{aligned} & \text { S1, } \\ & \text { S2, } \\ & \text { S3, D } \end{aligned}$	These instructions retrieve a character string consisting of a specified number of characters from the specified position in the character string.	10	$\times$	$x$	민	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F264 } \\ & \text { P264 } \end{aligned}$	Writing a character string to a character string	MIDW	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D, } \\ & \mathrm{n} \end{aligned}$	These instructions write a specified number of characters from a character string to a specified position in the character string.	12	X	x	-1	민	-	믹	민
$\begin{aligned} & \text { F265 } \\ & \text { P265 } \end{aligned}$	Replacing character strings	SREP	$\begin{aligned} & \mathrm{S}, \mathrm{D}, \\ & \mathrm{p}, \mathrm{n} \end{aligned}$	A specified number of characters in a character string are rewritten, starting from a specified position in the character string.	12	$\times$	$x$	민	$\square$	$\square$	$\square$	$\square$

O: Available, $\times$ : Not available, $\triangle$ : Not available partially
*1) This instruction is available for FPE 32 k type.
*2) This instruction is only available for FP-X Ver. 2.0 or later.
*3) This instruction is available for FPE Ver. 3.10 or later.

Number	Name	Boolean	Operand	Description	$\begin{aligned} & \stackrel{n}{2} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { iL } \end{aligned}$	은	$\begin{aligned} & \text { 뜽 } \\ & \text { 룬 } \end{aligned}$	W	$\begin{aligned} & \times \underset{\text { 난 }}{~} \end{aligned}$	N	
Integer type data processing instructions												
$\begin{aligned} & \hline \text { F270 } \\ & \text { P270 } \end{aligned}$	Maximum value (word data (16-bit))	MAX PMAX	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	Searches the maximum value in the word data table between the " S 1 " and " S 2 ", and stores it in the " D ". The address relative to " S 1 " is stored in "D+1".	8	$\stackrel{\Delta}{*}$	$x$	-	-	$\square$	$\square$	-
$\begin{aligned} & \text { F271 } \\ & \text { P271 } \end{aligned}$	Maximum value (double word data (32bit))	DMAX PDMAX	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	Searches for the maximum value in the double word data table between the area selected with " S 1 " and " S 2 ", and stores it in the " D ". The address relative to " S 1 " is stored in " $\mathrm{D}+2$ ".	8	$\stackrel{\Delta}{{ }_{* 1}}$	$x$	-	-	$\square$	-	$\square$
$\begin{aligned} & \hline \text { F272 } \\ & \text { P272 } \end{aligned}$	Minimum value (word data (16bit))	MIN PMIN	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	Searches for the minimum value in the word data table between the area selected with " S 1 " and " S 2 ", and stores it in the " $D$ ". The address relative to " $S 1$ " is stored in " $D+1$ ".	8	$\stackrel{\star}{*}$	$x$	믐	ㅁ	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F273 } \\ & \text { P273 } \end{aligned}$	Minimum value (double word data (32-bit))	DMIN PDMIN	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	Searches for the minimum value in the double word data table between the area selected with " S 1 " and "S2", and stores it in the " D ". The address relative to " S 1 " is stored in " $\mathrm{D}+2$ ".	8	$\stackrel{\Delta}{{ }_{* 1}}$	$x$	-	口	$\square$	-	-
$\begin{aligned} & \hline \text { F275 } \\ & \text { P275 } \end{aligned}$	Total and mean values (word data (16bit))	MEAN PMEAN	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The total value and the mean value of the word data with sign from the area selected with "S1" to "S2" are obtained and stored in the " $D$ ".	8	$\stackrel{\Delta}{{ }_{* 1}}$	$x$	-	ㅁ	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F276 } \\ & \text { P276 } \end{aligned}$	Total and mean values (double word data (32-bit))	DMEAN PDMEAN	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The total value and the mean value of the double word data with sign from the area selected with " S 1 " to " S 2 " are obtained and stored in the " D ".	8	$\stackrel{\Delta}{{ }_{* 1}}$	$x$	-	-	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F277 } \\ & \text { P277 } \end{aligned}$	Sort (word data (16-bit))	SORT PSORT	$\begin{aligned} & \text { S1, } \\ & \text { S2, } \\ & \text { S3 } \end{aligned}$	The word data with sign from the area specified by " S 1 " to " S 2 " are sorted in ascending order (the smallest word is first) or descending order (the largest word is first).	8	$\stackrel{\Delta}{{ }_{* 1}}$	$x$	-	-	$\square$	$\square$	-
$\begin{aligned} & \hline \text { F278 } \\ & \text { P278 } \end{aligned}$	Sort (double word data (32bit))	DSORT PDSORT	$\begin{aligned} & \text { S1, } \\ & \text { S2, } \\ & \text { S3 } \end{aligned}$	The double word data with sign from the area specified b "S1" ato "S2" are sorted in ascending order (the smallest word is first) or descending order (the largest word is first).	8	$\stackrel{\Delta}{{ }_{* 1}}$	$x$	-	ㅁ	$\square$	$\square$	-
$\begin{aligned} & \hline \text { F282 } \\ & \text { P282 } \end{aligned}$	Scaling of 16-bit data	SCAL PSCAL	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The toutptu value Y is found for the input value X by performing scaling for the given data table.	8	$\stackrel{\Delta}{*}$	$x$	-	-	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F283 } \\ & \text { P283 } \end{aligned}$	Scaling of 32-bit data	DSCAL PDSCAL	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The toutptu value Y is found for the input value X by performing scaling for the given data table.	10	$x$	$x$	-	-	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F284 } \\ & \text { P284 } \end{aligned}$	Inclination output of 16 -bit data	RAMP	$\begin{aligned} & \text { S1, } \\ & \text { S2, } \\ & \text { S3, D } \end{aligned}$	Executes the linear output for the specified time from the specified initial value to the target value.	10	$x$	x	-	$\stackrel{\Delta}{\star}$	$\begin{aligned} & \Delta \\ & \text { *2 } \end{aligned}$	$\times$	$x$
Integer type non-linear function instructions												
$\begin{aligned} & \text { F285 } \\ & \text { P285 } \end{aligned}$	Upper and lower limit control (16-bit data)	LIMT PLIMT	$\begin{aligned} & \text { S1, } \\ & \text { S2, } \\ & \text { S3, D } \end{aligned}$	When S1>S3, S1 $\rightarrow$ D   When $\mathrm{S} 1<\mathrm{S} 3, \mathrm{~S} 2 \rightarrow \mathrm{D}$   When $\mathrm{S} 1<\mathrm{or}=\mathrm{S} 3<\mathrm{or}=\mathrm{S} 2, \mathrm{~S} 3 \rightarrow \mathrm{D}$	10	$\stackrel{\Delta}{*}$	$x$	-	ㅁ	$\square$	$\square$	-

O: Available, $X$ : Not available, $\triangle:$ Not available partially
*1) This instruction is available for FP-e Ver.1.2 or later.
*2) This instruction is only available for FP-X Ver. 2.0 or later, and FPE Ver. 3.10 or later.

Num－ ber	Name	Boolean	Ope－   rand	Description	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { 문 } \end{aligned}$	온	$\begin{array}{\|c} \text { 뜽 } \\ \text { 문 } \end{array}$	$\begin{aligned} & \text { W } \\ & \text { 는 } \end{aligned}$	¢	N	
$\begin{aligned} & \hline \text { F286 } \\ & \text { P286 } \end{aligned}$	Upper and Iower limit control （32－bit data）	DLIMT PDLIMT	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 3+1, \mathrm{~S} 3),(\mathrm{S} 1+1 \text {, } \\ & \mathrm{S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 2+1, \mathrm{~S} 2)<(\mathrm{S} 3+1, \mathrm{~S} 3),(\mathrm{S} 2+1 \text {, } \\ & \mathrm{S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)<\text { or }=(\mathrm{S} 3+1, \mathrm{~S} 3)<\text { or } \\ & =(\mathrm{S} 2+1, \mathrm{~S} 2),(\mathrm{S} 3+1, \mathrm{~S} 3) \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{aligned}$	16	$\begin{aligned} & \Delta \\ & { }_{* 1} \end{aligned}$	$x$	$\square$	$\square$	민	민	ㅁ
$\begin{aligned} & \text { F287 } \\ & \text { P287 } \end{aligned}$	Deadband control （16－bit data）	BAND PBAND	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	When S1＞S3，S3－S1 $\rightarrow$ D   When S2＜S3，S3－S2 $\rightarrow$ D   When $\mathrm{S} 1<\mathrm{or}=\mathrm{S} 3<0 \mathrm{or}=\mathrm{S} 2,0 \rightarrow \mathrm{D}$	10	$\begin{aligned} & \Delta \\ & { }_{* 1} \end{aligned}$	$x$	$\square$	$\square$	민	민	ㅁ
$\begin{aligned} & \hline \text { F288 } \\ & \text { P288 } \end{aligned}$	Deadband control （32－bit data）	$\begin{aligned} & \hline \text { DBAND } \\ & \text { PDBAND } \end{aligned}$	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 3+1, \mathrm{~S} 3),(\mathrm{S} 3+1 \text {, } \\ & \mathrm{S} 3)-(\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 2+1, \mathrm{~S} 2)<(\mathrm{S} 3+1, \mathrm{~S} 3),(\mathrm{S} 3+1 \text {, } \\ & \mathrm{S} 3)-(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)<o r=(\mathrm{S} 3+1, \mathrm{~S} 3)<\text { or } \\ & =(\mathrm{S} 2+1, \mathrm{~S} 2), 0 \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{aligned}$	16	$\begin{aligned} & \Delta \\ & { }_{* 1} \end{aligned}$	$x$	$\square$	$\square$	믹	믹	－
$\begin{aligned} & \hline \text { F289 } \\ & \text { P289 } \end{aligned}$	Zone control （16－bit data）	$\begin{aligned} & \hline \text { ZONE } \\ & \text { PZONE } \end{aligned}$	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	When $\mathrm{S} 3<0, \mathrm{~S} 3+\mathrm{S} 1 \rightarrow \mathrm{D}$   When $\mathrm{S} 3=0,0 \rightarrow \mathrm{D}$   When $\mathrm{S} 3>0, \mathrm{~S} 3+\mathrm{S} 2 \rightarrow \mathrm{D}$	10	$\begin{aligned} & \Delta \\ & { }_{* 1} \end{aligned}$	$x$	닌	$\square$	믹	믹	口
$\begin{aligned} & \hline \text { F290 } \\ & \text { P290 } \end{aligned}$	Zone control （32－bit data）	$\begin{aligned} & \hline \text { DZONE } \\ & \text { PDZONE } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(\mathrm{S} 3+1, \mathrm{~S} 3)<0,(\mathrm{~S} 3+1, \\ & \mathrm{S} 3)+(\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 3+1, \mathrm{~S} 3)=0,0 \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 3+1, \mathrm{~S} 3)>0,(\mathrm{S3}+1, \\ & \mathrm{S} 3)+(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{aligned}$	16	$\begin{aligned} & \Delta \\ & { }_{* 1} \end{aligned}$	$x$	$\square$	$\square$	믹	민	－
BCD type real number operation instructions												
$\begin{aligned} & \hline \text { F300 } \\ & \text { P300 } \\ & \hline \end{aligned}$	BCD type sine operation	$\begin{aligned} & \hline \text { BSIN } \\ & \text { PBSIN } \\ & \hline \end{aligned}$	S，D	$\mathrm{SIN}(\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D})$	6	$\times$	$x$	$x$	$\times$	$x$	미	$\square$
$\begin{aligned} & \hline \text { F301 } \\ & \text { P301 } \end{aligned}$	BCD type cosine operation	$\begin{aligned} & \text { BCOS } \\ & \text { PBCOS } \end{aligned}$	S，D	$\mathrm{COS}(\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D})$	6	$x$	$x$	$x$	X	$x$	민	미
$\begin{aligned} & \text { F302 } \\ & \text { P302 } \end{aligned}$	BCD type tangent operation	$\begin{aligned} & \hline \text { BTAN } \\ & \text { PBTAN } \end{aligned}$	S，D	$\mathrm{TAN}(\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D})$	6	$\times$	$x$	$x$	$\times$	$x$	［	민
$\begin{aligned} & \text { F303 } \\ & \text { P303 } \end{aligned}$	BCD type arcsine operation	$\begin{aligned} & \hline \text { BASIN } \\ & \text { PBASIN } \end{aligned}$	S，D	$\mathrm{SIN}^{-1}(\mathrm{~S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D})$	6	$\times$	$x$	$\times$	$\times$	$x$	$\square$	$\square$
$\begin{aligned} & \text { F304 } \\ & \text { P304 } \end{aligned}$	BCD type arccosine operation	$\begin{aligned} & \text { BACOS } \\ & \text { PBACOS } \end{aligned}$	S，D	$\mathrm{COS}^{-1}(\mathrm{~S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D})$	6	$\times$	$x$	$x$	X	$x$	$\square$	ㅁ
$\begin{aligned} & \text { F305 } \\ & \text { P305 } \end{aligned}$	BCD type arctangent operation	BATAN PBATAN	S，D	$\mathrm{TAN}^{-1}(\mathrm{~S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D})$	6	$\times$	$x$	$\times$	$\times$	$x$	$\square$	미
Floating－point type real number operation instructions												
$\begin{aligned} & \hline \text { F309 } \\ & \text { P309 } \\ & \hline \end{aligned}$	Floating－point type data move	$\begin{aligned} & \hline \text { FMV } \\ & \text { PFMV } \end{aligned}$	S，D	$(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	8	＊2	＊2	$\square$	$\square$	미	민	$\square$
$\begin{aligned} & \hline \text { F310 } \\ & \text { P310 } \end{aligned}$	Floating－point type data addition	$\begin{aligned} & \mathrm{F}+ \\ & \mathrm{PF}+ \end{aligned}$	$\begin{aligned} & \mathrm{S} 1, \mathrm{~S} 2, \\ & \mathrm{D} \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1)+(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	14	＊2	＊2	$\square$	$\square$	민	민	－
$\begin{aligned} & \text { F311 } \\ & \text { P311 } \end{aligned}$	Floating－point type data subtraction	$\begin{aligned} & \text { F- } \\ & \text { PF- } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1)-(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	14	＊2	＊2	$\square$	$\square$	민	민	口
$\begin{aligned} & \text { F312 } \\ & \text { P312 } \end{aligned}$	Floating－point type data multiplication	$\begin{aligned} & \mathrm{F}^{\star} \\ & \mathrm{PF}^{\star} \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1) \times(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	14	＊2	＊	닌	$\square$	민	민	口
$\begin{aligned} & \text { F313 } \\ & \text { P313 } \end{aligned}$	Floating－point type data division	$\begin{aligned} & \hline \text { F\% } \\ & \text { PF\% } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1) \div(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	14	＊2	＊2	$\square$	$\square$	민	민	口

O：Available，$\times$ ：Not available，$\triangle:$ Not available partially
＊1）This instruction is available for FP－e Ver．1．2 or later．
＊2）This instruction is available for FP－e Ver．1．21 or later，FPO V2．1 or later．

Number	Name	Boolean	Ope-   rand	Description	$\begin{aligned} & \stackrel{n}{2} \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	$\begin{gathered} \text { © } \\ \text { diL } \end{gathered}$	욘	$\begin{aligned} & \text { 뜽 } \\ & \text { 운 } \end{aligned}$	W	$\begin{aligned} & \text { x } \\ & \text { ì } \end{aligned}$	N	
$\begin{aligned} & \hline \text { F314 } \\ & \text { P314 } \\ & \hline \end{aligned}$	Floating-point type data sine operation	$\begin{aligned} & \hline \text { SIN } \\ & \text { PSIN } \\ & \hline \end{aligned}$	S, D	$\mathrm{SIN}(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	- ${ }_{\text {* }}$	$$	$\square$	$\square$	$\square$	口	ㅁ
$\begin{aligned} & \text { F315 } \\ & \text { P315 } \end{aligned}$	Floating-point type data cosine operation	$\begin{aligned} & \text { cOS } \\ & \text { PCOS } \end{aligned}$	S, D	$\mathrm{COS}(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\begin{aligned} & \square \\ & { }_{\star 1} \end{aligned}$	$\begin{aligned} & \square \\ & { }_{\star} \end{aligned}$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F316 } \\ & \text { P316 } \end{aligned}$	Floating-point type data tangent operation	TAN PTAN	S, D	TAN(S+1, S) $\rightarrow$ (D+1, D)	10	$\begin{aligned} & \square \\ & { }_{\star 1} \end{aligned}$	$\begin{aligned} & \square \\ & { }_{\star} \end{aligned}$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F317 } \\ & \text { P317 } \end{aligned}$	Floating-point type data arcsine operation	$\begin{aligned} & \hline \text { ASIN } \\ & \text { PASIN } \end{aligned}$	S, D	$\mathrm{SIN}^{-1}(\mathrm{~S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\begin{aligned} & \square \\ & { }_{\star 1} \end{aligned}$	$\begin{aligned} & \square \\ & \star_{1} \end{aligned}$	$\square$	$\square$	ㅁ	-	$\square$
$\begin{aligned} & \text { F318 } \\ & \text { P318 } \end{aligned}$	Floating-point type data arccosine operation	$\begin{aligned} & \text { ACOS } \\ & \text { PACOS } \end{aligned}$	S, D	$\operatorname{COS}^{-1}(\mathrm{~S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\begin{aligned} & \square \\ & { }_{\star 1} \end{aligned}$	$\begin{aligned} & \square \\ & \star_{1} \end{aligned}$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F319 } \\ & \text { P319 } \end{aligned}$	Floating-point type data arctangent operation	$\begin{aligned} & \hline \text { ATAN } \\ & \text { PATAN } \end{aligned}$	S, D	$\mathrm{TAN}^{-1}(\mathrm{~S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\begin{aligned} & \square \\ & { }_{\star 1} \end{aligned}$	$\begin{aligned} & \square \\ & \star_{1} \end{aligned}$	$\square$	$\square$	ㅁ	-	$\square$
$\begin{aligned} & \text { F320 } \\ & \text { P320 } \end{aligned}$	Floating-point type data natural logarithm	$\begin{aligned} & \text { LN } \\ & \text { PLN } \end{aligned}$	S, D	$\mathrm{LN}(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\begin{aligned} & \square \\ & \star_{1} \end{aligned}$	$\begin{aligned} & \square \\ & \star_{1} \end{aligned}$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F321 } \\ & \text { P321 } \end{aligned}$	Floating-point type data exponent	$\begin{aligned} & \hline \text { EXP } \\ & \text { PEXP } \end{aligned}$	S, D	$\operatorname{EXP}(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\begin{aligned} & \square \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \square \\ & \star_{1} \end{aligned}$	$\square$	$\square$	$\square$	口	$\square$
$\begin{aligned} & \hline \text { F322 } \\ & \text { P322 } \\ & \hline \end{aligned}$	Floating-point type data logarithm	$\begin{aligned} & \hline \text { LOG } \\ & \text { PLOG } \end{aligned}$	S, D	LOG(S+1, S) $\rightarrow$ (D+1, D)	10	$$	$$	$\square$	$\square$	-	-	ㅁ
$\begin{aligned} & \text { F323 } \\ & \text { P323 } \\ & \hline \end{aligned}$	Floating-point type data power	PWR PPWR	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \\ & \hline \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1)^{\wedge}(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \\ & \mathrm{D}) \end{aligned}$	14	$\begin{array}{r} \hline \square \\ \hline{ }^{1} 1 \\ \hline \end{array}$	$$	$\square$	$\square$	-	$\square$	$\square$
$\begin{aligned} & \text { F324 } \\ & \text { P324 } \\ & \hline \end{aligned}$	Floating-point type data square root	$\begin{aligned} & \hline \text { FSQR } \\ & \text { PFSQR } \end{aligned}$	S, D	$\sqrt{(S+1, S)} \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\begin{aligned} & \hline \square \\ & \star_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \square \\ & \hline{ }^{1} 1 \\ & \hline \end{aligned}$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F325 } \\ & \text { P325 } \end{aligned}$	16-bit integer data to floating-point type data conversion	$\begin{aligned} & \text { FLT } \\ & \text { PFLT } \end{aligned}$	S, D	Converts the 16 -bit integer data with sign specified by " S " to real number data, and the converted data is stored in " $D$ ".	6	$\begin{aligned} & \square \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \square \\ & { }_{\star 1} \end{aligned}$	$\square$	$\square$	$\square$	$\square$	-
$\begin{aligned} & \hline \text { F326 } \\ & \text { P326 } \end{aligned}$	32-bit integer data to floating-point type data conversion	DFLT PDFLT	S, D	Converts the 32-bit integer data with sign specified by $(\mathrm{S}+1, \mathrm{~S})$ to real number data, and the converted data is stored in ( $\mathrm{D}+1$, D).	8	$\square$	$\begin{aligned} & \square \\ & { }_{\star} \end{aligned}$	$\square$	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F327 } \\ & \text { P327 } \end{aligned}$	Floating-point type data to 16 -bit integer con-version (the largest inte-ger not ex-ceeding the floating-point type data)	$\begin{aligned} & \hline \text { INT } \\ & \text { PINT } \end{aligned}$	S, D	Converts real number data specified by $(\mathrm{S}+1, \mathrm{~S})$ to the 16 bit integer data with sign (the largest integer not exceeding the floating-point data), and the converted data is stored in " $D$ ".	8	$\begin{aligned} & \square \\ & \star_{1} \end{aligned}$	$\begin{aligned} & \square \\ & { }_{*} \end{aligned}$	$\square$	$\square$	$\square$	$\square$	ㅁ
$\begin{aligned} & \text { F328 } \\ & \text { P328 } \end{aligned}$	Floating-point type data to 32-bit integer con-version (the largest inte-ger not ex-ceeding the floating-point type data)	DINT PDINT	S, D	Converts real number data specified by $(\mathrm{S}+1, \mathrm{~S})$ to the 32 bit integer data with sign (the largest integer not exceeding the floating-point data), and the converted data is stored in (D+1, D).	8	$\square$	$\begin{aligned} & \square \\ & \star_{1} \end{aligned}$	$\square$	$\square$	$\square$	$\square$	$\square$

: Available, X : Not available, $\triangle$ : Not available partially
*1) This instruction is available for FP-e Ver.1.21 or later, FP0 V2.1 or later.

Num－ ber	Name	Boolean	Ope－   rand	Description	$\begin{aligned} & \text { 毋 } \\ & \stackrel{\text { IN }}{0} \end{aligned}$	$\begin{aligned} & \text { ㄴ } \\ & \text { 믄 } \end{aligned}$	욘	$\begin{aligned} & \text { 뜽 } \\ & \text { 문 } \end{aligned}$	W	$\begin{aligned} & x \\ & \text { 민 } \end{aligned}$	N	
$\begin{aligned} & \hline \text { F329 } \\ & \text { P329 } \end{aligned}$	Floating－point type data to 16－bit integer con－ version（rounding the first decimal point down to integer）	$\begin{aligned} & \hline \text { FIX } \\ & \text { PFIX } \end{aligned}$	S，D	Converts real number data specified by（ $\mathrm{S}+1, \mathrm{~S}$ ）to the 16 －bit integer data with sign（rounding the first decimal point down），and the converted data is stored in＂D＂．	8	$\begin{aligned} & \square \\ & { }_{*_{1}} \end{aligned}$	$\frac{\square}{{ }_{* 1}}$	$\square$	민	ㅁ	$\square$	민
$\begin{aligned} & \text { F330 } \\ & \text { P330 } \end{aligned}$	Floating－point type data to 32－bit integer con－ version（rounding the first decimal point down to integer）	DFIX PDFIX	S，D	Converts real number data specified by（ $\mathrm{S}+1, \mathrm{~S}$ ）to the 32－bit integer data with sign（rounding the first decimal point down），and the converted data is stored in（D＋1，D）．	8	$\frac{\square}{*_{1}}$	$\frac{\square}{{ }^{1} 1}$	－	$\square$	ㅁ	$\square$	$\square$
$\begin{aligned} & \hline \text { F331 } \\ & \text { P331 } \end{aligned}$	Floating－point type data to 16－bit integer con－ version（rounding the first decimal point off to integer）	ROFF PROFF	S，D	Converts real number data specified by（ $\mathrm{S}+1, \mathrm{~S}$ ）to the 16 －bit integer data with sign（rounding the first decimal point off），and the converted data is stored in＂D＂．	8	$\frac{\square}{*_{1}}$	$\frac{\square}{{ }^{1} 1}$	$\square$	민	민	－	$\square$
$\begin{aligned} & \text { F332 } \\ & \text { P332 } \end{aligned}$	Floating－point type data to 32－bit integer con－ version（rounding the first decimal point off to integer）	$\begin{aligned} & \hline \text { DROFF } \\ & \text { PDROFF } \end{aligned}$	S，D	Converts real number data specified by（ $\mathrm{S}+1, \mathrm{~S}$ ）to the 32－bit integer data with sign（rounding the first decimal point off），and the converted data is stored in（D＋1，D）．	8	$\begin{aligned} & \square \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \square \\ & { }^{1} 1 \end{aligned}$	$\square$	민	口	口	$\square$
$\begin{aligned} & \hline \text { F333 } \\ & \text { P333 } \end{aligned}$	Floating－point type data round－ ding the first decimal point down	$\begin{aligned} & \hline \text { FINT } \\ & \text { PFINT } \end{aligned}$	S，D	The decimal part of the real number data specified in $(S+1, S)$ is rounded down，and the result is stored in （D＋1，D）．	8	$\begin{aligned} & \square \\ & { }_{* 1} \end{aligned}$	$\frac{\square}{{ }^{\square}}$	$\square$	［1］	$\square$	$\square$	민
$\begin{aligned} & \text { F334 } \\ & \text { P334 } \end{aligned}$	Floating－point type data round－ ding the first decimal point off	$\begin{aligned} & \hline \text { FRINT } \\ & \text { PFRINT } \end{aligned}$	S，D	The decimal part of the real number data stored in $(S+1, S)$ is rounded off，and the result is stored in（D＋1， D）．	8	$\frac{\square}{{ }^{1} 1}$	$\frac{\square}{{ }^{1} 1}$	$\square$	민	$\square$	밈	믹
$\begin{aligned} & \text { F335 } \\ & \text { P335 } \end{aligned}$	Floating－point type data sign changes	$\begin{aligned} & \mathrm{F}+/- \\ & \mathrm{PF}+/- \end{aligned}$	S，D	The real number data stored in（S＋1， $S$ ）is changed the sign，and the result is stored in（D＋1，D）．	8	$\begin{aligned} & \square \\ & { }^{1} 1 \end{aligned}$	$\frac{\square}{*_{1}}$	$\square$	민	－	$\square$	믹
$\begin{aligned} & \text { F336 } \\ & \text { P336 } \end{aligned}$	Floating－point type data absolute	$\begin{aligned} & \text { FABS } \\ & \text { PFABS } \end{aligned}$	S，D	Takes the absolute value of real number data specified by（ $\mathrm{S}+1, \mathrm{~S}$ ）， and the result（absolute value）is stored in（D＋1，D）．	8	$\begin{aligned} & \square \\ & { }^{1} 1 \end{aligned}$	$\begin{aligned} & \square \\ & { }_{* 1} \end{aligned}$	$\square$	민	－	민	민
$\begin{aligned} & \text { F337 } \\ & \text { P337 } \end{aligned}$	Floating－point type data degree $\rightarrow$ radian	$\begin{aligned} & \text { RAD } \\ & \text { PRAD } \end{aligned}$	S，D	The data in degrees of an angle specified in $(S+1, S)$ is converted to radians（real number data），and the result is stored in（ $D+1, D$ ）．	8	$\begin{aligned} & \square \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \square \\ & { }_{* 1} \end{aligned}$	$\square$	믹	$\square$	민	$\square$
$\begin{aligned} & \hline \text { F338 } \\ & \text { P338 } \end{aligned}$	Floating－point type data radian $\rightarrow$ degree	$\begin{aligned} & \text { DEG } \\ & \text { PDEG } \end{aligned}$	S，D	The angle data in radians（real number data）specified in $(\mathrm{S}+1, \mathrm{~S})$ is converted to angle data in degrees， and the result is stored in（D＋1，D）．	8	$\frac{\square}{{ }^{1} 1}$	$\frac{\square}{{ }^{-1}}$	$\square$	민	민	민	민
Floating－point type real number data processing instructions												
$\begin{aligned} & \text { F345 } \\ & \text { P345 } \end{aligned}$	Floating－point type data compare	$\begin{aligned} & \text { FCMP } \\ & \text { PFCMP } \end{aligned}$	$\begin{aligned} & \text { S1, } \\ & \text { S2 } \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \mathrm{R} 900 \mathrm{~A}:$ on $(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \mathrm{R} 900 \mathrm{~B}$ on $(\mathrm{S} 1+1, \mathrm{~S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \mathrm{R} 900 \mathrm{C}:$ on	10	$\times$	x	$\square$	민	$\square$	민	믹
$\begin{aligned} & \text { F346 } \\ & \text { P346 } \end{aligned}$	Floating－point type data band compare	FWIN PFWIN	$\begin{aligned} & \text { S1, } \\ & \text { S2, } \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 3+1, \mathrm{~S} 3) \rightarrow \mathrm{R900A}: \text { on } \\ & (\mathrm{S} 2+1, \mathrm{~S} 2)<\text { or }=(\mathrm{S} 1+1, \mathrm{~S} 1)<0 \text { or } \\ & =(\mathrm{S} 3+1, \mathrm{~S} 3) \rightarrow \mathrm{R900B} \text { on } \\ & (\mathrm{S} 1+1, \mathrm{~S} 1)<(\mathrm{S} 2+1, \mathrm{~S}) \rightarrow \mathrm{R} 900 \mathrm{C}: \text { on } \end{aligned}$	14	$x$	x	$\square$	민	－	민	민

：Available，$X$ ：Not available，$\triangle$ ：Not available partially
＊1）This instruction is available for FP－e Ver．1．21 or later，FP0 V2．1 or later．

Num－ ber	Name	Boolean	Ope－ rand	Description	$\begin{aligned} & \text { n } \\ & \stackrel{2}{む} \\ & \dot{\omega} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { iL } \end{aligned}$	은	$\begin{aligned} & \text { 뜽 } \\ & \text { 능 } \end{aligned}$	W		N	
$\begin{aligned} & \text { F347 } \\ & \text { P347 } \end{aligned}$	Floating－point type data upper and lower limit control	$\begin{aligned} & \hline \text { FLIMT } \\ & \text { PFLIMT } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 3+1, \mathrm{~S} 3) \text {, } \\ & (\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 2+1, \mathrm{~S} 2)<(\mathrm{S} 3+1, \mathrm{~S} 3) \text {, } \\ & (\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)<0 \mathrm{or}=(\mathrm{S} 3+1, \\ & \mathrm{S} 3)<\text { or }=(\mathrm{S} 2+1, \mathrm{~S} 2), \text { (S3+1, } \\ & \mathrm{S} 3) \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{aligned}$	17	$x$	$\times$	口	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F348 } \\ & \text { P348 } \end{aligned}$	Floating－point type data dead－band control	FBAND PFBAND	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 3+1, \mathrm{~S} 3), \\ & (\mathrm{S} 3+1, \mathrm{~S} 3)-(\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 2+1, \mathrm{~S} 2)<(\mathrm{S} 3+1, \mathrm{~S} 3), \\ & (\mathrm{S} 3+1, \mathrm{~S} 3)-(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)<o r=(\mathrm{S} 3+1, \\ & \mathrm{S} 3)<\text { or }=(\mathrm{S} 2+1, \mathrm{~S} 2), 0.0 \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{aligned}$	17	$x$	$\times$	口	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \hline \text { F349 } \\ & \text { P349 } \end{aligned}$	Floating－point type data zone control	FZONE PFZONE	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(\mathrm{S} 3+1, \mathrm{~S} 3)<0.0, \\ & (\mathrm{~S} 3+1, \mathrm{~S} 3)+(\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 3+1, \mathrm{~S} 3)=0.0,0.0 \rightarrow(\mathrm{D}+1 \text {, } \\ & \mathrm{D}) \\ & \text { When }(\mathrm{S} 3+1, \mathrm{~S} 3)>0.0,(\mathrm{~S} 3+1, \\ & \mathrm{S} 3)+(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{aligned}$	17	$x$	$\times$	口	$\square$	$\square$	$\square$	$\square$
$\begin{aligned} & \text { F350 } \\ & \text { P350 } \end{aligned}$	Floating－point type data maxi－mum value	FMAX PFMAX	$\begin{aligned} & \mathrm{S} 1, \mathrm{~S} 2, \\ & \mathrm{D} \end{aligned}$	Searches the maximum value in the real number data table between the area selected with＂ S 1 ＂and＂S2＂， and stores it in the（ $\mathrm{D}+1, \mathrm{D}$ ）．The address relative to＂ S 1 ＂is stored in （D＋2）．	8	$x$	$x$	$x$	$\times$	$x$	$\square$	$\square$
$\begin{aligned} & \hline \text { F351 } \\ & \text { P351 } \end{aligned}$	Floating－point type data mini－mum value	FMIN PFMIN	$\begin{aligned} & \mathrm{S} 1, \mathrm{~S} 2, \\ & \mathrm{D} \end{aligned}$	Searches the minimum value in the real number data table between the area selected with＂ S 1 ＂and＂S2＂， and stores it in the（ $\mathrm{D}+1, \mathrm{D}$ ）．The address relative to＂ S 1 ＂is stored in （ $\mathrm{D}+2$ ）．	8	$x$	$\times$	$\times$	$\times$	$x$	$\square$	$\square$
$\begin{aligned} & \hline \text { F352 } \\ & \text { P352 } \end{aligned}$	Floating－point type data total and mean values	FMEAN PFMEAN	$\begin{aligned} & \hline \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	The total value and the mean value of the real number data from the area selected with＂ S 1 ＂to＂ S 2 ＂are obtained．The total value is stored in the $(D+1, D)$ and the mean value is stored in the（ $D+3, D+2$ ）．	8	$x$	$\times$	$\times$	$\times$	$x$	－	$\square$
$\begin{aligned} & \hline \text { F353 } \\ & \text { P353 } \end{aligned}$	Floating－point type data sort	FSORT PFSORT	$\begin{aligned} & \mathrm{S} 1, \mathrm{~S} 2, \\ & \mathrm{~S} 3 \end{aligned}$	The real number data from the area speciified by＂S1＂to＂S2＂are stored in ascending order（the smallest word is first）or descending order （the largest word is first）．	8	$x$	$\times$	$\times$	$\times$	$x$	$\square$	$\square$
$\begin{aligned} & \hline \text { F354 } \\ & \text { P354 } \end{aligned}$	Scaling of real number data	FSCAL PFSCAL	$\begin{aligned} & \hline \mathrm{S} 1, \mathrm{~S} 2, \\ & \mathrm{D} \end{aligned}$	Scaling（linearization）on a real number data table is performed，and the output（ Y ）to an input value（ X ） is calculated．	12	$x$	$\times$	口	$\begin{aligned} & \triangle \\ & \text { *2 } \end{aligned}$	$\stackrel{\star}{\star}$	$\stackrel{\Delta}{{ }_{*}}$	$\stackrel{\Delta}{{ }_{* 1}}$

O：Available，$X$ ：Not available，$\triangle:$ Not available partially
＊1）This instruction is available for FP2／FP2SH Ver． 1.5 or later．FP10SH cannot be used．
＊2）This instruction is available for FPE 32k type．
＊3）This instruction is available for FP－X Ver． 1.13 or later．

Number	Name	Boolean	Operand	Description	$\begin{aligned} & \infty \\ & \frac{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { 민 } \end{aligned}$	욘	$\begin{aligned} & \text { 뜽 } \\ & \text { 묘 } \end{aligned}$	W	잔	ํ	
Time series processing instruction												
F355	PID processing	PID	S	PID processing is performed depending on the control value (mode and parameter) specified by ( S to $\mathrm{S}+2$ ) and ( $\mathrm{S}+4$ to $\mathrm{S}+10$ ), and the result is stored in the (S+3).	4	$\square$	$\begin{aligned} & \square \\ & \star 3 \end{aligned}$	$\square$	믹	믹	민	민
F356	Eaay PID	EZPID	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, } \\ & \text { S3, S4 } \end{aligned}$	Temperature control (PID) can be easily performed using the image of a temperautre controller.	10	$x$	$x$	$\square$	*	$\stackrel{\Delta}{\star}$	$x$	x
Compare instructions												
$\begin{aligned} & \hline \text { F373 } \\ & \text { P373 } \end{aligned}$	16-bit data revision detection	DTR PDTR	S, D	If the data in the 16-bit area specified by " $S$ " has changed since the previous execution, internal relay R9009 (carry flag) will turn on. " $D$ " is used to store the data of the previous execution.	6	$x$	$x$	$\square$	민	민	$\square$	민
$\begin{aligned} & \text { F374 } \\ & \text { P374 } \end{aligned}$	32-bit data revision detection	DDTR PDDTR	S, D	If the data in the 32-bit area specified by ( $\mathrm{S}+1, \mathrm{~S}$ ) has changed since the previous execution, internal relay R9009 (carry flag) will turn on. ( $\mathrm{D}+1, \mathrm{D}$ ) is used to store the data of the previous execution.	6	$x$	$x$	$\square$	민	민	$\square$	ㅁ
Index register bank processing instructions												
$\begin{aligned} & \text { F410 } \\ & \text { P410 } \end{aligned}$	Setting the index regis-ter bank number	SETB PSETB	n	Index register (IO to ID) bank number change over.	4	$x$	$x$	$x$	$x$	$x$	$x$	$\square$
$\begin{aligned} & \text { F411 } \\ & \text { P411 } \end{aligned}$	Changing the index regis-ter bank number	CHGB PCHGB	n	Index register (IO to ID) bank number change over with remembering preceding bank number.	4	$x$	$x$	$x$	$x$	$x$	$\times$	민
$\begin{aligned} & \text { F412 } \\ & \text { P412 } \end{aligned}$	Restoring the index regis-ter bank number	POPB PPOPB	${ }^{-}$	Changes index register (IO to ID) bank number back to the bank before F411 (CHGB)/P411   (PCHGB) instruction.	2	$x$	$x$	$x$	$x$	$x$	$x$	-
File register bank processing instructions												
$\begin{aligned} & \text { F414 } \\ & \text { P414 } \end{aligned}$	Setting the file register bank number	SBFL PSBFL	n	File register bank number change over.	4	$x$	$x$	$x$	$x$	$x$	$x$	$\triangle$ $* 1$
$\begin{aligned} & \text { F415 } \\ & \text { P415 } \end{aligned}$	Changing the file register bank number	CBFL PCBFL	n	File register bank number change over with remembering preceding bank number.	4	$x$	$x$	$x$	$x$	$x$	$x$	$\triangle$ $* 1$
$\begin{aligned} & \text { F416 } \\ & \text { P416 } \end{aligned}$	Restoring the file register bank number	PBFL PPBFL	-	Changes file register bank number back to the bank before F415 (CBFL)/P415 (PCBFL) instruction.	2	$x$	$x$	$x$	$x$	$x$	$\times$	$\stackrel{\wedge}{*}$

: Available, $X$ : Not available, $\triangle$ : Not available partially
*1) This instruction is not available for FP10SH.
*2) This instruction is available for FP-X V.1.20 or later, and FPE 32k type.
*3) This instruction is available for FPO V2.1 or later.

### 5.4 Table of Error codes

## Difference in ERROR display

There are differences in the way errors are displayed depending on the model.

Model	Display	ERROR.	Continually lit
FP1,FP-M,FP2,FP3,FP10SH	LED	ERROR/ALARM	Flashes/contunually lit
FP $\sum$, FPO, FP0R, FP-X	LED	ERR.	Continually lit
FP-e	Screen display	ER.	

## Error Confirmation When ERROR Turns ON

When the "ERROR" on the control unit (CPU unit) turns on or flashes, a self-diagnostic error or syntax check error has occurred. Confirm the contents of the error and take the appopriate steps.

## -Error Confirmation Method

Procedure:1.Use the programming tool software to call up the error code.
By executing the "STATUS DISPLAY", the error code and content of error are displayed.
2. Check the error contents in the table of error codes using the error code ascertained above.

## -Syntax check error

This is an error detected by the total check function when there is a syntax error or incorrect setting written in the program. When the mode selector is switched to the RUN mode, the total check function automatically activates and eliminates the possibility of incorrect operation from syntax errors in the program.

## When a syntax check error is detected

-ERROR turns on or flashes.
-Operation will not begin even after swirching to the RUN mode.
-Remote operation cannot be used to change to RUN mode.

## Clearing a syntax check error

By changing to the PROG.mode, the error will clear and the ERROR will turn off.

## Steps to take for syntax error

Change to the PROG. mode, and then execute the total check function while online mode with the programming tool connected. This will call up the content of error and the address where the error occurred.
Correct the program while referring to the content of error.

## -Self-diagnostic Error

This error occurs when the control unit (CPU unit) self-diagnostic function detects the occurrence of an abnormality in the system. The self-diagnostic function monitors the memory abnormal detection, I/O abnomal detection, and other devices.

## When a self-diagnostic error occurs

- The ERROR turns on or flashes.
- The operation of the control unit (CPU unit) might stop depending on the contect of error and the system
register setting.
- The error codes will be stored in the special data register DT9000(DT90000).
- In the case of operation error, the error address will stored in the DT9017(DT90017) and DT9018(DT90018).


## Clearing the self-diagnostic error

At the "STATUS DISPLAY", execute the "error clear". Error codes 43 and higher can be cleared.
-You can use the initialize/test switch to clear an error. However, this will also clear the contents of operation memory.
-Errors can also be cleared by turning off and on the power while in the PROG.mode.
However, the contents of operation memory, not stored with the hold type data, will also be cleared.
-The error can also be cleared depending on the self-diagnostic error set instruction F148(ERR).

## Steps to take for self-diagnostic error

The steps to be taken will differ depending on the error contents. For more details, use the error code obtained above and consult the table of aself-diagnostic error codes.

## MEWTOCOL-COM Transmission Errors

These are error codes from a PC or other computer device that occur during an abnormal response when communicating with a PLC using MEWTOCOL-COM.

Table of Syntax Check Error

Error code	Name	Operation status	Description and steps to take	$\begin{gathered} \text { © } \\ \text { ì } \end{gathered}$	욘	$\begin{aligned} & \text { 뜽 } \\ & \text { 안 } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { 믄 } \end{aligned}$	$\begin{aligned} & x \\ & \text { 젼 } \end{aligned}$	ํ	¢	T ¢ - 믄
E1	Syntax error	Stops	A program with a syntax error has been written.   $\Rightarrow$ Change to PROG. mode and correct the error.	A	A	A	A	A	A	A	A
$\underset{\text { (Note) }}{\text { E2 }}$	Duplicated output error	Stops	Two or more OT(Out) instructions and KP(Keep) instructions are programmed using the same relay.Also occurs when using the same timer/counter number.   $\Rightarrow$ Change to PROG. mode and correct the program so that one relay is not used for two or more OT instructions, Or, set the duplicated output to "enable" in system register20. A timer/counter instructon double definition error will be detected even if double output permission has been selected.	A	A	A	A	A	A	A	A
E3	Not paired error	Stops	For instructions which must be used in a pair such as jump (JP and LBL), one instruction is either missing or in an incorrect position.   $\Rightarrow$ Change to PROG. mode and enter the two instructions which must be used in a pair in the correct positions.	A	A	A	A	A	A	A	A
E4	Parameter mismatch error	Stops	An instruction has been written which does not agree with system register settings. For example, the number setting in a program does not agree with the timer/counter range setting.   $\Rightarrow$ Change to PROG. mode, check the system register settings, and change so that the settings and the instruction agree.	A	A	A	A	A	A	A	A
$\begin{gathered} \text { E5 } \\ \text { (Note) } \end{gathered}$	Program area error	Stops	An instruction which must be written in a specific area (main program area or subprogram area) has been written to a different area (for example, a subroutine SUB to RET is placed before an ED instruction). $\Rightarrow$ Change to PROG. mode and enter the instruction into the correct area.	A	A	A	A	A	A	A	A

Note) This error is also detected if you attempt to execute a rewrite containing a syntax error during RUN. In this case, nothing will be written to the CPU and operation will continue.


Table of Self-Diagnostic Error

${ }^{*} 1$ ) This error occurs on FP-X Ver2.0 or later.
A:Available

Error code	Name	Operation status	Description and steps to take	$\begin{aligned} & \text { Q } \\ & \text { di } \end{aligned}$	욘	$\begin{aligned} & \text { 증 } \\ & \text { 은 } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { 맨 } \end{aligned}$	$\begin{aligned} & \text { x } \\ & \text { it } \end{aligned}$	N	T	ㄷ
E29	Configuration parameter error	Stops	A parameter error was detected in the MEWNET-W2 configuration area. Set a correct parameter.						A	A	
E30	Interrupt error 0	Stops	Probably a hardware abnormality.   $\Rightarrow$ Please contact your dealer.								
E31	Interrupt error 1	Stops	An interrupt occurred without an interrupt request . A hardware problem or error due to noise is possible.   $\Rightarrow$ Turn off the power and check the noise conditions.	A	A	A	A	A	A	A	A
E32	Interrupt error 2	Stops	There is no interrupt program for an interrupt which occurred.   $\Rightarrow$ Check the number of the interrupt program and change it to agree with the interrrupt request..	A	A	A	A	A	A	A	A
E33	Multi-CPU data unmatch error	CPU2   Stops	This error occurs when a FP3/FP10SH is used as CPU2 for a multi-CPU system. $\Rightarrow$ Refer to "Multi-CPU system Manual".							A	A
E34	I/O status error	Stops	An abnormal unit is installed.   -FP $\Sigma$, FPOR(FP0R mode),FP-X, FP2,FP2SH and FP10SH:   Check the contents of special data register DT90036 and locate the abnormal unit.Then turn off the power and replace the unit with a new one.   -FP3:   Check the contents of special data register DT9036 and locate the abnormal unit. Then turn off the power and replace the unit with a new one.			A	A	A		A	A
E35	MEWNET-F   slave illegal unit error	Stops	A unit, which cannot be installed on the slave station of the MEWNET-F link system, is installed on the slave station.   $\Rightarrow$ Remove the illegal unit from the slave station.						A	A	A
E36	MEWNET-F   (remore   I/O)   limitation   error	Stops	The number of slots or I/O points used for MEWNET-F(remote I/O) system exceeds the limitation.   $\Rightarrow \mathrm{Re}$-configure the system so that the number of slots and $\mathrm{I} / \mathrm{O}$ points is within the specified range.						A	A	A
E37	MEWNET-F I/O mapping error	Stops	I/O overlap or I/O setting that is over the range is detected in the allocated I/O and MEWNET-F I/O map.   $\Rightarrow$ Re-configure the I/O map correctly						A	A	A

A:Available

Error code	Name	Operation status	Description and steps to take		은	$\begin{aligned} & \text { 뜽 } \\ & \text { 난 } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { 믄 } \end{aligned}$	$\begin{aligned} & \times \\ & \text { 슨 } \end{aligned}$	끈	T	ㄲ
E38	MEWNET-F   slave I/O terminal mapping error	Stops	I/O mapping for remote I/O terminal boards, remote I/O terminal units and I/O link is not correct.   $\Rightarrow R e-c o n f i g u r e ~ t h e ~ I / O ~ m a p ~ f o r ~ s l a v e ~ s t a t i o n s ~$ according to the I/O points of the slave stations.						A	A	A
E39	IC card read error	Stops	When reading in the program from the IC memory card(due to automatic reading because of the dip switch setting or program switching due to F14(PGRD) instruction):   - IC memory card is not installed.   - There is no program file or it is damaged.   - Writing is disabled.   - There is an abnormality in the AUTOEXEC.SPG file.   - Program size stored on the card is larger than the capacity of the CPU.   $\Rightarrow$ Install an IC memory card that has the program proterly recorded and execute the read once again.							A	A
E40	I/O error	Selectable	Abnormal I/O unit.   FP $\Sigma$, FP-X:   Check the contents of special data register DT90002 and abnormal FPE expansion unit (application cassette for FP-X). Then check the unit.   FP2 and FP2SH:   Check the contents of special data registers DT90002,DT90003 and abnormal I/O   unit. Then check the unit.   Selection of operation status using system register21:   -to continue operation, set 1   -to stop operation, set 0   Verification is possible in FPWIN GR/Pro   at"//O error" in the status display function.   MEWNET-TR communication error FP3 and FP10SH:   Check the contents of special data registers(FP3:DT9002,DT9003,FP10SH:DT9 0002,DT90003) and the erroneous master unit and abnormal I/O unit. Then check the unit.   Selection of operation status using system register21:   -to continue operation, set 1   -to stop operation, set 0   Verification is possible in FPWIN GR/Pro   at"//O error" in the status display function.				A	A	A	A	A

A:Available

Error code	Name	$\begin{aligned} & \text { Opera- } \\ & \text { tion } \\ & \text { status } \end{aligned}$	Description and steps to take	$\begin{gathered} \text { © } \\ \text { 는 } \end{gathered}$	욘	$\begin{aligned} & \text { 뜽 } \\ & \text { 닌 } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { 는 } \end{aligned}$	$\begin{aligned} & \times \\ & \text { 신 } \end{aligned}$	N	ㅍ	T ¢ - त
E41	Intelligent unit error	Selectable	An abnormality in an intelligent unit. FP $\Sigma$, FP-X:   Check the contetns of special data register "DT90006" and locate the abnormal FP intelligent unit (application cassette for FP-X). FP2,FP2SH, and FP10SH:   Check the contents of special data registers DT90006,DT90007 and locate the abnormal intelligent unit. Then check the unit referring to its manual..   Selection of operation status using system register22:   -to continue operation, set 1   -to stop operation,set 0   FP3:   Check the contents of special data registers DT9006,DT9007 and locate the abnormal intelligent unit. Then check the unit referring to its manual..   Selection of operation status using system register22:   -to continue operation, set 1   -to stop operation,set 0   Verification is possible in FPWIN GR/Pro   at"//O error" in the status display function.				A	A	A	A	A
E42	I/O unit verify error	Selectable	I/O unit(Expansion unit) wiring condition has changed compared to that at time fo powerup.   $\Rightarrow$ Check the contents of special data register (FP0: DT9010,   FPE, FP-X: DT90010,DT90011) and locate the erroneous expansion unit.   It checks whether an expansion connector is in agreement.   $\Rightarrow$ Check the contents of special data register   (FP2,FP2SH, and   FP10SH:DT90010,DT90011,FP3   DT9010,DT9011)   Selection of operation status using system register23:   -to continue operation,set 1   -to stop operation,set 0   Verification is possible in FPWIN GR/Pro   at"I/O error" in the status display function.		A	A	A	A	A	A	A

A:Available

Error code	Name	Operation status	Description and steps to take	$\begin{aligned} & \text { M } \\ & \text { i } \end{aligned}$	은	$\begin{aligned} & \text { 뜽 } \\ & \text { ㄴㄴㄴ } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { 묜 } \end{aligned}$	$\begin{aligned} & \times \\ & \text { 신 } \end{aligned}$	N	¢	ㄱ
E43	System watching dog timer error	Selec-   table	Scan time required for program execution exceeds the setting of the system watching dog timer.   $\Rightarrow$ Check the program and modify it so that the program can execute a scan within the specified time.   Selection of operation status using system register24:   -to continue operation,set 1   -to stop operation,set 0							A	A
E44	Slave   staiton connecting time error for MEWNET-F system	Selec-   table	The time required for slave station connection exceeds the setting of the system register 35. Selection of operation status using system register25:   -to continue operation, set 1   -to stop operation, set 0						A	A	A
E45	Operation error	Selectable	Operation became impossible when a highlevel instruction was executed.   Selection of operation status using system register26:   -to continue operation, set K1   -to stop operation, set K0   The address of operation error can be confirmed in either special data registers DT9017 and DT9018, or DT90017 and DT90018. (It varies according to the model to be used.)   DT9017, DT9018: FP-e, FPO, FPOR(FPO mode)   DT90017, DT90018: FP $\sum$, FP-X,   FPOR(FPOR mode),   FP2, FP2SH, FP10SH   Verification is possible in FPWIN GR/Pro   at"//O error" in the status display function.	A	A	A	A	A	A	A	A

A:Available

Error code	Name	Operation status	Description and steps to take	$\begin{gathered} \text { © } \\ \text { iL } \end{gathered}$	욘	$\begin{aligned} & \text { 뜽 } \\ & \text { 닌 } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { 足 } \end{aligned}$	$\begin{aligned} & x \\ & \text { d } \\ & \text { it } \end{aligned}$	ํ	匆	T
		Selectable	S-LINK error Occurs only in FP0-SL1   When one of the S-LINK errors (ERR1, 3 or   4) has been deteced,error code E46 (remote   I/O (S-LINK) communication error) is stored.   Selection of operation status using system register27:   -to continue operation, set K1   -to stop operation, set K0		A						
E46	Remote I/O communication error	Selectable	MEWNET-F communication error   A communication abnormally was caused by a transmission cable or during the powerdown of a slave station.   FP2, FP2SH, and FP10SH:   Check the contents of special data registers DT90131 to DT90137 and locate the abnormal slave station and recover the communication condition.   FP3:   Check the contents of special data registers DT9131 to DT9137 and locate the abnormal slave station and recover the communication condition.   Selection of operation status using system register27:   -to continue operation, set K1   -to stop operation, set K0						A	A	A
E47	MEW-   NET-F   attribute error	Selectable	In the unit on the slave station, an abnormallty such as:   -missing unit   -abnormal intelligent unit was detected.   FP2, FP2SH, and FP10SH:   Check the contents of special data registers DT90131 to DT90137 and locate the abnormal slave station and recover the slave condition.   FP3:   Check the contents of special data registers DT9131 to DT9137 and locate the abnormal slave station and recover the slave condition. Selection of operation status using system register28:   -to continue operation, set 1   -to stop operation,set 0						A	A	A
E49	Expansion unit power supply sequence error	Stops	The power supply for the expansion unit was turned on after the control unit.   Turn on the power supply for the expansion unit at the same time or before the control unit is turend on.					A			
E50	Backup battery errror	Continues	The voltage of the backup battery lowered or the backup battery of conrol unit is not installed.   $\Rightarrow$ Check the installation of the backup battery and then replace battery if necessary. By setting the system register 4, you can disregard this self-diagnostic error.				A	A	A	A	A


Error code	Name	Operation status	Description and steps to take	$\begin{aligned} & \text { © } \\ & \text { 는 } \end{aligned}$	욘	~	$\begin{aligned} & \text { W } \\ & \text { 는 } \end{aligned}$	$\begin{aligned} & \times \\ & \text { 민 } \end{aligned}$	N	¢	ㅍ
E51	MEWNET-F   terminal   station   error	Continues	Terminal station setting was not properly performed.   Check stations at both ends of the communication path, and set them in the terminal station using the dip switches.						A	A	A
E52	MEWNET-F   I/O update synchronous error	Continues	Set the INITIALIZE/TEST   selecto1inmjvbgycfrde892 $r$ to the INITIALIZE position while keeping the mode selector in the RUN position. If the same error occurs after this,please contact your dealer.						A	A	A
E53	Multi-CPU I/O registration error (CPU2 only)	Continues	Abnormality was detected when the multiCPU system ws used.   Please contact your dealer.								A
E54	IC memory card backup battery error	Continues	The voltage of the backup battery for the IC memory card lowered. The BATT.LED does not turn on.   Charge or replace the backup battry of IC memory card.(The contents of the IC memory card cannot be guaranteed.)							A	A
E55	IC memory card backup battery error	Cont-   inues	The voltage of the backup battery for IC memory card lowers. The BATT.LED does not turn on.   Charge or replace the backup battery of IC memory card.   (The contents of the IC memory card cannot be guaranteed.)							A	A
E56	Incompatible IC memory card error	Cont-   inues	The IC memory card installed is not compatible.   Replace the IC memory card compatible with FP2SH/FP10SH.							A	A
E57	No unit for the configuration	Conti-   nues	MEWNET-W2/MCU   The MEWNET-W2 link unit or MCU(Multi communication unit) is not installed in the slot specified using the configuration data.   Either install a unit in the specified slot or change the parameter.						A	A	
$\begin{aligned} & \text { E100 } \\ & \text { to } \\ & \text { E199 } \end{aligned}$	Selfdiagnostic error set	Stop	The error specified by the F148 (ERR)/P148(PERR) instruction is occurred. $\Rightarrow$ Take steps to clear the error condition according to the specification you chose.	A	A	A	A	A	A		
E200 to E299	(ERR)/P148   (PERR)   instruction	Conti-   nues		A	A	A	A	A	A		

A:Available

## Table of MEWTOCOL-COM Communication Error

Error   code		
Name		
$!21$	NACK error	Link system error
$!22$	WACK error	Link system error
$!23$	Unit No. overlap	Link system error
$!24$	Transmission format   error	Link system error
$!25$	Link unit hardware   error	Link system error
$!26$	Unit No. setting error	Link system error
$!27$	No support error	Link system error
$!28$	No response error	Link system error
$!29$	Buffer closed error	Link system error
$!30$	Time-out error	Link system error
$!32$	Transmission   impossible error	Link system error
$!33$	Communication stop	Link system error
$!36$	No destination error	Link system error
$!38$	Other communication   error	Link system error
$!40$	BCC error	A transfer error occurred in the received data.
$!41$	Format error	A command was received that does not fit the format.
$!42$	No support error	A command was received that is not supported.
$!43$	Multiple frames   procedure error	A different command was received when processing multiple   frames.
$!50$	Link setting error	A route number that does not exist was spacified. Verify the   route number by designating the transmission station.
$!51$	Transmission   time-out error	Transmission to anather device not possible because   transmissition buffer is congested.
$!52$	Transmit disable   error	Transmission processing to another device is not possible.(Link   unit runaway,etc.)
$!53$	Busy error	Command process cannot be received because of multiple   frame processing.Or,cannot be received because command   being processed is congested.
$!60$	Parameter error	Content of spacified parameter does not exist or cannot be used.
$!61$	Data error	There was a mistake in the contact,data area,data number   desigination,size designation,range,or format designation.
$!62$	Registration over   error	Operation was does when number of registrations was exceeded   or when there was no registration.
$!63$	PC mode error	PC command that cannot be processed was executed during   RUN mode.


Error   code	Name	
$\mathbf{I 6 4}$	External memory   error	An abnormality occurred when loading RAM to ROM/IC memory   card.There may be a problem with the ROM or IC memory card.   --When loading,the specified contents exceeded the capacity.   -Write error occurs.   -ROM or IC memory card is not installed.   -ROM or IC memory card does not conform to specifications   -ROM or IC memory card board is not installed.
$!65$	Protect error	A program or system register write operation was executed when   theb protect mode (password setting or DIP switch,etc.)or ROM   operation mode was being used.
$!66$	Address error	There was an error in the code format of the address data.   Alsi.when exceeded or insufficient of address data,there was a   mistake in the range designation.
$!67$	No program error   and No data error	Cannot be read because there is no program in the program   area or the memory contains an error.Or,reading was attempted   of data that was not registered.
$!68$	Rewrite during RUN   error	When inputting with programming tool software,editing of an   instruction (ED,SUB,RET,INT,IRET,SSTP,and STPE) that   cannot perform a rewrite during RUN is being attempted.   Nothing is written to the CPU.
$!70$	SIM over error	Program area was exceeded during a program write process.
$!71$	Exclusive access   control error	A command that cannot be processed was executed at the same   time as a command being processed.

### 5.5 MEWTOCOL-COM Communication Commands

Table of MEWTOCOL-COM commands

Command name	Code	Description
Read contact area	RC   (RCS)   (RCP)   (RCC)	Reads the on and off status of contact.   - Specifies only one point.   - Specifies multiple contacts.   - Specifies a range in word units.
Write contact area	WC   (WCS)   (WCP)   (WCC)	Turns contacts on and off.   - Specifies only one point.   - Specifies multiple contacts.   - Specifies a range in word units.
Read data area	RD	Reads the contents of a data area.
Write data area	WD	Writes data to a data area.
Read timer/counter set value area	RS	Reads the value set for a timer/counter.
Write timer/counter set value area	WS	Writes a timer/counter setting value.
Read timer/counter ellapsed value area	RK	Reads the timer/counter elapsed value.
Write timer/counter elapsed value area	WK	Writes the timer/counter elapsed value.
Register or Reset contacts monitored	MC	Registers the contact to be monitored.
Register or Reset data monitored	MD	Registers the data to be monitored.
Monitoring start	MG	Monitors a registered contact or data using the code "MC or MD".
Preset contact area (fill command)	SC	Embeds the areaof a specified range in a 16point on and off pattern.
Preset data area (fill command)	SD	Writes the same contents to the data area of a specified range.
Read system register	RR	Reads the contents of a system register.
Write system register	WR	Specifies the contents of a system register.
Read the status of PLC	RT	Reads the specifications of the programmable controller and error codes if an error occurs.
Remote control	RM	Switches the operation mode of the programmable controller.
Abort	AB	Aborts communication.

### 5.6 Hexadecimal/Binary/BCD

Decimal	Hexadecimal	Binary data	BCD data (Binary Coded Decimal)
0	0000	0000000000000000	0000000000000000
1	0001	0000000000000001	0000000000000001
2	0002	0000000000000010	0000000000000010
3	0003	0000000000000011	0000000000000011
4	0004	0000000000000100	0000000000000100
5	0005	0000000000000101	0000000000000101
6	0006	0000000000000110	0000000000000110
7	0007	0000000000000111	0000000000000111
8	0008	0000000000001000	0000000000001000
9	0009	0000000000001001	0000000000001001
10	000A	0000000000001010	0000000000010000
11	000B	0000000000001011	0000000000010001
12	000C	0000000000001100	0000000000010010
13	000D	0000000000001101	0000000000010011
14	000E	0000000000001110	0000000000010100
15	000F	0000000000001111	0000000000010101
16	0010	0000000000010000	0000000000010110
17	0011	0000000000010001	0000000000010111
18	0012	0000000000010010	0000000000011000
19	0013	0000000000010011	0000000000011001
20	0014	0000000000010100	0000000000100000
21	0015	0000000000010101	0000000000100001
22	0016	0000000000010110	0000000000100010
23	0017	0000000000010111	0000000000100011
24	0018	0000000000011000	0000000000100100
25	0019	0000000000011001	0000000000100101
26	001A	0000000000011010	0000000000100110
27	001B	0000000000011011	0000000000100111
28	001C	0000000000011100	0000000000101000
29	001D	0000000000011101	0000000000101001
30	001E	0000000000011110	0000000000110000
31	001F	0000000000011111	0000000000110001
-	.		
-	-		.
-	.		00000000110011
63	003F	0000000000111111	0000000001100011
.	.	.	.
.	-		.
.	-		$0000010{ }^{\circ} 010101$
255	00FF	0000000011111111	0000001001010101
.	.		.
-	.		.
-			
9999	270F	0010011100001111	1001100110011001

### 5.7 ASCII Codes



## Record of changes

Manual No.	Date	Description of changes
ARCT1F313E/   ACG-M313E	MAR. 2000	First edition
ARCT1F313E-1/ ACG-M313E-1	MAY. 2000	2nd edition
ARCT1F313E-2/ ACG-M313E-2	SEP. 2000	3rd edition
ARCT1F313E-3/ ACG-M313E-3	JUN. 2003	4th edition Additions: FPSIGMA, FP-e
ARCT1F313E-4/ ACG-M313E-4	JUL. 2003	5 th edition
ARCT1F313E-5/ ACG-M313E-5	JUL. 2004	6th edition Addition \& New programming: ICTL, F4, F159, F161, F230, F231, F354
ARCT1F313E-6/ ACG-M313E-6	AUG. 2004	7th edition PDF only
ARCT1F313E-7/ ACG-M313E-7	OCT. 2004	8th edition PDF only
ARCT1F313E-8/ ACG-M313E-8	JUL. 2005	9th edition PDF only
ARCT1F313E-9/ ACG-M313E-9	OCT. 2005	10th edition PDF only   Addition \& New programming:   STF, ANF, ORF, F145, F146, F356   Addition: FPSIGMA 32K type Chapter 1 \& 8 SYS1   Chapter 4.8, 4.9, 4.10
ARCT1F313E-10/ ACG-M313E-10	DEC. 2005	11th edition   Addition: FP-X transistor type   New programming: F182, F252, F284
ARCT1F313E-11/ ACG-M313E-11	JUL. 2006	12th edition


Manual No.	Date	Description of changes
ARCT1F313E-12/ ACG-M313E-12	JUL. 2006	13th edition
ARCT1F313E-13/ ACG-M313E-13	SEP. 2006	14th edition
ARCT1F313E-14/ ACG-M313E-14	MAR. 2007	15th edition
ARCT1F313E-15/ ACG-M313E-15	JAN. 2008	16th edition
ARCT1F313E-16/ ACG-M313E-16	NOV. 2008	17th edition Change in Corporate name
ARCT1F313E-17/ ACG-M313E-17	JUL. 2009	18th edition
ARCT1F313E-18	AUG. 2011	19th edition Change in Corporate name


[^0]:    媵害 Note
    Index modification is possible only with the FP2, FP2SH and FP10SH.Table of Basic Instructions

[^1]:    (*1) This cannot be used with the FP0/FP-e.

[^2]:    (*1) This cannot be used with the FPO and FP-e.
    (*2) This cannot be used with the FPO, FP-e, FPOR, FPD, FP-X.
    (*3) With the FPOR, FPE, FP-X, FP2, FP2SH, and FP10SH, this is 10 to IC.
    (*4) With the FPOR, FPI, FP-X, FP2, FP2SH, and FP10SH, this is ID.

[^3]:    To repeat reception only, set to KO.
    R9038 will also go off when the number of transmission bytes is set and transmission is carried out.

[^4]:    * Reads a value of the bit 0 of WR3 and sets the condition by selecting ON or OFF.
    Specify ON=FF00, OFF=0000.

[^5]:    * Specify the coil No. of the destination for the starting No. of read. (Remote unit: Y10)
    The quantity to read should be the value of "No. of specified words $\times 16$ ". (64-bit read)

[^6]:    * Specify the data No. of the destination for the starting No. of read. (Remote unit: DT500)
    The quantity to read should be the No. of specified words. (6-word read)

[^7]:    * Specify the data No. of the destination for the starting No. of read. (Remote unit: WL20)
    The quantity to read should be the No. of specified words. (6-word read)

[^8]:    Note) Used by the system.

[^9]:    Note) In the FP2, an expansion memory unit is necessary.

[^10]:    O: Available, $X$ : Not available, $\triangle$ : Not available partially

